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ABSTRACT

Entrainment is the propensity of conversational partners to
align different aspects of their communicative behavior. In
this study we present three novel measures of prosodic en-
trainment based on intonational contours as defined by the
ToBI conventions for prosodic description. Each of these
measures estimates the similarity of contours used by speak-
ers in different ways: by means of the perplexity of n-gram
models, the Levenshtein distance, and the Kullback-Leibler
divergence measure. We report significant correlations be-
tween each of these measures and manual annotations of a
number of social variables related to the level of engagement
of speakers, in a corpus of task-oriented dialogues in Standard
American English.

Index Terms— Dialogue, entrainment, prosody, ToBI,
social variables.

1. INTRODUCTION

Conversational partners tend to coordinate several aspects of
their communicative behavior, often adapting their speech to
match, or synchronize with, their interlocutors’ characteris-
tics. This phenomenon, known as ENTRAINMENT, and some-
times described as ADAPTATION or ALIGNMENT, has been
shown to occur in the speakers’ choice of referring expres-
sions [1]; linguistic style [2, 3], syntactic structure [4, 5];
speaking rate [6]; acoustic-prosodic features such as funda-
mental frequency, intensity and voice quality [6]; turn-taking
cues [7]; and pronunciation [8].

Motivated by Communication Accommodation Theory
[9], which holds that speakers converge their speech behav-
ior to that of their interlocutor in order to minimize social
distance, numerous studies have examined links between en-
trainment and positive conversational attributes, including
task success [10, 11], smoothness of interaction [12, 7, 13],
speaker attitude [14, 15], cooperation [16], social attractive-
ness [17], and power relations [18, 19], inter alia.

A number of studies have investigated acoustic-prosodic
entrainment and some have examined the relationship be-
tween these forms of entrainment and enhanced social val-
ues. For example, [13] found that the similarity between
partners in pitch, intensity, voice quality and speaking rate
was correlated with descriptors of social behavior such as
encouragement and trying to be liked, as well as automat-
ically derived measures of dialogue flow. [16] found that
partners who converged on speaking rate were more likely to
later cooperate in a prisoner’s dilemma, although they did not
evaluate each other more positively. [14] proposed measures
of entrainment on pitch and intensity slopes and showed that
entrainment on pitch slope was predictive of positive affect in
conversations between couples in marital therapy.

In this study we present three novel measures of prosodic
entrainment in intonational contours, which we define in the
ToBI framework. While other studies have examined low
level features such as pitch mean, maximum, minimum or
slope, we focus on higher level representations of prosodic
variation in this research. To what extent do speakers en-
train in terms of their PITCH ACCENTS, PHRASE ACCENTS,
and BOUNDARY TONES — in those prosodic elements that, in
Standard American English (SAE), contribute meaning varia-
tion to utterances? Each of the measures we employ estimates
the similarity of pitch contours in different ways: by means
of the perplexity of n-gram models, the Levenshtein distance,
and the Kullback-Leibler divergence measure. We then exam-
ine correlations between each of these measures and manual
annotations of a number of social variables related to the level
of engagement of speakers, in a corpus of task-oriented dia-
logues in SAE.

2. CORPUS

Our experiments were conducted on a subset of the Columbia
Games Corpus, a collection of 12 spontaneous task-oriented
dyadic conversations between 13 native speakers of SAE,
comprising 9h 8m of recorded dialogue. In this corpus,
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subjects played a set of computer games using only verbal
communication to achieve a common goal — a score which
determined their overall compensation. Players could see
only their own screen and were asked to describe card images
they saw on it to their partner for various purposes. Each
speaker was recorded on a separate channel. Subjects partici-
pated in two sessions with two different partners, resulting in
3 female-female, 3 male-male, and 6 female-male sessions.
The corpus was transcribed and words were manually aligned
to the speech. In this study we examine a portion of the
Games Corpus that has complete ToBI annotations, the Ob-
jects Games, which comprises just under half of the corpus
(4h 18m). In these exercises, one player (the Describer) de-
scribed the position of an object on his/her screen to the other
(the Follower), whose task was to position the same object on
his/her own screen. Neither could see the other’s screen. The
closer the Follower’s object to the Describer’s, the higher the
score. Each session included the same set of 14 placement
tasks, with subjects alternating in the Describer and Follower
roles.

