
1

Abstract—Currently, the design, deployment and refinement of new
network architectures is a manual, ad-hoc and time-consuming
process. We present the design, implementation and evaluation of
the Genesis Kernel, a programming system that automates the life
cycle process for the creation, deployment, management, and
architecting of network architectures. We discuss our experiences
in building a spawning network that is capable of creating distinct
virtual network architectures on-demand. The Genesis Kernel is
based on a methodology that allows a child virtual network to
operate on top of a subset of its parent’s network resources and in
isolation from other spawned virtual networks. We show through
experimentation how a number of diverse network architectures
can be spawned and architecturally refined. These spawned
network architectures include a parent network that supports IP
forwarding, and interior and exterior routing. We discuss how two
child networks based on Cellular IP and Mobiware architectures
can be spawned on the parent network to support wireless access to
data and continuous media services, respectively.

Keywords—programmable virtual networking, spawning, service creation

I. INTRODUCTION

Existing network architectures (e.g., Internet, mobile,
Telephone, ATM) exhibit a lack of intrinsic architectural
flexibility in adapting to new user needs and requirements. We
broadly define network architecture as a set of transport,
signaling, control and management mechanisms that are
governed by operational time-scales and state information.
Typically, network architectures are realized as a set of
distributed network algorithms that offer services to end-
systems. In what follows, we make a number of observations
about the limitations encountered when designing and deploying
new network architectures.

First, current network architectures are deployed on top of a
multitude of technologies such as land-based, wireless, mobile
and satellite for a wide array of voice, video and data

Michael E. Kounavis, Andrew T. Campbell and Stephen Chou ({mk, campbell,
schou}@comet.columbia.edu) are affiliated with the COMET Group, Center for
Telecommunications Research, Columbia University. Fabien Modoux
(modoux@comet.columbia.edu) works for Voicemate Inc., New York, USA.
John Vicente (John.Vicente@intel.com) is affiliated with Intel Corporation,
USA. Hao Zhuang (hzhuang@celoxnetworks.com) is a member of the technical
staff at Celox Networks, USA.
 This work is supported in part by the NSF CAREER Award No. ANI
9876299 and with support from the Intel Corporation, Nortel Networks and
Hitachi Limited.

applications. Because these architectures offer a limited
capability to match the evolving needs of new applications and
environments, the deployment of these architectures has
predictably met with various degrees of success.

Second, the interface between the network and the service
architecture responsible for the basic communication services
(such as connection setup procedures in Telephone and ATM
networks) is rigidly defined and can not be replaced, modified,
nor supplemented. In other cases, for example the Internet, end
user connectivity abstractions provide little support for quality of
service (QOS) guarantees and accounting for usage of network
resources (billing).

Third, the creation and deployment of network architectures
is a manual, time consuming and costly process. At its most
advanced, the creation process utilizes off-line tools for network
planning, emulation and simulation. These tools are, however,
invariably narrow in scope, primitive in use and fail to highlight
architectural shortcomings. To the network architect the creation
process is typically ad-hoc in nature, based on hand crafting
small-scale prototypes that evolve toward wide scale
deployment. We believe that there is a need to design
architectures based on solid theoretical foundations that call for
clearly reasoned system level models. Fourth, multiple
parameterizations of the network design space are needed and
should be used for systematic exploration before the final
realization of the architecture is deployed. Such capabilities
hardly exist and as a result the deployment cycle is typically a
blind iterative process based on ‘design, deploy and analyze’.

In response to these limitations, we argue that there is a
need to propose, investigate, and evaluate alternative network
architectures to the existing ones. This challenge goes beyond a
proposal for yet another experimental network architecture.
Rather, it calls for new approaches to the way we design,
develop, deploy, observe and analyze new network architectures
in response to future needs and requirements. We believe that
the design, deployment and management of new network
architectures should be automated and built on a foundation of
spawning networks, a new class of open programmable
networks. In [1] we describe the process of automating the
creation and deployment of new network architectures as
‘spawning’. The term spawning finds a parallel with an operating
system spawning a child process. We envision spawning
networks as having the capability to spawn not processes but
complex network architectures.

Spawning networks support the deployment of
programmable virtual networks. We call a virtual network

The Genesis Kernel: A Programming System for
Spawning Network Architectures

Michael E. Kounavis, Andrew T. Campbell, Stephen Chou, Fabien Modoux, John Vicente
and Hao Zhuang

2

installed on top of a set of network resources a ‘parent virtual
network’. We propose the realization of parent virtual networks1

with the capability of creating ‘child virtual networks’ operating
on a subset of network resources and topology, as illustrated in
Figure 1. This is a departure from the operating system analogy.
The two architectures (i.e., parent and child) would be deployed
in response to possibly different user needs and requirements.
For example, part of an access network to a wired network might
be re-deployed as a pico-cellular virtual network supporting fast
handoff, as illustrated in Figure 1. Other examples include
virtual networks that can be either under the control of a service
provider (such as an ISP) or under customer control. Child
networks operate on a subset of the topology of their parents and
are restricted by the capabilities of their parent’s underlying
hardware and resource partitioning model. While parent and
child networks share resources, they do not necessarily use the
same software for controlling those resources.

In this paper, we describe the design, implementation and
evaluation of the Genesis Kernel, a programming system that
automates the creation, deployment, management and refinement
of network architectures. The Genesis Kernel is an enabling
technology for spawning networks that automates the virtual
network life cycle process, which comprises profiling, spawning,
management and architecting. The profiling phase captures the
blueprint of a network architecture in terms of a comprehensive
profiling script. The spawning phase systematically sets up the
topology and address space, allocates resources and binds
transport, control and management objects to the physical
network infrastructure. The management phase supports virtual
network resource management [4] while the architecting phase
allows network designers to add, remove or replace distributed
network algorithms on-demand analyzing the pros and cons of
the network design space.

In order to evaluate our approach we have built a spawning
networks testbed and designed a set of experiments to help
verify the Genesis Kernel’s capability to dynamically create,
manage and architect network architectures. We have spawned a
parent network architecture that supports IP forwarding, and
interior and exterior routing. The spawning networks testbed
comprises a number of heterogeneous link layers including
Ethernet, wireless LAN and ATM technologies. Two distinct
child networks have been spawned over the parent network
based on the Cellular IP [2] and Mobiware [3] architectures
offering wireless data and multimedia services to mobile users,
respectively. Both of these architectures were previously
developed by the COMET Group, and have been fully
implemented and evaluated in standalone testbeds; see [13] and
[14] for details. We refer to the spawned IP, Cellular IP and
Mobiware architectures as the baseline architectures. We also
show how the Mobiware and Cellular IP child networks can be
architecturally refined.

This paper is structured as follows. In Section II we
describe the Genesis Framework and discuss the principles that
underpin spawning networks. Following this, in Section III we
describe our prototype implementation. In Section IV we present

1 We abbreviate the terms parent virtual network and child virtual networks to
parent network and child network, respectively. The term virtual network and
spawned virtual network are synonymous and refer to parent or child networks.

our experiences with using the Genesis Kernel, focusing on the
dynamic creation, deployment and management of the baseline
network architectures. In Section V, we present related work in
the area of programmable networks. Finally, we present some
concluding remarks in Section VI.

II. THE GENESIS KERNEL

A. Genesis Framework

Three distinct levels of the Genesis Kernel support
spawning, as illustrated in Figure 2. At the lowest level, a
transport environment delivers packets from source to
destination end-systems through a set of open programmable
virtual router nodes called routelets. Routelets represent the
lowest level operating system support dedicated to a virtual
network. A virtual network is characterized by a set of routelets
interconnected by a set of virtual links, where a set of routelets
and virtual links collectively form a virtual network topology.
Routelets process packets along a programmable data path at the
internetworking layer, while control algorithms (e.g., routing
and resource reservation) are made programmable using the
virtual network kernel, (i.e., the Genesis Kernel). A Genesis
router is capable of supporting multiple routelets, which
represent components of distinct virtual networks that share
computational and communication resources.

Child routelets are instantiated by the parent network during
spawning, as illustrated in Figure 2. The parent virtual network
kernel acts as a resource allocator, arbitrating between requests
made by spawned routelets. In addition, routelets are controlled
through separate programming environments. Each virtual
network kernel can create a distinct programming environment
that enables the interaction between distributed objects that
characterize a spawned network architecture (e.g., routing
daemons, bandwidth brokers, etc.), as illustrated in Figure 2.
The programming environment comprises a metabus, which is a
per-virtual network software bus for object interaction (akin to
CORBA, DCOM and Java RMI software buses). The metabus
creates isolation between the distributed objects associated with
different spawned virtual networks. A binding interface base [6]
supports a set of open programmable interfaces on top of the
metabus, which provide open access to a set of routelets and
virtual links that constitute a virtual network.

A key capability of the Genesis Kernel is its ability to
support a virtual network life cycle process that supports the
dynamic creation, deployment and management of network
architectures. The life cycle process comprises four phases:
• profiling, which captures the blueprint of the virtual

network architecture in terms of a comprehensive
profiling script. Profiling captures addressing, routing,
signaling, security, control and management requirements

3

Figure 1: Spawning Networks

in an executable profiling script that is used to automate the
deployment of programmable virtual networks;

• spawning, which systematically sets up the topology and
address space, allocates resources and binds transport,
control and network management objects to the physical
network infrastructure. Based on the profiling script and
available network resources, network objects are created
and dispatched to network nodes thereby dynamically
creating a new virtual network architecture;

• management, which supports virtual network resource
management based on per-virtual network policy to exert
control over multiple spawned network architectures; and

• architecting, which allows network designers to analyze the
pros and cons of the architectural design space and to
dynamically modify a spawned architecture by changing
transport, signaling, control and management mechanisms.

