Linear Cryptanalysis Applied to Logic Locking

Sayak Chakrabarti Bholeshwar Khurana
Mahajan Dipak Anil
Department of Computer Science and Engineering,
Indian Institute of Technology — Kanpur

Abstract

This paper proposes Linear Cryptanalysis attacks on state of the art Logic Locking
algorithms. These attacks try to approximate the encrypted circuits to linear circuits
and then exploit the linearity to get the keys. More ideas have been discussed in
Future Work which can possibly give better results on logic locking circuits.

1 Introduction

Currently semiconductors are used in almost every electronic devices and their manufacturing relies
on offshore foundries to be used in various fields. Validation of integrated circuits have led to
IC counterfeiting, piracy and unauthorized production. Financial loses and security threats have
necessitated the need for encryption of circuits. The Semiconductor Industry Association (SIA)
estimates that 15% of all spare and replacement semiconductors purchased by the Pentagon are
counterfeit [7].

2 Logic Locking

In order to overcome the threats discussed above, various research has been conducted to improve
encryption protocols on ICs to prevent unauthorized user from using or duplicating it. Logic locking
is such a design for security technique which modify the ICs by inserting gates with keys so that the
circuit does not produce correct output corresponding to every input with wrong key values. A study
of security on logic locking and attacks on them is necessary to evaluate their strength. In this paper
we try different techniques and give intuition for future work regarding a new approach to attacking a
logic locking circuit.

Potential solutions to the problem of locking circuits have been given in [1, 2], which include
techniques to introduce additional gates and extra inputs, key bits, to the digital circuit to create an
encrypted version. The circuit operates correctly if and only if all the key bits are correct. This key
bits are set after manufacturing and prior to sale, assuming that untrusted foundry does not know the
correct key inputs or the original circuit.

3 Attacks on Logic Locking

Initial locking protocols were quite vulnerable to attack [3, 5, 9, 10, 11, 12]. Rajendran et al. [10]
used automatic test pattern generation (ATPG) algorithms to reveal the key bits. We studied about
two of Subramanyan’s attacks which are described in the following subsections:

3.1 The SAT Attack

Subramanyan et al. [3] developed the SAT attack which defeated all combinational logic encryption
algorithms known at the time. This attack uses Boolean Satisfiability Solver (SAT Solver) to find

Functionality Stripped Circuit

] L]
] L]
1 L]
X = (21,) Tm) | '
L]
: Original Circuit '
. :
1 L]
1 1
1 1
1 : 1
Cube Stripper Strip(Re)(X) | 0
Functionality ¥
K={ki,..,,km)
_f—p Restoration Unit

Figure 1: Overview of SAT attack resilient locking algorithms

the key bits fast enough, with several heuristics. For each input, we have an oracle (activated IC) to
find the correct output, which is then fed into the SAT solver. The SAT solver computes the next
distinguishing input, the input for which outputs are different. Efficiency of this attack depends on
the number of equivalence classes of keys for the locking circuit.

Subsequent work has largely focused on developing SAT-attack resistant logic locking [13, 14, 15,
16, 17] to ensure that the number of equivalence classes of keys is exponential in the order of length
of key bits. The proposals share mainly the structure shown in Figure 1.

A circuit is present which "flips" the output of the original circuit for a particular subset of the circuit,
called cube. We refer to this component as cube stripping unit. This flipped output is then inverted by
a key-dependent circuit which is referred to as programmable functionality restoration unit. This
scheme ensures exponential number of equivalence classes successfully resisting SAT attack.

Algorithm:

The input vectors to the circuit are X 1, X,... Xp and the corresponding observed outputs are
Y1, Ys. .. Y,. The encrypted combinational circuit is represented as C ()? K, 17) € {0, 1} M+L+N
where X € {0,1}M is the input, K € {0,1}~ is the entered key and ¥ € {0,1}¥ is the corre-
sponding output of encrypted circuit. eval is the activated IC. eval(X)= Y means that the oracle
(activated IC) returns Y when input X is passed. Correct key of the circuit is denoted as K¢.