2.1. Annotation of prosody

Prosodic information was annotated using the ToBI conven-
tions for SAE [20]. These consists of annotations at four
time-linked levels of analysis: an ORTHOGRAPHIC TIER of
time-aligned words; a BREAK INDEX TIER indicating degrees
of juncture between words, from 0 ‘no word boundary’ to
4 ‘full intonational phrase boundary’; a TONAL TIER, where
pitch accents, phrase accents and boundary tones describing
targets in the F0 contour define intonational phrases; and a
MISCELLANEOUS TIER, in which phenomena such as disflu-
encies may be optionally marked. Break indices define two
levels of phrasing: level 3 corresponds to an INTERMEDI-
ATE PHRASE in Pierrehumbert’s [21] schema for represent-
ing SAE and level 4 to her INTONATIONAL PHRASE. This
tier is supplemented by a tonal tier in which type of phrase
accent and boundary tone is identified. As in [21] level 4
phrases consist of one or more level 3 phrases, plus a high
or low BOUNDARY TONE (H% or L%) at the right edge of
the phrase. Level 3 phrases consist of one or more pitch ac-
cents, aligned with the stressed syllable of lexical items, plus
a PHRASE ACCENT, which also may be high (H-) or low (L-).

Pitch accents make words intonationally prominent and
are realized by F0 peaks or valleys, increased loudness, and
longer duration of accented syllables. A given word may be
accented or DEACCENTED and, if accented, may bear dif-
ferent types of pitch accents. Five types of pitch accent are
distinguished in the ToBI system for SAE: two simple ac-
cents H* and L*, and three complex ones, L*+H, L+H*,
and H+!H*; the asterisk indicates which tone of the accent
is aligned with the stressable syllable of the accented lexical
item. Some pitch accents may be DOWNSTEPPED, such that
the pitch range of the accent is compressed in comparison to a

previous accent. Downsteps are indicated by the ‘!’ diacritic.
ToBI annotations were performed by three experts, who

first practiced together on a small portion of corpus until they
reached an agreement comparable to that reported in [22].
Subsequently, each annotator worked separately on different
files, and had regular meetings to discuss and agree on dif-
ficult cases. Each annotator labeled roughly one third of the
corpus. Only in 4 out of 12 sessions were both sides of the
conversation labeled by the same annotator.

2.2. Annotation of social variables

To annotate the Objects Games with aspects of speakers’ so-
cial behavior, we used Amazon’s Mechanical Turk (AMT)
crowdsourcing.1 Annotators listened to an audio clip of an
Objects Games task and were asked to answer a series of
questions about the dialogue and about each speaker: Is the
conversation awkward? Does it flow naturally? Are the par-
ticipants having trouble understanding each other? Which
person do you like more? Who would you rather have as a
partner? Does Person A believe s/he is better than his/her
partner? Make it difficult for his/her partner to speak? Seem
engaged in the game? Seem to dislike his/her partner? Is s/he
bored with the game? Directing the conversation? Doing a
good job contributing to successful completion? Frustrated
with his/her partner? Encouraging his/her partner? Making
him/herself clear? Planning what s/he is going to say? Po-
lite? Trying to be liked? Trying to dominate the conversation?
Each task was rated by five unique annotators who answered
‘yes’ or ‘no’ to each question, yielding a score ranging from
0 to 5 for each social variable, representing the number of
annotators who answered ‘yes.’ A fuller description of the
annotation for social variables can be found in [23].

3. MEASURES OF PROSODIC ENTRAINMENT AND
SOCIAL VARIABLES

Using the annotations described above, we first model the
degree of higher level prosodic entrainment in the Objects
Games, using three different metrics. For each measure, we
then examine the relationship of entrainment and the social
variables annotated in the corpus.

3.1. N -gram perplexity

To measure the occurrence of prosodic entrainment by n-
gram perplexity, we first extract the entire sequence of ToBI
labels from the tonal tier produced by each speaker in a full
Objects Games session. We include pitch accents (e.g., H*,
L+H*), single phrase accents associated with level 3 break
indices (e.g., L-, !H-), phrase accent and boundary tone com-
binations for level 4 breaks (e.g., L-H%, !H-L%), and pauses
longer than 50ms (denoted by the symbol “#”). For example,

1http://www.mturk.com
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such a sequence for one of the speakers in our corpus begins
with “L* L-H% L* L-L% # H* !H* H- H* !H- L* H-H% #”.

