

Abstract

There is growing interest in network processor technologies capable of processing packets at line
rates. Network processors are likely to be an integral part of next generation high-speed router and
switch architectures, replacing the Application Specific Integrated Circuits (ASICs) that are used in
routers today. In this paper, we present the design, implementation and evaluation of NetBind, a high
performance, flexible and scalable binding tool for dynamically constructing data paths in network
processor-based routers. The methodology that underpins NetBind balances the flexibility of network
programmability against the need to process and forward packets at line speeds.

To support dynamic binding of components with minimum addition of instructions in the critical
path, NetBind modifies the machine language code of components at run time. To support fast data
path composition, NetBind reduces the number of binding operations required for constructing data
paths to a minimum set so that binding latencies are comparable to packet forwarding times. Data
paths constructed using NetBind seamlessly share the resources of the same network processor.
Resources are assigned during the binding process. We compare the performance of NetBind to the
MicroACE system developed by Intel and show that NetBind provides better performance in
comparison to MicroACE with smaller binding overhead. The NetBind source code described and
evaluated in this paper is freely available on the Web [1] for experimentation.

Keywords
Network Processors, Programmable Networks, Service Creation, Binding, Code Morphing

Introduction
There has been a growing interest in network processor technologies [2-4] that can support software-based

implementations of the critical path while processing packets at high speeds. Network processors employ multiple
processing units to offer high packet-processing throughput. We believe that introducing programmability in network
processor-based routers is an important area of research that has not been fully addressed as yet. The difficulty stems
from the fact network processor-based routers need to forward minimum size packets at line rates and yet support
modular and extensible data paths. Typically, the higher the line rate supported by a network processor-based router
the smaller the set of instructions that can be executed in the critical path.

Data path modularity and extensibility requires the dynamic binding between independently developed packet
processing components. While code modularity and extensibility is supported by programming environments running
in host processors (e.g., high level programming language compilers and linkers), such capability cannot be easily
offered in the network. Traditional techniques for realizing code binding, (e.g., insertion of code stubs or indirection
through function tables), introduce some overhead when applied to network processors in terms of additional
instructions in the critical path. This overhead can be significant in some network processors. One solution to this
problem is to optimize the code produced by a binding tool, once data path composition has taken place. Code
optimization algorithms can be complex and time-consuming, however. For example, code optimization algorithms
may need to process each instruction in the data path code several times resulting in O(n) or higher complexity as a
function of the number of instructions in the critical path. Such algorithms may not be suitable for applications that
require fast data path composition, (e.g., data path composition on a packet by packet basis). We believe that a

 Programming the Data Path in Network
Processor-Based Routers

Michael E. Kounavis, Andrew T. Campbell, Stephen T. Chou and John Vicente

binding tool for network processor-based routers needs to balance the flexibility of network programmability against
the need to process and forward packets at line rates. This poses significant challenges.

In this paper, we present the design, implementation and evaluation of NetBind, a high performance, flexible and
scalable binding tool for creating modular data paths in network processor-based routers. By “high performance” we
mean that NetBind can produce data paths that forward minimum size packets at line rates without introducing
significant overhead in the critical path. NetBind modifies the machine language code of components at run time,
directing the program flow from one component to another. In this manner, NetBind avoids the addition of code
stubs in the critical path.

By “flexible” we mean that NetBind allows data paths to be composed at fine granularity from components
supporting simple operations on packet headers and payloads. NetBind can create packet-processing pipelines
through the dynamic binding of small pieces of machine language code. A binder modifies the machine language
code of executable components at run-time. As a result, components can be seamlessly merged into a single code
piece. For example, in [5] we show how Cellular IP [6] data paths can be composed for network processor-based
radio routers.

By “scalable” we mean that NetBind can be used across a wide range of applications and time scales. In order to
support fast data path composition, NetBind reduces the number of binding operations required for constructing data
paths to a minimum set so that binding latencies are comparable to packet forwarding times. In NetBind, data path
components export symbols, which are used during the binding process. Each symbol is associated with some
specific instruction executed in the critical path (e.g., a branch instruction or an arithmetic logic unit instruction that
uses a critical register). Not all instructions in the critical path are exported as symbols, however. The number of
symbols exported by data path components, h, is typically much smaller than the total number of instructions
executed in the critical path, n. The NetBind binding algorithm does not inspect every instruction in the data path
code but only the symbols exported by data path components. Because of the fact that h is much smaller than n, the
time it takes to inspect every exported symbol is typically much smaller than the time it takes to inspect every
instruction in the data path code. For this reason, the NetBind binding algorithm can compose packet processing
pipelines very fast, in the order of microseconds. The NetBind binding algorithm is associated with O(h) complexity.
While the design of NetBind is guided by a set of general principles that make it applicable to a class of network
processors, the current implementation of the tool is focused toward the Intel IXP1200 network processor. Porting
NetBind to other network processors is for future work.

Figure I: Internal Architecture of the IXP1200 Network Processor

Dynamic Binding in Network Processors

Network Processors

A common practice when designing and building high performance routers is to implement the fast path using
Application Specific Integrated Circuits (ASICs) in order to avoid the performance cost of software implementations.

microengine 0

microengine 1

microengine 2

microengine 3

microengine 4

microengine 5

StrongARM
Core

hash
unit

IX Bus
controller

4K
scratch
memory

SDRAM
controller

PCI
controller

SRAM
controller

PCI
bus

IX
bus

ASICs are usually developed and tested using Field Programmable Gate Arrays, which are arrays of reconfigurable
logic. Network processors represent an alternative approach to ASICs and FPGAs, where multiple processing units,
(e.g., the microengines of Intel's IXP network processors [3] or the dyadic protocol processing units of IBM's
PowerNP processors [4]) offer dedicated computational support for parallel packet processing. Processing units often
have their own on-chip instruction and data stores. In some network processor architectures, processing units are
multithreaded. Hardware threads usually have a separate program counter and manage a separate set of state
variables. However, each thread shares an arithmetic logic unit and register space. Network processors do not only
employ parallelism in the execution of the packet processing code, rather, they also support common networking
functions realized in hardware, (e.g., hashing [3], classification [4] or packet scheduling [4]). Network processors
typically consume less power than FPGAs and are more programmable than ASICs.

Figure II Microengine Registers of IXP1200

Our study on the construction of modular data paths is focused on Intel’s IXP1200 network processor. The
IXP1200 network processor incorporates seven RISC CPUs, a proprietary bus (IX bus) controller, a PCI controller,
control units for accessing off-chip SRAM and SDRAM memory chips, and an on-chip scratch memory. The internal
architecture of the IXP1200 is illustrated in Figure I. In what follows, we provide an overview of the IXP1200
architecture. The information presented here about the IXP1200 network processor is sufficient to understand the
design and implementation of NetBind. For further details about the IXP1200 network processor see [7]. One of the
IXP1200 RISC CPUs is a StrongARM Core processor running at 200 MHz. The StrongARM Core can be used for
processing slow path exception packets, managing routing tables and other network state information. The other six
RISC CPUs, called “microengines” are used for executing the fast path code. Like the StrongARM Core,
microengines run at 200 MHz. Each microengine supports four hardware contexts sharing an arithmetic logic unit,
register space and instruction store. Each microengine has a separate instruction store of size 1K instructions (i.e., 4K
bytes) called “microstore”. Unlike the StrongARM Core processor, microengines do not use instruction or data
caches because of their associated performance implications. For example using a data cache in the critical path is
effective only when it is easy to determine whether some portion of the data path structures (e.g., classification,
forwarding or scheduling data structures) is used more often that others. Each microengine incorporates 256 32-bit
registers. Among these registers, 128 registers are General Purpose Registers (GPRs) and 128 are memory transfer
registers. The register space of each microengine is shown in Figure II. Registers are used in the following manner.
GPRs are divided into two banks, (i.e., banks A and B, shown in Figure II), of 64 registers each. Each GPR can be
addressed in a “context relative” or “absolute” addressing mode. By context relative mode, we mean that the address
of a register is meaningful to a particular context only. Each context can access one fourth of the GPR space in the

32 SRAM
read registers

64 32-bit
GPRs

(Bank A)

64 32-bit
GPRs

(Bank B)

ALU

32 SRAM
write registers

32 SDRAM
write registers

Shifter

32 SDRAM
read registers

‘read’
transfer
registers

‘write’
transfer
registers

context relative addressing mode. By absolute mode, we mean that the address of a register is meaningful to all
contexts. All GPRs can be accessed by all contexts in the absolute addressing mode.

The memory transfer registers are divided between SRAM and SDRAM transfer registers. SRAM and SDRAM
transfer registers are further divided among “read” and “write” transfer registers. Memory transfer registers can also
be addressed in context-relative and absolute addressing modes. In the context relative addressing mode, eight
registers of each type are accessible on a per-context basis. In the absolute addressing mode, all 32 registers of each
type are accessible by all contexts.

The IXP1200 uses a proprietary bus interface called “IX bus” interface to connect to other networking devices. The
IX bus is 64-bit wide and operates at 66 MHz. In the evaluation boards we use for experimenting with NetBind, the
IXP1200 is connected to four fast Ethernet (100 Mbps) ports. The IX bus controller (shown in Figure I) incorporates
two FIFOs for storing minimum size packets, a hash unit and a 4K “scratch” memory unit. The scratch memory is
used for writing or reading short control messages, which are exchanged between the microengines and the
StrongARM Core.

Dynamic Binding Issues

There are many different techniques for introducing new services into software-based routers [5, 8-13]. At one end
of the spectrum, the code that implements a new service can be written in a high level, platform-independent
programming language (e.g., Java) and compiled at runtime producing optimized code for some specific network
hardware. In contrast, data paths can be composed from packet processing components. Components can be
developed independently from each other, creating associations at run time. This dynamic binding approach reduces
the time for developing and installing new services, although it requires that algorithmic components are developed
and tested in advance. In what follows, we discuss issues associated with the design of a dynamic binding system for
network processor-based routers.

The main issues associated with the design of a binding system for network processor-based routers can be
summarized as:
• Headroom limitations;
• Register space and state management;
• Choice of the binding method;
• Data path isolation and admission control;
• Processor handoffs;
• Instruction store limitations; and
• Complexity of the binding algorithm.

Headroom Limitations

Line rate forwarding of minimum size packets (64 bytes) is an important design requirement for routers. Routers
that can forward minimum size packets at line rates are typically more robust against denial-of-service attacks, for
example. Line rate forwarding does not mean zero queuing. Rather, it means that the output links of routers can be
fully utilized when routers forward minimum size packets.

A necessary condition for achieving line rate forwarding is that the amount of time dedicated to the processing of a
minimum size packet does not exceed the packet's transmission or reception times, assuming a single queuing stage.
If multiple queuing stages exist in the data path, then the processing time associated with each stage should not
exceed the packet's transmission or reception times.