Algorithm 1: Decryption Algorithm [3]

Result: Write here the result
Inputs: C and eval;

Fy + C(X, K, Y1) AC(X, Ky, Ya);

while saf[F; A 'Y, # Ys)] do
X_'}d — sat_as_:signmenti [F; ANY1 #Ys);
Y4+ eval(X3);
Fi+1 — Fi AN C(de,le,)/id) A O(Xid,XQ,Y;»d);
14— 1+ 1;

end

3.2 FALL Attack

Sirone et al. [5] developed FALL attacks which defeat locking methods that use cube stripping
and programmable functionality restoration. They identify sub-circuits corresponding to the cube
stripping module and then extract the key using functional analysis of these nodes. The main ideas
are based on the use of computationally cheap structural analyses that identify the cube stripping unit
and use this in combination with specific Boolean functional properties of the cube stripping function
for TTLock and SFLL. These structural and functional analyses defeat SFLL, which at the time, was
the locking method resilient to all known attacks.

4 Contributions

In this paper we try to look at the new possibility of attacks: attacks derived from Linear Cryptanalysis.
We try to approximate the encrypted circuits to linear circuits and then exploit the linearity to get the
keys. We describe our approaches in the subsequent sections.

We also tried to break circuits locked with SFLL-fault plus random logic locking keys as part of
CSAW-LLC 2019 [18] (CSAW - Logic Locking Competition).

S Applications from Cryptography: Linear Cryptanalysis

Linear Cryptanalysis was an attack proposed by Matsui to break the DES Cryptosystem. It was an
attack based on sending random inputs to the SASAS Cipher and checking the outputs to see if a
linear combination exists. If we find a linear combination with the inputs we can iterate over all the
subkeys. The linear combination consisting of inputs and the outputs can be found by giving a large
number of random inputs, say N, to the cipher and checking the output. For each combination we
create a counter and check the combination which given the highest deviation from mean (N/2).
The linear combination with the highest deviation from mean behaves most linearly as it is the least
random.

5.1 Linear Cryptanalysis to DES S-boxes

The S-boxes in DES are many-to-one functions mapping from {0, 1} to {0, 1}*. By linear cryptanal-
ysis we aim to approximate these functions into linear forms as the encrypted inputs to the S-boxes
are Xor-ed with the actual inputs. Linear cryptanalysis in general, and on logic locking circuits, have
been explained in the following sub-section.

5.2 Linear Cryptanalysis on Logic Circuits

Let a1, as ... a, be the inputs to the logic locking system, and x1, 2 . . . x,, be its outputs. We find
the linear combination by considering the equation:

Cia1 ® Craz @ -+ & Cran @ Cn+1x1 ®Chi272® - Cn—&-mxm =0 (D

We are given with the original circuit where we pass N random inputs corresponding to {a; | i € [n]}
and store the outputs {x; | < € [m]}. Then we create a table with 2" columns and 2™ rows, where the
boolean value of the number of column (indexing from 0) corresponds to the coefficients C ... C,
being O or 1. Similarly the rows correspond to the value of coefficients C, 1 ... Cj 41, For example,
if n = 3 and m = 2, the value of the 3" row (boolean value of 2) and the 6! column (boolean value
of 5) corresponds to the equation

al @ag@xl

Now we fill up this table with IV random inputs and check the output of the original, unencrypted
logic circuit. If we encounter 0 we increase the corresponding table entry by 1.

Now we subtract N/2 from each table entry. If the value is now negative, the corresponding equation
must give a value 1 and if it is positive the corresponding equation must give 0. The table entry with
the highest absolute value is the best linear approximation of our logic circuit.

The chosen linear model performs best in one subkey of all the given inputs, and we chose this part
of the key as the actual key. We first create an array with the different possibilities with the keys
and send m random inputs to the cryptosystem with the same key. For each key we create a counter
which gives correct output with the corresponding key. The key to which highest number of correct
outputs are observed is chosen as the correct key.