As illustrated in Figure 2, the metabus and binding interface
base also support the life cycle environment, which realizes the
life cycle process. When a virtual network is spawned a separate
virtual network kernel is created by the parent network on behalf
of the child. The transport environment of the child virtual
network kernel is dynamically created through the partitioning of
network resources used by the parent transport environment. In
addition, a metabus is instantiated to support the binding
interface base and life cycle service objects associated with a
child network. The profiling and spawning of a child network is
controlled by its parent virtual network kernel. In contrast, the
child virtual network kernel is responsible for the management
of its own network. The terms virtual network kernel, child
virtual network kernel and parent virtual network kernel all refer
to instantiations of the Genesis Kernel. The terms child virtual
network kernel and parent virtual network kernel refer to the
instantiation of the Genesis Kernel at different levels in a virtual
network inheritance tree (see next section).

B. Design Principles

The Genesis Kernel is governed by the following set of
design principles.
• Separation Principle: Spawning results in the composition

of a child network architecture in terms of transport, control
and management algorithms. Child networks operate in
isolation with their traffic being carried securely and
independently from other virtual networks. The allocation of
parent network resources used to support a child network is
coupled with the separation of responsibilities and the
transparency of operation between parent and child
architectures.

• Nesting Principle: A child network inherits the capability to
spawn other virtual networks creating the notion of ‘nested
virtual networks’ within a virtual network, as illustrated in
Figure 1. This is consistent with the idea of creating
infrastructure that supports relatively long-lived virtual
networks (e.g., a corporate virtual network that operates
over a long time-scale) and short-lived virtual networks
(e.g., collaborative child group networks operating within
the context of the corporate parent network but only active
for a short period). The parent-to-child relationship
represents a ‘virtual network inheritance tree’ [4], as
illustrated in Figure 1. In this spawning scenario, the
inheritance tree is formed by the virtual network at the
‘root’ of the tree, which spawns two child networks. One
child network (i.e., the Cellular IP virtual network) is a
parent to its own child network. We call the virtual network
at the root of the inheritance tree the root network, as
illustrated in Figure 1.

• Inheritance Principle: Child networks can inherit
architectural components (e.g., resource management
capabilities and provisioning characteristics) from parent
networks. The Genesis Kernel, which is based on a

child virtual
network kernel

Genesis Kernel

routelet

parent virtual
network kernel

Cellular IP
parent network

Mobiware
child network

physical
network

end system

mobile device

router

link

virtual link

base
station

Network

Computing

Child
Virtual Network
child

network

nested virtual network

separation

root network

4

Figure 2: The Genesis Framework

distributed object design, uses inheritance of architectural
components when composing child networks. Child
networks can inherit any aspect of their parent architecture,
which is represented by a set of distributed network objects
for transport, control and management.

C. Transport Environment

The transport environment consists of a set routelets, which
represent open programmable virtual nodes. A routelet operates
like an autonomous virtual router that forwards packets at layer
three, from its input ports to its output ports, scheduling virtual
link capacity and computational resources. Routelets support a
set of transport modules that are specific to a spawned virtual
network architecture, as illustrated in Figure 3. A routelet
comprises a forwarding engine, a control unit and a set of input
and output ports, and may optionally support higher level
protocol stacks.

1) Ports and Engines

Ports and engines, shown in Figure 3, manage incoming and
outgoing packets as specified by a virtual network profiling
script. A profiling script captures the composition of routelet
components. Ports and engines are dynamically created during
the spawning phase from a set of transport modules, which
represent a set of generic routelet plug-ins having well defined
interfaces and globally unique identifiers. Transport modules
(e.g., encapsulators, forwarders, classifiers, schedulers) can be
dynamically loaded into routelets by the Genesis Kernel to form
new and distinct programmable datapaths.

Child ports and engines can be constructed by directly inheriting
their parent’s transport modules or through dynamic composition
by selecting new modules on-demand. Forwarding engines bind
to input and output ports constructing a data path to meet the
specific needs of an embryonic network architecture. Input ports
process packets as they enter the routelet based on the
instantiated transport modules. In the case of a differentiated
services [5] routelet for example, the input ports would contain
differentiated service specific mechanisms (e.g., meters and
markers used to maintain traffic conditioning agreements at
boundary routelets of a differentiated service virtual network). A
virtual link is typically shared by user/subscriber traffic
generated by end-systems associated with the parent network
and by aggregated traffic associated with child networks. User
and child network traffic contend for the parent’s virtual link
capacity. The output port regulates access to the communication
resources (which are associated with a virtual link) among these
competing elements.

2) Control Unit

A routelet is managed by a control unit that comprises a set
of controllers:
• a spawning controller, which “bootstraps” child routelets

through virtualization;
• a composition controller, which manages the composition

of a routelet using a set of transport module references and a
composition script to construct ports and engines;

• an allocation controller, which manages the computation
resources associated with a routelet, and

architecture #1

parent virtual
network kernel

architecture #2 architecture #3 architecture #4
network network network

root (parent) network

network kernel
child virtual

metabus #3metabus #2 metabus #4

child network child network child network

transport environment

binding interface base

network

environment
programming

metabus #1

spawning

life cycle environment

5

• a datapath controller, which manages the communication
resources and the transportation of packets.
The spawning, composition and allocation controllers are

common for all routelets associated with a virtual network. In
contrast, datapath controllers are dynamically composed during
the spawning phase based on a profiling script. Datapath
controllers manage transport modules that represent architecture-
specific data paths supporting local routelet treatment (e.g., QOS
control using transport modules such as policers, regulators,
buffering, queuing and scheduling mechanisms).

Routelets also maintain ‘state’ information that comprises a
set of variables and data structures associated with their
architectural specification and operation. Architectural state
information includes the operational transport modules reflecting
the composition of ports and forwarding engines. State
information includes a set of references to physical resource
partitions that maintain packet queuing, scheduling, memory and
name space allocations for routelets. Routelet state also contains
virtual network specific information (e.g., routing tables, traffic
conditioning agreement configurations).

Figure 3: Routelet Architecture

Routelets generalize the concept of partitioning physical
switch resources introduced in [6] and [7]. Routelets are
designed to operate over a wide variety of link layer
technologies including Ethernet, wireless LAN and ATM. The
underlying link layer technology, however, may impact the level
of programmability and QOS provisioning that can be delivered
at the internetworking layer.

3) Nested Routelets

Nested routelets operate on the same physical node and
maintain their structure according to a virtual network
inheritance tree, as discussed in Section II-B. Child routelets are
dynamically created and composed during the spawning process
when the parent’s computational and communication resources
are allocated to support the execution of a child routelet. Each
reference to a physical resource made by a child routelet is
mapped into a partition controlled and managed by its parent. In
addition, user traffic associated with a child routelet is handled
in an aggregated manner by the parent routelet. Routelets are
unaware that packets are processed according to an inheritance
tree. A routelet simply receives a packet on one of the input

ports associated with its virtual links, sends the packet to its
forwarding engine for processing which then forwards the packet
to an output port where it is finally scheduled for virtual link
transmission.

We use an example scenario to illustrate how nesting is
supported in the router. As illustrated in Figure 4, two packets
arrive at a Genesis router. Every packet arrival must be
demultiplexed to a given spawned virtual network. A virtual
network demultiplexor is programmed to identify each packet's
targeted virtual network (i.e., its routelet) based on a unique
virtual network identifier assigned during the spawning phase.
Each packet that arrives at a Genesis router must eventually
reach the input port of its targeted virtual network routelet, as
illustrated in Figure 4. The first packet in the example traverses
the first level (child) routelet. The other packet traverses the
parent network routelet directly. Mapping is always performed
between the child and parent transport environments. Mapping is
done through the management of transport module references by
parent and child composition controllers, which are capable of
realizing specified ‘binding models’ between the ports and
engines of parent and child networks. This mapping is
performed at each virtual network layer (i.e., routelet) down to
the root of the inheritance tree.

A ‘capacity arbitrator’ [4] located at the parent’s output port
controls access to the parent’s link capacity. Every packet is
treated according to a virtual network policy, which may be
different at each routelet or virtual network. In one extreme case
each packet traverses the nested hierarchy tree until it is
scheduled and exits onto the physical output link. In another
case, a common fast path can be used by all virtual networks.
The fast path is supported by the root network of the inheritance
tree in this case. Child networks can inherit the fast path from
their parents. The fast path supports hierarchical resource
management and scheduling.

