
Continuous Skolem Problem for higher dimensions

We want to prove decidability of the Zero Problem or Infinite Zeros Problem for exponential polyno-
mials with constant coefficients.

Conjecture 1 ([Yge11], Leon Ehrenpreis). For a given exponential polynomial of the form f(ζ) =∑M
k=0 bke

iαkζ , where bi are real algebraic, then we have:

M∑
j=0

|d
j−1f

dzj−1
(z)| ≥ ce

−A|Im(z)|

(1 + |z|)p
(1)

The following paragraph contains a brief explanation of this conjecture, which has been explained in
greater detail in [Yge11].
We first consider the exponential polynomial of the form

f(ζ) =

M∑
k=0

bke
iαkζ

where bk are algebraic and the frequencies, iαk are purely imaginary.
Consider the basis of {α1, α2 . . . αM} over Z. Let the basis of this be {γ1, γ2 . . . γn}. So for any exponential
polynomial g(eiαz) there exists another polynomial such that the same exponential polynomial can be
written in the form h(eiγx). So for every derivative of f we have polynomials of the form

dj−1f

dζj−1
(z) = Pj(e

iγz)

Now according to the conjecture we have the form:

M∑
j=0

|Pj(eiγz)| =
M∑
j=0

|d
j−1f

dzj−1
(z)| ≥ ce

−A|Im(z)|

(1 + |z|)p

Based on the Conjecture 1, we make the following conjecture that we expect to be true.

Conjecture 2. We have two polynomials P1(x1, x2, . . . , xM ) and P2(x1, x2, . . . , xM ) such that P1(eiγz) =∑M
j=1 bje

iγjz and P2(eiγz) =
∑M
j=1 cje

iγjz, where bj’s and cj’s are algebraic over R and γ = (γ1, γ2, . . . γM ).
If their variety span a codimension of 2 then we will have a polynomial lower bound of the sum of their
absolute values for all z ∈ C in the form

|P1(eiγz)|+ |P2(eiγz)| ≥ ce
−A|Im(z)|

(1 + |z|)p
(2)

for some constants c, p, A > 0 depending on P1, P2 and γj’s.

Using Conjecture 2, we now work on developing our theory to find the decidability of zeroes of
exponential functions.

Proposition 1 ([BCR13]). For two semi-algebraic functions f : D → R and g : P → D we will have
f ◦ g : P → R is a semi-algebraic function.
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Theorem 1. For real algebraic b1, ..., bs that are linearly independent over Q and two polynomials
Pj(x1, ..., xs), j = 1, 2, that generate a variety of dimension s-2 the expression

∑
j=,1,2 |Pj(eib1t, ..., eibst)|

is bounded below by an inverse polynomial in t.

Proof. We are given two polynomials P1(x1, x2, . . . xs) and P2(x1, x2 . . . xs) such that they have a variety
of s− 2 dimensions. According to the conjecture 2, we will have

|P1(eb1t, eb2t . . . ebst)|+ |P2(eb1t, eb2t . . . ebst)| ≥ ce
−A|Im(t)|

(1 + |t|)p

For some constants c, A > 0 and a constant p depending on P1, P2 and b1, b2 . . . bs.
Now since t is purely real we will have Im(t) = 0, which implies

|P1(eib1t, eib2t . . . eibst)|+ |P2(eib1t, eib2t . . . eibst)| ≥ c

(1 + t)p
(3)

for all t ≥ 0.
This gives us a polynomial lower bound of the sum of P1(eib1t, eib2t . . . eibst) and P2(eib1t, eib2t . . . eibst).

Theorem 2 ([COW16]). The set Γt = {(x, y, z)|(eat, x, y, z) ∈ Cj} is semi-algebraic for a fixed value of
t.

Theorem 3. Given s independent frequencies, there exists a parametrization of
Γt = {(x1, x2 . . . xs)|(eat, x1, x2, . . . xs) ∈ Cj}, as a continuous semi-algebraic function h : (0, 1)n ×
[0,∞)k → [−1, 1]s such that h(p, ea1t, ea2t, . . . eakt) gives us the set Γt for all values of p ∈ (0, 1)n.