"We will try another approach to finding the coefficients in Section 5.2 and another way to find the linear
approximation in Section 5.3

2Checking over all the key bits took a lot of time. To improve this we will try to modify the SAT Attack,
discussed in Section 6

6 Applying Linear Cryptanalysis

6.1 Initial approach (Brute-force)

We used brute force initially to find the best set of coefficients which was giving us the best linear
model. We calculated the probability of every combination possible and then found out the one which
gave the maximum probability. Since this would take exponential amount of time O(2°+%) where
1 = number of input bits and k& = number of key bits, the method could work only for a maximum
of 10 bits key.

We created some of our own examples with 10 bits keys and tested this brute force ap-
proach. It took quite much time to get the results but the results obtained were not that bad. The
correct key was always present amongst the top 16 probabilities but it wasn’t the one with the
maximum probability.

We got an intuition that this method could work or at least we could deduce some impor-
tant results from this method, so we tried to test this on larger circuits. We used various approaches to
fasten the algorithm. One of which was using Genetic algorithm to obtain the best set of coefficients.
Another one was MaxSAT. Both of them are described in the subsequent sections.

6.2 Genetic approach

As per Wikipedia, "In computer science and operations research, a genetic algorithm (GA) is
a meta-heuristic inspired by the process of natural selection that belongs to the larger class of
evolutionary algorithms (EA)". Genetic algorithms are inspired by Charles Darwin’s theory of
natural evolution. This algorithm reflects the process of natural selection where the fittest individuals
are selected for reproduction in order to produce offspring of the next generation.

For genetic algorithm to proceed we need a fitness function to decide whether the coeffi-
cients are better than the ones in the previous generation i.e. we need to decide whether the children
of the next generation are fit. We used bias of the coefficients for deciding the fitness. Bias of a
given set of coefficients is the absolute difference distance of the probability that the coefficients are
approximate representation of the circuit from 1/2. Suppose we have an approximation of the circuit
Al = {a;'- |7 € [m + n + K]} which will be true for a given set of input,ouput and key values if -

m—1 n—1 k—1
@ a; * T; @@ai+m * i @@am+n+i xk; =0
i=0 i=0 i=0

Now if the equation is satisfied for n; such input-output-key pairs out of nr total testings then bias
is defined as |(n,/ny) — 1/2|.So we will generate new coefficients by making some changes to the
set of coefficients in the current generation and look at the bias values of the coefficients generated.
If the new generation coefficients are having more bias than some of the sets of coefficients in
the current set then we remove the ones with lowest bias and add the new generation coefficients
and thus the algorithm proceeds. There is no guarantee that the algorithm will end at the set of
coefficients that is the best approximation for the circuit out of all the set of coefficients but as
the problem of finding the best approximation by trying the circuit for all the possible approxi-
mations needs exponential time genetic algorithm provides us a heuristic to find out some set of
coefficients that is going to be a decent approximation of the circuit. The algorithm terminates when

the changes in the best bias of the set becomes negligible between two consecutive generations.

Algorithm 2: Genetic Selection of Coefficients

Result: Write here the result
Initialize randomly k coefficients Cy,Cs . .. Cy;
for jin 1 :iters do
Calculate bias on C; Vi € [k];
Select worst performing coefficient Cy;
Select second-worst performing coefficient Cy;
for bit in 1 : length do
| C,[bit] = random(C, [bit], Cp[bit])
end
end

6.3 MaxSAT:

In order to find out the set of coefficients in the equation 5.3,
ie A={a;Vie m+n+k]a €{0,1}}

m—1 n—1 k—1
@ a; * T; D @ Qjtm * Yi &b @ Am4n+i * kz =0 (53)
i=0 =0 =0
With
m+n+k—1
5 a0
=0

i.e. Not all of them are zero simultaneously.

