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Abstract

Name of the student: Sayak Chakrabarti Roll No: 170648

Degree for which submitted: Bachelor of Technology
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Project title: An algorithm to find p-ordering of sets in succinct form 3

Project supervisor: Prof. Rajat Mittal
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The notion of p-ordering was introduced by Manjul Bhargava in his PhD thesis to

extend the definition of factorial functions to arbitrary subsets of Dedekind rings.

In this article we will focus only on subsets of integers and give an algortithm to find

p-ordering. p-ordering has several nice properties as well, one of them being a way

to represent polynomials modulo prime powers, that makes the analysis of root sets

easier. We also describe the motivation for analysis of root sets using a new concept

called representative roots (Panayi, PhD Thesis, 1995; Dwivedi et. al 2019), and

explore their properties.
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Chapter 1

Introduction

The study of polynomials in rings and fields has diverse applications in computer

science and mathematics, especially in error correcting codes [8, 14, 20, 21], cryp-

tography [10, 16, 18], computational number theory [1, 2] and computer algebra [15,

22]. The problem of factorization of polynomials and behavious of roots in rings

has also been studied extensively. Some examples of factorization of polynomials

in fields are [3, 4, 9]. However this becomes increasingly difficult when we move on

to rings instead of fields, especially in rings of the form Z/pkZ for a prime p and

positive integer k, that are not unique factorization domains.

The concept of p-ordering and p-sequences was introduced in [6], which is an impor-

tant tool to analyze properties of root sets and polynomials, that was done in [17].

The initial motivation for introducing p-ordering was to generalize the concept of

factorial functions to subsets other than just the set of integers. This concept was

applied for arbitrary subsets of Dedekind rings ([6]), but in our problem we work

on only subsets of rings of the form Z/pkZ. The report [7] deals with p-ordering in

subsets of integers.

In order to define p-ordering, we first need to define the valuation function wrt a

prime p.

Definition 1.1. Given a non-zero integer a, we define valuation wrt p, vp(a) = v if

and only if pv|a but pv+1 - a. If a = 0, we define vp(0) =∞.

1



Chapter 1: Introduction 2

Definition 1.2 (p-ordering). Given a subset S ⊆ Z, we define p-ordering as the

sequence (an) such that the following holds

• Any element is chosen from S as the first element a0

• For every i, ai is chosen from S\{a0, a1, . . . ai−1} such that vp((ai − a0)(ai −
a1) . . . (ai − ai−1)) is minimum

More properties have been described in Chapter 2. An example of p-ordering from

[13] is as follows. Given the set S = {1, 3, 4, 6, 9, 10}, two valid 3-orderings are

{4, 6, 1, 9, 3, 10} and {3, 10, 6, 4, 9, 1}.

An important problem in computer algebra and computational number theory is

analysis of root sets modulo prime powers.

Definition 1.3. A set S ⊆ R for a ring R is called a root set if there is a polynomial

f(x) ∈ R whose roots are exactly the elements of S.

We deal with the case when the ring R is of the form Z/pkZ. Note that this is

not a trivial problem. If we consider modulo p2, every subset is not a root set,

for example {0, p} is not a root set, but the smallest root set containing this is

{0, p, 2p, . . . (p − 1)p}. This concept of root sets was analyzed in [11] and [17] gave

explicit bounds and recursive formulas to calculate the number of root sets modulo

pk. The analysis of root sets also motivates the question of p-ordering, which will

be more clearly explained in Chapter 3.

After this we move closer to our main problem of finding a p-ordering. Note that

when we are given a subset of Z/pkZ which contains about O(p) elements, which is

exponential in log p! For this we will introduce the concept of minimal notation using

representative roots in Chapter 3, and move on to giving an efficient algorithm to find

p-ordering on a set given in this form in Chapter 5. This algorithm (Algorithm 1)

is a significant improve compared to the naive approach given in [6]. Furthermore,

[13] developed an algorithm to find p-ordering on a normal subset of integers as

well, not necessarily given in succinct representation. It also led to a method using

representative roots to count the total number of root sets modulo small powers of

p (given upto modulo p4 in [13]).



