Continuous Skolem Problem for higher dimensions

We want to prove decidability of the Zero Problem or Infinite Zeros Problem for exponential polyno-
mials with constant coefficients.

Conjecture 1 ([Ygell], Leon Ehrenpreis). For a given exponential polynomial of the form f(¢) =
M i C . . B
D ko bre , where b; are real algebraic, then we have:
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The following paragraph contains a brief explanation of this conjecture, which has been explained in
greater detail in [Ygell].
We first consider the exponential polynomial of the form

M
(€)= e’
k=0

where by are algebraic and the frequencies, iay are purely imaginary.

Consider the basis of {1, s ... apr} over Z. Let the basis of this be {71,72 .. .7, }. So for any exponential
polynomial g(e’®?) there exists another polynomial such that the same exponential polynomial can be
written in the form h(e¥*). So for every derivative of f we have polynomials of the form
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Now according to the conjecture we have the form:
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Based on the Conjecture [1} we make the following conjecture that we expect to be true.
Conjecture 2. We have two polynomials Py (1,22, ..., xy) and Po(x1, 22, ..., 257) such that Py(e7?) =
ZJ 1 b€ and Py(e7?) = Zjvil c;je"i% where b;’s and ¢;’s are algebraic over R and vy = (y1,7%2, ... Ym)-

If thezr variety span a codimension of 2 then we will have a polynomial lower bound of the sum of their
absolute values for all z € C in the form
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for some constants c,p, A > 0 depending on P, P> and v;’s

Using Conjecture [2, we now work on developing our theory to find the decidability of zeroes of
exponential functions.

Proposition 1 ([BCR13|). For two semi-algebraic functions f : D — R and g : P — D we will have
fog: P — R is a semi-algebraic function.



Theorem 1. For real algebraic by,...,bs that are linearly independent over Q and two polynomials
Pj(z1,...,xs), j = 1,2, that generate a variety of dimension s-2 the expression Zj:,1,2 |Pj(ettrt, ..., eibst)]
is bounded below by an inverse polynomial in t.

Proof. We are given two polynomials Py (21, %3, ...2s) and Py(z1,22 ... 2s) such that they have a variety
of s — 2 dimensions. According to the conjecture 2, we will have
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For some constants ¢, A > 0 and a constant p depending on Py, P, and by, bs ... bs.
Now since t is purely real we will have I'm(¢t) = 0, which implies
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for all t > 0.
This gives us a polynomial lower bound of the sum of P;(e®1? e®2t . ¢st) and Py(e®1, 2t . ebst).
O

Theorem 2 ([COWI6]). The set 'y = {(x,y,2)|(e*,z,y,2) € C;} is semi-algebraic for a fized value of
t.

Theorem 3. Given s independent frequencies, there exists a parametrization of
Iy = {(z1,22...24)|(e™, 21, 22,...2s) € C;j}, as a continuous semi-algebraic function h : (0,1)™ x
[0,00)F — [~1,1]® such that h(p,e™t, et ... e%?t) gives us the set T'y for all values of p € (0,1)".

Proof. Suppose we have the cell decomposition of C; as a semi-algebraic set
{(uaxl,fz,...xs)|...}CRk+s @

which as a (i1, 42, . . . ix+s)-cell. We inductively construct a parametrization from this given cell structure.
Throughout this proof we will denote p; as a parameter which is a tuple of ¢; elements each having values
between (0, 1).
Consider the last s coordinates of the (i1, %2, . . . ix+s). We assume that we have constructed a parametriza-
tion upto j — 1 coordinates of these s coordinates, and want to construct for the j'* coordinate. By
induction hypothesis we are assuming we already have constructed a continuous semi-algebraic function
for parametrization h;_; : (0,1)%-1 x [0,00)F — [~1,1]°, where Cj—1 = tky1 F lpg2 + .. Gkyj—1, such
that

hj—1(Pj_1,w) = (hj—11(P1,w), hj—12(Pys ) .- hjo1j—1(Pj 1, ) (5)

where each of hj_1,, gives us the coordinate x,, from the form as in equation E| for every m =
1,2,...(j —1). Each hj_;,, has parameter variables p,, which is a vector consisting of the first ¢,
coordinates of p;_;, for a constant ¢, < c¢;—1 depending on the number of 1’s in the given cell structure
between coordinates k + 1 and k + m (we have ¢, = ix11 + igt2 + - - . ik+m where the cell structure is
(i1,12,...1k+s)), as not every coordinate of the parameter p is required for obtaining the value of x; for
some 4.