Given that the line speeds at which network processor-based routers operate are high, (e.g., in the order of
hundreds of Mbps or Gbps), the amount of instructions that can be executed in the critical path is typically small,
ranging between some tens to hundreds of instructions. The amount of instructions that can be executed in the critical
path without violating the line rate forwarding requirement is often called headroom.

Headroom is a precious resource in programmable routers. Traditional binding techniques used by operating
systems or high-level programming languages are not suitable for programming the data path in network processor-
based routers because these techniques waste too much headroom, and, thereby limit the performance of the router.
This is because such binding techniques burden the critical path with unnecessary code stubs, or with time-
consuming memory read/write operations for accessing function tables. An efficient binding technique needs to
minimize the amount of additional instructions introduced into the critical path. The code produced by a good
dynamic binding tool should be as efficient, and as optimized, as the code produced by a static compiler or
assembler.

Register Space and State Management

The exchange of information between data path components typically incurs some communication cost. The
performance of a modular data path depends on the manner in which the components of the data path exchange
parameters between each other. Data transfer through registers is faster and more efficient than memory operations.
Therefore, a well-designed binding tool should manage the register space of a network processor system such that the
local and global state information is exchanged between components as efficiently as possible.

The number of parameters which are used by a component determines the number of registers a component needs
to access. If this number is smaller than the number of registers allocated to a component, the entire parameter set can
be stored in registers for fast access. The placement of some component state in memory impacts the data path's
performance. Although modern network processors support a large number of registers, register sets are still small in
comparison to the amount of data that needs to be managed by components. Transfer through memory is necessary
when components are executed by a separate set of hardware contexts and processing units. A typical case is when
queuing components store packets into memory, and a scheduler accesses the queues to select the next packet for
transmission into the network.

For fast data path composition, register addresses need to be known to component developers in advance. A
component needs to place parameter values into registers so they can be correctly accessed by the next component in
the processing pipeline. There are two solutions to this problem. First, the binding mechanism can impose a
consensus on the way register sets are used. Each component in a processing pipeline can place parameters into a
predetermined set of registers. The purpose of each register, and its associated parameter, can be exposed as a
programming API for the component.

A second solution is more computationally intensive. The binding tool can scan all components in a data path at
run time and make dynamic register allocations when the data path is constructed or modified. In this case, the
machine language code that describes each component needs to be modified reflecting the new register allocations
made by the binding tool. Such code optimization algorithm may be time consuming, and not suitable for
applications requiring fast data path composition.

Choice of the Binding Method

Apart from the manner in which parameters are exchanged between components, the choice of the binding
technique significantly impacts the performance of a binding algorithm. There are three methods that can be used for
combining components into modular data paths. The first method is to insert a small code stub that implements a
dispatch thread of control into the data path code. The dispatch thread of control directs the program flow from one
component to another based on some global binding state and on the parameters returned by each module. This
method is costly. The minimum amount of state that needs to be checked before the execution of a new component is
an identifier to the next module and a packet buffer handle exchanged between components. Checking this amount of
state requires at least four compute cycles. If a data path is split between six components, then the total amount of
overhead introduced in the critical path is twenty four compute cycles which is a significant part of the network
processor headroom in many different network processors. For example in IXP network processors that target the
OC-48 and OC-192 line rates [14, 15], the headroom is equal to 57 compute cycles. In this case the binding overhead
accounts for 42% of the headroom. The dispatch loop approach is more appropriate for static rather than dynamic
binding and can impact the performance of the data path because of the overhead associated with the insertion of a
dispatch code stub.

An enhancement on the first method for dynamic binding adds a small vector table into memory. The vector table
contains the instruction store addresses where each component is located. A data path component obtains the address
of the next component in the processing pipeline in one memory access time. In this approach, no stub code needs to
be inserted in the critical path. When a new component is added, only the content of the vector table needs to be
modified. Although this approach is more suitable for dynamic binding, it involves at least one additional memory
read operation for each component in the critical path. In commercial network processors that target OC-48 and OC-
192 speeds [14, 15] memory access latencies can be several times larger than the network processor headroom (e.g.,
100-300 compute cycles). As a result it is difficult to apply the vector table technique in order to support modular
data paths at such speeds.

The third binding method is more interesting. Instead of deploying a dispatch loop, or using a vector table, the
binding tool can modify the components' machine language code at run time, adjusting the destination addresses of
branch instructions. No global binding state needs to be maintained with this approach. Each component can function
as an independent piece of code having its own “exit points” and “entry points”. Exit points are instruction store

addresses of branch instructions. These branch instructions make the program flow jump from one component to
another. Entry points are instruction store addresses where the program flow jumps. The impact of this approach on
network processor headroom can be significant since instructions that check global binding state are omitted. The
third binding method introduces less overhead in terms of additional processing latency in the critical path. For these
reasons, we have used the third binding method in NetBind. In this paper we refer to this method as ‘code morphing’
method because it modifies the machine language code of components at run time.

Data Path Isolation and Admission Control

To forward packets without disruption, data paths sharing the resources of the same network processor hardware
need to be isolated. In addition, an admission control process needs to ensure that the resource requirements of data
paths are met. Resource assignments can be controlled by a system-wide entity. Resources in network processors
include bandwidth, hardware contexts, processing headroom, on-chip memory, register space, and instruction store
space.

One way to support isolation between data paths is to assign each data path to a separate processing unit, or a set of
hardware contexts, and to make sure that each data path does not execute code that exceeds the network processor
headroom. Determining the execution time of programs given some specific input is typically an intractable problem.
However, it has been shown that packet processing components can have predictable execution times [16]. One
solution to the problem is to allow code modules to carry their developer’s estimation of the worst case execution
time in their file headers. The time reported in each file’s header should be trusted, and code modules should be
authenticated using well-known cryptographic techniques. To determine the worst case execution time for
components, developers can use reasonable upper bounds for the time it takes to complete packet processing
operations.

Bandwidth can be partitioned using packet scheduling techniques. Packet scheduling techniques, (e.g., deficit
round robin [17], weighted fair queuing [18], or start time fair queuing [19]), can be implemented either in the
network processor hardware, or, as part of a packet-processing pipeline. Hierarchical packet scheduling algorithms
[20] can be used for dividing bandwidth between a hierarchy of coexisting data paths. The implementation of packet
scheduling algorithms in network processors is beyond the scope of this paper.

Processor Handoffs

Sometimes the footprints of data paths can be too large so that they cannot be placed in the same instruction store.
In this case, the execution of the data path code has to be split across two, or more processing units. Another case
arises when multiple data paths are supported in the same processor. In this case, the available instruction store space
of processing units may be limited. As a result, the components of a new data path may need to be distributed across
multiple instruction stores. Third, the execution of a data path may be split across multiple processing units when
“software pipelining” [21] is employed for increasing the packet rate that can be achieved in a network processor
architecture. Software pipelining is a technique that divides the functionality of a data path into several stages.
Pipeline stages can potentially run in different processing units. Multiple stages can be executed at the same time
forwarding the packets of different data flows.

We call the transfer of execution from one processing unit to another (that takes place when a packet is being
processed), “processor handoff”. Processor handoffs impact the performance of data paths and need to be taken into
account by the binding system. The performance of processor handoffs depends on the type of memory used for
communication between processing units. A dynamic binding system should try to minimize the probability of
having high latency processor handoffs in the critical path. This is not an easy task and requires a search to be made
on all possible ways to place the code of data paths into the instruction stores of processing units.

Instruction Store Limitations

Instruction store limitations represent a constraint on the number of data paths or processing functions that can be
simultaneously executed in the same network processor. A solution to this problem would be to have the binding
system fetch code from off-chip memory units into instruction stores on an on-demand basis. This solution, however,
can significantly impact the performance of the critical path because of the overhead associated with accessing
memory units.

Complexity of the Binding Algorithm

The last consideration for designing a dynamic binding system is the complexity of the binding algorithm. In many

cases, the complexity of a binding algorithm affects the time scales over which the binding algorithm can be applied.
A complex binding algorithm needs time to execute, and is typically, not suitable for applications that require fast
data path composition. Keeping the binding algorithm simple while producing high performance data paths is an
important design requirement for a good binding system. Applications that require real-time binding include
classification, forwarding and traffic management. The performance of such data path algorithms depends on the
properties of classification databases [22, 23], routing tables and packet scheduling configurations [24]. These
properties typically change at run time calling for advanced service creation environments for programming the data
path efficiently. A dynamic binding system should ideally support a wide range of packet processing applications
ranging from the creation of virtual networks over slow time scales to the fast creation of customized data paths, after
disasters occur. Disasters typically result in rapid changes on the input traffic characteristics and topologies of
communication networks. To accommodate increased traffic demands or to reroute traffic to alternate links once
some part of the communication infrastructure is physically damaged, communication networks need to be highly
adaptive, calling for new techniques and software methodologies for rapid service creation.

Figure III: Data Path Specification Hierarchy

NetBind Design
NetBind is a binding tool we have developed that offers dynamic binding support for the IXP1200 network

processor. NetBind consists of a set of libraries which can modify IXP1200 instructions, create processing pipelines
or perform higher-level operations such as data path admission control. Components are written in machine language
code called microcode. NetBind groups components into processing pipelines that execute on the microengines of
IXP1200. In what follows, we present the design and implementation of NetBind.

Design Principles

The most fundamental principle in the design of NetBind is that binding is performed by avoiding the use of code
stubs or indirection due to their associated performance penalty. As a consequence, NetBind modifies the machine
language code of components at run-time in order to construct consistent packet processing pipelines. Since the
minimum step required for advancing the program sequence from one component to another is a branch operation,
NetBind modifies the destination addresses of branch instructions connecting components. In this way, NetBind
allows the program sequence to continue to the next component in a pipeline, after the previous component’s code is
executed.

NetBind uses no global binding state. Because of this reason, NetBind requires that components expose registers

pipelines

forwarding
engines input

ports
output
ports

input argument
components symbols

exit point

entry point

global variable

transport modules

IXP1200
 specification

network
processor

specification

virtual:
router

specification

used for inter-component communication as a programming API. Registers are exported as binding symbols.
NetBind splits the register space into regions and imposes a consensus on how registers are used. Parameters
exchanged between components do not need to be stored as global binding state. In addition, no global biding state
needs to be checked every time a new component’s code executes. This reduces the overhead introduced in the
critical path significantly, as discussed in the evaluation section. Registers are used in three different ways in the
components we experimented with. First, components use registers to hold input argument values, as explained in
detail below. Second, components use registers to exchange information produced and consumed during the
execution of a packet processing pipeline. Third, components use registers to share information between each other.
We distinguish registers between ‘input argument’, ‘pipeline’ and ‘global variable’ registers depending on the way
registers are used. By exporting registers as input argument, pipeline and global variable, components can
communicate with each other with the least possible communication cost.

