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Abstract 

We present results of a series of machine learning experi-

ments that address the classification of the discourse function 

of single affirmative cue words such as alright, okay and 

mm-hm in a spoken dialogue corpus. We suggest that a simple 

discourse/sentential distinction is not sufficient for such 

words and propose two additional classification sub-tasks: 

identifying (a) whether such words convey acknowledgment 

or agreement, and (b) whether they cue the beginning or end 

of a discourse segment. We also study the classification of 

each individual word into its most common discourse func-

tions. We show that models based on contextual features 

extracted from the time-aligned transcripts approach the error 

rate of trained human aligners. 

Index Terms: cue words, discourse markers, spoken dialogue 

systems. 

1. Introduction 

CUE PHRASES (or, DISCOURSE MARKERS) are linguistic 

expressions that can be used to convey explicit information 

about the structure of a discourse or to convey a more literal, 

semantic contribution ([1][2][3]). For example, the word okay 

can be used to convey a satisfactory evaluation of some entity 

in the discourse (the movie was okay); as a backchannel in 

dialogue to indicate that one interlocutor is still attending to 

another; to convey acknowledgment or agreement; or, in its 

‘cue’ use, to begin or end a discourse segment ([4][5][6][7]).  

The ability to correctly determine the function of cue 

phrases is critical for important natural language processing 

tasks, including anaphora resolution ([1]), argument under-

standing ([3]), plan recognition ([8][1]), and discourse 

segmentation ([9]). Furthermore, correctly determining the 

function of cue phrases using features of the surrounding text 

can be used to improve the naturalness of synthetic speech in 

text-to-speech systems ([10]). 

Prior work on the automatic classification of cue phrases 

includes studies by Litman and Hirschberg ([11][12] inter 

alia), which focused on differentiating between the discourse 

and sentential senses of cue phrases in spoken monologue. 

[13] presented a method for incorporating cue phrase 

identification into the process of part-of-speech tagging, for 

spoken dialogue. More recently, [14] studied the automatic 

classification of like and well into their discourse and 

sentential senses, achieving a performance close to that of 

human annotators. 

In this paper we extend previous research by focusing on 

SINGLE AFFIRMATIVE CUE WORDS such as alright, okay and 

mm-hm, and their discourse functions in task-oriented spoken 

dialogues. For these words, sentential uses are rare (with the 

exception of right) and, thus, distinguishing among different 

discourse functions is more important than disambiguating 

between discourse and sentential uses. We employ machine 

learning (ML) techniques to automate the construction of 

models for classifying these affirmative cue words from 

empirical data. We present a series of experiments that induce 

classification models from sets of hand-annotated cue phrases 

and their features. Finally, we discuss the contribution of 

contextual, acoustic, and prosodic features, and compare the 

performance of the automatic classifiers to that of trained 

human annotators. 

2. Material 

The material for our study comes from the Columbia Games 

Corpus, a collection of 12 spontaneous task-oriented dyadic 

conversations elicited from speakers of Standard American 

English. Subjects were paid to play two types of collaborative 

games (CARDS and OBJECTS) on laptops, while seated in a 

soundproof booth divided by a curtain to ensure that all 

communication was verbal. 

In the CARDS games, subjects received points for finding 

cards depicting the same objects on their respective screens. 

One player described a card on her board, and the other 

searched for a full or partial match on his board. In the 

OBJECTS games, one player described the position of a target 

object with respect to other fixed objects on her screen, while 

the other tried to move his representation of the target object 

to the same position on his screen. Players were given points 

based on the proximity of the target object to its correct 

location. Both games were designed to encourage discussion, 

and the subjects switched roles repeatedly. 

13 subjects (7 males and 6 females) participated in the 

games; 11 played with two different partners in two different 

sessions and 2 played a single session. On average, each 

session took 45m, totaling 9h of dialogue for the whole 

corpus. There are 2245 unique words, and 73,844 words in 

total. All interactions were recorded, digitized, and down-

sampled to 16K. The recordings were orthographically 

transcribed, and words were aligned to the source by hand. 

Nearly all of the OBJECTS part of the corpus has also been 

intonationally transcribed, using the ToBI conventions ([15]).  