Figure 4: Nested Routelets

4) Virtual Network Demultiplexing

The Genesis Kernel supports explicit virtual network
demultiplexing at the cost of an additional protocol field inserted
in the frame format. This is accomplished by inserting a virtual
network identifier between the internetworking and link layer
headers. Although this appears to be a radical approach, it
represents a simple way to differentiate traffic between
programmable virtual networks without introducing virtual

controller
spawning

controller controller controller
composition datapathallocation

packets packets

routelet state

C P U

output port
forwarding

engineinput port

control unit

binding interface base

metabus

virtual network classifier

vi
rt

ua
l n

et
w

or
k

de
m

ul
tip

le
xo

r

child routelet

input port

local routing control

packet

packet

input port
engine

forwarding output port

local traffic control

engine
forwarding

local routing control
local traffic control virtual network traffic control

capacity arbitrator

6

network semantics into the internetworking layer. Virtual
networks are allowed to manage their own name space (e.g.,
addressing schemes) independent of each other, utilizing
different forwarding mechanisms. The virtual network identifier
is dynamically allocated and passed into the routelets of a virtual
network by the life cycle environment of the parent kernel. The
virtual network demultiplexor maintains a database of virtual
network identifiers to map incoming packets to specific routelets
(e.g., child routelets, fast path routelets).

D. Programming Environment

Each network architecture comprises a set of distributed
controllers that realize communication algorithms (e.g., routing,
control, management), as discussed in Section II. These
distributed controllers use the programming environment for
interaction. While the implementation of routelet transport
modules is platform-dependent, the programming environment
offers platform-independent access to these components
allowing a variety of protocols to be dynamically programmed.
The programming environment is illustrated in Figure 5 and
discussed below.

QOS control

life cycle
server

life cycle
services

routing

architecture
virtual network

VirtualRouteletState VirtualSpawningController

VirtualCompositionController

VirtualAllocationController

VirtualDatapathController

sp
aw

ni
ng

m
an

ag
em

en
t

re
so

ur
ce

architecting

profiling

binding interface base

metabus

management
spawning

profiling

architecting

resource
management

Figure 5: Programming Environment

1) Metabus

A metabus supports a hierarchy of distributed objects that
realize a number of virtual network specific communication
algorithms including routing, signaling, QOS control and
management. At the lowest level of this hierarchy binding
interface base objects provide a set of handlers to a routelet’s
controllers and resources allowing for the programmability of a
range of internetworking architectures using the programming
environment. The binding interface base separates the
implementation of the finite state machine, which characterizes
communication algorithms (e.g., the RIP finite state machine, the
RSVP finite state machine, etc.), from the implementation of the
mechanisms that transmit signaling messages inside the network.
Communication algorithms can be implemented as interactions
of distributed objects, independent of the network transport

mechanisms. Distributed objects that comprise network
architectures (e.g., routing daemons, bandwidth brokers, etc.) are
not aware of the existence of routelets. Distributed objects give
the ‘illusion’ of calling methods on local objects whereas in
practice call arguments are ‘packaged’ and transmitted over the
network via one or more routelets. This abstraction is provided
by the metabus.

We have chosen to realize the metabus abstraction as an
orblet, a virtual Object Request Broker (ORB) derived from the
CORBA [8] object-programming environment. Typically,
CORBA is used in enterprise networking solutions and runs on
client and server nodes to support distributed applications. We
have developed network kernels [3] [6] that use CORBA
technology for service creation, signaling and management in
previous projects. The use of off-the-shelf CORBA allows us to
quickly develop simple programmable network architectures and
spawn them using the Genesis Kernel. See Section III-B for
details on the orblet implementation.

The use of CORBA in the network presents a number of
scalability issues that the metabus resolves. Distributed objects
that comprise distinct spawned network architectures need to be
isolated for scalability reasons. Existing ORB technology
supports a number of ad-hoc solutions for realizing isolation
between distributed object computing environments. The
metabus extends the capabilities offered by CORBA by
supporting the dynamic creation of multiple isolated software
buses for spawned virtual network architectures.

2) Binding Interface Base

The interfaces that constitute the binding interface base are
illustrated in Figure 5. A VirtualRouteletState interface allows
access to the internal state of a routelet (e.g., architectural
specification, routing tables). The VirtualSpawningController,
VirtualCompositionController and VirtualAllocationController
interfaces are abstractions of a routelet’s spawning, composition
and allocation controllers, respectively. The
VirtualDatapathController is a ‘container’ interface to a set of
objects that control a routelet’s transport modules. When the
transport environment (e.g., output port) is modified the binding
interface base is dynamically updated to include new module
interfaces in the VirtualDatapathController.

Every routelet is controlled through a number of
implementation-dependent system calls. Binding interface base
objects wrap these system calls with open programmable
interfaces that facilitate the interoperability between routelets
that are possibly implemented with different technologies.
Routing services can be programmed on top of a
VirtualRouteletState interface that allows access to the routing
tables of a virtual network. Similarly, resource reservation
protocols can be deployed on top of a VirtualDatapathController
interface that controls the classifiers and packet schedulers of a
routelet’s programmable data path.

7

E. Life Cycle Environment

The life cycle environment provides support for the
profiling, spawning, management and architecting of virtual
networks. Profiling, spawning, management and architecting
provide a set of services and mechanisms, which are common to
all virtual networks that inherit from the same parent. Life cycle
services can be considered as kernel ‘plugins’ because they can
be replaced or modified on-demand. Life cycle services can be
programmed using the metabus and binding interface base of the
Genesis Kernel. The life cycle is realized through the interaction
of the transport, programming and life cycle environments. In
what follows, we provide an overview of the life cycle services.

1) Profiling

Before a virtual network can be spawned the network
architecture must be specified and profiled in terms of a set of
software and hardware building blocks annotating their
interaction. These software building blocks include the
definition of the communication services and protocols that
characterize a network architecture. The process of profiling
captures addressing, routing, signaling, control and management
requirements in an executable profiling script that is used to
automate the deployment of programmable virtual networks.
During this phase, a virtual network architecture is specified in
terms of a topology graph (e.g., routers, base stations, hosts and
links), resource requirements (e.g., link capacities and
computational requirements), user membership (e.g., privileges,
confidentiality and connectivity graphs) and security
specifications. The network architect can dynamically select
architectural components and instantiate them as part of a
spawned network architecture. For example, a number of routing
protocols for intra-domain and inter-domain routing can be made
available. Similarly, QOS architectures based on well-founded
models (e.g., integrated services [10] and differentiated services
[5]) can be dynamically selected and used for QOS provisioning
in virtual networks. Transport protocols (e.g., TCP, RTP, UDP)
and network management components (e.g., SNMP, CMIP)
made available as software building blocks can be instantiated
on-demand.

2) Spawning

Once the network architecture has been fully specified in
terms of a profiling script it can be dynamically created. The
process of spawning a network architecture relies on the
dynamic composition of the communication services and
protocols that characterize it and the injection of these
algorithms into the nodes of the physical network infrastructure
constituting a virtual network topology. The spawning process
systematically sets up the topology and address space, allocates
resources, and binds transport, routing and network management
objects to the physical network infrastructure. Throughout this
process a virtual network admission test is in operation.

Spawning child network architectures includes creating
child transport and programming environments and instantiating
the control and management objects that characterize network

architectures. The creation process associated with spawning a
child transport environment centers around the creation and
composition of routelets, the bootstrapping of routelets into
physical routers based on the child network topology, and
finally, the binding of virtual links to routelets culminating in the
instantiation of a child transport environment over a parent
network. The Genesis Kernel allows a child network to inherit
the life cycle support from its parent.

3) Management

Once a profiled architecture has been successfully spawned the
virtual network needs to be controlled and managed. The
management phase supports virtual network resource
management based on per-virtual network policy that is used to
exert control over multiple spawned network architectures. The
resource management system can dynamically influence the
behavior of a set of virtual network resource controllers through
a slow timescale allocation and re-negotiation process.

The Genesis virtual network resource management system
called virtuosity [4] leverages the benefits of the kernel’s
hierarchical model of inheritance and nesting. Virtual network
resources are provisioned based on ‘policy’ and slow time-scale
resource re-negotiation. As a result, parent networks manage
child traffic in an aggregated and scalable manner using general
purpose capacity classes. Virtual network resources are
controlled on slow performance management timescales (e.g.,
possibly in the order of tens of minutes). We argue that this is a
suitable timescale for the resource management system to
operate over while allowing virtual networks to perform
dynamic provisioning as needed. A full description of virtuosity
is outside the scope of this paper. For details on the virtuosity
framework and its performance evaluation see [4] and [21],
respectively.

4) Architecting

By observing the dynamic behavior of virtual networks,
spawned network architectures can be refined. Through the
process of architecting a network designer uses visualization and
management tools to analyze the pros and cons of the virtual
network design space and through refinement modify network
objects that characterize the spawned network architecture. For
example, the Cellular IP architecture could be refined to
optimally operate in pico-, campus- and metropolitan-area
environments through the process of architecting and refinement.

Architecting appears to be an exceedingly difficult task.
One of the goals of our work is to build more powerful tools to
help with the architecting process allowing for a more systematic
study of the design space under operational conditions. The
development of visualization tools is an important part of this
work. However, the effective use of architecting depends on
more than a visualization tool. Rather, it depends on a well
founded understanding of what should be achieved versus what
may be achieved and how to modify a prototype network
architecture accordingly.

8

Figure 6: IPv4 Routelet Implementation

III. IMPLEMENTATION

We have been developing the kernel since the Spring of
1998 and have completed the implementation of Genesis Kernel
v1.0 [35]. Using a set of foundation objects and services, we
have been able to profile, spawn, manage and architect a simple
set of baseline architectures. The kernel represents a partial
implementation of the Genesis Framework discussed in the
previous section. The transport and programming environments
have been implemented using commodity operating systems and
distributed systems technology. There remain a number of
technical barriers to realizing the lifecycle service capability,
particularly in the areas of profiling and architecting virtual
networks. In addition, virtuosity is not implemented as part of
the current kernel release. However, we have implemented
virtuosity and evaluated its virtual network resource
management capability as extensions to the ns simulator. For full
details on the virtuosity ns extensions and performance see [21].