Next we use each of these sequences as training data to
estimate a simple trigram model with Good-Turing discount-
ing and Katz backoff for smoothing.2 We thus end up with
24 trigram models – two for each session in our corpus. We
evaluate the trained model by computing its perplexity on test
data. For each speaker A and his/her interlocutor B, we de-
fine the E1(A,B) measure as the negated perplexity of A’s
model on B’s productions (i.e., on B’s sequences of prosodic
labels). This measure is asymmetric, and captures how well
A’s model fits B’s productions: a high value of E1(A,B) cor-
responds to a low perplexity, and thus indicates that B’s pro-
ductions are well represented by A’s model. In simpler terms,
higher values of E1(A,B) would roughly correspond to the
case in which contours(B) ⊆ contours(A).

To estimate how the E1 measure of prosodic entrainment
correlates with our social variables, we build a vector with the
value of E1 for each member of each speaker pair. Since there
are 12 sessions in our corpus, this is a 24-dimensional vec-
tor,
−→
E1 =

〈
E1(A1, B1), E1(B1, A1), E1(A2, B2), E1(B2, A2),

. . . , E1(A12, B12), E1(B12, A12)
〉
, where Ai, Bi are the two

speakers from session i. Similarly, we build a 24-dimensional
vector for each social variable v (such as bored-with-game or
making-self-clear), −→v =

〈
v(A1), v(B1), v(A2), v(B2), . . . ,

v(A12), v(B12)
〉
, where again Ai, Bi are the two speakers

from session i, and v(Ai) is the mean value of v for speaker
A in session i (likewise for speaker Bi).

We apply Pearson’s correlation tests between
−→
E1 and each

of the −→v vectors. Table 1 summarizes the significant results
obtained for five of our social variables; the remaining social
variables showed non-significant correlations (p > 0.05).

r p
contributes-to-successful-completion 0.59 < .005
making-self-clear 0.56 < .005
bored-with-game −0.49 < .05
planning-what-to-say 0.48 < .05
engaged-in-game −0.41 < .05

Table 1. Significant correlations between the E1 measure of
prosodic entrainment and several social variables.

These results indicate a strong positive correlation be-
tween how well speaker A’s model fits B’s productions on the
one hand, and A’s propensity to be perceived by annotators as
contributing to the success of the conversation, making them-
selves clear and planning their contributions on the other.
Roughly speaking, when contours(B) ⊆ contours(A),
speaker A is perceived to make clearer, better-planned contri-
butions to the task at hand.

The E1 measure also correlates negatively with A’s ten-
dency to be perceived as bored or as engaged in the game.

2We used the SRILM toolkit to perform this task [24].

These two results together are quite surprising and the second
(engaged) appears to run counter to the other significant cor-
relations as well as findings for measures E2 and E3 described
below. We have found no reasonable explanation for this find-
ing, and we attribute it either to a statistical artifact (especially
given its high p-value at 0.04496) or to a weakness of the E1
measure.

A crucial weakness of the n-gram models on which the
E1 measure relies is that they only capture local features of
the prosodic contours produced by the speakers. In the next
sections we consider two additional measures of prosodic en-
trainment that take full intonational contours into account.

3.2. Levenshtein distance

The second measure of prosodic entrainment presented here
is based on an analysis of the sequence of prosodic contours
produced by speakers, rather than the sequence of tone labels.
We define a CONTOUR as a sequence of tone labels corre-
sponding to an intermediate phrase. For example, given the
sequence of ToBI labels “L* L-H% L* L-L% H* !H* H- H*
!H- L* H-H%”, the corresponding list of contours is [“L* L-
H%”, “L* L-L%”, “H* !H* H-”, “H* !H-”, “L* H-H%”].
Further, we define a similarity function sim between contours
c1 and c2 as

sim(c1, c2) =
m− l

m

where m = max(length(c1), length(c2)), and l is the Lev-
enshtein distance [25] between contours c1 and c2. In these
calculations, c1 and c2 are considered as simple strings. Fol-
lowing this definition, sim(c1, c2) ranges from 0 when c1 and
c2 are completely diferent, to 1 when they are identical.

Next, we extract the list of contours produced by each
speaker in an entire Objects Games session, and define the
E2(A,B) measure of prosodic entrainment between speakers
A and B using the following algorithm.