2.1. Labeling discourse functions 

We asked three labelers to independently classify all occur-

rences of the single affirmative words alright, gotcha, huh, 

mm-hm, okay, right, uh-huh, yeah, yep, yes, yup in the entire 

Games Corpus into one of 11 categories, as shown in Table 1. 

Labelers were given examples of each category, and 

labeled using both transcripts and speech together. Inter-

labeler reliability was measured by Fleiss' κ ([16]) at 0.69, 

where values between 0.6 and 0.8 correspond to substantial 

agreement. In this study we use MAJORITY LABELS, where at 

least two labelers assigned a token to the same class, as the 
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gold standard. We assign the ‘?’ label to a token when either 

its majority label is ‘?’, or when it was assigned a different 

label by each labeler. 

Table 1. Labeled discourse functions  

A1 Acknowledgment/agreement. Indicates “I believe 

what you said”, and/or “I agree with what you say”. 

A2 Backchannel. Indicates only “I hear you and please 

continue”, in response to another speaker’s utterance. 

C Cue beginning discourse segment. Marks a new 

segment of a discourse or a new topic. 

E Cue ending discourse segment. Marks the end of a 

current segment of a discourse or a current topic. 

P Pivot beginning (A1+C). Functions both to acknowl-

edge/agree and to cue a beginning segment. 

F Pivot ending (A1 + E). Functions both to acknowledge 

/agree and to cue the end of the current segment. 

N Literal modifier. Example: “I think that's okay”. 

B Back from a task. Indicates “I’ve just finished what I 

was doing and I’m back”. 

K Check. Used with the meaning “Is that okay?” 

S Stall. Used to stall for time while keeping the floor. 

? Cannot decide. 

 

Table 2 shows the distribution of each affirmative word and 

label in the Games Corpus. Note that okay is the most 

frequent affirmative word, as well as the only one conveying 

all ten functions as defined in Table 1. The remaining words 

have a small number of predominant functions, with A1 

(acknowledgment/agreement) always among them. A1 is the 

most common discourse function overall, followed by A2 

(backchannel) and C (cue beginning). Even though N (literal 

modifier) has a high frequency, 97% of its occurrences 

correspond to the word right, fact that is explained by the 

spatial descriptions involved in the OBJECTS games, e.g., “it’s 

to the right of the mirror,” or “the ear is right on top of the 

nail.” The remaining words are rarely used in its literal sense 

(1% for okay; 3% for alright), or do not have a literal sense. 

Table 2. Distribution of each word and label.  

‘Rest’ = {gotcha, huh, yep, yes, yup} 
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A1 99 61 1137 114 18 808 133 2370 

A2 6 402 121 14 143 72 5 763 

C 89 0 548 2 0 2 0 641 

E 8 0 10 0 0 0 0 18 

P 5 0 68 0 0 0 0 73 

F 13 12 232 2 0 22 17 298 

N 9 0 29 1079 0 0 1 1118 

B 9 1 33 0 0 0 0 43 

K 0 0 6 53 0 1 8 68 

S 1 0 15 1 0 2 0 19 

? 56 27 235 10 3 65 11 407 

Total 295 503 2434 1275 164 972 175 5818 

 

3. Method 

3.1. Features 

For our ML experiments, we extracted a number of contex-

tual, acoustic and prosodic features from the affirmative 

words uttered by the reference speaker, and from the 

surrounding context uttered by either the reference speaker or 

their interlocutor. Continuous acoustic/prosodic and dura-

tional features were extracted automatically with Praat ([17]). 

Normalizations were computed using z-score: z = (X – mean) / 

standard deviation.  

Text-based features (TX) include the identity of the 

word; the part-of-speech tag (labeled automatically using 

Ratnaparkhi’s maxent tagger, [18]) and simplified POS tag 

(silence, noun, verb, adjective, adverb, contraction, other) of 

the target word and its preceding and following words; 

position of the target word in its INTER-PAUSAL UNIT (or IPU, 

maximal sequence of words surrounded by pause longer than 

50 ms); position of the target word in its TURN (maximal 

sequence of IPUs separated by silences shorter than 5 sec and 

including no speech from the interlocutor); IPU and turn 

length in words; and whether the previous and following turn 

were uttered by same speaker. 