We could consider the coefficients as different variables which can take two values i.e 0 or 1. Now we
want the set A such that the equation 5.3 turns out to be true for most of the possible cases possible
i.e for different assignments to the input bits,output bits and key bits. Note that we can not have all
the coefficients zero simultaneously. Also note that we wanted an approximation for the given circuit
with a good bias i.e. we wanted to find an assignment to the coefficients such that either the equation
5.3 turns out true with very high probability or with a very low probability as it works out in either
case. So we want the equation 5.3 to be true for most of the cases or not true for most of the cases. In
the cases when the equation 5.3 fails we want the RHS of the equation to be 1. Now if we had a
linear circuit in which we had to find set A such that the equation 5.3 is true for all the cases (possible
assignments for X,y and k) then we could have used SAT solver to solve the problem by giving all the
possible equations as input.

We define condition C:{0,1}™{0, 1}"{0,1}¥ — {0,1} ; such that C(X,Y,K) = 1, if

m—1 n—1 k-1

/ ! /
@ a; * @@aﬂrm * Y @@GWF”“ *hi =0
i=0 i=0 =0

Where X = {z/]i € [m]}.X = {y/]i € [n]}.K = {K|i € [k]}.

Now for a problem in which there exists a perfect assignment for A such that the equation
5.3 is true for all possible X,Y,K we can find the value of A by giving all the possible expressions for
C(X,Y,K) as clauses. If we consider C(X,Y,K) = 1 as a clause for a given value of X,Y and K then
it signifies that the equation is true for that particular assignment of the input, output and key bits.
Now if there is value of A which makes all the clauses true then it means that for all the assignments
the equation is true. Not that we have to give an extra clause to ensure that not all of them are zero
simultaneously as that is one trivial solution for the equation which should not be considered.

Now coming back to the approximation problem, we have many clauses C for some assignments of
input bits, output bits and key bits i.e. X,Y and K values. So our problem changes to maximizing the
number of conditions satisfied out of all the conditions possible. Note that we are testing the circuit
for specific number of times and observing the input in the applied key and input pairs. So we do not

have all the conditions possible but a finite number of conditions should give us the idea about the
satisfiable assignment of the variables that satisfies most of the conditions. So our problem changes
into finding out an assignment of variables for which maximum number of conditions are satisfied.

6.3.1 The Problem

We are going to use MaxSAT solver to find out the assignment of variables. The main problem that
remains now is that MaxSAT takes in clauses as input and tries to maximise the number of clauses
satisfied and finds a model for that particular optimal solution. But if we look at the conditions, the
conditions consist of XORs of many literals. Now even if we consider having two literals in the given
condition we can not give that particular condition as input to the MaxSAT as we need two clauses to
specify that condition. Recall that A® B |= (AA-B)V (mAAB) =—((AV-B)A(-AV B))
Therefore for A® B=0 = —((AV-B)A(-mAVB))=0 = (AV-B)A(-AVB)=
So we need two clauses (A V —B) and (—A V B). For more than two literals in the condition we are
going to require a lot of clauses to specify the CNF of the MaxSAT problem.

6.3.2 Tseytin Encoding

To solve the above problem we are going to use Tseytin Encoding for transforming the conditions
into form so that we will be able to give it as an input to the MaxSAT solver. We are going to
introduce new literals into the problem. Let the total number of conditions be c. Let X i Y*and K*
be the input given, output observed and the keys used in i*” testing.

Let P" = { p1,p2.ps...pq } the set of indices for which the input bits x,,, = 1, Vj € [d].

Let Q' = { q1,G2,93-.-qa } the set of indices for which the output bits Yp, = 1, Vj € [e].

Let R = { r1,ra,r3...r7 } the set of indices for which the input bits k., =1,Vj € [f]. Note that we
are talking about i'" testing as of for now. We define (d+e+f) new Variables 5} Vi€ [d+e+ f]. We

will represent the input,output and key bits into a single array T for it 1nput

ie. T* ={ @p, py - TpysYa1 Yo +Yae Ky 5Ty serkir .} in that order where 77 represents j
in that array T°.