Now we move on to finding a parametric representation of the coordinate x; as well, using the previous
parametrization and the cell structure of Cj.

If ix+; = 0 we will have a continuous semi-algebraic function f; : [0,00)% x [-1,1)771 — [-1,1]
such that z; = fj(u,21,22,...2;-1) (from the definition of cell decomposition for a (--- ,0)-cell). We
define h : (0,1)%-* x [0,00)" — [—1,1] such that h(p;,w) = fi(w, h;—1(pj—1)) (In this case ¢; = ¢;_ as
ix+j = 0 and hence p; = p; ).

Now we consider our parameterizing function as h; : (0,1)% x [0,00) = [—1, 1} as

hj(p;) = (hj(p1,w), hj2(Py w), - - -y (py, )

where each of hjm = hj_1,m forallm =1,2,...(j —1) and h; = h as defined in the previous paragraph.



However if i54; = 1 we will have two continuous semi-algebraic functions f;, g; : [0,00)* x[—1,1}971 —
[—1,1] such that f;(u,z1,22,...2j-1) < z; < g1(u,x1,Z2,...2j-1), where each of z; correspond to the
(I + k)" coordinate from equation [4| (follows from the definition of (--- ,1)-cell). Now construct the
continuous semi-algebraic function h : [0,00)% x [-1,1)"~t — [~1,1] to give all the values between
filu,z1,22,.. . 2;-1) and g;(u,x1,2,...2;-1) in terms of parameters. We create another parameter
A € (0,1) such that we get the value of z; as Afj(w, hj_1(p;_1,u)) + (1 — N)g;(u, hj—1(p;_1,u)), which
is a convex combination to give all the values in between for values of \. So we define h(p,,u) =
Afj(u,hj1(pj_q,u))+(1—=N)g;(w, hj—1(p;_1,u)) where p; = (p;_1, ). In this case another parameter
A is added to the set of parameters p;_,, giving ¢; = ¢;—1 + 1.

Now we define our parameterizing function for the j coordinates by the continuous semialgebraic
function h; : [0,00)F x [=1,1]% — [~1,1)/ as

hj(pja u) = (hj71(pl’u)’ hj72(p2”u‘)a s hj;j(pjv'u'))

where each of hj , = hj_1, forallm =1,2,...(j—1) and h; ; = h as defined in the previous paragraph
and ¢; = ¢j_1 + 1.

In this way we inductively construct the parameterizing continuous semi-algebraic function hs :
[0,00)% x [-1,1]% — [~1,1]%, which gives us the parameterization of each of the coordinates z;, with
parameters from (0,1)¢s. Each point in T'; is given by hs(p,e®!) for a uniquely defined parameter
p € (0,1)%. O

Next we move on to finding exponential polynomials such that for any (z,y,2) € I'; we will have
|Pj(z,y,2)| < 2743 for some A; > 0.

We have, from Theorem the parametric semi-algebraic function h(p, u) = (h1(py, ), ha(py, u), ... hs(p,, u))
where hi, hs,...hs are continuous semi-algebraic as well.
We indeed have, from Proposition 2.5.2 of [BCR13|, that there exists a polynomial Q;(x,y) such that
Qi(p,u,hi(p,u)) =0 Vp,u in domains as specified in Theorem
When we set u = (e, et ... e%t) we will have Q;(p, e, h;(p,e*)) in the form:

Qi (p, hi(p, €)™ + Qi 2(p, hi(p, €)™ + ... Qi m (P, hi(p, e™))e" =0

where @); ; are polynomials with real algebraic coefficients and b1 > by > ... b,, for some real algebraic
b]'7S.
This can be rearranged to give:

Qi1 (P, hi(p, )| = |Qi2(p, hi(p, e*))e®2 7P 1Q; 5(p, hi(p, e®))e2 =P 4 Q; (D, hi(p, e2t))elbm =011
= Qi1 (p, hi(p, ™)) < Ae™

for some constants A, e > 0 not depending on p and t¢.

We indeed have s such polynomials @); ; for each i = 1,2,...s. However the same argument might not
proceed as in Proposition 2.10 of [COW16| as in that case it was a univariate polynomial but we have
several multivariate ones. One idea is definitely to proceed by fixing some coordinates and treat this as
a univariate.