A. Transport Environment

The transport environment has been implemented in user
space using dynamically linked libraries (i.e., shared libraries
and DLLs) in the FreeBSD and Windows NT operating systems.
The transport modules have been implemented as C++ objects.
Our implementation balances the flexibility of user-

space development [12] against the performance issues
associated with the lack of high-resolution timers and context
switching. The transport environment is derived from the BSD
kernel implementation of TCP/IP. The networking code was
extracted as transport modules and used as a basis for
implementing a programmable IP datapath. A parent network
architecture was developed in this manner supporting the
majority of features found in IP [16]. In addition, we modified
the Mobiware and Cellular IP software distributions [13] [14] to
create child network architectures. Figure 6 illustrates the
implementation of an IPv4 routelet.

1) Link Layer Support

The Genesis Kernel separates the link and internetworking
layers through a generic link layer interface, as illustrated in
Figure 6. We have taken care to decouple the data structures
describing the link and internetworking layers. Information
associated with the layer two interface is managed by link layer
modules while information associated with the layer three
interface is managed as part of the routelet state, as is the case
with the IPv4 routelet. Typically, spawned virtual networks
transmit packets through a parent network’s capacity arbitrators.
Only the transport environment of the virtual network at the
‘root’ of the inheritance tree (i.e., the root network) needs to
interact with the physical link layer.

The link layer interface supports generic methods for
sending and receiving frames and configuring the link layer
software. In Figure 6, the link layer modules represent virtual

 virtual ethernet

virtual network
demultiplexor

virtual ethernet

ARP

input port

verifier forwarder
eligibility

TTL

route
lookup

forwarding engine

header
initialization

IP
checksum

output port

generic
link layer
interface

physical
interface

outgoing packet

control unit
generic

 part

socket layer

TCP UDP

protocol control blocks

routelet state socket interface

IPC IPC IPC

incoming packet

specific
 part

metabus

9

Ethernet modules. We use the term ‘virtual’ in this context
because link layer modules use low-level programming APIs to
send and receive frames to and from the network device drivers.
For example, we have used the BSD Packet Filter (BPF) as a
network programming API in FreeBSD. We have also
implemented virtual WaveLAN and ATM modules.

2) Packet Flows

At a router, packets are forwarded from incoming to outgoing
physical interfaces traversing virtual network demultiplexors and
routelets. Memory management is realized as follows. Transport
modules can drop packets when and where needed (e.g., a queue
may drop a packet if the length of the queue exceeds a given
threshold). In addition, allocation controllers enforce
hierarchical memory management according to the virtual
network inheritance tree. Virtual network demultiplexors
configure link layer modules specifying the manner in which
packets should be received. For example, a virtual network
demultiplexor can configure a virtual ATM module to receive
packets from a specific set of PVCs.

3) Routelet Components

Routelet components are shown in Figure 6. Ports and
engines are modular elements that perform basic functions on
packets. In the current implementation IP option processing and
fragmentation and reassembly mechanisms have not been
implemented. The verifier module inspects the IP header to
determine if the header of an incoming packet is valid. The
forwarder module checks whether a packet has reached its final
destination or not. The eligibility module checks whether a
packet is eligible to be forwarded. Link level broadcasts,
loopback packets and packets addressed to class D and E
destinations are dropped. The TTL module decrements the TTL
field in the packet header. After this processing, the forwarding
engine performs a route lookup to determine the packet’s
outgoing interface. The output port accepts packets from
forwarding engines and higher level protocols. If a packet is
received from a higher level protocol, the output port initializes
the packet header using the header initialization module. The IP
checksum module computes the IP header checksum. Finally the
packet is forwarded to an ARP module, which performs layer
two address resolution that takes into account the specific link
layer technology used. An ARP module is selected when the root
network is bootstrapped on to the hardware.

4) Routelet State

Routelet state comprises a virtual network generic part and
virtual network specific part. The generic part includes pointers
to all transport modules that are used by a routelet and a script
that reflects the composition of routelet ports and engines. The
composition of the specific part is dependent on the particular
routelet being programmed. In the case of the IPv4 routelet
shown in Figure 6, the virtual network specific part contains
information associated with the routelet’s interfaces and the
routing tables used for IP forwarding.

5) Transport Protocol Stacks

In many cases routelets subsume transport protocol stacks.
For example, the IPv4 routelet supports TCP and UDP protocol
stacks. TCP is used for exchanging signaling messages for
routing, resource reservation, and control and management.
Routelet support for TCP communications is similar to the BSD
kernel implementation. The socket layer realizes high-level
communication functions such as connection establishment and
release. Programmable network objects use Inter-Process
Communication (IPC) to interact with the socket layer, where
IPC is used as a replacement for system calls that an operating
system kernel employs to transfer control to the protected
environment of the kernel. TCP port numbers can be re-used
over multiple TCP connections provided that these connections
are realized by different routelets. Routelets use different IPC
channels, which are created dynamically during the spawning
phase. The socket layer is not the only component of a routelet
that uses IPC. Routelet controllers (i.e., spawning, composition,
allocation and datapath controllers) and the routelet state
management also use IPC.

Figure 7: Metabus Architecture

B. Programming Environment

1) Metabus

 The metabus comprises an orblet component and set of
metaservers, as illustrated in Figure 7. The orblet represents the
metabus component that provides a communication medium
between object clients and servers. Current ORB
implementations are tailored toward a single monolithic
transport service. This limitation makes existing CORBA
implementations unsuitable for programming virtual network
architectures that may use different transport environments. To
resolve this issue we have implemented the ‘acceptor-connector’
software pattern [19] in the orblet. The acceptor connector
pattern wraps low-level connection management tasks (e.g.,
managing a TCP connection) with a generic software API. The
orblet can use a range of transport services on-demand in this
case. To use a specific transport service, the orblet dynamically
binds to an inter-ORB protocol engine supported by the Genesis
Kernel. We have created an IIOP protocol engine for interacting
with IP-based routelets.

routelet

orblet

inter-ORB protocol engine

metaservers

IPC

10

Metaservers provide naming services for the metabus. The
kernel automates the process of creating naming services and
associating naming services with objects. Currently, the
reference to a naming service is hard-coded in existing CORBA
programming environments. In contrast, metaserver references
are dynamically passed to objects during the spawning phase,
where metaservers communicate using their spawned transport
environment. In this manner, isolation between distinct sets of
architectural objects that define spawned network architectures
is maintained by metabuses. In summary, isolation between
virtual networks is realized as follows. Each metabus uses a
separate transport environment for object interaction where the
transport environment is dependent on the spawned network
architecture. Each metabus offers dedicated naming services to
the spawned network architecture.

The orblet is implemented using the OmniORB [18] from
AT&T Research Labs, Cambridge, which represents a
lightweight CORBA implementation. Currently, we use a single
metaserver per spawned virtual network. In the future, we plan
to use multiple metaservers and develop metabridges that would
support interaction between different virtual networks.

2) Binding Interface Base.

The binding interface base shown in Figure 5 represents a
collection of interfaces for programming network architectures.
CORBA/IDL is used for describing object interfaces. The
following interfaces are common to all routelets:
• a VirtualSpawningController interface, which abstracts the

spawning controller, is used for creating new routelets and
querying configuration information associated with a
spawned virtual network (e.g., routelet specific IPC channel
identifiers);

• a VirtualCompositionController interface, which abstracts
the composition controller, is used to modify routelet ports
and engines, and to access system parameters that
characterize the operational behavior of the transport
modules. The structure of ports and engines is captured by
composition scripts which are exchanged between the
VirtualCompositionController object and higher level
objects that use the interface; and

• a VirtualAllocationController interface, which is used to
access resource allocation information associated with a
spawned virtual network. Typically, allocated resources
include communication (i.e., link capacities) and
computation (i.e., memory and CPU) resources. Currently,
only memory allocations are supported by Genesis Kernel
v1.0.

The VirtualRouteletState and VirtualDatapathController
interfaces illustrated in Figure 5 are specific to the network
architecture being programmed. For example, the IPv4 routelet
supports interfaces for the configuration of virtual links and the
insertion and removal of routing table entries. In this respect, the
binding interface base replaces the ‘ioctl’ function calls and
routing sockets used in the BSD networking code distribution.

C. Life cycle environment

1) Profiling Service

The Genesis Kernel v1.0 only supports a subset of the
virtual network requirements discussed in Section II. The
profiling of the communication protocols, network services,
address space and topology, which characterize spawned virtual
network architectures are supported. However, other virtual
network requirements (e.g., security, QOS) are for further study.

An overview of the profiling process is illustrated in Figure
8. The profiling process separates the ‘binding rules’, which
define the transport, control and management systems (e.g., a
rule for placing a bandwidth broker inside the network), from the
‘binding data’ (e.g., system parameters, user preferences, etc.).
Spawned virtual networks represent the instantiation of a set of
binding rules over binding data and are composed using
profiling scripts. A profiling script is written in two distinct
forms:
• a compact form, which is the form that the network designer

uses to specify an architecture and where the separation
between binding rules and binding data is applied; and

• an analytical form, which is an internal representation that
the Genesis Kernel uses to drive the spawning process.