Now we transform our condition by adding following conditions:

ith element

§1 0T < § Vield+e+f—1]
Here & = T Now after adding those conditions to the list of all the conditions for all the inputs i.e
Vi € [c] we can consider all those to be hard clauses in the MaxSAT problem (section 6.3.3).
Now

BT G E(E 2G0T)ANE 0T — &) (6.3.2.1)
;—1@]-H%f - (] 1@T;+1)\/§;
Theorem : —(¢! | ® T}) VE = (=& VT VE)N(E VT, VED

Proof. Weknow that & | & T7 ;= (=& AT, +1)\/§] VATE)

Therefore, _'(5171@ J+1) = _'((f' ; 1ATJ+1) (&1 AT510) E (2 ;'—1/\TJ+1) (5§71A
=T¢,) Let x be the formula (51 @ T7+1)

i+
X &y VT) A (=€, VT)
XV§§ ExV(EGAEGVT))
XVEEXVEGAEGY (&Y Ti) V(€1 V T10)

X\/fj' S ; ﬁT]+1) (ﬁfz 1V]+1)) (fl (f; Vv (; _‘Tg+1) (= ;71 \/T]+1)))

XVEE (G VT VE) A VT VE)

Hence,—\(fjl 1 @T]-ﬁ-l)\/g;’ ': (_‘f]l -1 VT +1 \/gl) (& LV]+1 VE;)
Therefore, (§) | ®T} ;) = & = (=€ _ VT VE)N(E / V-]+1\/§Z) (6.3.2.%

This theorem 6.3.2.2 converts the formula into CNF form. Now to convert the whole condition into
clauses we need to convert the remaining part into CNF form as well.

Theorem: (& — & T, q) B (§_1 VT o V&) A (= V T] V=)

Proof. Let I be the formula fz 16T +1 Observe that I is just —x

r ': (fg AN]+1) (_‘53‘—1 A TJ+1)

§—->TE-EVD
f —>F):ﬂ§ V(] 1/_|T]+1) (= ;‘71/\Tg+1)

f *F\—ﬂf \/(1/\ﬂTJ+1) (ﬁfy A g+1)\/L
f %F):ﬂf \/(1/\ﬁTJ+1) (= ;'—1 /\Tf+1) (f; l/_‘] 1)\/(Tf+1/\ﬁTg+1)

f _>F):(_‘§ /\(_‘f \/f; VT, +1V_‘§g 1V_‘TJ+1)) (f§—1/_‘Tg+1) (ﬁ ;’—1/\Tj+1) (§§—1/\ﬁf;—1)V(T;+1/_‘T]+1)

& =T E (& VT Vo)A (- VT V=)

Therefore,

& =& 1T b (Eo1 VT VoE) A (=€ V=T V=€) (6.3.2.3)

From claims 6.3.2.1, 6.3.2.2 and 6.3.2.3 we can convert the condition into CNF form as
follow:

5;‘71@TJ+1 Hf; = ((53;1\/71 11VE OA(= ;qvﬁT 11 V& (= jz VT +1\/§ A (& Vo ‘i+1V§§))
]

6.3.3 Hard and Soft Clauses

We are going to use the variant of MaxSAT in which we have a set of hard clauses which is basically
the set of clauses that must be satisfied among the set of all clauses. For the remaining clauses
MaxSAT tries to maximise the number of clauses satisfied and returns the optimal assignment of the
variables. In section 6.3.1 we said that there are conditions for each testing that where the number of
satisfied conditions are to maximised. So in order to maximise the number of conditions we need to
have a clause for each condition.

From section 6.3.2 we saw that the conditions can be converted into clauses using Tseytin encoding
but there are lots of clauses for each condition. Now the idea for giving input to MaxSAT is that
we will add the clauses generated in the section 6.3.2 as soft clauses. Now as soft clauses have to
be satisfied we will get some relationship between the original variables in the circuit and the newly
introduced variables. After that observe that §|iTi|—1 = 1 implies that i** condition is satisfied. So
there we have a clause for each of the testing and the clause contains only one literal aka & |iTi|—1'
So this is how we formulate our problem as a MaxSAT problem. Note that regardless of the
assignment of the newly introduced variables, the soft clauses are going to be satisfied for all the
possible assignments of the testing variables. We can easily prove this as the encoded clauses are just