Next, we want to prove that lim; ., I'; exists and is equal to a semialgebraic set I',. One way of
showing this is to show that the semi-algebraic parameterizing function can be ”extended to infinity”
quite like a semi-algebraic function can be extended to 0 is it is defined in an interval (0, 7] for some r > 0.

Our claim is that if T', is of codimension < 1 then we will have the fact that (cosbit, cosbat, . . . cos bst)
hitting I'; infinitely often and hence the zero set as unbounded. Otherwise, if I'y, has codimension > 2
we intend to prove that the zero set is indeed bounded.

Proposition 2 ([BPR0OG] Proposition 2.5.3). Let ¢ : (0,7] — R be a bounded continuous semi-algebraic
function defined on an interval (0,7] C R. Then ¢ can be continuously extended to 0.

We intend to use this proposition for multivariates, namely extending a bounded semi-algebraic
function ¢ : (0,71] x (0,72] x ...(0,r,] = R to (0,0,...0).



Proposition 3. Given a bounded continuous semi-algebraic function ¢ : (0,71] x (0,79] x ... (0,7,] = R,
with r; € RV i, the function can be continuously extended to (0,0,...0).

Proof. We prove this using induction. First we consider the semi-algebraic function ¢(X;, Xs ... X,)
and assume that we already have extended it to zero for the last n — i variables, i.e. have have a value
of ¢(x1,xa,...240,0,...0) for every value of x1 € (0,71],22 € (0,72]...z; € (0,2;].

For the base case we show that for every z1,25...2,-1 € (0,71] X (0,72] x ... (0,7,_1], the function
¢(x1, 22, ... 2,1, X) as a bounded continuous semi-algebraic function in X can be continuously extended
to 0.

We use a proof similar to that given in [BCR13] Proposition 2.5.3. Let f € R[X1, Xa,...X,,Y] be
polynomial such that Va1, 29 ... @, € (0,71]x(0,72]X...(0,7r,] we have f(xz1,z2... 2y, d(x1,22,...2y))
0. We use induction on the degree, say d, of Y in f to prove the base case.

If d = 1, we will have ¢(X1, Xo,... X,,—1,X) = g((;l))((;))((n:))(()) where N and D are relatively

coprime wrt X, and X does not divide D(x1, o, ...x,—1,X) since the absolute value of ¢ is bounded.
It might so be that for some non-zero 1, xs,...x,—1 in the domain of ¢, D(x1,x2,...2y_1,0) = 0.
However, this can not be true as ¢ is bounded. Infact, we have D(z1,z2,...,2i—1,0,211,...@y,) # 0 for
any 4 and all other non-zero values of z;’s.

Now, let us assume that we have extended the last coordinate of ¢ to zero whenever degree of f is
less than or equal to d — 1, and want to prove it for degree d. We consider a slicing (A4, (&,;);j=1,2,..1,) of
(f(X1,Xse,... Xn-1,X,Y), af(Xl’X%éf"‘l’X’Y)) with A; = (0,7] for some small enough 7 and ¢ = & j,
for some jo (the fact that the interval (0, r] is semi-algebraically connected can be used to see that one
of & ; coincides with ¢).

If ¢(X1,Xs,...Xp—1,X) is a root of g—{; for every value of X in (0,7] and values of x1,xs...z;,
then it can be used from the induction hypothesis to extend ¢(z1, z2,...2,-1,X) to X = 0. Otherwise,
WLOG let us assume that af(zl’m’é{f"‘l’X’Y) Y = (@1 ,9,..0m_1,x) > 0 for all X € (0,7] and z; € (0, r;].
Now we select two continuous semi-algebraic function p and 6 from (0,71] x (0,72] X ... (0,7,_1] x [0,7]
to R, such that for every 1, xa,...2,—1 € (0,71] X (0,,72] X ... (0,7,-1] and every x in (0, 7] we will have
p(x1, 22, .. Tp_1,7) < P(x1, T2, ... Tp_1,7) < O(x1,22,...7Ty_1,2) and 8f(11’12’5i,w"’1’x’y) > 0 for every
yin (p(x1,x2,...xpn_1,2),0(x1,22,...25_1,2)) (the existence of these two functions has been shown in
[BCR13] Prop. 2.5.3). If for some (x1,x2,...2p_1), p(x1,22,...Tn_1,0) = 0(z1,22,...2,_1,0) holds
true, then we define ¢(x1, za,...2n-1,0) = p(x1,x2,...2H_1,0).