Figure 8: Profiling Process

As illustrated in the figure, the compact form comprises
three parts. The first part represents a set of binding rules
characterizing the composition of routelets and higher level
protocols. Binding rules specify which components should be
used for constructing a network architecture and arguments used
to initialize these components. The binding rules also specify
which architectural components are inherited from the parent
network. The second part of the compact form represents
binding data that captures the arguments that customize the
architectural components of virtual networks. The binding data
defines the operating point within the network design space for a
particular spawned network architecture. The third part of the
compact form defines the virtual network topology and address
space. The topology is specified as a virtual network graph
where all virtual links are annotated and network node addresses
declared. Collectively, these three parts of the compact form
specify a virtual network architecture in terms of its protocols,
services, topology and address space.

The compact form is not well suited to drive the spawning
process for a number of reasons. First, the compact form may be
syntactically incorrect. Second, the virtual network topology is
specified using the addressing scheme of a child network not a
parent. Parent network addresses are needed to spawn a child

binding data

binding rules

topology

compact form

profiler
spawneranalytical

form

11

network because the spawning service is supported by the parent
network’s kernel. Binding rules and binding data need to be
associated with each other so that the spawning service can
create new communication services at network nodes in a parent
network. Given these comments, the profiling service converts
the virtual network script from a compact to an analytical form.

Figure 9: Profiling Script: A Snippet of the Binding Rules for the Cellular IP
Network Architecture. See [35] for a Full Specification.

There are various steps involved in the script conversion
process. First, the profiling service converts the topology
description from the child’s address space to the parent’s address
space. This may involve the selection of parent virtual links that
satisfy a given set of constraints. As described by the Genesis
Framework, the profiling service interacts with the parent
network’s virtuosity system [4] to allocate link resources for
child networks. Currently, we have not addressed topology
conversion and resource management issues in the Genesis
Kernel v1.0. Once the child’s network topology has been
converted and mapped to its parent’s network topology the
profiler associates binding rules with binding data. The compact
form groups binding rules according to the type of node they
describe (e.g., an edge router, core router or base station). To
produce the analytical form, the profiler combines the binding
rules with topology and binding data, customizing each node in a

spawned virtual network with a specific set of parameters. The
node type is used as a key for associating binding rules with
binding data. Because virtual network architectures are
characterized by a finite set of binding rules and network nodes,
the complexity of associating binding rules with binding data is
polynomial as a function of the number of nodes in the virtual
network graph and the number of node types. The conversion to
the analytical form results in the creation of separate scripts that
describe each network node in the spawned network
architecture. Scripts are sent to all parent nodes associated with a
spawned child network. A separate script specifies the bindings
that take place across child routelets (e.g., bindings between
network control and management objects).

We have completed the first version of the profiling service.
Both the compact and analytical forms are written in XML,
which is suitable for describing information structures. We have
used a limited XML grammar with tags for declaring
architectural components and their parameters and bindings. To
associate binding rules with binding data, we manipulate tree
structures derived from profiling scripts. The profiler performs
the association between the different parts of the profiling script
to produce the analytical form. The profiler has been developed
using XML4C from IBM and Alphaworks [20].

Figure 9 shows a snippet from the binding rules describing
the Cellular IP network architecture. The snippet describes how
the Cellular IP routelet is parameterized. The profiling XML
grammar allows for the composition of network architecture
components including ports, forwarding engines, routing
daemons, handoff controllers and mobility agents. The profiling
service is far from complete, however. The profiling service
applies syntactic control over scripts but not semantic control. A
syntactically correct script may hide erroneous object bindings.
Object bindings are resolved during the spawning phase,
however. An incorrect profiling script would result in the
termination of the spawning process. A more important issue is
associated with the capability of the kernel to determine whether
a profiled network architecture satisfies the needs of the users
that the architecture was spawned for.

2) Spawning

The spawning process is initiated once the analytical form is
generated. Spawning services include the following:
• a spawner service, which applies centralized control over

the spawning process interacting with the profiling and
management services;

• a component storage, which represents a distributed
database of virtual network software building blocks; and

• a set of constructor objects, which run on all nodes in a
parent topology and interact with the spawner to create a
child network.
Constructors support the creation of routelets, the

instantiation of a metabus and the deployment of child network
architecture objects on a single network node. The spawner is a
distributed system, which controls the spawning process, through
the execution of a profiling script. We currently use a single
spawner object in our spawning networks testbed. The
component storage represents a database for transport modules

<?xml version="1.0"?>
<compact_form>
<binding_rules>
<architecture>"cip"</architecture>
 <node_types>
 <type>
 <name>"base_station"</name>
 <data>
 <parameter>"number_of_leaves"</parameter>
 <parameter>"root_address"</parameter>
 <parameter_array>
 <length>"number_of_leaves"</length>
 <parameter>"leaf_addresses"</parameter>
 </parameter_array>
 <parameter>"soft_state_timer"</parameter>
 <parameter>"delay_buffer_size"</parameter>
 <parameter_array>
 <length>"number_of_leaves" + 1</length>
 <parameter>
 <name>"vn_demuxors"</name>
 <type>VN_DEMUX</type>
 </parameter>
 </parameter_array>
 <parameter_array>
 <length>"number_of_leaves" + 1</length>
 <parameter>
 <name>"arbitrators"</name>
 <type>ARBITRATOR</type>
 </parameter>
 </parameter_array>
 </data>
 </type>
 </node_types>
 <routelets>
 <routelet>
 <name>"cip_routelet"</name>
 ...

12

and network objects. The spawner “announces” the child
network’s bandwidth requirements to a virtual network resource
manager. The resource manager is associated with the virtuosity
kernel plug-in [4] and represents a distributed controller, which
performs admission testing for child networks. If the admission
test is successful the child network is spawned. For details on
virtual network admission control see [21].

Child routelets are bootstrapped by the parent’s spawning
controller. The spawning controller interacts with the allocation
controller to reserve parent routelet’s computational resources
for the execution of a child routelet. Following this, the child
routelet’s state information is initialized. During this phase of the
spawning process a spawner acquires all the necessary transport
modules that were not available at its local node. Transport
modules are stored in a component storage as dynamically
linked libraries and metabus objects. When the initialization of
the routelet’s state is complete, the child control unit is spawned.
During this phase the standard controllers are created,
specifically the spawning, composition and allocation
controllers.

When the bootstrapping process is complete the child
routelet is capable of undertaking all the remaining spawning
tasks. The composition of a routelet’s ports and engines is
carried out by the child’s composition controller. Finally, the
child network's data path controller is composed and its queues
configured to forward traffic to the parent network queues. This
represents the last phase of the spawning process where routelets
bind to virtual links forming a virtual network topology.
Currently, we use FCFS queues as capacity arbitrators [4].
Virtual network capacity scheduling is currently being
investigated [21]. Following the creation of the transport
environment, the spawning process creates the programming
environment and instantiates the child network architecture
objects (i.e., network control and management objects). At this
point the child network is executing on the Genesis Kernel and
the network hardware.

IV. EXPERIENCES

In order to evaluate the Genesis Kernel we have built a
spawning networks testbed and designed a set of experiments to
verify the kernel’s capability to dynamically create, manage and
architect the baseline network architectures. We have evaluated
the performance of the spawned baseline architectures against
the performance observed when the same architectures are
implemented in ‘standalone’ testbeds. The goal of the evaluation
is more qualitative in nature and aimed at showing proof of
concept rather than a quantitative comparison.

A. Spawning Networks Testbed

The spawning networks testbed has been designed to
support the spawning of the baseline network architectures. We
deployed a parent network architecture that supports IP routing
as the root network, as illustrated in Figure 10. Once the root
(parent) network was boostrapped onto the network hardware,
we were able spawn the Cellular IP and Mobiware child
networks over the root network providing wireless data and

multimedia services to mobile users, respectively. The
Mobiware and Cellular IP architectures were refined (i.e.,
architected) using the Genesis Kernel by adding new handoff
control algorithms to the Mobiware child network and tuning the
parameters associated with the Cellular IP child network.

Figure 10: Spawning Networks Testbed

The spawning networks testbed comprises heterogeneous
link layer technologies that interconnect routers, switches and
base stations, as illustrated in Figure 10. The testbed provides
wireless access to mobile hosts and comprises seven multi-
homed 300 MHz Pentium PC routers, three ATM switches (viz.
ATML Virata, Fore ASX/100, and NEC model 5 switches) and
two PC base stations. Link interconnects between PC routers, PC
base stations and ATM switches comprise 100 Mbps Ethernet
links and 155 Mbps wireline ATM links. PC base stations
provide radio access to the wireline network. The radios are
based on WaveLAN operating in the 2.4-2.8 GHz band. We use
the 2 Mbps WaveLAN cards over the 10 Mbps cards because
the older cards support a low-level radio utility API for
programming beacons.

The spawning capability is currently implemented in the
network and not in end-systems. The Genesis Kernel v1.0 code
release has been designed to run on Windows NT and FreeBSD
operating systems.