Timing features (TM) include duration of the target 

word, in raw ms and normalized by speaker; duration of the 

IPU and turn in which the target word occurred; duration and 

type of overlap (if any) of the target word, and its containing 

IPU and turn with the interlocutor (none, complete, at the 

beginning, at the end); time elapsed to the target word from 

the beginning of its IPU and turn, in ms and as a percentage 

of the duration of its IPU and turn. 

Word acoustic/prosodic features (WA) consist of the 

ratio of voiced to unvoiced frames; minimum, maximum, 

mean, standard deviation of pitch and intensity (raw values, 

and normalized for the IPU and for the speaker in the current 

session); pitch slope, intensity slope, and stylized pitch slope, 

each calculated over the whole word, or over its last 100, 200 

and 300 ms. We approximated the location of the syllable 

boundary (using Mermelstein’s algorithm, [19]) and of the 

accented syllable (based on the maximum intensity). A 

manual check showed that the results were reasonably 

accurate for okay, but not for the other two-syllable words, so 

we included these features only for this word. 

Previous-turn acoustic/prosodic features (PA) include, 

for target words occurring in turn-initial IPUs, the same pitch 

and intensity features described above, but this time cal-

culated over the last IPU of the interlocutor’s preceding turn. 

Note that the word transcriptions and their time align-

ments are the only features annotated by hand — all other 

features are computed automatically. We combined the 

feature sets presented above into the following larger feature 

sets, to assess performance on several application tasks 

described below. 

• Text only (TX): Features in this set were extracted solely 

from the dialogue transcripts. If a text-to-speech system can 

correctly classify cue words in the input text, it can then 

synthesize them using different intonational models 

according to their functions ([10]). 

• Contextual (TX+TM): These features are extracted from 

the text transcriptions with their corresponding time 

alignment, but without access to acoustic information. This 

set would apply in situations where the transcription 

alignment is reliable, but the acoustics are not, due e.g. to 

excessive noise or overlap.  

• Acoustic (WA+PA): Conversely to TX+TM, this feature 

set includes information which does not rely on a text 

transcription of the conversation. This set is used to assess 

the amount of information available in the signal alone. 

• Full Set (TX+TM+WA+PA): This set includes all avail-

able features. 
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3.2. Classification Tasks 

We performed a number of classification tasks using the JRIP 

machine learning algorithm, WEKA’s ([20]) version of RIPPER, 

a propositional rule learner presented in [21]. We used 

10-fold cross validation in all experiments.  

The first task was a simple binary classification of affir-

mative words into their sentential vs. discourse uses, similar 

to experiments performed in previous studies. For this pur-

pose, the sentential sense corresponds to our N label, and the 

discourse sense includes all others. Our second task was to 

identify the words used to signal the beginning (C, P in our 

labeling scheme) or end (E, F) of a discourse segment vs. all 

others. The goal of this experiment is to see how feasible it 

might be to use such distinctions in automatic discourse seg-

mentation. Our third experiment involved identifying tokens 

bearing an acknowledgment or agreement function (in our 

labeling scheme, {A1, A2, P, F} vs. all other labels). Here we 

address the important goal in spoken dialogue systems of rec-

ognizing which information has been understood by the user.  

In our final set of experiments we attempted to disam-

biguate the function of each affirmative word separately. We 

considered only classes with at least 50 tokens, since fewer 

would not be suitable to perform 10-fold cross validation. 

Note that only five affirmative words in our corpus have more 

than one function meeting such a requirement (highlighted in 

Table 2). We collapsed the functions with lower counts into 

an ‘other’ category, but only alright and okay have high 

enough counts in it. Therefore, the final functions for alright 

are {A1, C, other}; for mm-hm, {A1, A2}; for okay, {A1, A2, 

C, F, P, other}; for right, {A1, K, N}; for yeah, {A1, A2}. 