Proof. Suppose we have the cell decomposition of Cj as a semi-algebraic set

{(u, x1, x2, . . . xs)| · · · } ⊂ Rk+s (4)

which as a (i1, i2, . . . ik+s)-cell. We inductively construct a parametrization from this given cell structure.
Throughout this proof we will denote pj as a parameter which is a tuple of cj elements each having values
between (0, 1).
Consider the last s coordinates of the (i1, i2, . . . ik+s). We assume that we have constructed a parametriza-
tion upto j − 1 coordinates of these s coordinates, and want to construct for the jth coordinate. By
induction hypothesis we are assuming we already have constructed a continuous semi-algebraic function
for parametrization hj−1 : (0, 1)cj−1 × [0,∞)k → [−1, 1]s, where cj−1 = ik+1 + ik+2 + . . . ik+j−1, such
that

hj−1(pj−1,u) = (hj−1,1(p1,u), hj−1,2(p2,u) . . . hj−1,j−1(pj−1,u)) (5)

where each of hj−1,m gives us the coordinate xm from the form as in equation 4 for every m =
1, 2, . . . (j − 1). Each hj−1,m has parameter variables pm which is a vector consisting of the first cm
coordinates of pj−1, for a constant cm ≤ cj−1 depending on the number of 1’s in the given cell structure
between coordinates k + 1 and k + m (we have cm = ik+1 + ik+2 + . . . ik+m where the cell structure is
(i1, i2, . . . ik+s)), as not every coordinate of the parameter p is required for obtaining the value of xi for
some i.
Now we move on to finding a parametric representation of the coordinate xj as well, using the previous
parametrization and the cell structure of Cj .

If ik+j = 0 we will have a continuous semi-algebraic function fj : [0,∞)k × [−1, 1]j−1 → [−1, 1]
such that xj = fj(u, x1, x2, . . . xj−1) (from the definition of cell decomposition for a (· · · , 0)-cell). We
define h : (0, 1)cj−1 × [0,∞)k → [−1, 1] such that h(pj ,u) = f1(u, hj−1(pj−1)) (In this case cj = cj−1 as
ik+j = 0 and hence pj = pj−1).

Now we consider our parameterizing function as hj : (0, 1)cj × [0,∞)→ [−1, 1]j as

hj(pj) = (hj,1(p1,u), hj,2(p2,u), . . . hj,j(pj ,u))

where each of hj,m = hj−1,m for all m = 1, 2, . . . (j− 1) and hj = h as defined in the previous paragraph.
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However if ik+j = 1 we will have two continuous semi-algebraic functions fj , gj : [0,∞)k×[−1, 1]j−1 →
[−1, 1] such that fj(u, x1, x2, . . . xj−1) < xj < g1(u, x1, x2, . . . xj−1), where each of xl correspond to the
(l + k)th coordinate from equation 4 (follows from the definition of (· · · , 1)-cell). Now construct the
continuous semi-algebraic function h : [0,∞)k × [−1, 1]j−1 → [−1, 1] to give all the values between
fj(u, x1, x2, . . . xj−1) and gj(u, x1, x2, . . . xj−1) in terms of parameters. We create another parameter
λ ∈ (0, 1) such that we get the value of xj as λfj(u, hj−1(pj−1,u)) + (1− λ)gj(u, hj−1(pj−1,u)), which
is a convex combination to give all the values in between for values of λ. So we define h(pj ,u) =
λfj(u, hj−1(pj−1,u))+(1−λ)gj(u, hj−1(pj−1,u)) where pj = (pj−1, λ). In this case another parameter
λ is added to the set of parameters pj−1, giving cj = cj−1 + 1.