B. An IP Root (Parent) Network

In this experiment we investigate the capability of the kernel
to spawn an IP virtual network architecture supporting standard
IPv4 packet forwarding, and interior and exterior routing
services. We deployed a parent network architecture supporting
IPv4 over the spawning testbed as a root network. The
architecture consists of the IPv4 routelet discussed in Section
III-A and a set of distributed objects offering interior and

100 MbpsEthernet

Fore ASX100

NEC Model 5Virata

 IPv4 root (parent) network

Cellular IP child
network

Mobiware child
network

WaveLAN
base stations

Genesis Kernel

routers

ATM Switches

13

exterior routing services. We have developed an object-based
implementation of the Routing Information Protocol (RIP),
which is used in the Internet for interior routing, and the Border
Gateway Protocol (BGP), which is used for interconnecting
autonomous systems. In order to spawn the IP routing
architecture we deviate from the standard spawning procedure
described in Section III. The reason for this is that there is no
communication capability in the network hardware to support
the spawning process, (i.e., the root network has no parent). To
resolve this problem we have added a ‘bootstrap’ interface to the
Genesis router process. The first architecture “spawned” onto
the hardware is actually bootstrapped. Therefore the root
network is always a special case in spawning networks.

Figure 11: Routelet Performance

In Figure 11, we compare three implementations of IPv4
that include a spawned IPv4 root (parent) network and two
standalone FreeBSD IPv4 implementations, (i.e., one user-space
and one FreeBSD kernel). We include a user-space
implementation of IP because routelet forwarding engines are
currently implemented in user-space too. It should be noted that
one difference between the user-space implementations is that
routelets implement a virtual network demultiplexor in the
datapath while the standalone user-space IPv4 implementation
does not.

Figure 11 shows the end-to-end delay and throughput results
across a single hop. We observe that there is little difference in
performance between the IPv4 routelet and the standalone user-
space IPv4 router. This is a very encouraging result. The
difference between the routelet and the standalone kernel IPv4
router is 2 ms for small packet sizes increasing to 9 ms when the
MTU is 1500 bytes. Figure 11 also shows the throughput
achieved by the three IP implementations over a single hop. On
average the routelet system attains about 75% of the kernel
router throughput. One performance penalty paid by the routelet
implementation is associated with copy-in/copy-out operations
that take place between when a packet enters and leaves a
Genesis router. Our current work includes porting the Genesis
Kernel to the Intel IXA router [38] where the routelet
implementation will gain performance from executing on the
network processor IXP1200.

C. Wireless Child Networks

In this experiment we investigate the ability of the Genesis
Kernel to spawn baseline child networks on the IPv4 root
(parent) network. This represents one level of nesting and
executes the spawning capability, which could not be exercised
during deployment of the root network. We spawned Mobiware
and Cellular IP child networks on the testbed. Mobiware is
specifically designed to support multimedia services with
service-level assurances, whereas Cellular IP, is designed to
deliver packet data with fast handoff and paging support. The
implementation of Mobiware and Cellular IP datapaths is
illustrated in Figure 12.

 Mobiware [3] is a connection-oriented mobile network
architecture that includes session rerouting, mobility state
management and wireless transport configuration algorithms. All
sessions that operate between a mobile host and its associated
Internet gateway are abstracted and represented as a single state
entity called a flow bundle. Flow bundles are used during
handoff to switch multimedia flows that are supported using an
adaptive QOS scheme [13]. Open programmable switches allow
for the establishment, removal, rerouting and adaptation of flow
bundles.

The Mobiware network uses two distinct types of datapath.
An IP datapath for signaling and an ATM datapath for transport.
The IP datapath is used for network control and management.
The ATM datapath, which is independent of the Genesis
transport environment is used for transporting audio and video
flows. IP packets do not traverse the Mobiware routelet. Rather,
IP packets are forwarded using the ports and engines of the root
network, as illustrated in Figure 12. A GSMP client engine is
incorporated into the Mobiware routelet and used for controlling
the ATM switches in the spawning networks testbed. The GSMP
engine does not receive packets from virtual network
demultiplexors but communicates via ATM sockets with ATM
switches in the network.

Cellular IP [2] is a packet-based mobile network
architecture that is designed to give high performance delivery
of data with fast handoff and scalability support through paging.
In Cellular IP, packets sent from a mobile host create a soft-state

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

E
nd

-t
o-

E
nd

 D
el

ay
 (

m
s)

Packet Size (bytes)

Routelet Performance

Kernel
Root IPv4 Routelet

User-space IPv4 Router

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

T
hr

ou
gh

pu
t (

M
bp

s)

Packet Size (bytes)

Routelet Performance

Kernel
Root IPv4 Routelet

User-space IPv4 Router

14

routing path between the mobile host and its Internet gateway.
The wireless access network maintains mobile-specific routing
cache in support of fast handoff and paging cache to track idle
mobile hosts.

The Cellular IP routelet comprises an ‘uplink’ interface and
a set of ‘downlink’ interfaces. The uplink interface connects the
routelet with an Internet gateway. The downlink interfaces
receive packets from mobile hosts and forward them to the
gateway. Each interface is associated with a different forwarding
engine. When a virtual network demultiplexor receives a packet
carrying the Cellular IP identifier it forwards the packet to the
Cellular IP routelet, as illustrated in Figure12. Forwarding
engines update paging and routing caches inserting a pointer to
the downlink path on behalf of the mobile host that sends the
packet.

Figure 12: Mobiware and Cellular IP Datapaths

Currently, we have not fully implemented the ability of
child networks to spawn their own children. This is topic for
further study. Therefore, the baseline child networks do not
inherit life cycle services, as discussed in Section II. Both child
networks inherit the topology and address space of the root
(parent) network, however. A mobile host can take advantage of
both child networks to receive real-time multimedia and data
services. For example, the signaling overhead of the Mobiware
child network makes it unsuitable for packet data delivery,
whereas the Cellular IP child network does not implement QOS
support. A detailed description of the Mobiware and Cellular IP
architectures is beyond the scope of this paper. For full details of
their specification, performance and source code release see [14]
and [13], respectively.

We have conducted a set of tests that compare the
performance of the Mobiware and Cellular IP child networks
against their ‘standalone’ counterparts. In all cases the spawning
and standalone testbeds were lightly loaded during the
experiments. In order to evaluate the Mobiware child network
we streamed a number of video flows to a mobile host and
performed continuous handoffs, as shown in Figure 13. We
varied the number of flows delivered to a mobile host and

measured the average handoff latency for the Mobiware child
and standalone architectures. The standalone Mobiware
architecture uses OmniORB for object interaction. The main
performance difference between the spawned and standalone
Mobiware architectures is related to the transport environment
used for signaling. The Mobiware child network uses the
metabus, whereas standalone Mobiware uses OmniORB and the
kernel transport services. The performance results for the
comparison are shown in Figure 13. The figure shows the
average handoff latency experienced by a mobile host when
using the standalone and spawned Mobiware architectures as the
number of flows in a flow bundle increases. The plot also shows
the performance with and without flow bundling. We observe
higher latency in the case of the spawned Mobiware architecture
because of the metabus and routelet overheads.

To evaluate the spawned Cellular IP child network we
measure the TCP throughput across a Cellular IP virtual wireless
link. We compare the TCP performance of the Cellular IP child
network with the standalone system. Both the standalone and
spawned architectures are implemented in user space. The main
difference between the two systems is that the datapath for the
standalone system is not burdened with virtual network
demultiplexing, as is the case with the Cellular IP child network.

Throughout measurements are taken for the ‘hard’ and
‘semisoft’ Cellular IP handoff modes [2], as shown in Figure 13.
The hard handoff mode represents a ‘break before make’ style of
handoff where the mobile host switches to the new base station
and then forwards a packet to create the new downlink soft-state
path between the mobile and the cross over switch. The Cellular
IP semisoft handoff improves handoff performance by reducing
packet loss during handoff. Before handoff, a mobile host sends
a short control message called a semisoft packet to the new base
station and then returns immediately to listen to the old base
station. The semisoft packet configures routing cache mappings
and sets up the soft-state path between a cross over switch and
the mobile host. After a very short semisoft delay, the host
performs regular hard handoff. In addition, forwarding delay is
introduced at the cross over switch in order to compensate for
the time needed to accomplish semisoft handoff. We observe
from Figure 13 that the child network achieves similar
performance to the standalone network architecture over a wide
range of handoff rates.

D. Architectural Refinement

Currently, the Genesis Kernel does not fully support
architecting. However, profiling and spawning tools allow us to
experiment with modifying the structure and building blocks of
network architectures. In what follows, we discuss two examples
of architectural refinement. The first experiment allows different
handoff algorithms to be added to a Mobiware child network.
The second experiment allows us to refine a Cellular IP child
network that improves TCP performance with handoff.

input port forwarding engine

Cellular IP routelet (child)

verifier

FCFS queue

IPv4 routelet (root)

routelet state

paging cache,
route cache

Mobiware routelet (child)

GSMP client engine

 uplink
interface

 downlink
interface

Cellular IP
packets

virtual network
demultiplexor

Mobiware and root
routelet packets

paging
update

routing
update

15

Figure 13: Performance of Spawned Network Architectures

Figure 14: Architecting Cellular IP

Mobiware is designed to support multiple styles of handoff
control through the separation of handoff control and mobility
management. Handoff control and mobility management systems
are implemented as separate programmable architectures [23].