4. Results 

4.1. Classification Tasks 

Tables 3 and 4 summarize the performance of the ML 

algorithm on the various classification tasks, using the feature 

sets defined in 3.1. We consider two types of baseline, one a 

majority class baseline, and one that employs a simple rule 

based on word identity (e.g. in the first task, right → 

sentential sense, other words → discourse sense). The rule 

used in each baseline is indicated in the tables. The error rate 

and F-measure for each human annotator were computed by 

comparing the labels assigned by each of them with the 

MAJORITY LABELS as defined in 2.1. Tables 3 and 4 include 

the mean error rate and mean F-measure for the three labelers 

together for comparison with automatic predictions. 

In the discourse/sentential classification task, the low 

error rate (4.2%) of the word-based baseline is explained by 

the fact that, of the 1118 cue words labeled as N, 1079 

correspond to tokens of right (see Table 2). The text-only, 

contextual, and full models achieve approximately a 50% 

reduction in error rate over this baseline. The acoustic model, 

which does not use word identity as a feature, improves the 

error rate about 60% over the majority-class baseline, but 

does not reach the level of the word-based baseline.  

For the classification of cue words according to their 

discourse function, the word-based and majority class 

baselines are identical. While the contextual and full feature 

set models reduce the error rate by 50% over the baseline, the 

other models achieve slightly inferior improvement. The 

F-measures for this task show that identifying the ‘cue end’ 

discourse function is much harder than the ‘cue beginning’ 

one, both for human annotators and for the ML algorithm. 

When detecting the acknowledgment function of 

affirmative cue words, the contextual and full models 

accomplish improvements of about 55% over the word-based 

baseline, while the acoustic model improves roughly 50% 

over the majority-class baseline. 

The performance of the trained models for classifying 

individual words, although better than the baseline in most 

cases, is much lower than for the previous three tasks. One 

possible explanation is the smaller amount of training data 

available: while there are 5411 tokens available for the three 

general tasks, there are only 239 tokens of alright, 476 of 

mm-hm, and 907 of yeah. Another explanation might be the 

greater ambiguity of the tasks, which is also reflected in the 

higher mean error rate by the human labelers — as high as 

14.9% for alright and 14% for okay. Nonetheless, the 

F-measure values reveal that the classification of particular 

functions for some of these words approaches the perform-

ance of human labelers, e.g. C (cue-beginning) for alright and 

okay, A2 (backchannel) for mm-hm, A1 (acknowledgment) 

for okay and yeah, and N (literal sense) for right. 

4.2. Performance of Features 

Looking at the performance of the different feature sets, we 

observe that, in all cases, the text-only and contextual feature 

sets outperform the acoustic features, approaching the mean 

error rate achieved by human labelers. Even though it uses 

only features extracted from the dialogue transcripts, with no 

timing or acoustic information, the text-only model achieves a 

remarkably low error rate, and, in one case (discourse vs. 

sentential sense), even outperforms the full set of features. 

To estimate the importance of individual features in our 

classification tasks, we ranked them according to a 

information-gain metric. Results show that, in all tasks, 

contextual features dominate. In both the acknowledgment 

detection and the discourse/sentential classification tasks, the 

highest ranked features are word identity, POS tag of the 

previous word, IPU and turn length, and number and 

proportion of preceding words in the turn. In the discourse 

boundary classification task the highest-ranked features are 

word identity, POS tag of the following word, number and 

proportion of succeeding words in the turn, and context-

normalized mean intensity. 

In the classification of individual words, IPU and turn 

length appear among the highest predictive features for the 

five words. Speaker-normalized maximum intensity ranks first 

in the classification of alright. Pause length after the target 

word, and number and proportion of succeeding words in the 

turn are among the highest ranked features for classifying 

alright, mm-hm, okay and yeah. In the case of mm-hm, the 

length of the speech by the other speaker before and after the 

current turn is also ranked high. Finally, for classifying right, 

POS tag of the preceding word, and number and proportion of 

preceding words are the highest ranked features. 

In addition to the features described above, we looked at a 

set of nominal prosodic features extracted from the ToBI-

labeled portion of the corpus. These features included type of 

pitch accent, phrase accent, boundary tone, and break index, 

both of the target word and of the final part of the previous 

turn. We built models from this feature set alone and also 

added the ToBI features to the full feature set. ToBI features 

alone produced worse results than any other feature set alone. 