A second principle followed in the design of NetBind is that binding is performed by inspecting a much smaller
number of instructions than the body of code executed in the critical path. This second principle results in fast data
path composition. To reduce the number of instructions inspected during binding, NetBind requires from components
to allocate register addresses statically. Statically allocated register addresses are exported as part of each
component’s API. The only exception to this rule concerns the allocation of global variable register addresses. Global
variables represent a shared resource because they are accessed by multiple simultaneously running hardware threads
and referenced using the absolute addressing mode. As a result, global variables addresses need to be allocated
dynamically on an on-demand basis to packet processing pipelines.

Data Path Specification Hierarchy

Before creating data paths, NetBind captures their structure and building blocks in a set of executable profiling
scripts. NetBind uses multiple specification levels to capture the building blocks of packet forwarding services and
their interaction. NetBind uses multiple specification levels in order to offer the programmer the flexibility to select
the amount of information that can be present in data path profiling scripts. Some profiling scripts are generic, and
thus applicable to any hardware architecture. Some other profiling scripts can be specific to network processor
architectures, potentially describing timing and concurrency information associated with components. A third group
of scripts can be specific to a particular chip such as the IXP1200 network processor.

Figure III illustrates the different ways data paths are profiled in NetBind. First, a virtual router specification can
be applied to any hardware architecture. The virtual router specification is generic and can be applied to many
different types of programmable routers (e.g., PC-based programmable routers [8], software [9] or hardware [10]
plugin-based routers or network processor-based routers [11, 12]).The purpose of the virtual router specification is to
capture the composition of a router in terms of its constituent building blocks and their interaction, without
specifying the method which is used for component binding. Programmable routers can be constructed using a
variety of programming techniques ranging from higher level programming languages (e.g., Java) to hardware
plugins based of FPGA technologies. The virtual router specification can be used for service creation in a
heterogeneous infrastructure of programmable routers of many different types. The virtual router specification
describes a virtual router as a set of input ports, output ports and forwarding engines. The components that comprise
ports and engines are listed, but no additional information is provided regarding the contexts that execute the
components and the way components create associations with each other. There is no information about timing and
concurrency in this specification.

A network processor specification augments the virtual router specification with information about the number of
hardware contexts that execute components and about component bindings. The network processor specification
exposes information about the hardware contexts that execute data paths in order to allow the programmer to control
the allocation of computational resources (i.e., hardware threads and processing units).

Components are grouped into processing stages. A processing stage is a part of a software pipeline and consists of
a set of components that are executed by one or multiple hardware contexts sequentially. Components exchange
packets between each other in a “push” or a “pull” manner. Components that sequentially exchange packets in a push
manner are grouped into the same stage of a pipeline. A data path software pipeline is split between at least two
stages if components perform different operations on packets simultaneously. For example, components may need to
place packets (or pointers to packets) into memory, while other components may need to concurrently process or
remove packets from memory. In this case, the first set of components should be executed by a separate set of
hardware contexts other than those, which execute the second set.

In the network processor related specification, components are augmented with symbols, which are represented as

strings. The profiling script specifies one-to one bindings between symbols and between components. Symbols
abstract binding properties of components such as registers or instruction store addresses. Symbols are used in the
binding process.

The network processor specification is dynamically created from the virtual router specification. The virtual router
specification does not include information about symbol bindings. Because of this reason, the virtual router
specification is not sufficient to describe the interaction between components at the network specification level. To
convert the virtual router specification into the network processor specification, NetBind queries a database which
stores information about symbol bindings. Groups of symbol bindings are being stored for each component binding
used in the data path. The NetBind binding approach assumes that the number of components and symbols used for
constructing data path algorithms is limited (i.e., in the same order of magnitude as the classes and methods found in
a higher level programming language API). If this assumption is true, it may not be difficult for component
developers to specify exactly which symbol bindings should characterize the interaction between components in the
data path.

An IXP1200 specification relates the components of a programmable data path with binding properties associated
with the IXP1200 architecture. This type of specification shows how data paths are constructed for a specific network
processor. Components are implemented as blocks of instructions (microwords) called transport modules. Each
transport module supports a specific set of functions. Transport modules can be customized or modified during the
binding process. Symbols are specified as “entry points”, “exit points”, “input arguments” or “global variables”.

Exit points are instruction store addresses of branch instructions. These branch instructions make the program flow
jump from one transport module to another. Entry points are instruction store addresses where the program flow
jumps. Input arguments are instruction store addresses of “immed” IXP assembler instructions [25] that load GPRs
with numeric values. These numeric values, (e.g., Cellular IP timers, IPv4 interface addresses), customize the
operation of transport modules. Global variables are GPRs that are accessed using the absolute addressing mode.
These GPRs hold numeric values that are shared across pipelines or data paths. For example, the SRAM address of a
packet buffer in an IPv4 data path needs to be declared as global variable since this value is shared between the
packet buffer and a scheduler. Network processor related specifications are automatically translated into IXP12000
related specifications by the NetBind binding system.

Figure IV: Register Allocations in NetBind

Register Allocations

Register allocations realized in NetBind are shown in Figure IV. We observe that in data path implementations we
have experimented with, registers are used in three ways. First, registers can hold numeric values used by a specific
component. Each component implements an algorithm that operates on numeric values. When a component creates
new values, it replaces old numeric values with the new ones in the appropriate microengine registers. We call these
registers pipeline registers. The algorithm of each component places some numeric values into pipeline registers,
which are used by the algorithm of the next component in the pipeline. In this manner pipeline registers are shared

 global variable registers

pipeline #2argument
registers

(addresses:9-12)

pipeline #1
pipeline registers
(addresses:0-8)

component #1 component #2 component #3

pipeline registers

algorithm
#1

algorithm
#2

algorithm
#3

(addresses: 13-15)

among all components of a pipeline. Pipeline registers are accessed using the context relative addressing mode. Once
a component executes it becomes the owner of the entire set of pipeline registers. In this way, the registers used by
different contexts are isolated.

Second, registers can hold input arguments. Input arguments are passed dynamically into components when
pipelines are created from an external source, (e.g., the control unit of a virtual router [5]). Each component can place
its own arguments into input argument registers overwriting the input arguments of the previous component. Similar
to pipeline registers, input argument registers are accessed in a context relative addressing manner. Examples of input
arguments include the SRAM address where a linked list of packet buffer descriptors is stored, the SDRAM address
where a routing table is located, or, the scratchpad address, where a small forwarding MIB is maintained.

Third, some registers are shared among different pipelines or data paths. We call these registers global variable
registers. Global variable registers are exported as global variable symbols. These registers need to be accessed by
multiple hardware contexts simultaneously. For this reason, global variable registers are accessed using the absolute
addressing mode.

To reduce the time required for performing data path composition, NetBind uses static register allocation for
pipeline and input argument registers and dynamic allocation for global variable registers. By static register
allocation, we mean that register addresses are known to component developers and exported as a programming API
for each component. By dynamic register allocation, we mean that register addresses are assigned at run time when
data paths are created or modified. An admission controller assigns global variable registers to data paths on-demand.
The microcode of components is modified to reflect the register addresses allocated to components in order to hold
global variables. NetBind uses static register allocation for pipeline and input argument registers in order to simplify
the binding algorithm and to reduce the time needed for the creation a modular data path. Otherwise, the NetBind
binding algorithm would have to inspect all instructions in the data path code, locate the instructions where registers
are used and assign register addresses dynamically.

In the current implementation of NetBind, we use eighteen GPRs per context as pipeline registers (addresses 0-8 of
banks A and B) and eight GPRs per context as input argument registers (addresses 9-12 of banks A and B). Memory
transfer registers are all pipeline registers. Each context contributes six GPRs in order to be used as global variable
registers. In this manner, a pool of twenty-four global variable registers are shared among pipelines or data paths.
Dynamic register allocation is used for global variable registers, because these registers are shared between different
pipelines or data paths and it is not possible for their addresses to be known in advance. In our Spawning Networks
Testbed, as part of the Genesis Project, we have used NetBind to build IPv4 [26] and Cellular IP [6] virtual routers.
Static register allocation is sufficient for programming this set of diverse data paths.

Our characterization of registers as ‘input argument’, ‘pipeline’ and ‘global variable’ reflects register usage in the
components we experimented with. Alternative designs may define different types of register usage. What is
important in the design of NetBind is that we allow components to communicate without checking global binding
state every time a new component is executed. This is accomplished by allowing components to expose registers as a
programming API. Registers can be characterized in many different ways in the API depending on the programmer’s
needs.

Binding Algorithm

The NetBind binding algorithm operates on components and modifies their microcode instructions at run time in
order to compose packet processing pipelines. A description of the binding algorithm is given below.

NETBIND-BIND (component-list, binding-list)
1. for i = 1 to number-of-components do
2. place each component into the same microstore
3. for i = 1 to number-of-components do
4. for j = 1 to number-of-input-arguments for the i-th component do
5. j-th-input-argument ? exported-symbol-value for this argument
6. for j = 1 to number-of-global-variables for the i-th component do
7. j-th-global variable ? exported-register-address for this variable
8. for i = 1 to number-of-bindings do
9. exit-point for the i-th binding ? exported-entry point for this exit point

Steps 1, 2 describe the placement of components into a microstore. Steps 3-7 describe the assignment of input
argument values and global variable register addresses. Steps 8, 9 describe the bindings between exit points and entry

points. Assuming steps 1 and 2 can be executed in bounded time (e.g., by a DMA transfer unit or other hardware
acceleration unit) and that the component list passed as input contains m input arguments, n global variables, and l
bindings the complexity of the binding algorithm is O(m+n+l). This is because steps 3-5 are executed m times
overall, steps 6, 7 are executed n times, and steps 8, 9 are executed l times. The total number of symbols that are
processed during the binding process is h = m+n+l. As a result, the complexity of our binding algorithm is O(h) as
stated earlier.

Figure V: Dynamic Binding in NetBind

Figure V illustrates an example how NetBind performs dynamic binding. In this example, two components are
placed into an instruction store. Figure V shows the instruction store containing the components and the instructions
of components, which are modified during the binding process. The fields of instructions that are modified by
NetBind are illustrated as shaded boxes in the figure.

First, NetBind modifies the microwords that load input arguments into registers. Input argument values are
specified using the NetBind programming API. Input argument values replace the initial numeric values used by the
components. In the example of Figure V, two pairs of “immed_w0” and “immed_w1” instructions are modified at
run time, during the steps (1) and (2), as shown in Figure V. The values of input arguments introduced into the
microcode are 0x20100 and 0x10500 for the two components, respectively.

Second, the binder modifies the microwords where global variables are used. The “alu” instructions shown in
Figure V load the absolute registers @var1 and @var2. The absolute registers @var1 and @var2 are global variable
registers. An admission controller assigns the addresses of these global variable registers before binding takes place.
The binder then replaces the addresses that are initially used by the programmer for these registers (i.e., 45 and 46 as
shown in Figure V) with a value assigned by the admission controller (47). In this manner, pipelines can use the same
GPR for accessing shared information (step 3 in Figure V).