By hiding the implementation details of mobility management
algorithms from handoff control systems the handoff detection
state (e.g., the best candidate access point for a mobile host) can
be managed separately from the handoff execution state (e.g.,
mobile registration information). In this case, Mobiware allows
different styles of handoff control to seamlessly share the same
mobility management services. An intermediate layer of
distributed objects called handoff adapters serve as the glue
between handoff control systems and mobility management
services.

Handoff control objects include beacon producer and
measurement producer objects, which invoke low-level wireless
APIs for transmitting beacons and generating raw channel
quality measurements. Signal strength monitor objects collect
average wireless signal strength measurements on-demand.
Detection algorithm objects make handoff decisions. Handoff
control objects can be dispatched to strategic locations in the
network (e.g., base stations and mobile capable routers/switches)
to simultaneously serve the needs of different handoff styles.
The initially spawned Mobiware architecture only supports the
mobile controlled handoff style. We modified the Mobiware
profiling script to introduce additional handoff styles. The
profiling script was modified to include new distributed objects
that support mobile assisted and network controlled handoff
styles. These two schemes place the complexity associated with
controlling handoff into the network. This has the benefit of
serving low-power mobile hosts that may not be capable of
continuously taking signal strength measurements.

Cellular IP base stations do not buffer packets during
handoff causing packet loss and reduced TCP performance. To
eliminate packet loss during handoff we have introduced a
packet circular buffer called a ‘delay device’ at base stations.
The delay device also helps resolve the problem of the new base
station ‘getting a head’ of old base stations when using semisoft
handoff. A mobile host 'sees' gaps in TCP streams if the forward
base station gets ahead of the old base station. This has an
adverse impact on TCP performance. The delay device resolves
this issue supporting a loose form of synchronization control
typically found in cellular systems.

Figure 14 shows the downlink performance of a TCP flow
as the rate of handoff increases. The Cellular IP child network is
spawned and supports hard and semisoft handoff capability but
has no delay device implemented. The plot shows wireless TCP
throughput associated with the initial Cellular IP child network
when a mobile host performs hard handoff. Through profiling
we modified the original script to include the delay device and
spawned a new child network. To add the delay device, we
modified the binding model of the Cellular IP root forwarding
engine. Instead of using the default routelet lookup module, we
introduced a new forwarding element that delays and buffers
packets during handoff. The TCP improvement from using the
delay device is shown in Figure 14. The figure shows the TCP
performance for a delay device that could be programmed to
buffer 1 or 8 packets. The plot shows that semisoft handoff out
performs hard handoff. In the case of semisoft handoff, we
observe that the deeper the buffer the better the TCP
performance. Note that when the buffer is programmed to
accommodate 8 packets during handoff we observe that TCP

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11

H
an

do
ff

La
te

nc
y

(m
s)

Number of flows

Mobiware Performance

 Handoff latency of stand-alone Mobiware with flow bundles
Handoff latency of stand-alone Mobiware without flow bundles

Handoff latency of spawned Mobiware with flow bundles
Handoff latency of spawned Mobiware without flow bundles

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

D
ow

nl
in

k
T

C
P

 th
ro

ug
hp

ut
 (

kb
ps

)

Number of handoffs per minute

Cellular IP Performance

hard handoff, stand-alone Cellular IP
hard handoff, spawned Cellular IP

semisoft handoff, stand-alone Cellular IP
semisoft handoff, spawned Cellular IP

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

D
ow

nl
in

k
T

C
P

 th
ro

ug
hp

ut
 (

kb
ps

)

Number of handoffs per minute

Architecting Cellular IP

hard handoff
semisoft handoff (1 buffer)
semisoft handoff (8 buffer)

16

performance is equivalent to the case were the mobile host is
stationary. This represents the best possible performance of 1.6
Mbps.

V. RELATED WORK

The Tempest project [7] has investigated the deployment of
multiple coexisting control architectures in broadband ATM
environments. Tempest supports programmability at two levels
of granularity. First, switchlets are logical network elements that
result from the partitioning of ATM switch resources supporting
the introduction of alternative control architectures in the
network. Second, services can be refined by dynamically loading
programs into the network that customize existing control
architectures. Resources in an ATM network can be divided by
using a switch control interface called a resource divider. In
Genesis, the divider mechanism is integrated into the routelet
rather than being externally supported as in the case of
switchlets. This capability allows a child routelet to spawn its
own child networks supporting the nesting principle that
underpins spawned network architectures. Routelets apply the
concept of resource partitioning to the internetworking layer
supporting the programmability of new internetworking
architectures with programmable QOS. Routelets are designed to
operate over a wide variety of link layer technologies rather than
simply ATM technology as is the case with virtual switches [6]
and switchlets [7].
 Virtual private network services have been the subject of a
substantial amount of research in broadband ATM networks. In
[24], the concept of a virtual path group is introduced as a
virtual network building block to simplify virtual path dynamic
routing. In [25], the concept of nested virtual ATM networks is
discussed and an architecture that supports resource management
of broadband virtual networks presented. The Genesis Kernel
framework also uses the concept of “nesting” pursuing the
programmability and automated deployment of network
architectures spanning transport, control and management planes
at the internetworking layer and above. Typically, spawned
network architectures support alternative signaling protocols,
communications services, QOS control and network
management in comparison to parent architectures. A related
project called Virtual Network Service (VNS) [27] is
investigating QOS provisioning in IP virtual networks. The
project proposes the partitioning and allocation of network
resources such as link bandwidth and router buffer space to
virtual networks according to some predetermined policy.

The X-Bone [28] project aims to automate the process of
establishing IP overlay networks. Currently, overlays (e.g., M-
Bone, 6-Bone, A-Bone) are deployed manually by system
administrators and the configuration of tunneled connectivity
between routers and hosts that characterize overlay networks is
handcrafted. X-Bone constitutes the natural evolution of the M-
Bone and uses a two layer multicast IP system to facilitate the
dynamic deployment of different overlays in the Internet. X-
Bone overlays are not programmable, however. The Supranet
[29] project considers a network-less society where networks
and service creation are facilitated and tailored to group
collaborative needs. A Supranet is a virtual network that requires

the definition of the characteristics of the collaborative
environment that benefits from the services it provides. Group
membership, network topology, resource capacity, security
mechanisms, controlled connectivity, and secure multicast
represent the requirements for a specific virtual network service
to any group.

The active networking community [30]-[34] has
investigated the deployment of multiple coexisting execution
environments through appropriate operating system support and
an active network encapsulation protocols. In [9], the use of
active networking technology is studied for the deployment of IP
based virtual networks. In most of the current research in active
networks the dynamic deployment of software at runtime is
accomplished within the confines of a given network
architecture and node operating system. In contrast, we
investigate ways to construct network architectures that are
fundamentally different from their underlying infrastructures.

A traditional challenge in the deployment of virtual private
networks has been the separation of traffic and service
differentiation between communities of users that share a
common infrastructure. Methods for creating virtual and secure
private network services include controlled route leaking,
Generic Routing Encapsulation, network layer encryption or link
layer methodologies for virtualization. These techniques have
been used in a variety of commercial products. Finally, a
number of IETF proposals have discussed IP virtual private
networks [36]. Others have addressed issues of performance
[37].

VI. CONCLUSION

In this paper we have presented the design, implementation
and evaluation of the Genesis Kernel; a programming system
capable of spawning network architectures on-demand. The
Genesis Kernel presents a new approach to the deployment of
network architectures through the automation of a virtual
network life cycle process.

A number of challenges remain before we can realize the
full potential of spawning networks, however. One of the goals
of our work is to build more powerful tools to help with the
architecting process allowing for a more systematic study of the
design space. Exploration of the network design space is one of
the most challenging aspects of building spawning networks. We
want to provide extensions to the kernel that allows designers to
observe, analyze and architecturally refine spawned network
architectures. As part of that challenge we are developing a set
of well-founded models and tools for observing and refining
spawned networks. In this paper, we have discussed some partial
refinement techniques for virtual networks. However, we need to
better understand architectural refinement; that is, what to
modify, how to modify it, and how to measure the impact of
what we have modified. Furthermore, we want to be able to do
this at run time while the network architecture is executing on
the network hardware.

We are porting the Genesis Kernel to the Intel IXA routers
based on the Intel programmable network processor IXP1200 as
part of a new project on Signaling Engines [39]. Currently, we
have ported the transport environment to the IXP1200. In the

17

next phase of our work we plan to further develop and evaluate
the Kernel focusing on its life cycle environment.

ACKNOWLEDGEMENT

This work is supported in part by the National Science
Foundation (NSF) under CAREER Award ANI-9876299 and
with the support from the Intel Corporation, Hitachi Limited and
Nortel Networks. John. B. Vicente (Intel Corp) would like to
thank the Intel Research Council for their support during his
visit with the Center for Telecommunications Research,
Columbia University. The authors would like to thank Kazuho
Miki (Hitachi Ltd.), Hermann G. De Meer (UCL), Daniel A.
Villela (Columbia University) and Kalai S. Kalaichelvan (Nortel
Networks) for their contributions to the Genesis Project. We
would also like to thank the anonymous reviewers for helping to
improve this paper and Aurel A. Lazar (xbind Inc./Columbia
University) for his support and contribution to spawning
networks.

REFERENCES

[1] Lazar, A.A. and Campbell, A. T., “Spawning Network Architectures”,
White Paper, Center for Telecommunications Research, Columbia
University, comet.columbia.edu/genesis, January 1998.