L← new list
for each contour c1 from B:

C ← contours from A at most k seconds before/after c1
append

(
max
c2∈C

sim(c1, c2)
)

to L

return mean(L)

In other words, for each contour from speaker B, we look in
its near vicinity (± k seconds) for the most similar contour
from speaker A, and use the mean of such similarity scores
as a measure of overall prosodic entrainment between A and
B. Note that E2 is asymmetric, and a high value of E2(A,B)
suggests roughly that contours(B) ⊆ contours(A), since
for each contour from B, speaker A also produces a similar
one shortly before or after.

To study how the E2 measure of prosodic entrainment
correlates with our social variables, we build another 24-di-
mensional vector, similar to the

−→
E1 vector described above:
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−→
E2 =

〈
E2(A1, B1), E2(B1, A1), E2(A2, B2), E2(B2, A2),

. . . , E2(A12, B12), E2(B12, A12)
〉
, where Ai, Bi are the two

speakers from session i.
Again, we run Pearson’s correlation tests between

−→
E2 and

each of the −→v vectors for our social variables. Table 2 and
Figure 1 summarize the significant results obtained for eight
of our social variables, using k = 30 seconds in the algo-
rithm shown above, or approximately a minute-wide window
around each target contour c1 (k = 15 and 60 seconds lead
to almost identical results). For the remaining variables the
correlations were non-significant (p > 0.05).

r p
bored-with-game −0.75 < .0001
contributes-to-successful-completion 0.73 < .0001
engaged-in-game 0.71 < .0001
making-self-clear 0.63 < .001
gives-encouragement 0.59 < .005
dislikes-partner −0.54 < .01
difficult-for-partner-to-speak 0.48 < .05
planning-what-to-say 0.47 < .05

Table 2. Significant correlations between the E2 measure of
prosodic entrainment and several social variables.

The E2 measure presents strong correlations with social
variables linked to speaker A’s level of engagement. Roughly
speaking, when contours(B) ⊆ contours(A), speaker A
tends to make better-planned, clearer contributions to the con-
versation; be more engaged in the game; give more encour-
agement to their partner (even making it difficult for their
partner to speak); like their partner more; and not be bored
with the game.

3.3. Kullback-Leibler divergence

Our third measure of prosodic entrainment is based on the
Kullback-Leibler divergence, an asymmetric measure of the
difference of two probability distributions P and Q. It was
first defined in [26] as

DKL(P ||Q) =
∑
x

P (x) log
P (x)

Q(x)
.

Note that DKL is asymmetric and DKL(X,Y ) ≥ 0, with
DKL(X,Y ) = 0 iff X = Y . Also, low values of DKL(X,Y )
correspond roughly to cases in which X ⊆ Y . DKL was
subsequently adapted to deal with word probabilities in text
documents, which allows us to compute the KL divergence
for two text documents with respect to their word usage [27].

We define our third measure of prosodic entrainment
E3(A,B) = −DKL

(
contours(B), contours(A)

)
(i.e, the

negated DKL measure computed over the contours produced
by B and A, in that order). In this case we consider each
contour (e.g., “H* L-L%” or “H* H* H-”) to be a separate

‘word’ in these computations. Following this definition, high
values of E3(A,B) correspond roughly to cases in which
contours(B) ⊆ contours(A).

We repeat the procedure described above to study how
E3 correlates with our social variables. We build

−→
E3 =〈

E3(A1, B1), E3(B1, A1), E3(A2, B2), E3(B2, A2), . . . ,

E3(A12, B12), E3(B12, A12)
〉
, where Ai, Bi are the two

speakers from session i. We run Pearson’s correlation tests
between

−→
E3 and each of the−→v vectors for our social variables.

Table 3 summarizes the significant results obtained for six of
our social variables; for the remaining ones the correlations
were non-significant (p > 0.05). These results show again
strong links between prosodic entrainment and different mea-
sures of speaker engagement. Additionally, we find in this
case that the E3 measure correlates positively with speaker
A’s desire to be liked by their interlocutor.

r p
trying-to-be-liked 0.55 < .01
bored-with-game −0.50 < .05
difficult-for-partner-to-speak 0.49 < .05
contributes-to-successful-completion 0.45 < .05
engaged-in-game 0.43 < .05
gives-encouragement 0.41 < .05

Table 3. Significant correlations between the E3 measure of
prosodic entrainment and several social variables.