Third, the binder modifies all branch instructions that are included in each transport module. The destination
addresses of branch instructions are incremented by the instruction store addresses where transport modules are
placed. This step can also be performed during the placement of transport modules into instruction stores. Finally, the
microwords that correspond to the exit points of transport modules are modified so that the program flow jumps into
their associated entry points (step 4 in Figure V). By modifying the microcode of components at run time, NetBind
can create processing pipelines that are optimized adding little overhead in the critical path. This is a key property of

alu[@var1, --,B, arg1]
address of @var1 is 45

alu[@var2 --,B, arg2]
address of @var2 is 46

immed_w0[arg1, 0x0100]
immed_w1[arg1, 0x0002]

immed_w0[arg1, 0x0000]
immed_w1[arg1, 0x0000]

br[end#]

0x0100
0x0002

47

47

entry_point1#

0x0500
0x0001

instruction store instructions
before binding

instructions
after binding

immed_w0[arg1, 0x0000]
immed_w1[arg1, 0x0000]

alu[@var1, --,B, arg1]
address of @var1 is 47

br[entry_point1#]

immed_w0[arg1, 0x0500]
immed_w1[arg1, 0x0001]

alu[@var2 --,B, arg2]
address of @var2 is 47

(1)

(2)

(3)

(4)

the NetBind system which we discuss in the evaluation section.

The Admission Control Algorithm

In NetBind, admission control drives the assignment of system resources including registers, memory, instruction
store space, headroom and hardware contexts. Resource management in network processors is a difficult problem.
The difficulty stems from the fact that network processors use multi-processor architectures that expose many
different types of resources to applications (e.g., multiple types of memory units, registers, packet processing units
and hardware contexts). We have not fully investigated the resource management problem in network processors as
yet. Instead, we designed a simple heuristic algorithm for admission control. NetBind applies a “best fit” bin-packing
algorithm to determine the most suitable microengines where data path components should be placed. The best fit bin
packing algorithm determines the microengine where a packet processing pipeline should be placed by calculating
the remaining resources (i.e., leftover) after the placement of the pipeline in each microengine. In order to determine
the remaining resources associated with each resource assignment, NetBind calculates a weighted average, taking
every type of resource, (i.e., memory and instruction store space, hardware contexts, and global variable registers),
into account. Each type of resource weighs equally on the calculation of the leftover resources. The microengine
selected is the one that results in the smallest amount of leftover after the placement of the pipeline.

Maintaining records of resource usage is essential to supporting isolation between data paths. If the “best fit”
algorithm fails NetBind applies an “exhaustive search” algorithm to determine the microengines where data path
components should be placed. Exhaustive search is a technique associated with significant complexity (i.e., O(m!) as
a function of the number of pipelines in the system). However, exhaustive search works effectively for small number
of pipelines and can result in efficient resource allocations when the best fit algorithm fails.

Figure VI: Bin Packing Example

Real applications do need exhaustive search. Best fit may fail to find the optimal allocation. In what follows we

provide an example that illustrates why exhaustive search is necessary. In the example shown in Figure VI,
microengines are abstracted and referred to as ‘bins’ and pipelines are abstracted and referred to as ‘objects’ for the
sake of simplicity. Let’s assume that we have two bins of size seven and two objects which need to be placed into the
bins of size three each. The best fit algorithm places the two objects in the first of the bins. If an object of size four
needs to be added into the bins as well, the best fit algorithm places the object in the second bin. If a fourth object,
also of size four needs to be added into the bins, then the best fit algorithm determines that there is not enough space
in the system to accommodate the new object. This happens because the leftover in the first bin is one and in the
second bin is three. Exhaustive search in this case determines that there exists a placement configuration which can

objects in their arrival order empty bins

object placement by the
best fit algorithm

object placement by
exhaustive search

accommodate all four objects. In the optimal configuration each of the bins contains one object of size four and one
object of size three.

Before realizing a data path, NetBind examines whether the candidate data path exceeds the network processor
headroom. Each transport module carries an estimate of its worst case execution time. The execution time for each
component is determined from deterministic bounds on the time it takes for different microengine instructions to
complete. With the exception of memory operations, the execution time of microengine instructions is deterministic
and can be obtained using Intel’s transactor simulation environment [27].

Figure VII: The NetBind Binding System

NetBind Implementation
We have implemented NetBind in C and C++ as a user space process in the StrongARM Core processor of

IXP1200. The StrongARM Core processor runs a embedded ARM version of Linux. A diagram of the components of
the NetBind system is shown in Figure VII. The NetBind binding system consists of:
• a network processor specification converter object, which converts a virtual router specification to a network

processor specification. Information about symbol bindings required for the conversion is obtained from a
database of transport modules and symbol bindings.

• a data path constructor object, which coordinates the binding process, accepting as input the network processor
specification of a data path. The data path constructor parses the transport module (.tmd) files that contain data
path components and converts the network processor-related specification of a data path into an IXP1200-related
specification.

• an admission controller object, which determines whether the resource requirements of a data path can be met;
The admission controller performs resource allocation for every candidate data path. If the resource requirements
of a data path can be met, the admission controller assigns a set of microengines, hardware contexts, global
variable registers, memory and instruction store regions to the new data path. Once admission control takes
place, the data path is created.

• a verifier object, which verifies the addresses and values of each symbol associated with a data path before
binding takes place. The verifier object also checks the validity of the resource allocation made by the admission
controller. The verifier object is useful for debugging since it makes sure that no incorrect or malicious
microcode is written into the instruction stores of IXP units. Using a verifier object one can avoid resetting the
system manually every time the data path constructor makes a mistake.

• a binder object, which performs low-level binding functions, such as, the modification of microwords for

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

StrongARM
Core

verifier

microstore
objectcode morphing object

and symbol
bindings

virtual router specification

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

StrongARM
Core

verifier

microstore
objectcode morphing object

and symbol
bindings

virtual router specification

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

datapath constructor

transport
modules

(.tmd files)
admission

controllerbinder

network processor specification

microengines

verifier

microstore
object

and symbol
bindings

network processor specification
converter

binding, or, the loading of transport modules into instruction stores. The binder is “plug-and-play” and can either
create new data paths, or, modify existing ones at run-time

• a code morphing object, which offers a set of methods that parse IXP1200 microinstructions and modify the
fields of these instructions. The code morphing object is used by the binder.

• a database of transport modules and symbol bindings. Transport modules encapsulate component code and are
accessed by the data path constructor. Symbol bindings are used during the conversion of the virtual router
specification into the network processor specification.

• a microstore object, which can initialize or clear the instruction stores on an IXP1200 network processor. The
microstore object can also read from, or write into, any address of the instruction stores.

In order to implement the binder object we had to discover the binary representations for many IXP1200
microassembler instructions. This was not an easy task since the opcodes of microassembler instructions do not have
fixed lengths and they are not placed in fixed locations inside each instruction's bit set.

Transport modules can be developed using tools such as the Intel Developer Workbench [27]. The IXP1200
microassembler encapsulates the microcode associated with a component project into a “.uof” file. The UOF file
format is an Intel proprietary format. The UOF header includes information about the number of microcode pages
associated with a Workbench project, the manner in which the instruction stores are filled and the size of pages
associated with a project's microcode. Since we have had no access to the source code of the standard development
tools provided by Intel [27], (i.e., the Intel Developer Workbench, the transactor simulation environment and the
microassembler), we have created our own microassembler extensions on top of these tools. Our microassembler
extensions have been used for creating the transport modules of components.

Figure VIII: Microassembler Extensions

The UOF file format is suitable for encapsulating statically compiled microcode. The UOF file format does not

include dynamic binding information in the header. For this reason, we introduced a new file format, the TMD
(Transport MoDule) format for encapsulating microcode. Our microassembler extensions are shown in Figure VIII.
A utility called uof2tmd takes a .uof file as input and produces a “.tmd” file as output. The TMD header includes
symbol information about input arguments, global variables entry points and exit points. For each symbol a symbol
name, a value and an instruction store address where the symbol is used are provided. Currently, the information
included in the TMD header is obtained from the UOF header.

Service Creation using NetBind

Programming Virtual Routers

We have used NetBind to create programmable virtual routers that seamlessly share the resources of the
communications infrastructure. A software model reflecting the structure, and building blocks, of a programmable
virtual router is illustrated in Figure IX. A “routelet” operates as an autonomous virtual router forwarding packets at
layer three from a set of input ports to a set of output ports. Multiple routelets can share the resources of a network

.ucp file .uof file .tmd file

import variables
export functions

.uof

input arguments
global variables

entry points
exit points

.tmd
header

preprocessor assembler uof2tmd

processor. The dynamic instantiation of a set of routelets across the network hardware, and the formation of virtual
networks on-demand are broader research goals addressed in the Genesis Project [28] and not dealt with in this paper.
Each routelet has its own data path, state and control plane, which are fully programmable. The data path can run in
the microengines of a network processor, such as the IXP1200. The data path consists of input ports, output ports and
forwarding engines, which comprise atomic transport modules. Transport modules perform simple operations on
packets such as decrementing the TTL field of an IP header, or more complex operations such as packet classification
and scheduling. The control plane can run on network processors or host processors as well. For example, in the
routelet architecture, as shown in Figure IX, a control unit runs on the StrongARM core of the IXP1200, whereas
additional control plane objects run in host processors. The control unit provides low-level operating system support
for creating routelets, modifying data paths at run time or managing a routelet's state. The control unit has been
implemented using the NetBind libraries. Each routelet maintains its own state, which is distributed over the memory
units of IXP1200.

Figure IX: Routelet

A metabus supports a hierarchy of distributed objects that realize a number of virtual network specific

communication algorithms including routing, signaling, QOS control and management. At the lowest level of this
hierarchy binding interface base objects provide a set of handlers to a routelet’s controllers and resources allowing
for the programmability of a range of internetworking architectures using the programming environment. The
binding interface base separates the implementation of the finite state machine, which characterizes communication
algorithms (e.g., the RIP finite state machine, the RSVP finite state machine, etc.), from the implementation of the
mechanisms that transmit signaling messages inside the network. Communication algorithms can be implemented as
interactions of distributed objects, independent of the network transport mechanisms. Distributed objects that
comprise network architectures (e.g., routing daemons, bandwidth brokers, etc.) are not aware of the existence of
routelets. Distributed objects give the ‘illusion’ of calling methods on local objects whereas in practice call
arguments are ‘packaged’ and transmitted over the network via one or more routelets. This abstraction is provided by
the metabus.