[2] Campbell A. T., Gomez, J., Kim, S., Turanyi, Z., Wan, C-Y. and
Valko A, "Design, Implementation and Evaluation of Cellular IP",
IEEE Personal Communications, Special Issue on IP-based Mobile
Telecommunications Networks, 2000.

[3] Campbell, A.T., Kounavis M.E. and R. R.-F. Liao, “Programmable
Mobile Networks”, Computer Networks and ISDN Systems, April
1999.

[4] Campbell, A.T., Vicente, J., and D.A.M Villela,. “Virtuosity:
Performing Virtual Network Resource Management”, Proc. 7th
International Workshop on Quality of Service (IWQOS’99), London,
May 1999.

[5] Blake S., Black D., Carlson M., Davies E., Wang Z., and Weiss W.,
“An Architecture for Differentiated Services” Request for Comments
2475.

[6] Lazar, A.A., Lim, K.S. and Marconcini, F., “Realizing a Foundation
for Programmability of ATM Networks with the Binding
Architecture,” IEEE Journal on Selected Areas in Communications,
Special Issue on Distributed Multimedia Systems, No. 7, September
1996.

[7] Van der Merwe, J.E., Rooney, S., Leslie, I.M. and Crosby, S.A., “The
Tempest - A Practical Framework for Network Programmability”,
IEEE Network, May 1998.

[8] Vinoski, S., “CORBA, Integrating Diverse Applications Within
Distributed Heterogeneous Environments”, IEEE Communications
Magazine, February 1997.

[9] Da Silva, S., Florissi D., and Yemini Y., “NetScript: A Language-
Based Approach to Active Networks”, Technical Report, Computer
Science Dept., Columbia University January 27, 1998.

[10] Braden, R., Clark, D., and Shenker S., “Integrated Services in the
Internet Architecture: an Overview” Request For Comments 1633,
June 1994.

[11] Campbell, A.T., Kounavis M., Villela D., Vicente, J., De Meer, H.,
Miki, K., and Kalaichelvan K., “Spawning Networks”, IEEE Network,
August 1999.

[12] Thekkath C. A, Nguyen T. D., Moy E., and Lazowska E. D.,
“Implementing Network Protocols at User Level”, IEEE/ACM
Transactions on Networking, October 1993.

[13] The Mobiware Project Home Page and Source Code Distribution,
comet.columbia.edu/mobiware.

[14] The Cellular IP Project Home Page and Source Code Distribution,
comet.columbia.edu/cellularip.

[15] Huang X. W., Sharma R., and Keshav S., “The ENTRAPID Protocol
Development Environment”, Proc. Eighteenth IEEE International

Conference on Computer Communications (INFOCOM’99), New
York, 1999.

[16] Postel J., Editor, “Internet Protocol", Request For Comments 791,
September 1981.

[17] Newman P., Edwards W., Hinden R., Hoffman E., Liaw C. F., Lyon
T., and Minshall G., "Ipsilon's General Switch Management Protocol
Specification," Request For Comments 1987, Aug. 1996

[18] Lo S.-L., and Riddoch D., “The OmniORB2 version 2.7.1 User’s
Guide”, Technical Report, AT&T Laboratories Cambridge, 1999.

[19] Schmidt D., and Cleeland C., “Applying Patterns to Develop
Extensible ORB Middleware”, IEEE Communications Magazine,
Special Issue on Design Patterns, April, 1999.

[20] XML4C, www.alphaworks.ibm.com
[21] Campbell, A.T., Vicente, J., and D.A.M Villela, “Virtuosity:

Programmable Resource Management for Spawning Networks”
Computer Networks, Special Issue on Active Networks, (to be
published), 2001.

[22] GateD Consortium, www.gated.org
[23] Kounavis M. E., Campbell A. T., Ito G., and Bianchi G., “Design,

Implementation and Evaluation of Programmable Handoff in Mobile
Networks”, ACM/Baltzer Journal on Mobile Networks and
Applications, to be published, 2001.

[24] Chan, M.C., Lazar, A.A. and Stadler, R., “Customer Management and
Control of Broadband VPN Services”, Proc. Fifth IFIP/IEEE
International Symposium on Integrated Network Management, San
Diego, CA, May 1997.

[25] Yun, A., Leon-Garcia, A., and Jaseemuddin, M., “Virtual Networks: A
Divide-and-Conquer Approach to Network Resource Management”,
Proc. Open Signaling for ATM, Internet and Mobile Networks
(OPENSIG) Workshop, New York, October 1997.

[26] Redlich J. P., Suzuki, M., and Weinstein S., “Virtual Networks in the
Internet”, In Proceedings, Second International Conference on Open
Architectures and Network Programming (OPENARCH), New York,
1999.

[27] Virtual Network Service (VNS), project site:
www.cs.cmu.edu/~hzhang/VNS.

[28] Touch, J. and Hotz, S., “The X-Bone”, Proc. Third Global Internet
Mini-Conference in conjunction with Globecom ’98, Sydney,
Australia, November 1998.

[29] Delgrossi, L. and Ferrari D., “A Virtual Network Service for
Integrated-Services Internetworks”, Proc. 7th International Workshop
on Network and Operating System Support for Digital Audio and
Video, St. Louis, May 1997

[30] Tennenhouse, D., and Wetherall, D., “Towards an Active Network
Architecture”, Proc. Multimedia Computing and Networking, San
Jose, CA, 1996.

[31] Alexander, D.S., Arbaugh, W.A., Hicks, M.A., Kakkar P., Keromytis
A., Moore J.T., Nettles S.M., and Smith J.M., “The SwitchWare
Active Network Architecture”, IEEE Network Special Issue on Active
and Programmable Networks, vol. 12 no. 3, 1998.

[32] Wetherall, D., Guttag, J. and Tennenhouse, D., “ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols”, Proc. First
International Conference on Open Architectures and Network
Programming (OPENARCH), San Francisco, CA, April 1998.

[33] Peterson L., “NodeOS Interface Specification “, AN Node OS Working
Group, February 1999.

[34] Decasper D., Dittia Z., Parulkar G., and Plattner B., “Router Plugins:
A Software Architecture for Next Generation Routers”, Proc. ACM
SIGCOMM’98 Vancouver Canada, 1998.

[35] The Genesis Project Home Page, comet.columbia.edu/genesis.
[36] Gleeson, B., Lin, A., Heinanen, J., “A Framework for IP Based Virtual

Private Networks”, draft-gleeson-vpn-framework-00.txt, internet-
draft, work in progress, February 1999.

[37] Duffield N., Goyal, P., Greenberg, A., Mishra, P., Ramakrishnan,
K.K., Van der Merwe, “A Flexible Model for Resource Management
in Virtual Private Networks”, Proc. ACM SIGCOMM’99, Cambridge
MA, 1999.

[38] Intel Exchange Architecture (IXA), www.intel.com/ixa
[39] Signal Engines Project, comet.columbia.edu/signalingengines

18

Michael E. Kounavis is a Ph.D. candidate in the Department of Electrical
Engineering, Columbia University, New York. He received a Diploma in
Electrical and Computer Engineering from the National Technical University of
Athens, Greece in 1996 and a MSc. degree from Columbia in 1998. His main
area of research is the development of spawning networks. Over the past years
he has been actively involved in mobile network programmability and the
realization of adaptive mobile middleware. Michael E. Kounavis has received a
Fulbright scholarship in 1996.

Andrew T. Campbell is an Assistant Professor in the Department of Electrical
Engineering and member of the COMET Group at the Center for
Telecommunications Research, Columbia University, New York. His areas of
interest encompass programmable networks, mobile networking and QOS
research. He is currently the co-chair for the IEEE Conference on Open
Architectures and Network Programming (OPENARCH 01). Andrew T.
Campbell received his Ph.D. in Computer Science in 1996 and the NSF
CAREER Award for his research in programmable mobile networking in 1999

Stephen Chou is a PhD student in computer science at Columbia University.
He has been a senior software engineer at Microprocessor Research Labs at
Intel, where he helped to develop functional models to simulate the IA32 and
IA64 platforms. His current research interest is on programmable networks and
multimedia communications. He received a B.Sc. degree in computer
engineering from Carnegie Mellon University and an M.Sc degree in computer
science from Georgia Institute of Technology.

Fabien Modoux received a MSc. degree in computer science from Columbia
University in 1999, and an engineering degree in communication systems from
the Swiss Federal Institute of Technology, Lausanne, Switzerland, and Institute
Eurecom, Sophia Antipolis, France, in 1998. He joined Voicemate Inc., New
York, NY, in 2000.

John Vicente is a member of Intel’s Information Technology organization where
he is involved with strategy and technology in the areas of Internet-QOS, policy-
based networking, and multimedia and programmable networks. He is also
actively engaged in the IEEE P1520 initiative for programmable interfaces for
networks. He received his M.S. in Electrical Engineering from the University of
Southern California, Los Angeles, CA, and his B.S. in Computer Engineering
from Northeastern University, Boston, MA.

Hao Zhuang is currently working at Celox Networks, Inc. He is an MS
graduate of the Department of Electrical Engineering of Columbia University.
His research interests include broadband networks, traffic statistics and
engineering, DiffServ/InteServ, fast routing algorithms and programmable
networks.