Chapter 2

p-ordering on subsets of integers

The definition of p-ordering is included in 1.2. This leads to many interesting prop-

erties which will be described in this chapter.

We have seen from the given example that a subset can have more than one p-

ordering. The set S was {1, 3, 4, 6, 9, 10} and the two valid 3-orderings were {4, 6, 1, 9, 3, 10}
and {3, 10, 6, 4, 9, 1}.
However note that the increase in valuations is the same in both, i.e. for i = [5], we

calculate vp((ai−a0)(ai−a1) . . . (ai−ai−1)). Considering the first term of this series

as vp(a0), we get the series as {30, 30, 31, 31, 32, 34}. However this sequence being the

same is not a coincidence! For this we first define p-sequence.

Definition 2.1 (p-sequence). For a given p-ordering (an), the p-sequence is defined

as the sequence (vn)

• v0 = 1

• vi = vp((ai − a0)(ai − a1) . . . (ai − ai−1))

We also denote each the ith of the p-sequence as vp(S, i), and refer to this as the

p-value at ith step.

[6] proved the following theorem for any generalized Dedekind ring. But since in our

article we are only concerned with integers, we restrict the ring to Z or Z/pkZ. The

analysis over integers has also been illustrated in [7].

3



Chapter 2: p-ordering on subsets of integers 4

Theorem 2.2. For any two p-orderings on a subset of Z, the associated p-sequences

are the same.

Bhargava also defined the generalized factorial, which in our case of subsets S ⊆ Z
is defined as

k!S = Πprimes pp
vp(S,k) (2.1)

Using this definition [7] showed several interesting properties that hold true for

normal factorials that we know, hold true for this generalized definition as well.

However in our article, since we deal with modulo only a single prime, we will write

k!S = pvp(k!S) in Chapter 3.

Lemma 2.3. For S ⊆ Z and k, l ∈ N, (k + l)!S is always divisible by k!Sl!S.

We define d(S, f) = gcd{f(a)|a ∈ S}. [7] also proved the following lemmas.

Lemma 2.4. For a primitive polynomial f of degree k, d(S, k)|k!S

Lemma 2.5. Let a0, a1, . . . an be n+ 1 integers. Then the product

Πi<j(aj − ai) (2.2)

is divisible by 1!S2!S . . . n!S

Lemma 2.6. The number of polynomials functions from S to Z/nZ is Πn−1
k=0

n
gcd(n,k!S)

.

In the proofs of these lemmas, an important lemma was proved, that will be used

in Chapter 3 as well.

Lemma 2.7. A polynomial f over integers, written in the following form, such that

(an) is a p-ordering

f(x) =
k∑
i=0

ci(x− a0)(x− a1) . . . (x− ai−1) (2.3)

vanishes on S modulo pe if and only if every term ci(x − a0)(x − a1) . . . (x − ai−1)
vanishes ∀i ∈ {0, 1, . . . k}
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Now we state a few more results related to p-ordering which will help in building

the algorithm.

Lemma 2.8. Let S ⊆ Z and (an) be a p-ordering, then

1. (a0 + x, a1 + x, a2 + x, . . . ) is a p-ordering on S + x for any x ∈ Z

2. (a0.x, a1.x, a2.x, . . . ) is a p-ordering on x.S for any x ∈ Z\{0}

The next theorem is from [17], another important theorem related to p-ordering,

which has been used to find a p-ordering on a subset of Z (not given in succinct

representation) in [13].

Theorem 2.9. Let S ⊆ Z, and Sj = {s ∈ S|s ≡ j mod p} for j = 0, 1, . . . p − 1.

Then for any x ≡ j mod p, we have

vp(Πa∈S(x− a)) = vp(Πb∈Sj
(x− b)) (2.4)

Although this theorem can be easily proved, it is a very important property, based

on which the algorithm to find p-ordering on a subset of integers has been developed

in [13].



Chapter 3

Root sets modulo prime powers

Root sets were defined in Definition 1.3. An important question in computer science

is to calculate the number of root sets modulo a prime power. We showed how every

subset S ⊆ Z/pkZ is not a root set. In order to find the total number of root sets

modulo a prime power, we make use of some elementary yet important properties

which were more elaborately proven in [11].