We have chosen to realize the metabus abstraction as an orblet, a virtual Object Request Broker (ORB) derived
from the CORBA [29] object-programming environment. Current ORB implementations are tailored toward a single
monolithic transport service. This limitation makes existing CORBA implementations unsuitable for programming
virtual network architectures that may use different transport environments. To resolve this issue we have
implemented the ‘acceptor-connector’ software pattern [30] in the orblet. The acceptor connector pattern wraps low-
level connection management tasks (e.g., managing a TCP connection) with a generic software API. The orblet can
use a range of transport services on-demand in this case. To use a specific transport service, the orblet dynamically
binds to an inter-ORB protocol engine supported by the programming environment. We have created an IIOP
protocol engine for interacting with IP-based routelets. Isolation between the programming environments of virtual
networks is realized in two ways: First, each metabus uses a separate transport environment for object interaction

input port output portforwarding
engine

spawning
controller

composition
controller

allocation
controller

datapath
controller

routelet state control unit

metabus

binding interface base

StrongARM
Core

memory units

host
processor

microengines
input port output portforwarding

engine

spawning
controller

composition
controller

allocation
controller

datapath
controller

routelet state control unit

metabus

binding interface base

StrongARM
Core

memory units

host
processor

microengines

StrongARM
Core

memory units

host
processor

microengines

where the transport environment is dependent on the spawned network architecture. Second, each metabus offers
dedicated naming services to the spawned network architecture.

We believe that virtual networks can be programmed, deployed and provisioned on-demand using appropriate
distributed operating system support and network processor hardware. While virtual networks share resources, they
do not necessarily use the same software for controlling those resources. Programmable virtual networks can be
created by selecting customized protocols for transport, signaling, control, and management and can be used for
investigating the cost and performance of network architectures. Our work on programmable virtual networking
assumes a network-wide service creation infrastructure of network processors. This assumption may not be true in
the near future. It is difficult for network processors today to match the very high speeds (e.g., some terabit/sec) at
which ASICs operate in the network core. While it may take some time until silicon is developed for the network
core, network processors can effectively run at the network edge. Most of the sophistication in packet processing
required at the network edge can be programmed using existing network processor hardware. Therefore, virtual
routers can effectively run at the network edge using commercial network processors.

Figure X: An Ipv4 Data Path

IPv4 Data Path

The data path associated with an IPv4 virtual router implemented using NetBind is illustrated in Figure X. This
data path comprises seven transport modules. In the figure, the first six modules run on microengine 0 and are
executed by all four contexts by the microengine:
• a virtual network demultiplexor (receiver.tmd) module receives a packet from the network performs virtual

network classification and places the packet into an SDRAM buffer;
• an IPv4 verifier (ipv4_verifier.tmd) module verifies the length, version and TTL fields of an IPv4 header;
• a checksum verifier (ipv4_checksum_verifier.tmd) module verifies the checksum field of an IPv4

header;
• an IPv4 header modifier (ipv4_hdr_modifier.tmd) module decrements the TTL field of an IPv4 packet

header and adjusts the checksum accordingly;
• an IPv4 trie lookup (ipv4_trie_lookup.tmd) module performs an IPv4 route lookup; and
• a packet queue (packet_queue.tmd) module dequeues a packet.

 receiver.tmd

ipv4_verifier.tmd

ipv4_checksum_verifier. tmd

scheduler. tmd

packet_queue. tmd

ipv4_ trie _lookup. tmd

ipv4_header_modifier. tmd

microengine 0

microengine 1

In addition, a seventh module runs on a separate microengine (microengine 1). This module is a dynamic scheduler
that assigns the transmission of enqueued packets to hardware contexts. Context 0 executes the scheduler, whereas
contexts 1, 2 and 3, transmit packets to the network.

Figure XI: Network Processor Specification of the Ipv4 Data Path

The network processor specification for the router presented above is shown in Figure XI. The specification is

written in a scripting language called ni. This scripting language has been defined and developed as part of the
NetBind testing environment. The syntax of ni commands is similar to the syntax of IXP1200 microcode instructions.
The first string in a ni command identifies the operation which is executed. A number of operands follow. Operands
are declared inside brackets and are separated by commas. The final part of a command consists of one or multiple
optional tokens. For a detailed description of the commands and syntax of the ni scripting language see [31].

In the first part of the network processor specification input arguments are declared. Input arguments are declared
as symbols. Each symbol is associated with a string name. Optional tokens follow the declaration of input arguments.
These tokens specify numerical values assigned to input arguments. For example, the location of a 64K table used in
a 16-bit trie lookup is declared as an input argument named ‘inp_route_base_64k’. This input argument is used for
customizing the IPv4 trie lookup module. The numerical value assigned to this argument is 0x20000, which is an

//declaration of input arguments
decl[symbol, inp_packet_buff_base], 0x20100
decl[symbol, inp_scratchpad_mib], 0x0c0
decl[symbol, inp_scratchpad_pwp], 0x200
decl[symbol, inp_route_base_64k], 0x20000
decl[symbol, inp_route_base_256], 0x30000
decl[symbol, inp_route_base_trie], 0x30100
decl[symbol, inp_ftable_base], 0x8100

//declarations for the packet processing pipeline:
//mpacket receiver:
decl[comp, mpr, mpr, ./receiver.tmd], inp_descriptor_base, inp_packet_buff_base, inp_scratchpad_mib, glo_rdready_sem#,

glo_rec_sem#, glo_dma_sem#, entry_routerinitialize#, exit_to_verifier#

//ipv4 verifier
decl[comp, ipv4_verifier, ipv4_verifier, ./ipv4_verifier.tmd], inp_descriptor_base, inp_packet_buff_base,

entry_verificationbegin#, exit_to_checksum#, exit_to_end_verify1#, exit_to_end_verify2#
//ipv4_checksum_verifier
decl[comp, ipv4_checksum_verifier, ipv4_checksum_verifier, ./ipv4_checksum_verifier.tmd], entry_ipv4_cksum_verify#,

exit_chksum_verify#, exit_to_router#
//ipv4_header_modifier
decl[comp, ipv4_header_modifier, ipv4_header_modifier, ./ipv4_header_modifier.tmd], inp_descriptor_base, inp_packet_buff_base,

entry_ipv4_header_modifier#, exit_ipv4_header_modifier#
//ipv4_trie_lookup
decl[comp, ipv4_trie_lookup, ipv4_trie_lookup, ./ipv4_trie_lookup.tmd], inp_descriptor_base, inp_packet_buff_base,

inp_route_base_64k, inp_route_base_256, inp_route_base_trie, inp_ftable_base, entry_routelookup#, exit_routelookup#
//packet_queue
decl[comp, packet_queue, packet_queue, ./packet_queue.tmd], inp_descriptor_base, inp_scratchpad_mib,

inp_scratchpad_pwp, entry_packet_queue#, exit_packet_queue#

//declaration of bindings for the packet processing pipeline
decl[binding, b0], mpr, exit_to_verifier#, ipv4_verifier, entry_verificationbegin#
decl[binding, b1], ipv4_verifier, exit_to_checksum#, ipv4_checksum_verifier, entry_ipv4_cksum_verify#
decl[binding, b2], ipv4_verifier, exit_to_end_verify1#, ipv4_header_modifier, entry_ipv4_header_modifier#
decl[binding, b3], ipv4_verifier, exit_to_end_verify2#, ipv4_header_modifier, entry_ipv4_header_modifier#
decl[binding, b4], ipv4_checksum_verifier, exit_chksum_verify#, ipv4_header_modifier, entry_ipv4_header_modifier#
decl[binding, b5], ipv4_checksum_verifier, exit_to_router#, mpr, entry_routerinitialize#
decl[binding, b6], ipv4_header_modifier, exit_ipv4_header_modifier#, ipv4_trie_lookup, entry_routelookup#
decl[binding, b7], ipv4_trie_lookup, exit_routelookup#, packet_queue, entry_packet_queue#
decl[binding, b8], packet_queue, exit_packet_queue#, mpr, entry_routerinitialize#

//global variables
decl[gv, var0], mpr, glo_rdready_sem#
decl[gv, var1], mpr, glo_rec_sem#
decl[gv, var2], mpr, glo_dma_sem#

//declaration of the packet processing pipeline that receives and enqueues packets
decl[pline, ipv4_recv, 4], mpr, ipv4_verifier, ipv4_checksum_verifier, ipv4_header_modifier, ipv4_trie_lookup, packet_queue,

b0, b1, b2, b3, b4, b5, b6, b7, b8, var0, var1, var2

//declaration of the packet transmitting pipeline
decl[comp, scheduler, scheduler, ./scheduler.tmd]
decl[pline, ipv4_xmit, 4], scheduler

//aggregate structures
decl[va, aggr0], ipv4_recv, var0
decl[va, aggr1], ipv4_recv, var1
decl[va, aggr2], ipv4_recv, var2

//declaration of the datapath
decl[dpath, ipv4], ipv4_recv, ipv4_xmit, aggr0, aggr1, aggr2

SRAM address location. A different table location could be specified by introducing a different numerical value in
the declaration of the symbol inp_route_base_64k.

In the second part of the network processor specification the components that constitute the processing stages and
pipelines of the IPv4 data path are declared and their binding symbols specified. Each component is listed using a
‘decl’ command. Symbols associated with each component are specified as optional tokens. Symbols include input
arguments, global variables, entry points and exit points as mentioned earlier. For example the component that
performs IPv4 routing lookup (ipv4_trie_lookup) is listed followed by eight symbols as shown in Figure XI. The first
symbol (inp_descriptor_base) is an input argument specifying the SRAM location of a list of packet buffer
descriptors used by the IPv4 data path. The second symbol (inp_packet_buff_base) is an input argument specifying
an SDRAM location where packet buffers are stored. The next three symbols (i.e., inp_route_base_64k,
inp_route_base_256 and inp_route_base_trie) are input arguments specifying SRAM locations of tables constituting
a trie data structure. This trie data structure is used for performing a Longest Prefix Matching (LPM) search on the
destination IP address of each packet. The next symbol (inp_ftable_base) is an input argument specifying an
SDRAM location where next hop information is stored. Finally, the last two symbols (i.e., entry_routelookup# and
exit_routelookup#) specify the module’s entry and exit points respectively. The entry point symbol
(entry_routelookup#) refers to the first instruction of the trie lookup module, where the IPv4 routing lookup process
begins. The exit point symbol (exit_routelookup#) refers to a branch instruction executed at the end of the IPv4
routing lookup process, where the sequence of control jumps to another module.

After the declaration of components, bindings are declared. Nine bindings are declared in the example of Figure XI
named b0-b8. The declaration of bindings reflects the sequence of control and inter-module relationship
characterizing the IPv4 data path of Figure X. The execution of the IPv4 data path begins with the execution of a
virtual network demultiplexor module (receiver.tmd). After the execution of this module a packet is passed into an
IPv4 verifier module (binding b0). If the packet header contains valid version and TTL fields, the sequence of control
jumps to the checksum verifier module (binding b1). However, if the packet header does not contain valid header
fields, an exception is raised and the sequence of control jumps to the IPv4 header modifier module bypassing the
checksum verifier module (bindings b2 and b3). After the checksum verifier module is executed the sequence of
control jumps to the IPv4 header modifier module (binding b4). This module decrements the TTL field of the packet
header and re-computes the checksum. In case the verification of the checksum field fails an exception is raised and
the sequence of control jumps back to the virtual network demultiplexor module (binding b5). Packets with valid
checksum fields are passed to the IPv4 header modifier module and then to the IPv4 trie lookup module (binding b6).
Once routing lookup takes place, packets are placed in appropriate queues (binding b7) and the sequence of control
jumps back to the virtual network demultiplexor (binding b8). Each binding is declared using four tokens. Tokens
specify the source component, exit point, destination component and entry point associated with each binding.