Now we define our parameterizing function for the j coordinates by the continuous semialgebraic
function hj : [0,∞)k × [−1, 1]cj → [−1, 1]j as

hj(pj ,u) = (hj,1(p1,u), hj,2(p2,u), . . . hj,j(pj ,u))

where each of hj,m = hj−1,m for all m = 1, 2, . . . (j−1) and hj,j = h as defined in the previous paragraph
and cj = cj−1 + 1.

In this way we inductively construct the parameterizing continuous semi-algebraic function hs :
[0,∞)k × [−1, 1]cs → [−1, 1]s, which gives us the parameterization of each of the coordinates xj , with
parameters from (0, 1)cs . Each point in Γt is given by hs(p, e

at) for a uniquely defined parameter
p ∈ (0, 1)cs .

Next we move on to finding exponential polynomials such that for any (x, y, z) ∈ Γt we will have
|Pj(x, y, z)| < 2−Ajt for some Aj > 0.

We have, from Theorem 3, the parametric semi-algebraic function h(p,u) = (h1(p1,u), h2(p2,u), . . . hs(ps,u))
where h1, h2, . . . hs are continuous semi-algebraic as well.
We indeed have, from Proposition 2.5.2 of [BCR13], that there exists a polynomial Qi(x, y) such that
Qi(p,u, hi(p,u)) = 0 ∀p,u in domains as specified in Theorem 3.
When we set u = (ea1t, ea2t, . . . eakt) we will have Qi(p, e

at, hi(p, e
at)) in the form:

Qi,1(p, hi(p, e
at))eb1t +Qi,2(p, hi(p, e

at))eb2t + . . . Qi,m(p, hi(p, e
at))ebmt = 0

where Qi,j are polynomials with real algebraic coefficients and b1 > b2 > . . . bm for some real algebraic
bj ’s.
This can be rearranged to give:

|Qi,1(p, hi(p, e
at))| = |Qi,2(p, hi(p, e

at))e(b2−b1)+Qi,3(p, hi(p, e
at))e(b3−b1)t+. . . Qi,m(p, hi(p, e

at))e(bm−b1)t|

=⇒ |Qi,1(p, hi(p, e
at))| ≤ Ae−εt

for some constants A, ε > 0 not depending on p and t.
We indeed have s such polynomials Qi,1 for each i = 1, 2, . . . s. However the same argument might not
proceed as in Proposition 2.10 of [COW16] as in that case it was a univariate polynomial but we have
several multivariate ones. One idea is definitely to proceed by fixing some coordinates and treat this as
a univariate.

Next, we want to prove that limt→∞ Γt exists and is equal to a semialgebraic set Γ∗. One way of
showing this is to show that the semi-algebraic parameterizing function can be ”extended to infinity”
quite like a semi-algebraic function can be extended to 0 is it is defined in an interval (0, r] for some r > 0.

Our claim is that if Γ∗ is of codimension ≤ 1 then we will have the fact that (cos b1t, cos b2t, . . . cos bst)
hitting Γt infinitely often and hence the zero set as unbounded. Otherwise, if Γ∗ has codimension ≥ 2
we intend to prove that the zero set is indeed bounded.

Proposition 2 ([BPR06] Proposition 2.5.3). Let φ : (0, r]→ R be a bounded continuous semi-algebraic
function defined on an interval (0, r] ⊂ R. Then φ can be continuously extended to 0.

We intend to use this proposition for multivariates, namely extending a bounded semi-algebraic
function φ : (0, r1]× (0, r2]× . . . (0, rn]→ R to (0, 0, . . . 0).
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Proposition 3. Given a bounded continuous semi-algebraic function φ : (0, r1]× (0, r2]× . . . (0, rn]→ R,
with ri ∈ R ∀ i, the function can be continuously extended to (0, 0, . . . 0).

Proof. We prove this using induction. First we consider the semi-algebraic function φ(X1, X2 . . . Xn)
and assume that we already have extended it to zero for the last n− i variables, i.e. have have a value
of φ(x1, x2, . . . xi, 0, 0, . . . 0) for every value of x1 ∈ (0, r1], x2 ∈ (0, r2] . . . xi ∈ (0, xi].