Theorem 3.1. If S is a root set modulo a power of prime p, then ∀j ∈ [p], Sj =

{a ∈ S|a ≡ j mod p} is also a root set modulo that power of p.

This theorem states that if we have a root set, we can reduce it to an union smaller

root sets. Similarly we can take an union of smaller root sets with elements congruent

to each other modulo p to find a bigger root set, given by the following theorem.

Theorem 3.2. If S0, S1, . . . Sp−1 is a collection of root sets modulo a power of p,

such that all elements of Si are conguent to j modulo p ∀j ∈ {0, 1, . . . p − 1}, then

S1 ∪ S2 ∪ . . . Sp−1 is also a root set modulo the same power of p.

Based on these theorems, we can reduce any general root set to root sets only having

elements divisible by p. This simplifies our analysis of counting root sets, as now we

will have to deal only with numbers which are congruent to 0 mod p. Now if we

have a root set of the form {pa1, pa2, . . . pan}, then we can reduce this to a root set

modulo a lower power of prime p. This is the basis of counting the number of root

6



Chapter 3: Root sets modulo prime powers 7

sets done by [17] which we will now explain.

First we define Npk to be the number of root sets modulo pk which contains only

elements that are divisible by p. Since we can write a root set S as (0 + S0) ∪
(1 + S1) ∪ . . . (p − 1 + Sp−1), where each of Si’s are root sets only with elements

divisible by p (Theorem 3.2), we infer that the total number of root sets is N p
pk

. So

it is sufficient for us to find the value of Npk to find the total number of root sets

modulo pk. [11] gives a table for some small primes and their powers, while [17]

gives an explicit recurrence relation with lower and upper bounds. The analysis also

extensively uses concepts from p-ordering as described in Chapter 2. We also denote

p-root sets modulo pk as root sets in Z/pkZ such that all the elements are divisible

by p.

Definition 3.3. For a p-ordering on S ⊆ Z, we define the smallest j such that

pk|vp(S, j) as µ(S, k). We also define µ(φ, k) = 0.

Lemma 3.4. Let S ⊆ Z/pkZ and (an) be a p-ordering on it.Given any polynomial

f(x) ∈ Z/pkZ, we can write f in the form

f(x) =
d∑
j=0

cj(x− a0)(x− a1) . . . (x− aj) (3.1)

for some cj ∈ Z/pkZ and d ≤ µ(S, k)

This result is inspired from Lemma 2.7. Note that when we consider S as a p-root

set, µ(S, t) ≤ t for every t. This means that over such p-root sets, the representation

of any polynomial f(x) will have degree less than or equal to k written in the form of

Lemma 3.4. However this is an unexpected result as we can choose a polynomial of

any degree, but there is always a representation, which gives the same evaluations,

but still has a lower degree. This representation of polynomials over p-root sets has

been exploited in the proofs of the theorems and lemmas due to [17] to be stated in

the remaining part of this chapter.

Lemma 3.5. If T = {s0p, s1p, s2p, . . . } ⊂ Z be a p-root set modulo pk, then S =

{s0, s1, s2, . . . } is a p-root set modulo pk−µ(S,k).
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The proof of this follows directly by using the representation of f given by Lemma

3.4 and considering the set of ai’s as a p-ordering over elements of T . Similarly we

can show the following lemma as well.

Lemma 3.6. Let S = {s0, s1, . . . } ⊂ Z be a root set modulo pk, then T = {s0p, s1p, . . . }
is a p-root set modulo pk+µ(S,k).

However from Lemmas 3.5 and 3.6, the reader might be tempted to think that

for two sets S, T such that T = p.S, µ(T, k + µ(S, k)) = µ(S, k) and the converse

µ(S, k − µ(T, k)) = µ(T, k) will hold true. However this is not true. We can show

that indeed r!T = prr!S, implying µ(T, k+µ(S, k)) = µ(S, k). However the converse

is not always true. Since µ(T, k) ≤ k, we can only infer that µ(S, k − µ(T, k)) ≤
µ(T, k). However if equality held in this, we would have been able to get a one-one

correspondence between T and S in Lemmas 3.5 and 3.6. But since this does not

hold true, we will be able to find a lower bound (not a precise recursion) for F (k, r)

defined as follows.