representations of the conditions introduced earlier in section 6.3.2. Also each condition is equivalent
to:

m—1 n—1 k—1
aj * T; D @aj-&-m *Y; D @a7rl+n+j * k< g\Ti\—l
Jj=0 Jj=0 Jj=0

7 Attacking circuits locked with SFLL-fault plus random keys

7.1 Stripped functionality Logic Locking (SFLL)

After SAT attack was developed, research started happening on advanced locking techniques that
were resilient to SAT attacks. One of which was TTlock [17]. In TTlock, the original circuit is
modified for exactly one input pattern and the output for this protected pattern is restored using a
comparator block. Somehow if the attacker can remove the comparator block, he/she still is left with
a different design from the original circuit.

Motivated by TTlock, Yasin et al. [16] proposed stripped functionality logic locking (SFLL). SFLL is
resilient against most of the current attacks like SAT attacks and removal attacks [16]. It is based on
the concept of "strip and restore", where some part of the original circuit is removed and the intended
functionality is hidden. SFLL has three variants: SFLL-HD [16], SFLLflex [16] and SFLL-fault [19].

SFLL-HD (here HD stands for Hamming distance) allows the designer to protect a larger number of

input patterns as compared to TTlock. More specifically, SFLL-HD" protects (fl) input cubes which

are Hamming distance (HD) h away from the k-bit secret key. As a result SFLL-HD has a restriction
on the input cubes which can be protected.

In contrast, SFLL-flex®** allows to preotect any c selected input cubes, each with k specified bits.
In SFLL-fault, fault injection-based heuristics are applied to protect multiple input patterns.

The problem

We had two sets of benchmark circuits (available at [2] locked with x bits of SFLL-fault key plus x
bits of Random Logic Locking key where = = {40, 60, 80}. One of the set of benchmarks had their
corresponding oracle while the other didn’t have. Our objective was to break the circuits and extract
their keys.

Our approach

There doesn’t exist any well-known attack to break circuits locked with SFLL-fault logic locking
currently. However, we used some brain storming to get the keys of randomly locked gates. As
described above, SFLL circuits contain a cube stripper and functionality restoration unit other than
the original circuit. They basically consist of comparators which are hardcoded in the benchmark
circuits. We extracted the gates with these comparators and their outputs were grounded (set to 0).
We then removed the corresponding keys which were responsible for SFLL-fault. We were now left
only with circuits locked with random logic locking.

These circuits could be solved using Subramanyan’s SAT attack. However SAT attack requires the
benchmark of the original circuit but we only had their oracles. We modified the SAT attack to work
with oracles rather than benchmark circuits of the original circuit and found the keys of the randomly
locked circuits. The complete benchmarks, code and results are available at [20]

8 Future Work

We have tried the proposed Linear Cryptanalysis on small logic locking circuits. However we faced
certain challenges and our propositions to overcome them are:

1. The main obstruction was with a high number of key bits. It is practically infeasible to run
the algorithm checking each key bit for the random inputs. So we are trying to incorporate
the linear model into the SAT attack. SAT attack finds a CNF form of the function C, as
in the pseudocode. We are proposing to replace this function by the linear combination as
found above. We are hoping this might improve the SAT attack by eliminating SARLock
schemes as it will be reduced to a linear form.

2. The accuracy is not very high. In fact the key was estimated in a small fraction of the few
highly probably keys. So instead of taking random inputs to find the key counter, we will
aim to use the SAT solving technique to find the exact key value.

3. If a set of highly probable keys can be found, we can use a modified version of SAT attack
to find the actual key

References

[1] A. Baumgarten, A. Tyagi, and J. Zambreno. Preventing IC Piracy Using Reconfigurable Logic
Barriers. IEEE Design and Test, 27(1), Jan 2010.

[2] R.S. Chakraborty and S. Bhunia. Hardware Protection and Authentication Through Netlist Level
Obfuscation. In IEEE/ACM International Conference on ComputerAided Design, 2008.

[3] P. Subramanyan, S. Ray, and S. Malik. Evaluating the Security Logic Encryption Algorithms. In
2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2015.