For the base case we show that for every x1, x2 . . . xn−1 ∈ (0, r1]× (0, r2]× . . . (0, rn−1], the function
φ(x1, x2, . . . xn−1, X) as a bounded continuous semi-algebraic function in X can be continuously extended
to 0.
We use a proof similar to that given in [BCR13] Proposition 2.5.3. Let f ∈ R[X1, X2, . . . Xn, Y ] be a
polynomial such that ∀x1, x2 . . . xn ∈ (0, r1]×(0, r2]×. . . (0, rn] we have f(x1, x2 . . . xn, φ(x1, x2, . . . xn)) =
0. We use induction on the degree, say d, of Y in f to prove the base case.

If d = 1, we will have φ(X1, X2, . . . Xn−1, X) = N(X1,X2...Xn−1,X)
D(X1,X2,...Xn−1,X) where N and D are relatively

coprime wrt X, and X does not divide D(x1, x2, . . . xn−1, X) since the absolute value of φ is bounded.
It might so be that for some non-zero x1, x2, . . . xn−1 in the domain of φ, D(x1, x2, . . . xn−1, 0) = 0.
However, this can not be true as φ is bounded. Infact, we have D(x1, x2, . . . , xi−1, 0, xi+1, . . . xn) 6= 0 for
any i and all other non-zero values of xj ’s.

Now, let us assume that we have extended the last coordinate of φ to zero whenever degree of f is
less than or equal to d− 1, and want to prove it for degree d. We consider a slicing (Ai, (ξi,j)j=1,2,...li) of

(f(X1, X2, . . . Xn−1, X, Y ), ∂f(X1,X2,...Xn−1,X,Y )
∂Y ) with A1 = (0, r] for some small enough r and φ = ξ1,j0

for some j0 (the fact that the interval (0, r] is semi-algebraically connected can be used to see that one
of ξ1,j coincides with φ).

If φ(X1, X2, . . . Xn−1, X) is a root of ∂f
∂Y for every value of X in (0, r] and values of x1, x2 . . . xi,

then it can be used from the induction hypothesis to extend φ(x1, x2, . . . xn−1, X) to X = 0. Otherwise,

WLOG let us assume that ∂f(x1,x2,...xn−1,X,Y )
∂Y |Y=φ(x1,x2,...xn−1,X) > 0 for all X ∈ (0, r] and xi ∈ (0, ri].

Now we select two continuous semi-algebraic function ρ and θ from (0, r1]× (0, r2]× . . . (0, rn−1]× [0, r]
to R, such that for every x1, x2, . . . xn−1 ∈ (0, r1]× (0, , r2]× . . . (0, rn−1] and every x in (0, r] we will have

ρ(x1, x2, . . . xn−1, x) < φ(x1, x2, . . . xn−1, x) < θ(x1, x2, . . . xn−1, x) and ∂f(x1,x2,...xn−1,X,y)
∂Y > 0 for every

y in (ρ(x1, x2, . . . xn−1, x), θ(x1, x2, . . . xn−1, x)) (the existence of these two functions has been shown in
[BCR13] Prop. 2.5.3). If for some (x1, x2, . . . xn−1), ρ(x1, x2, . . . xn−1, 0) = θ(x1, x2, . . . xn−1, 0) holds
true, then we define φ(x1, x2, . . . xn−1, 0) = ρ(x1, x2, . . . xn−1, 0).

However if ρ(x1, x2, . . . xn−1, X) < θ(x1, x2, . . . xn−1, X) and ∂f(x1,x2,...xn−1,0,y)
∂y is never < 0 on the

interval [ρ(x1, x2, . . . xn−1, 0), θ(x1, x2, . . . xn−1, 0)]. We have

f(x1, x2, . . . xn−1, 0, ρ(x1, x2, . . . xn−1, 0)) ≤ 0 ≤ f(x1, x2, . . . xn−1, 0, θ(x1, x2, . . . xn−1, 0))