Definition 3.7. F (k, r) is defined as the number of p-root sets T modulo pk such

that µ(T, k) = r

Note that Npk =
∑k

r=0 F (k, r). Now we give a lower bound of F (k, r) using the

inequalities stated above.

Theorem 3.8. For a prime p > k, consider the function f(k, r) such that f(k, k) =

1, f(k, 0) = 1, f(k, r) = 0 for all r > k and otherwise, we have the recursion

f(k, r) =
∑

r0+···+rp−1=r

(
Πp−1
i=0 f(k − r, ri)

)
(3.2)

then F (k, r) is bounded below by f(k, r) ∀k, r

The proof follows from recursively breaking down a p-root set to root sets modulo

smaller powers of p. A formal proof can be found in [17]. Using a similar technique

of this proof leads to another result giving the upper bound of F (k, r) given as

Theorem 3.9. For a prime p > k, consider the function g(k, r) such that g(k, k) =

1, g(k, 0) = 1, g(k, r) = 0 for all r > k and otherwise, we have the recursion

g(k, r) = g(k − r + s, s) +
∑

r0+···+rp−1=r

(
Πp−1
i=0 g(k − r, ri)

)
(3.3)
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then F (k, r) is bounded above by g(k, r) ∀k, r

Theorems 3.8 and 3.9 give lower and upper bounds of F (k, r), which are polynomials.

The leading terms of both of f(k, r) and g(k, r) are 1
r!
pr(k−r). Furthermore [17]

showed that if k − r > 1 then for both polynomials, we can find the second largest

degree term as − 1
2(r−2)!p

r(k−r)−1. It can also be similarly shown that for fixed k < p,∑k
r=0 f(k, r) and

∑k
r=0 g(k, r) has leading term ckp

[ k
2

4
], while the second largest term,

for k > 4 is dkp
[ k

2

4
]−1, where ck and dk are defined as follows:

ck =

(
k

2
!

)−1
if k is even

=

(
k − 1

2
!

)−1
+

(
k + 1

2
!

)−1
otherwise

and for k ≥ 4,

dk =

(
k − 2

2
!

)−1
+

(
k + 2

2
!

)−1
−
(

2

(
k

2
!

))−1
if k is even

=
−1

2

((
k − 3

2
!

)−1
+

(
k − 5

2
!

)−1)

Hence the total number of root sets is Npk , which is approximately Θ(e
dk
ck (ckp

[ k
2

4
])p)

for k ≥ 4.

[17] also gave a more complicated recursion to explicitly obtain the function that

returns the total number of p-root sets modulo pk using more variables. We refer

the reader to Section 4 of [17] for more details regarding this.

Through this chapter we have seen the motivation to use p-ordering in root sets,

and methods to obtain µ(S, k) and other functions. Having an algorithm to do so

will help in this and related problems, giving us a clear motivation for Chapter 5.

But before moving on to the main algorithm, we also describe representative roots

and succinct representation in the next chapter as the tools will be used in the

development of the algorithm.



Chapter 4

Representative Roots and Succinct

Representation

Representatives were introduced in [19]. We will use the symbol ∗ as a representative,

which ”represents” an entire ring R. In our article we are mainly concerned with

rings of the form Z/pkZ for a prime p and an integer k ≥ 1.

In the case of R = Z/pkZ, we will use the notation y = y0 + y1p + . . . yip
i + pi+1∗

such that i+ 1 < k and yi ∈ R/〈p〉 ∀i. This representation of y stands for the entire

set Sy ⊆ R given by:

Sy = {y0 + y1p+ . . . ymp
m + zm+1p

m+1 + . . . zk−1p
k−1|zm+1, zm+2, . . . zk−1 ∈ R/〈p〉}

(4.1)

Notice that ∗ stands for the entire ring R but in this representation, we already have

fixed the first i+1-coordinates, and are left with the remaining k− i−1 ones. These

remaining coordinates are filled by all the elements of R and we get the size of Sy

as pk−i−1.