4. EFFECT OF PROSODIC CONTOUR USAGE ON
PERCEPTION OF ENGAGEMENT

So far, our results indicate that when speaker A uses a super-
set of B’s prosodic contours (contours(B) ⊆ contours(A)),
A tends to be perceived by annotators as more engaged in the
conversation. We hypothesize that this occurs when speaker
A entrains to B’s usage of prosodic contours – i.e., B’s con-
tours are added to A’s inventory during the conversation.

An alternative, simpler explanation for these findings
could be that speakers who use a richer inventory of prosodic
contours (i.e., more expressive speech) are more likely to
be perceived as more engaged, independently of their con-
versational partner’s behavior. In this section we inves-
tigate this alternate possibility in our corpus. We measure
the prosodic complexity of speaker A using the following
indicators of expressiveness:

• Entropy: Entropy of A’s sequence of tone labels (the en-
tropy of a string S is defined as−

∑
i=1..n P (si) logP (si),

and we consider each tone label as a different character).
• #Tones: Number of distinct tone labels used by A.
• #Contours: Number of distinct contours used by A.
• %Rising: Proportion of rising final intonations used by A

(i.e., percentage of -H% over all boundary tones).
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Fig. 1. Scatter plots illustrating the correlations between the E2 measure (x axes) and the social variables of Table 2 (y axes).

• %Downstep: Proportion of downstepped contours used by
A (i.e., percentage of contours containing at least one !H*
pitch accent).

• %Complex: Proportion of complex pitch accents used by
A, such as L*+H or H+!H*.

Next we compute Pearson’s correlation between each of
these measures of expressiveness and each of our social vari-
ables, and summarize the results in Table 4. First, we ob-

r p
Entropy frustrated-with-game −0.52 < .01
Entropy more-frustrated-than-B −0.41 < .05
%Downstep frustrated-with-game −0.46 < .05
%Complex engaged-in-game 0.41 < .05
%Complex trying-to-be-liked 0.41 < .05
%Rising believes-is-better-than-B −0.46 < .05
%Rising frustrated-with-game 0.60 < .005
%Rising more-frustrated-than-B 0.48 < .05

Table 4. Significant correlations between our measures of
expressiveness and several social variables.

serve a number of significant correlations with social vari-
ables related to the speaker’s degree of frustration and desire
to be liked by the interlocutor, which are mostly unrelated to
the variables showing significant correlations with our mea-
sures of contour entrainment. At the same time, we find only
mild evidence that speaker engagement correlates positively
with usage of a richer prosodic variation (or, more expressive
speech): the proportion of complex pitch accents shows a cor-
relation coefficient of 0.41 (p < 0.05) with engaged-in-game.
This correlation is weaker and less significant than the ones
presented in the previous sections. It seems plausible, then,

that it is simply a consequence of a stronger entrainment ef-
fect. In other words, speakers who entrain to their interlocu-
tor’s usage of prosodic contours will also (necessarily) show
a richer prosodic inventory. Therefore, this finding strength-
ens the hypothesis that the results presented in Sections 3.1,
3.2 and 3.3 are likely to truly represent a strong link between
prosodic entrainment and the degree of engagement.

5. CONCLUSIONS AND FUTURE WORK

Using the perplexity of n-gram models, Levenshtein distance,
and Kullback-Leibler divergence as metrics, we introduced
three novel approaches to examining prosodic entrainment on
intonational contours annotated within the ToBI framework
in a subset of the Columbia Games Corpus. In these task-
oriented dialogues, we find correlations of entrainment on in-
tonational contours with perceived levels of engagement of
speakers and positive partner-oriented features of social be-
havior such as giving encouragement, making self clear, and
contributing to successful completion of a task. Importantly,
we find that these correlations cannot be attributed to the level
of expressiveness of the speakers in terms of the variability of
the contours they used. Our results extend previous findings
by showing that prosodic entrainment has a robust correla-
tion with positive social traits and that discrete descriptions
of prosody provide a useful tool for modeling the relationship
of speech prosody to their social functions.

We plan to extend this research in several directions. We
will conduct a fine-grained analysis of the specific contours
most frequently entrained on by speakers. We will consider
using tools such as AuToBI [28] to automate the computa-
tion of our measures of prosodic entrainment. We will also
enrich our analysis with part-of-speech tags, to study how

582



different contours are used. Finally, we plan to experiment
with dynamic measures of prosodic entrainment, to analyze
its progress throughout a conversation.
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