[4] Matsui M. (1994) "Linear Cryptanalysis Method for DES Cipher", Helleseth T. (eds) Advances in
Cryptology — EUROCRYPT *93. EUROCRYPT 1993. Lecture Notes in Computer Science, vol 765.
Springer, Berlin, Heidelberg.

[5] D. Sirone, P. Subramanyan, "Functional Analysis on Logic Locking", Proceedings of Design
Automation and Test in Europe. (2019). Florence, Italy. March 2019.

[6] H. M. Heys, "A tutorial on linear and differential cryptanalysis", Journal Cryptologia Vol. 26
Issue 3, July 2002 pp. 189-221.

[7] Semiconductor Industry Association: Anti-Counterfeiting Whitepaper One-Pager.
http://www.semiconductors.org/clientuploads/directory/DocumentSIA/Anti%20Counterfeiting%20Ta
sk%?20Force/ ACTF%20Whitepaper%20Counterfeit%200ne %20Pager%20Final.pdf, 2013.

[8] E. Biham, A. Shamir, "Differential Cryptanalysis on DES-like Cryptosystems", Journal of
Cryptology, Vol. 4, pp. 3-72, (1991)

[9] S.M. Plaza and I.L. Markov. Solving the third-shift problem in ic piracy with test-aware logic
locking. In IEEE Transactions on CAD of Integrated Circuits and Systems, 2015.

[10] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security Analysis of Logic Obfuscation. In
Proceedings of the Design Automation Conference, 2012.

[11] M. Yasin, B. Mazumdar, S.S. Ali, and Sinanoglu O. Security Analysis of Logic Encryption
against the Most Effective Side-Channel Attack: DPA. In IEEE International Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems, 2015.

[12] M. Yasin, S.M. Saeed, J. Rajendran, and O. Sinanoglu. Activation of logic encrypted chips:
Pre-test or post-test? In Design, Automation Test in Europe, 2016.

[13] Y. Xie and A. Srivastava. Mitigating SAT Attack on Logic Locking. In International Conference
on Cryptographic Hardware and Embedded Systems, 2016.

[14] Y. Xie and A. Srivastava. Anti-sat: Mitigating sat attack on logic locking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2018.

[15] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu. SARLock: SAT attack resistant
logic locking. In 2016 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 236241, 2016.

[16] Muhammad Yasin, Abhrajit Sengupta, Mohammed Thari Nabeel, Mohammed Ashraf, Jeyavi-
jayan (JV) Rajendran, and Ozgur Sinanoglu. Provably-secure logic locking: From theory to practice.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 17, 2017.

[17] Muhammad Yasin, Abhrajit Sengupta, Benjamin Carrion Schafer, Yiorgos Makris, Ozgur
Sinanoglu, and Jeyavijayan (JV) Rajendran. What to lock?: Functional and parametric locking. In
Proceedings of the on Great Lakes Symposium on VLSI 2017, 2017.

[18] csaw-llc 2019: https://sites.google.com/nyu.edu/logiclocking19.

[19] A. Sengupta, M. Nabeel, M. Yasin and O. Sinanoglu, "ATPG-based cost-effective, secure logic
locking," 2018 IEEE 36th VLSI Test Symposium (VTS), San Francisco, CA, 2018, pp. 1-6.

[20] csaw-1lc 2019 project: https://git.cse.iitk.ac.in:spramod/csaw-11c-2019.git

	Introduction
	Logic Locking
	Attacks on Logic Locking
	The SAT Attack
	FALL Attack

	Contributions
	Applications from Cryptography: Linear Cryptanalysis
	Linear Cryptanalysis to DES S-boxes
	Linear Cryptanalysis on Logic Circuits

	Applying Linear Cryptanalysis
	Initial approach (Brute-force)
	Genetic approach
	MaxSAT:
	The Problem
	Tseytin Encoding
	Hard and Soft Clauses

	Attacking circuits locked with SFLL-fault plus random keys
	Stripped functionality Logic Locking (SFLL)

	Future Work