We will also sometimes denote a representative in the above form as y = β + pi+1∗,
where β ∈ R/〈pi+1〉. Now, for a polynomial f(x), y = β + pi+1∗ is termed as a

representative root if ∀a ∈ Sy, f(a) ≡ 0 mod pk.

Theorem 4.1 ([5]). A polynomial f(x) of degree d has at most d-many representa-

tive roots modulo pk.

10



Chapter 5: Representative Roots and Succinct Representation 11

Based on this, [12] developed an algorithm to return all possible roots in terms of

representative roots of a polynomial f(x) modulo pk in randomized polynomial time

(polynomial in k, log p, d). Note that the total number of roots might be exponential,

but the representative roots act as compact data structures that return exponentially

many roots in polynomial space.

This property of a succinct data structure gives us the motivation to represent sets

of integers of size O(pk) into more succinct form by considering them as an union

of several representative roots. For example the set (1 + 72∗) ∪ (9 + 73∗) ⊂ Z/75Z
contains about 392 numbers but we can represent them using only 2 representative

roots! A smaller example would be the set {1, 3, 6, 8, 11, 13, 16, 18, 21, 23} ⊂ Z/52Z
can be represented as the union of the representative roots 1 + 51∗ and 3 + 51∗.
In the rest of this chapter we give properties of representative roots and succinct

representation of subsets of Z/pkZ based on the analysis provided in [13]. We will

start by defining succinct/minimal representation.

Definition 4.2. Let S ⊆ Z/pkZ. A set of representative roots Srep = {r1, r2, . . . rl}
for ri = βi + pki∗ is said to be in minimal representation if

1. S = ∪li=1ri

2. 6 ∃ri, rj ∈ Srep such that ri ⊆ rj

3. ∀i, βi + pki−1∗ 6∈ S

[13] also proved the following theorem based on a few observations on representative

roots.

Theorem 4.3. Given any set S ⊆ Z/pkZ, the minimal representation is unique.

In order to prove this, we need the following lemma.

Lemma 4.4. For any two representative roots r1 = β1 + pk1∗ and r2 = β2 + pk2∗,
we have the fact that either they are disjoint, or one is contained in another.

Proof. Suppose that r1 and r2 are not disjoint. We prove this in two cases.

First let us assume that k1 = k2 = ` (let). Since β1, β2 ⊆ Z/p`−1Z, if there is an

element in their intersection, this implies ∃b, c such that β1 + p`b = β2 + p`c. Now
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considering this equation modulo p` we get β1 = β2 implying r1 = r2.

Now, WLOG assume there is an element in their intersection and k1 < k2. We can

find b, c such that β1 + pk1b = β2 + pk2c. Considering this equation modulo pk1 , we

have β1 = β2 mod pk1 . This implies there is some α such that β2 = β1 +pk1α. From

this we get r1 = (β2 + pk2∗) = β1 + pk1(α + pk2−k1∗) ⊂ r1.

Based on these results, we consider a set given in succinct representation and give

an efficient algorithm to find a p-ordering on this set in the next chapter.



Chapter 5

Main Result: An algorithm to find

p-ordering

In Chapter 3 we saw the importance of p-ordering in analysis of root sets modulo

prime powers. Since the recurrence given by [17] uses p-ordering to find the total

number of root sets, a natural question arises to find an efficient algorithm to return

a p-ordering on a subset of integers.

A naive approach was given in [6]. Given S ⊆ Z/pkZ, we can find a p-ordering by

checking using brute force which element gives the minimum valuation wrt p for the

expression given in Definition 1.2. When we have already chosen a p-ordering of

length l given by {a0, a1, . . . al−1}, the next element x is checked using brute force

on elements of S\{a0, a1, . . . al−1} to minimize vp((x − a0)(x − a1) . . . (x − al−1)).

This takes time O(n3k log p). Moreover, [13] gave a more efficient algorithm to find

p-ordering in O(n2k log p) steps. However note that if the given subset is exponential

(of the order of a polynomial in p) and we want to find p-ordering upto only a few

number of terms (since we usually need to find the value µ(S, k) which is usually

much less than the given susbet), this algorithm will not be quite efficient. This

gives us the motivation to find an algorithm for finding p-ordering on a subset of

integers given in succinct representation (Definition 4.2).