Following the declaration of bindings, global variables are declared. Next, packet processing pipelines are declared
as collections of components, bindings and global variables. The IPv4 data path described in the specification of
Figure XI consists of two pipelines: An ‘ipv4_recv’ pipeline which places packets into queues and an ‘ipv4_xmit’
pipeline which schedules the transmission of packets into the network. In the last statement of the specification the
IPv4 data path is declared as a collection of pipelines and global variables.

Example of a Component

In what follows we describe how one of the components of the IPv4 data path is implemented. We present the
checksum verifier module as it is implemented as part of the NetBind source code distribution [1].

The checksum verifier module verifies the checksum field of an IPv4 header. The checksum verifier module
consists of twenty three microcode instructions and can be executed by any number of hardware contexts between
one and four in a single IXP1200 microengine. The checksum verifier module exports two pipeline registers and can
be linked with other modules using two entry points and two exit points. The microcode that implements the
checksum verifier module is shown in Figure XII. In the first part of the code, entry and exit points are declared using
the ‘.export_func’ directive of the IXP1200 microassembler. Next, pipeline and local registers are declared.

Pipeline register names are distinguished from local register names because pipeline register names begin with the
underscore (‘_’) character. Two pipeline registers are declared and exported as a programming API for the
component. The ‘_descriptor_address’ pipeline register holds the address of a packet buffer descriptor. This packet
buffer descriptor indicates the location of a buffer where a packet is stored in the SDRAM memory unit. The
‘_exception’ pipeline register holds a flag that indicates errors or failure during the reception of a packet.

Figure XII: Checksum Verifier Module

After the declaration of pipeline and local registers, memory transfer registers are declared. Register addresses are
allocated statically. Eight SDRAM transfer registers are declared in the code (i.e., $$xdfer0 - $$xdfer7). These
registers hold the fields of the IPv4 packet header that are examined by the checksum verifier module. The first
instruction of the module is marked with the label ‘entry_cksum_verify#’ indicating that this instruction is the
module’s entry point. The checksum verify process divides every word in the packet header into two sixteen bit parts

//entry points
.export_func oneway 0123 entry_ipv4_cksum_verify# 0 0
.export_func oneway 0123 entry_ipv4_end_verify# 0 0

//exit points
.export_func oneway 0123 exit_chksum_verify# 0 0
.export_func oneway 0123 exit_to_router# 0 0

//REGISTER ALLOCATIONS:
.areg _exception 3
.areg local_a6 6
.breg local_b8 8
.areg _descriptor_address 0

.$$reg $$xdfer0 0

.$$reg $$xdfer1 1

.$$reg $$xdfer2 2

.$$reg $$xdfer3 3

.$$reg $$xdfer4 4

.$$reg $$xdfer5 5

.$$reg $$xdfer6 6

.$$reg $$xdfer7 7

.xfer_order $$xdfer0 $$xdfer1 $$xdfer2 $$xdfer3 $$xdfer4 $$xdfer5 $$xdfer6 $$xdfer7

entry_ipv4_cksum_verify#:
// Checksum is in the two least significant bytes of
//transfer register 4

alu[local_b8, 0, +16, $$xdfer1]
alu[local_b8, local_b8, +, $$xdfer2]
alu[local_b8, local_b8, +carry, $$xdfer6, >>16]
alu[local_b8, local_b8, +carry, $$xdfer3]
alu[local_b8, local_b8, +carry, $$xdfer4]
alu[local_b8, local_b8, +carry, $$xdfer5]

alu[local_b8, local_b8, +carry, 0]
// add in previous carry
ld_field_w_clr[local_a6, 1100, local_b8]
// get high 16 of the total
alu_shf[local_b8, local_a6, +, local_b8, <<16]
// add low 16 bits to upper 16
alu[local_a6, 1, +carry, local_a6, <<16]
// add last carry +1, local_a6 B op=0
alu[local_b8, local_b8, +, local_a6, <<16]
// add 1<<16 to 0xffff to get zero result

br=0[entry_ipv4_end_verify#]
alu[_exception, --, B, 0x0A] //IP_BAD_CHECKSUM
entry_ipv4_end_verify#:

alu[--, --, B, _exception]
br=0[exit_chksum_verify#]

//else if the packet is not correct
//free the buffer space and start all over
//again

immed_w0[local_b8, 0x0000]
immed_w1[local_b8, 0x0010]

alu_shf[--, local_b8, OR, 0x0000]
// merge ov bit with freelist id/bank

sram[push, --, _descriptor_address, 0, 0], indirect_ref, ctx_swap

exit_to_router#:
br[end#]

nop
exit_chksum_verify#:
br[end#]
end#:
nop

and adds the parts of every word producing a sum. The carry resulting from each addition is added into this sum. If
the checksum field in the packet header is correct, then the result from all additions is zero. If the value of the
checksum field is not correct, then an exception is raised and the buffer space for the packet is de-allocated. The
packet is discarded, in this case. The program sequence executes the branch instruction labeled ‘exit_to_router#’.
This is an exit point leading to the beginning of the packet receiving code. Otherwise, if the value of the checksum
field is correct, then program sequence executes the branch instruction labeled ‘exit_chksum_verify#’, which is an
exit point leading to the next component in the packet processing pipeline. Both exit points jump to the same label
‘end#’ in the microcode of Figure XII. This happens because the component code of Figure XII reflects the
component state before binding. At development time all exit points of components branch to the same instruction
which is a ‘nop’ (i.e., no operation) instruction separating transport modules. During binding the destination
addresses of branch instructions are modified. The destination addresses of branch instructions are set to the entry
points of the components where the sequence of control jumps to, as explained earlier.

Figure XIII: Pipeline Register Allocations in the Ipv4 Data Path

Hardware Context and Register Allocations

The IPv4 data path of Figure X is split into two pipelines as shown earlier. The first pipeline implements the
reception of packets from the network. This pipeline is executed by four hardware contexts each serving a different
port of the Bridalveil development board (see below). The input FIFO slots of the IXP1200 network processor are
evenly divided between the four contexts and assigned to each port in a static manner. On the transmit side, however,
the scheduling of contexts is done dynamically. We use three hardware contexts to transmit packets into the network
on an on-demand basis and one context to assign packet transmission tasks to the transmit contexts. The same
approach has been followed in the IPv4 data path reference design distributed by Intel.

Hardware context management is a difficult problem. There is no single solution that satisfies all types of
applications and network processor hardware. Implementing network algorithms in software typically requires
sophisticated hardware context assignment and synchronization. For example in a router system where the number of
output ports is much larger than the number of hardware contexts available for transmission, static allocation of

receiver.tmd

_descriptor_address
(register 0, bank A)

ipv4_verifier.tmd

ipv4_checksum_verifier.tmd

ipv4_header_modifier.tmd

ipv4_trie_lookup.tmd

packet_queue.tmd

_output_inteface
(register 4, bank A)

_output_inteface
(register 4, bank A)

scheduler.tmd

microengine 0

microengine 1

receiver.tmd

_descriptor_address
(register 0, bank A)

ipv4_verifier.tmd

ipv4_checksum_verifier.tmd

ipv4_header_modifier.tmd

ipv4_trie_lookup.tmd

packet_queue.tmd

_output_inteface
(register 4, bank A)

_output_inteface
(register 4, bank A)

scheduler.tmd

microengine 0

microengine 1

contexts may not be efficient. In other router systems such as the Bridalveil development boards, static allocation of
contexts may result in better performance [11, 12]. Another case where static allocation of contexts is inefficient is
packet scheduling. A scheduler may need to select the next eligible packet for transmission from a large number of
queues or connections. In this case assigning a single thread for serving each queue may not be possible. In a
software implementation of a hierarchical packet scheduler, it is preferable if single-level schedulers are served by
different contexts. In this way the dequeuing process at each level of the hierarchy can complete without waiting for
packets to be enqueued from previous levels. These contexts need to be assigned dynamically to different levels of
the hierarchy.

These examples indicate that it is better if binding systems offer the flexibility to programmers to select hardware
context allocation and management policies among a range of choices. We believe that programmers should have the
flexibility to select the context allocation and management policies which are more suitable for the algorithms
programmed in the data path. In NetBind contexts can be assigned to input ports, output ports and other types of
resources (e.g., queues) either statically or dynamically. At the admission control level, the resource requirements of
each component are presented as the total number of contexts needed. Port and queue allocations are hidden from the
admission controller. The benefit of this approach is that the binding and admission control processes are simplified
because port and queue allocations are not taken into account. The disadvantage of this approach is that additional
responsibility is placed on the component developer which needs to know details about the way ports and queues
operate in different router systems. In addition, a strong trust relationship is assumed between programmers at
different levels of the specification hierarchy of Figure III. The programmers at the virtual router specification level
assume that component bindings are successfully resolved at the network specification level. Similarly, programmers
at the network processor specification level assume that bindings are successfully resolved at the IXP1200
specification level and that components manage hardware contexts, ports and queues efficiently.

While port and queue allocations are hidden from the binder and admission controller, register allocations are
exposed. Pipeline and input argument registers are assigned statically as discussed earlier, while global variable
registers are assigned dynamically. In Figure XIII we illustrate the path which a packet follows through the router
system of Figure X, and the pipeline registers used in this path.

Evaluation

Experimental Environment

To evaluate NetBind, we have set up an experimental environment consisting of three “Bridalveil” development
boards, interconnecting desktop and notebook computers in our lab. Bridalveil [32] is an IXP1200 network processor
development board running at 200 MHz and using 256 Mbytes of SDRAM off-chip memory. The Bridalveil board is
a PCI card that can be connected to a PC running Linux. The host processor of the PC and the IXP1200 unit can
communicate over the PCI bus. The PC serves as a file server and boot server for the Bridalveil system. PCI bus
network drivers are provided for the PC and for the embedded ARM version of Linux running on the StrongARM
Core processor. In our experimental environment, each Bridalveil card is plugged into a different PC. In each card,
the IXP1200 chip is connected to four fast Ethernet ports that can receive or transmit packets at 100 Mbps.

To evaluate NetBind we tested the NetBind code using the Bridalveil system where we could also execute
MicroACE. MicroACE is a systems architecture provided by Intel for composing modular data paths and network
services in network processors. The MicroACE adopts a static binding approach to the development of modular data
paths based on the insertion of a “dispatch loop” code stub in the critical path.