When ToBI features were added to the full set, we found no 

significant improvement. However, the small size of the data 

sets used in these experiments might be the cause for this, and 

therefore they should be repeated with larger training sets. 

Finally, we also investigated the effect of including gender 
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and identity of both speakers as features in our classification 

tasks, but found no significant improvement in performance. 

5. Conclusion 

We have presented the results of machine learning 

experiments classifying the discourse function of single 

affirmative words such as alright, okay and mm-hm. We find 

that, for spoken dialogue, the simple discourse/sentential 

distinction is insufficient. Thus, we added two additional 

classification tasks, the detection of acknowledgment and of 

discourse segment boundary functions — as well as the 

classification of each individual cue word into its most 

frequent functions. We showed that models based on 

contextual features extracted from the time-aligned transcripts 

approach the error rate of trained human aligners in all tasks, 

while our acoustic features offered little improvement. Future 

work will incorporate nominal prosodic features in the 

analysis, and evaluate the performance of clustering tech-

niques for cue phrase sense disambiguation.  
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Table 3. Error rate and F-measure for JRip with different feature sets, for the baselines, and for the human labelers. First tasks. 

Discourse vs. Sentential Sense Discourse Segment Boundaries Acknowledgment 

F-Measure  F-Measure 

 

Error Rate 
discourse sentence 

Error Rate 
begin end 

Error Rate F-Measure 

Text only 1.9 % .99 .95 11.6 % .77 .30  8.3 % .94 

Contextual 2.1 % .99 .95  9.8 % .81 .53  6.2 % .95 

Acoustic 8.1 % .95 .81 14.2 % .66 .19 17.2 % .87 

Full set 2.2 % .99 .95  9.6 % .81 .57  6.5 % .95 

20.7 % .89 .00 19.0 % .00 .00 35.2 % .79 Majority class 

baseline majority class: discourse sense majority class: no boundary majority class: acknowledgment 

4.2 % .97 .91 19.0 % .00 .00 16.7 % .88 
Word-based 

baseline rule: right → sentential sense 

 others → discourse sense 
rule: all words→ no boundary 

 rule:  {huh, right } →  no ack. 

 others  →  ack. 

Human labelers 1.8 % .99 .98 5.7 % .94 .71 5.5 % .98 

Table 4. Same as Table 3 for the classification of each separate affirmative cue word.  

alright 

A1, C, other 

mm-hm 

A1, A2 

okay 

A1, A2, C, F, P, other 

right 

A1, K, N 

yeah 

A1, A2 

F-Measure F-Measure F-Measure F-Measure F-Measure 

 

ER 
A1 C 

ER 
A1 A2 

ER 
A1 A2 C F P 

ER 
A1 K N 

ER 
A1 A2 

Text only 36.4 .63 .72 12.7 .42 .93 31.7 .76 .16 .77 .33 .09  8.1 .80 .26 .96  8.9 .95 .23 

Contextual 34.3 .63 .74  9.9 .53 .94 25.6 .79 .31 .82 .67 .18  8.3 .79 .24 .96  7.7 .96 .49 

Acoustic 38.5 .65 .75 14.0 .06 .92 40.2 .69 .24 .64 .25 .03 10.4 .63 .00 .94  9.4 .95 .28 

Full set 33.9 .65 .76 10.2 .56 .94 25.5 .80 .46 .83 .66 .21  8.7 .77 .28 .95  8.2 .96 .48 

58.6 .59 .00 13.2 .00 .93 48.3 .68 .00 .00 .00 .00 13.4 .00 .00 .93 8.2 .96 .00 Majority class 

baseline majority class: A1 majority class: A2 majority class: A1 majority class: N majority class: A1 

Human labelers 14.9 .86 .93 6.3 .81 .97 14.0 .89 .78 .94 .73 .56 2.8 .94 .66 .99 7.5 .96 .82 

 

1616


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Agustin Gravano
	Also by Stefan Benus
	Also by Julia Hirschberg
	------------------------------