In Chapter 5 we saw how representative roots can be used to succinctly represent

a set S ⊆ Z/pkZ containing exponentially many values in much smaller space. An

example (from [13]) on a p-ordering on this is as follows.

13
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Given a set S = {1, 2, 4, 7, 10, 11, 13, 16, 19, 20, 22, 25} and a prime p = 3. Consider-

ing the ring Z/33Z, it can be written succinctly as {1+3∗, 2+32∗}. A 3-ordering on

this set is given by {1,2, 4, 7,11, 10,20, 13, 16, 19, 22, 25}. In this chapter, we give

an algorithm to find p-ordering like this with the set given in input as an union of

representative roots. The main theorem is as follows.

Theorem 5.1. Given a set S ⊆ Z/pkZ written succinctly in terms of d rep-

resentative roots, we can efficiently find a p-ordering on this set of length n in

O(d2k log p+ nk log p+ np) time.

We prove this theorem by giving an algorithm to compute p-ordering.

5.1 The Algorithm

In order to construct an algorithm, we need to consider the change of p-values corre-

sponding to the addition of each element from some representative root. We consider

d representative roots given to us for the minimal representation which are of the

form βi + pki∗ for i ∈ [d].

Lemma 5.2. If r1 = β + pk1∗, r2 = β + pk2∗ be two representative roots, then for

any a ∈ r1 and b ∈ r2,
vp(a− b) = vp(β1 − β2)

Proof. If a = β1 + pk1y1 and b = β2 + pk2y2 for some integers y1, y2, we have a− b =

(β1 − β2) + (pk1y1 − pk2y2). WLOG assume that k1 ≤ k2.

Now if vp(β1−β2) ≥ k1, then the first k1 coordinates in the p-adic decomposition β2 is

the same as β1, implying that r2 ⊆ r1, which is a contradiction, as the representative

roots are disjoint as given in the succinct representation.

Lemma 5.3. If S = {a0, a1, . . . } is a p-ordering, and Sj = {ai1 , ai2 , . . . } ⊆ S,

consisting of elements from S which correspond to the jth representative root taken

in the same order as in S, form a p-ordering
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Proof. First note from Lemma 2.8 that βj + pkj{0, 1, 2, . . . } is a p-ordering. So it is

sufficient to show that all the elements corresponding to rj in S are present in this

form in a valid p-ordering. We prove this using induction on the length of p-ordering.

For one element definitely we can choose any element from rj, and for the sake of

our algorithm we choose βj + pkj .0 = βj. This is a valid choice and hence base case

of induction is correct.

Suppose that we have added βj + pkj{0, 1, 2, . . . t − 1} to S in this order. Now, we

add another element, say x, from rj to the already existing p-ordering. Note that

this element will contribute only vp(βi − βj) to the p-value for any element from

representative root ri for i 6= j (Lemma 5.2) irrespective of the choice of x from

rj. So, we need to minimize the valuation added only due to the already existing

elements from rj in S. Now since βj + pkj{0, 1, 2, . . . t− 1} are the elements present

in S from rj until now, adding the element βj + pkj t gives us a valid p-ordering as

well. This concludes the proof.

Hence, from Lemma 5.3, we know that βj + pkj{0, 1, 2, . . . } are sub-sequences of the

required p-ordering. Our main task is to merge them properly such that valuation

wrt p is minimized at every step of addition of a new element.

Now, in order to consider the p-value, when we consider a new element x to be

added to the p-ordering, we need to take summation over vp(x − ai) for all ai’s

already added to the p-ordering. When we consider this summation, there can be 2

cases, x can belong to the same representative root of ai, or a different one.