The dispatch loop is provided by the programmer and directs the program flow through the components of a
programmable processing pipeline. MicroACE is a system that can be used for programming microengines and the
StrongARM Core. In what follows we provide an overview of MicroACE.

MicroACE is an extension of the ACE [32] framework that can execute on the microengines of IXP1200. In
MicroACE, an application defines the flow of packets among software components called “ACEs” by binding packet
destinations called “targets” to other ACEs in a processing pipeline. A series of concatenated ACEs form a
processing pipeline. A MicroACE consists of a “microblock” and a “core component”. A microblock is a microcode
component running in the microengines of IXP1200. One or more microblocks can be combined into a single
microengine image called “microblock group”. A core component runs on the StrongARM Core processor. Each core
component is the counterpart of a microblock running in the microengines. The core component handles exception,
control and management packets.

The binding between microblocks in the ACE framework is static and takes place offline. The targets of a

microblock are fixed and cannot be changed at run time. For each microengine, a microcode “dispatch loop” is
provided by the programmer, which initializes a microcode group and a pipeline graph. The size of a microblock
group is limited by the size of the instruction store where the microcode group is placed.

Before a microblock is executed, some global binding state needs to be examined. The global binding state consists
of two variables. A “dl_next_block” variable holds an integer identifying the next block to be executed, whereas a
“dl_buffer_handle” variable stores a pointer to a packet buffer exchanged between components. Specialized “source”
and “sink” microblocks can send or receive packets to/from the network. Since the binding between microblocks
takes place offline, a linker can preserve the persistency of register assignments

Dynamic Binding Analysis

MicroACE and NetBind have some similarities in their design and realization but also differences. MicroACE
allows the programmer to construct processing pipelines in the StrongARM Core and the microengines. NetBind, on
the other hand offers a set of libraries for the microengines only. MicroACE supports static linking allowing
programmers to use registers according to their own preferences. MicroACE does not impose any constraints on the
number and purpose of registers used by components. NetBind on the other hand supports dynamic binding between
components that can take place at run time. To support dynamic binding NetBind imposes a number of constraints on
the purpose and number of registers used by components.

The main difference between NetBind and MicroACE in terms of performance comes from the choice of the
binding technique used in each scheme. MicroACE follows a dispatch loop approach where some global binding
state needs to be checked before each component is executed. In NetBind there is no explicit maintenance of global
binding state. Components are associated with each other at run time through the modification of their microcode.
The modification of microcode at run time, which is fundamental to our approach, poses a number of security
challenges, which our research has not yet addressed. Another problem with realizing dynamic binding in the
IXP1200 network processor is that microengines need to temporarily terminate their execution when data paths are
created or modified. Such termination may disrupt the operation of other data paths potentially sharing the resources
of the same processing units. We are investigating methods to seamlessly accomplish dynamic binding when
multiple data paths share the resources of the same network processor as part of our future work.

To compare NetBind against MicroACE we estimate the available headroom for the microengines of the IXP1200
network processor. In what follows, we discuss a methodology on how headroom can be calculated in a multi-
threaded network processor architecture. We assume that a single pipeline is used for forwarding packets. We also
assume that each port of a network processor can forward packets at line speed C, and that a minimum size packet is
m bits. The maximum time a packet is allowed to spend on the network processor hardware without violating the line
rate forwarding requirement is:

C
m

T = [Eq. 1]

During this time microengine resources are shared between n hardware contexts. It is fair to assume that each
thread gets an equal share of the microengine resources on average, and that each packet is processed by a single
thread only. Therefore, the maximum time a thread is allowed to spend processing a packet without violating the line
rate-forwarding requirement is:

Cn
m

n
T

⋅
= [Eq. 2]

Typically, microengine resources do not remain utilized all the time. For example, there may be cases when hardware
contexts attempt to access memory units at the same time. In these cases, all contexts remain idle until a memory
transfer operation completes. Therefore, we need to multiply the maximum time calculated above with a utilization
factor ρ in order to have a good estimation of the network processor headroom. A final expression for the network
processor headroom H is given below, expressed in microengine cycles, where tc is the duration of each cycle:

ctCn
m

H
⋅⋅

⋅
=

ρ
[Eq. 3]

The utilization factor was measured when our system was running the IPv4 data path, and was found to be equal to
0.98. We doubled the percentage of idle time to have an even worse estimation of the utilization factor, resulting in
ρ = 0.96. After substituting C = 100 Mbps, m = 64 bytes, n = 4, and tc = 5 ns into Eq. 3, we find that the headroom H
in the IXP1200 Bridalveil system is 246 microengine cycles.

We evaluated the performance of the IPv4 data path when no binding is performed (i.e., the data path is
monolithic) and when the data path is created using NetBind and MicroACE. We also implemented a simple binding

tool based on the vector table binding technique. We used this tool in our experiments in order to compare the three
binding techniques presented earlier in a quantitative manner.

To analyze and compare the performance of different data paths, we executed these data paths on Intel's transactor
simulation environment and on the IXP1200 Bridalveil cards. Table II shows the additional instructions that are
inserted in the data path for each binding technique. Our implementation of the IPv4 data path is broken down into
two processing pipelines: a “receiver” pipeline consisting of 6 components (from “receiver” to “packet_queue” in
Table II) and a “transmitter” pipeline consisting of single component (“scheduler.tmd” in Figure IX). The receiver
and transmitter pipelines are executed by microengines 0 and 1, respectively. Table II shows the number of
instructions, input arguments, global variables, entry points, and exit points associated with each component of the
receiver pipeline.

binding technique per component binding instructions

 register
operation

conditional
branch

unconditional
branch

memory
(scratch)
transfer

NetBind 1 1 N/A N/A

dispatch loop
(MicroACE) 2 1 2 N/A

vector
table N/A N/A 1 1

Table I: Binding Instructions in the Data Path

Table II: Component Sizes and Symbols in the IPv4 Data Path

We added a “worst case” generic dispatch loop to evaluate the MicroACE data path. The dispatch loop includes a

set of comparisons that determine the next module to be executed on the basis of the value of the “dl_next-block”
global variable. The loop is repeated for each component. We added 5 instructions for each component in the
dispatch loop: (i) an “alu” instruction to set the “dl_next_block” variable to an appropriate value; (ii) an
unconditional branch to jump to the beginning of the dispatch loop; (iii) an “alu” instruction to check the value of the
“dl_next_block” variable; and (iv) a conditional and an unconditional branch to jump to the appropriate next module

module name size input arg. global var. entry
points exit points

receiver (initialization) 48 N/A N/A N/A N/A

receiver 100 3 3 3 3

ipv4_verfier 17 2 0 1 3

ipv4_checksum_verifier 16 0 0 2 1

Ipv4_header_verifier 23 2 0 1 1

ipv4_trie_lookup 104 6 0 1 1

packet_queue 44 3 0 1 1

aggregate (excluding initialization) 304 16 3 9 10

in the processing pipeline.
The vector table binding technique works as follows. At the initialization stage, we retrieve the entry point

locations using “load_addr” instructions. The vector is then saved into the 4K scratch memory of IXP1200. For each
component, we insert a scratch “read” instruction to retrieve the entry point from the vector table and a “rtn”
instruction to jump to the entry point of the next module. The performance of the vector table scheme is heavily
dependent on the speed of a memory access. If the vector for the next component in the pipeline can be retrieved in
advance, the overhead of binding can be reduced drastically to 5 cycles per binding. The advantage of having a
multithreaded network processor is that memory access latencies can be hidden if the processor switches context
when performing time consuming memory transfer operations.

Figure XIV: Dynamic Binding Overhead

Figure XIV shows additional execution cycles for each binding technique. From the figure, we observe that the

dispatch loop binding technique, used by MicroACE, introduces the largest overhead, while the NetBind code
morphing technique and the vector table technique demonstrate smaller overhead. The overhead of the worst case
dispatch loop for a six component data path is 89 machine cycles which represents 36% of the network processor
headroom. NetBind demonstrates the best performance in terms of binding overhead adding only 18 execution cycles
when connecting six modules to construct the IPv4 data path.

Figure XIV illustrates that the vector table technique isn’t that much worse than NetBind in the IXP1200 network
processor. However memory latencies are much larger in network processors that target higher speeds than fast
Ethernet. In commercial network processors that target OC-48 and OC-192 speeds memory access latencies can be
several times larger than the network processor headroom, as stated earlier. For example it is reported in [33] that
memory access latencies can be as large as 100-300 compute cycles in the IXP2400 and IXP2800 network
processors. In these processors the headroom for a single microengine is 57 compute cycles. The vector table
technique requires at least two times the processing headroom for fetching a single component in these network
processors. For this reason it is not easy to support modular line rate forwarding with the vector table technique.
Memory access latencies are likely to be even larger in next generation network processors targeting faster line rates
(e.g., OC-768). The NetBind approach is suitable for this type of processors because it adds a binding overhead of
two compute cycles per component which is insignificant.

Figures XV and XVI show per-packet execution times and packet processing throughput for the three binding
techniques, and a monolithic data path. The term ‘MAC packets’ used in Figure XVI, refers to minimum size
Ethernet packets of 64 bytes each. The measurements were taken for the case where the data path is split between 6
components, and packets are forwarded at the maximum possible rate from four input ports to the same output port.

Dynamic Binding Execution Overhead

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Number of components

A
d

d
it

io
n

al
 E

xe
c

C
yc

le
s

NetBind

Vector Table

Dispatch Loop
(MicroACE)

To forward packets at the maximum possible rate independent of the input port speed, we applied the technique
suggested in [12], where iterations of the input forwarding process forward the same packet from the input FIFO slot
avoiding port interaction. NetBind has 2% overhead (execution time) over the monolithic implementation. The vector
table and dispatch loop implementation have 12% and 32% overhead, respectively, over the performance of the
pipeline created by NetBind. Collecting measurements on an IXP1200 system is more difficult than we initially
thought. Since microengines do not have access to an onboard timer, measurements have to be collected by a user
program running on the StrongARM core processor. We created a program consisting of a timing loop that is
repeated for accuracy. The program stops executing and prints out the time difference measured after a significant
number of iterations have taken place.

Figure XV: Per-Packet Execution Time

Figure XVI: Packet Processing Throughput

We have measured the time to install a new data path using NetBind. Stopping and starting the microengines takes

60 µs and 200 µs respectively. The binding algorithm and the process of writing data path components into
instruction stores takes 400 µs to complete. Measurements were taken using the Bridalveil’s 200MHz StrongArm
core processor.

Loading six modules from a remotely mounted NFS server takes about 60ms to complete. Since the IXP1200
network processor prevents access to its instruction stores while the hardware contexts are running, we had to stop
the microengines before binding, and restart them again after the binding was complete. We are currently studying

Per-Packet Execution Time

0

50

100

150

200

250

300

350

No Binding NetBind Dispatch Loop
(microACE)

Vector Table

m
ic

ro
en

gi
ne

 c
yc

le
s

Throughput

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

No Binding NetBind Dispatch Loop
(microACE)

Vector Table

M
A

C
 p

ac
ke

ts
 p

er
 s

ec
on

d

better techniques for dynamic placement without disruption to executing data paths.