However if p(x1,xa,...2p-1,X) < 0(z1,22,...24_1,X) and af(xl’“’éf”’l’o’y) is never < 0 on the
interval [p(x1,z2,...2n-1,0),0(x1,2a,...2,-1,0)]. We have (

| o

f(mlaan"'mn—hoap(ml;an'~-mn—170)) <0< f(xlax27'"xn—laoae(xlaan-- -xn—lao))

and f(z1,29,...2,-1,0,Y) is increasing in the interval, implying that it has only one root

Yo € [p(x1,29,...2p-1,0),0(x1,22,...2,_1,0)]. We define ¢(z1,z2,...2n-1,0) = yo. It can be shown for
afixed z1,xa,...2n_1, ¢(x1,T2,...Typ_1, X) is continuous in a similar fashion as shown in [BCR13|]. How-
ever we are left with proving continuity for every one of the variables X7, Xso,... X,,_1. Let us consider Xj.
We will have small constants such that for every small € > 0, f(x1,...2;—1, i+ €, 241, ... Tp—1,0,95) =0
where yj is similarly obtained the described procedure by replacing z; by z; + €. Now we indeed have p
and 0 as continuous and 391,09 > 0 for € such that

lp(x1, . w1, T+ € xiq1, .. 2 1,0) — p(T1, . L1, T4, Tigr, - Tpo1,0)] < 01,
and

|9(JU1, e Ti—1, T+ € Ti41y- - .l‘n_l,O) - 0(3:1, oo Li—1, T3y Lj415 - - Tn—1, O)| < 52.

So we have the intervals
[P(-le s Li1, T4 + € Lit1y--- xn7170)7 9(1.17 s Li1, T4 + € Lit1y--- "Enflao)]v
and
(@1, T 1, T4, g, T 1,0),0(21, .. i1, iy T 1, - - T, 0)]

as roughly similar and both yy and y{, belong to these. And now since f is a continuous polynomial we will
have, for the roots of f(z1,...xi—1,2; + €,Zi41,...Tn-1,0,y) and f(z1,...Ti—1, s, Tig1, ... Tn-1,0,Y)

as yo and g, there exists a constant § depending on € such that |y — yo| < 6. Thus, continuity follows
from Proposition 3.10 of [BPROG]. O



Now, for the induction step we assume that we have continuously extended ¢ : (0,7r1]x(0,72] ... (0,7;]x
[0, 7541] %[0, 7i42] . . . [0, 7] = R. To extend it to ¢ : (0,7r1]x(0,72]...[0,7;]X[0,711] %[0, riy2] ... [0, 7] —
R, we apply the same proof as of the base case and fix x;41, Z;42,...2, to 0. In this way we can contin-
uously extend a multivariate bounded continuous semi-algebraic function to O.

Theorem 4. Given that we have a parametrization of I'y as a semi-algebraic function as in Theorem 4,
limy_ooL'y exists and is semi-algebraic.

Proof Idea. We already have the fact that a semi-algebraic function extends to zero. So if we consider
the multivariate polynomials in the boolean expression corresponding to the map of the semi-algebraic
function h(---) and consider their reverse (something like z7"a% f(1/x1,1/22) where m and n are the
degrees of x1 and zo in f respectively) to show that "extending h to infinity” is same as extending

another semi-algebraic function to zero, which can be done, showing that the limit of I'; exists. O

Next, we intend to show that roots are unbounded when the codimension of I'; is small. Dimension of
'y is d when I'; is homeomorphic to the cylinder (0,1)¢. This degree can be found from the parameteri-
zation which is again obtained from the cell decomposition. When Cj is a cell of the form (i1, 42, ... ix1s),
the parameterizing function h is homeomorphic to ¢, with notation same as that in proof of Theorem
Now for small codimension, most of the 7;’s in the cell decomposition will be 1.
We have these intervals for each coordinate in the output of h and need to check if for unbounded in-
finitely many ¢ cosb;t is included in the interval. For low codimension, these intervals would be fixed
points and it might be easier to decide if these coincide with cos b;t or not. This is an idea of proceeding
with the proof.
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