If x and ai are from ith and jth representative roots respectively, vp(βi − βj) is

added to the p-value. However if they are from the same representative root, say

the ith representative root, we do that following. From Lemma 2.8, we get that

βi + pk1 .{0, 1, 2, 3, . . . } is a p-ordering. If there are already t elements in the p-

ordering from this ith representative root, when we add the (t + 1)th element next,

the p-value contributed due to this ith representative root will be tki + vp(t!). Using

this idea, we maintain the valuations array. The ith entry of this array basically

stores the p-value that we will encounter if we add an element to the already existing

p-ordering from the ith representative root. Also, due to Lemma 2.8, we know that

βj +pkj{0, 1, 2, . . . } is a p-ordering on elements of rj. Hence, we store pointers ij for

every representative root, which represents the number of terms already added to
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the p-ordering from the jth representative root. The next term to be added to the

p-ordering from rj will thus be βj + pkj ij, and we will increment ij by one.

Based on these, we minimize the p-value increase at every step and give the following

algorithm, Algorithm 1.

The inputs are given as n, the required length of the p-ordering and S, a set given in

minimal representation consisting of d representative roots r1, r2, . . . rd where each

of ri = βi + pki∗.

Algorithm 1 Find p-ordering from minimal notation

1: procedure Correlate(S)
2: Corr ← [0]d×d
3: Corr ← [0]d×d
4: for j ∈ [1, ..., d] do
5: for k ∈ [1, ..., d] do
6: Corr[j][k]← vp(βj − βk)
7: return Corr
8: procedure p-Exponent Increase(n)
9: vp(1)← 1
10: for j ∈ [1, ..., n] do
11: vp((j + 1)!)← vp(j + 1) ∗ vp(j!)
12: p exponent[j]← vp((j + 1)!)− vp(j!)
13: return p exponent

14: procedure Find p-Ordering(S, n)
15: corr ← Correlate(S)
16: increase← p-Exponent Increase(n)
17: valuations← [0]d
18: p ordering ← {}
19: i1, i2 . . . i|S| ← 0
20: for i ∈ {1, 2, . . . n} do
21: min← min{valuations}
22: index← argmin{valuations}
23: p ordering.append(βindex + pkindex ∗ iindex)
24: for j ∈ [1, ..., d] do
25: if j = index then
26: valuations[j]← valuations[j] + kindex + increase[ij]
27: else
28: valuations[j]← valuations[j] + corr(index, j)

29: iindex ← iindex + 1

30: return p ordering
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5.2 Proof of Correctness and Time Complexity

Theorem 5.4. Algorithm 1 correctly returns a valid p-ordering on S.

Proof. According to the definition of valuations array, we first show that it cor-

rectly stores the p-value which will occur if we add the next element from the ith

representative root in its ith entry. When we add a new element from the rj to the

p-ordering, we update valuations[t] in Step 33 for every i 6= j according to Lemma

5.2.

Now, when we update valuations[j], we have seen how the valuations corresponding

to the same representative root will be ijkj +vp((ij−1)!), for a pointer ij storing the

number of elements from rj in the p-ordering until now. However after adding this

element to the p-ordering, the p-value due to the same representative root would

be (ij)kj + vp((ij)!), and hence the increase is kj + vp((ij)!) − vp((ij − 1)!). This is

precisely what is being done in Step 31.

Next, we add an element from rj such that valuations[j] has minimum valuation

wrt p, and hence pertains to the definition of p-ordering (Definition 1.2)

Theorem 5.5. Algorithm 1 takes Õ(d2k log p + nk log p + np) time to return a p-

ordering of length n, where the set S ⊆ Z/pkZ is given as a union of d many

representative roots.

Proof. The procedure Correlate(S) runs a double for loop, calculating valu-

ations every time taking O(k log p) time, and hence takes Õ(d2k log p) in total.

The procedure p-Exponent Increase(n) runs a single for loop n times with

each iteration taking Õ(k log p)-time, and hence Õ(nk log p) due to this. Finally

in Find p-Ordering(S), the main for loop runs n-times and in each iteration

we perform operations taking Õ(d) time, and hence total time due to Find p-

Ordering(S) is Õ(nk log p). Adding these, the total time taken by Algorithm

1 is Õ(d2k log p+ nk log p+ np).

Proof of Theorem 5.1 follows from the proofs of Theorems 5.4 and 5.5.
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