NetBind Limitations

NetBind offers significant improvement in terms of data path performance and composition time over the
alternative choices of dispatch loops and indirection. However, NetBind imposes a number of constraints on the
programmer. The most significant limitation of NetBind is that the register APIs exported by consecutive
components in a packet processing pipeline need to match with each other. The physical register addresses exported
by a component need to be the same as the physical register addresses exported by every subsequent component in
packet processing pipelines. This is a significant restriction. For example a routing lookup component needs to place
the identifier to an outgoing interface into the register where every subsequent component (e.g., a packet queue)
expects to find this value.

While this seams to be a significant restriction, we believe that NetBind allows programmers to effectively write
code for a small but significant class of data paths applications. NetBind is most efficient for applications that
manipulate packet header fields, such as packet classification, forwarding and traffic management. The number of
parameters that need to be exchanged between components for this class of applications is typically small and well
defined. For example, parameters exchanged between components may include packet descriptors, interface
identifiers, classifier actions, packet time stamps or eligibility times. In order to effectively write code using NetBind
component developers need to determine the set of components which interact with their own data path components.
Next, component developers need to make sure that the register APIs which their components export match with the
register APIs of subsequent components in packet processing pipelines. This may not be difficult if the number of
parameters exchanged between components is limited and well defined.

Another limitation of the NetBind approach is that a strong trust relationship is assumed between developers at
different levels of the data path specification hierarchy. As mentioned earlier, the programmers at the virtual router
specification level assume that component bindings are successfully resolved at the network specification level.
Similarly, programmers at the network processor specification level assume that bindings are successfully resolved at
the IXP1200 specification level and that components manage hardware contexts, ports and queues effectively.

The design of the NetBind tool is independent of the target line rate. This is because the binding system can
construct data paths from many different packet receiving and transmitting components designed for different
network interfaces and speeds. Port and queue allocations are hidden from the binder and admission controller. While
this practice places extra burden on the programmer it simplifies the binding process and makes the system
applicable to a range of network processors. We have not investigated forwarding at Gigabit speeds (e.g., OC-48,
OC-192). However, there is strong indication that NetBind can be applied to these line rates due to the simplicity and
generality of the binding process. Porting NetBind to network processors that target the OC-48 and OC-192 line rates
is left for future work.

Related Work
Programmable routers represent an active area of research. Click [8] is an extensible architecture for creating

software routers in commodity operating systems. A Click router is constructed by selecting components called
“elements” and connecting them into directed graphs. Click components are implemented using C++ and, thus,
inherit the binding overhead associated with using a higher level programming language to construct data paths. The
software [9] and hardware [10] plugins projects are investigating extensibility in programmable gigabit routers.
These routers are equipped with port processors, allowing for the insertion of software/hardware components, where,
hardware plugins are implemented as reconfigurable logic. The work on Scout OS [34] is addressing the problem of
creating high performance data paths using general-purpose processors. The installation of packet forwarders in
network processors has been discussed in [12]. Packet forwarders discussed in [12] are rather monolithic in nature
and their installation system does not support binding.

Run-time machine language code generation and modification has been proposed as part of the work on the
Synthesis Kernel [35]. The Synthesis Kernel aims for improving kernel routine performance in general-purpose
processors as well.

Conclusion
 We presented the design, implementation and evaluation of the NetBind software system, and compared its
performance to the Intel MicroACE system, evaluating the binding overhead associated with each approach.

While the community has investigated techniques for synthesizing kernel code and constructing modular data paths

and services, the majority of the literature has been focused on the use of general-purpose processor architectures.
Little work has been done using network processors. Our work on NetBind aims to address this gap. We proposed a
binding technique that is optimized for network processor-based architectures, minimizing the binding overhead in
the critical path, and, allowing network processors to forward minimum size packets at line rates. NetBind aims to
balance the flexibility of network programmability against the need for high performance. We think this a unique part
of our contribution. The NetBind source code, described and evaluated in this paper, is freely available on the Web
(comet.columbia.edu/genesis/netbind) for experimentation.

Acknowledgement
This research is supported by grants from the NSF CAREER Award ANI-9876299, and the Intel Research Council

on “Signaling Engines for Programmable IXA Networks”.

References
[1] The NetBind Project home page, available at: http://www.comet.columbia.edu/genesis/netbind
[2] Network Processing Forum, available at http://www.npforum.org
[3] “Intel Exchange Architecture, Programmable Network Processors for Today’s Modular Networks”, White

Paper, Intel Corporation, available at: http://www.intel.com/design/network/white_paper.htm
[4] IBM Corporation, IBM PowerNP Network Processors, available at:

http://www-3.ibm.com/chips/products/wired/products/network_processors.html
[5] Kounavis, M. E., Campbell A. T., Chou, S., Modoux F., Vicente, J., and Zhang H., “The Genesis Kernel: A

Programming System for Spawning Network Architectures”, IEEE Journal on Selected Areas in
Communication, Vol. 19, No 3, pg. 511-526, March 2001.

[6] Campbell, A. T., Gormez, J., Kim, S., Valko, A., Wan, C., Turanyi, Z., “Design Implementation, and
Evaluation of Cellular IP”, IEEE Personal Communications Magazine, vol. 7 No. 4, pg. 42-49, August 2000

[7] Intel Corporation, IXP1200 Network Processor Datasheet, December 2000.
[8] Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M., “The Click Modular Router”, ACM Transactions

on Computer Systems, Vol. 18, No. 3, pg 263-297, August 2000.
[9] Wolf T., Turner, J., “Design Issues for High- Performance Active Routers”, IEEE Journal on Selected Areas in

Communications, Vol. 19, No 3, March 2001.
[10] Taylor, D., Turner, J., Lockwood, J., “Dynamic Hardware Plugins (DHP): Exploiting Reconfigurable Hardware

for High-Performance Programmable Routers”, Fourth IEEE International Conference on Open Architectures
and Network Programming, Anchorage, Alaska, April 2001.

[11] Spalink, T., Karlin, S., Peterson, L., “Evaluating Network Processors in IP Forwarding”, Technical Report TR-
626-00, Princeton University, Nov 15, 2000.

[12] Spalink, T., Karlin, S., Peterson, L., Gottlieb, Y., “Building a Robust Software-Based Router Using Network
Processors”, In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles, pg. 216-229,
Oct 2001.

[13] Karlin, S., Peterson, L, “VERA: An Extensive Router Architecture”, Fourth IEEE International Conference on
Open Architectures and Network Programming, pg 3-14, April 2001.

[14] Intel IXP2400 Network Processor, Product Information, available at:
 http://www..intel.com/design/network/products/npfamily/ixp2400.htm

[15] Intel IXP2800 Network Processor, Product Information, available at:
 http://www..intel.com/design/network/products/npfamily/ixp2800.htm

[16] Pappu P. and Wolf. T. “Scheduling processing resources in programmable routers”, Proceedings of the Twenty
First IEEE Conference on Computer Communications (INFOCOM), New York, NY, June 2002.

[17] Shreedhar M., and Varghese G., “Efficient Fair Queueing using Deficit Round Robin”, Proceedings of
SIGCOMM ’95.

[18] Demers, A., Keshav, S., and Shenker, S., “Analysis and Simulation of a Fair Queueing Algorithm”, Proc. ACM
SIGCOMM ‘89; also in Journal of Internetworking Research and Experience, Vol. 1, No. 1, pp. 3-26.,
September 1990.

[19] Goyal, P., Vin, H. M., and Cheng H., “Start-time Fair Queuing: A Scheduling Algorithm for Integrated
Services Packet Switching Networks”, IEEE/ACM Transactions on Networking, Vol. 5, No. 5, pp. 690-704,
October 1997.

[20] Bennett J. C. R., and Zhang H., “Hierarchical Packet Fair Queueing Algorithms”, IEEE/ACM Transactions on
Networking, 5(5):675-689, Oct 1997.

[21] Johnson E. J., and Kunze A. R., “IXP1200 Programming”, Chapter 13, Intel Press, 2002.
[22] Kounavis, M. E., Kumar, A., Vin, H., Yavatkar R., and Campbell A. T., “Directions for Packet Classification in

Network Processors”, Second Workshop on Network Processors, Anaheim, CA, February 2003.
[23] Gupta, P., and McKeown N., “Packet Classification on Multiple Fields”, In Proceedings ACM SIGCOMM ‘99,

September 1999, Harvard University.
[24] Rexford, J., Greenberg, A., and Bonomi, F., “Hardware-efficient fair queueing architectures for high-speed

networks”, in Proceedings of IEEE INFOCOM, March 1996, pp. 638-646.
[25] Intel Corporation, IXP1200 Network Processor Programmer’s Reference Manual, December 2000.
[26] Postel J., Editor, “Internet Protocol”, Request For Comments 791, September 1981.
[27] Intel Corporation, IXP1200 Network Processor Development Tools User’s Guide, Dec 2000.
[28] The Genesis Project home page, available at: http://www..comet.columbia.edu/genesis
[29] Vinoski S., “CORBA: Integrating Diverse Applications within Distributed Heterogeneous Environments”,

IEEE Communications Magazine, February, 1997.
[30] Schmidt D., and Cleeland C., “Applying Patterns to Develop Extensible ORB Middleware”, IEEE

Communications Magazine, April, 1999.
[31] NetBind Software Programmer’s Guide, available at:

http://www..comet.columbia.edu/genesis/netbind/documentation
[32] Intel Corporation, Intel IXA SDK ACE Programming Framework Reference, June 2001.
[33] Lakshmanamurthy, S., Liu, K.-Y., Pun, Y., Huston L., and Naik, U., “Network Processor Performance Analysis

Methodology”, Intel Technology Journal, Vol. 6, No., 3, 2002.
[34] Montz, A., Mosberger, D., O’Malley, S., Peterson, L., and Proebsting, T., “Scout, A Communication Oriented

Operating System”, Operating System Design and Implementation, 1994.
[35] Pu, C., Massalin, H., Ioannidis, J., “The Synthesis Kernel”, Springer Verlag, 1988.

Author Affiliation and Contact Information:
Michael E. Kounavis and Andrew Campbell are affiliated with the Electrical Engineering Department, Columbia

University, 500 West 120th Street, 1312 S. W. Mudd Building, New York NY 10025. They can be reached via email
at {mk, campbell}@comet.columbia.edu.

Stephen Chou is affiliated with the Computer Science Department, Columbia University, 1214 Amsterdam
Avenue, New York, 10027. he can be reached via email at schou@cs.columbia.edu

John Vicente is affiliated Intel Corporation, Folsom California. He can be reached via email at
john.vicente@intel.com