and f(x1, x2, . . . xn−1, 0, Y ) is increasing in the interval, implying that it has only one root
y0 ∈ [ρ(x1, x2, . . . xn−1, 0), θ(x1, x2, . . . xn−1, 0)]. We define φ(x1, x2, . . . xn−1, 0) = y0. It can be shown for
a fixed x1, x2, . . . xn−1, φ(x1, x2, . . . xn−1, X) is continuous in a similar fashion as shown in [BCR13]. How-
ever we are left with proving continuity for every one of the variables X1, X2, . . . Xn−1. Let us consider Xi.
We will have small constants such that for every small ε > 0, f(x1, . . . xi−1, xi+ε, xi+1, . . . xn−1, 0, y

′
0) = 0

where y′0 is similarly obtained the described procedure by replacing xi by xi + ε. Now we indeed have ρ
and θ as continuous and ∃δ1, δ2 > 0 for ε such that

|ρ(x1, . . . xi−1, xi + ε, xi+1, . . . xn−1, 0)− ρ(x1, . . . xi−1, xi, xi+1, . . . xn−1, 0)| < δ1,

and
|θ(x1, . . . xi−1, xi + ε, xi+1, . . . xn−1, 0)− θ(x1, . . . xi−1, xi, xi+1, . . . xn−1, 0)| < δ2.

So we have the intervals

[ρ(x1, . . . xi−1, xi + ε, xi+1, . . . xn−1, 0), θ(x1, . . . xi−1, xi + ε, xi+1, . . . xn−1, 0)],

and
[ρ(x1, . . . xi−1, xi, xi+1, . . . xn−1, 0), θ(x1, . . . xi−1, xi, xi+1, . . . xn−1, 0)]

as roughly similar and both y0 and y′0 belong to these. And now since f is a continuous polynomial we will
have, for the roots of f(x1, . . . xi−1, xi + ε, xi+1, . . . xn−1, 0, y) and f(x1, . . . xi−1, xi, xi+1, . . . xn−1, 0, y)
as y0 and y′0, there exists a constant δ depending on ε such that |y′0 − y0| < δ. Thus, continuity follows
from Proposition 3.10 of [BPR06].
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Now, for the induction step we assume that we have continuously extended φ : (0, r1]×(0, r2] . . . (0, ri]×
[0, ri+1]×[0, ri+2] . . . [0, rn]→ R. To extend it to φ : (0, r1]×(0, r2] . . . [0, ri]×[0, ri+1]×[0, ri+2] . . . [0, rn]→
R, we apply the same proof as of the base case and fix xi+1, xi+2, . . . xn to 0. In this way we can contin-
uously extend a multivariate bounded continuous semi-algebraic function to 0.

Theorem 4. Given that we have a parametrization of Γt as a semi-algebraic function as in Theorem 4,
limt→∞Γt exists and is semi-algebraic.

Proof Idea. We already have the fact that a semi-algebraic function extends to zero. So if we consider
the multivariate polynomials in the boolean expression corresponding to the map of the semi-algebraic
function h(· · · ) and consider their reverse (something like xm1 x

n
2f(1/x1, 1/x2) where m and n are the

degrees of x1 and x2 in f respectively) to show that ”extending h to infinity” is same as extending
another semi-algebraic function to zero, which can be done, showing that the limit of Γt exists.

Next, we intend to show that roots are unbounded when the codimension of Γt is small. Dimension of
Γt is d when Γt is homeomorphic to the cylinder (0, 1)d. This degree can be found from the parameteri-
zation which is again obtained from the cell decomposition. When Cj is a cell of the form (i1, i2, . . . ik+s),
the parameterizing function h is homeomorphic to cs, with notation same as that in proof of Theorem
3. Now for small codimension, most of the ij ’s in the cell decomposition will be 1.
We have these intervals for each coordinate in the output of h and need to check if for unbounded in-
finitely many t cos bjt is included in the interval. For low codimension, these intervals would be fixed
points and it might be easier to decide if these coincide with cos bjt or not. This is an idea of proceeding
with the proof.
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