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The notion of p-ordering was introduced by Manjul Bhargava in his PhD thesis to
extend the definition of factorial functions to arbitrary subsets of Dedekind rings.
In this article we will focus only on subsets of integers and give an algortithm to find
p-ordering. p-ordering has several nice properties as well, one of them being a way
to represent polynomials modulo prime powers, that makes the analysis of root sets
easier. We also describe the motivation for analysis of root sets using a new concept
called representative roots (Panayi, PhD Thesis, 1995; Dwivedi et. al 2019), and

explore their properties.
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Chapter 1

Introduction

The study of polynomials in rings and fields has diverse applications in computer
science and mathematics, especially in error correcting codes [8, |14, 20, 21|, cryp-
tography [10, 16, 18], computational number theory [1, 2] and computer algebra |15,
22]. The problem of factorization of polynomials and behavious of roots in rings
has also been studied extensively. Some examples of factorization of polynomials
in fields are [3} 4 |9]. However this becomes increasingly difficult when we move on
to rings instead of fields, especially in rings of the form Z/p*Z for a prime p and

positive integer k, that are not unique factorization domains.

The concept of p-ordering and p-sequences was introduced in [6], which is an impor-
tant tool to analyze properties of root sets and polynomials, that was done in [17].
The initial motivation for introducing p-ordering was to generalize the concept of
factorial functions to subsets other than just the set of integers. This concept was
applied for arbitrary subsets of Dedekind rings ([6]), but in our problem we work
on only subsets of rings of the form Z/p*Z. The report [7] deals with p-ordering in
subsets of integers.

In order to define p-ordering, we first need to define the valuation function wrt a

prime p.

Definition 1.1. Given a non-zero integer a, we define valuation wrt p, v,(a) = v if

and only if p¥|a but p**! {a. If a = 0, we define v,(0) = cc.
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Definition 1.2 (p-ordering). Given a subset S C Z, we define p-ordering as the
sequence (a,) such that the following holds

e Any element is chosen from S as the first element ag

e For every i, a; is chosen from S\{ao, a1, ...a;_1} such that v,((a; — ap)(a; —

ap)...(a; — a;—1)) is minimum

More properties have been described in Chapter 2 An example of p-ordering from
[13] is as follows. Given the set S = {1,3,4,6,9,10}, two valid 3-orderings are
{4,6,1,9,3,10} and {3,10,6,4,9,1}.

An important problem in computer algebra and computational number theory is

analysis of root sets modulo prime powers.

Definition 1.3. A set S C R for a ring R is called a root set if there is a polynomial

f(z) € R whose roots are exactly the elements of S.

We deal with the case when the ring R is of the form Z/p*Z. Note that this is
not a trivial problem. If we consider modulo p?, every subset is not a root set,
for example {0,p} is not a root set, but the smallest root set containing this is
{0,p,2p,...(p— 1)p}. This concept of root sets was analyzed in [11] and [17] gave
explicit bounds and recursive formulas to calculate the number of root sets modulo
p¥. The analysis of root sets also motivates the question of p-ordering, which will
be more clearly explained in Chapter [3]

After this we move closer to our main problem of finding a p-ordering. Note that
when we are given a subset of Z/p*Z which contains about O(p) elements, which is
exponential in log p! For this we will introduce the concept of minimal notation using
representative roots in Chapter 3}, and move on to giving an efficient algorithm to find
p-ordering on a set given in this form in Chapter . This algorithm (Algorithm
is a significant improve compared to the naive approach given in [6]. Furthermore,
[13] developed an algorithm to find p-ordering on a normal subset of integers as
well, not necessarily given in succinct representation. It also led to a method using
representative roots to count the total number of root sets modulo small powers of

p (given upto modulo p* in [13]).



Chapter 2

p-ordering on subsets of integers

The definition of p-ordering is included in (1.2, This leads to many interesting prop-
erties which will be described in this chapter.

We have seen from the given example that a subset can have more than one p-
ordering. The set S was {1, 3,4, 6,9, 10} and the two valid 3-orderings were {4,6, 1,9, 3,10}
and {3,10,6,4,9,1}.

However note that the increase in valuations is the same in both, i.e. for i = [5], we
calculate v,((a; —ao)(a; —a1) ... (a; —a;_1)). Considering the first term of this series

as v,(ag), we get the series as {3°,3% 3! 3,32 3*}. However this sequence being the

same is not a coincidence! For this we first define p-sequence.
Definition 2.1 (p-sequence). For a given p-ordering (a,,), the p-sequence is defined
as the sequence (v,,)

o yp=1

® VU, = vp((ai — CLO)(CLZ‘ — al) e (CLZ‘ - (li_1>)
We also denote each the i of the p-sequence as v,(S,4), and refer to this as the
p-value at i step.

[6] proved the following theorem for any generalized Dedekind ring. But since in our
article we are only concerned with integers, we restrict the ring to Z or Z/p*Z. The

analysis over integers has also been illustrated in [7].

3
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Theorem 2.2. For any two p-orderings on a subset of Z, the associated p-sequences

are the same.

Bhargava also defined the generalized factorial, which in our case of subsets S C Z
is defined as
k'!S = Hprimes ppvp(&k) (21)

Using this definition [7] showed several interesting properties that hold true for
normal factorials that we know, hold true for this generalized definition as well.

However in our article, since we deal with modulo only a single prime, we will write
klg = p*(*'s) in Chapter .

Lemma 2.3. For S CZ and k,l € N, (k+1)s is always divisible by k!sl!s.

We define d(S, f) = gcd{ f(a)|a € S}. [7] also proved the following lemmas.
Lemma 2.4. For a primitive polynomial f of degree k, d(S, k)|k!s

Lemma 2.5. Let ag,ay,...a, be n+ 1 integers. Then the product
Hi<j(aj - CL1'> (22)

is divisible by 11g2!g ... nlg

Lemma 2.6. The number of polynomials functions from S to Z/nZ is Hz;ém.

In the proofs of these lemmas, an important lemma was proved, that will be used
in Chapter [3] as well.

Lemma 2.7. A polynomial f over integers, written in the following form, such that

(an) is a p-ordering
k
fl@) =) clz—a)(z—ay)...(z—ai) (2.3)
i=0
vanishes on S modulo p¢ if and only if every term c;(x — ap)(x — ay) ... (z — a;—1)
vanishes Vi € {0,1,...k}
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Now we state a few more results related to p-ordering which will help in building

the algorithm.

Lemma 2.8. Let S C Z and (a,) be a p-ordering, then

1. (ap+ a1 + x,a0 + x,...) is a p-ordering on S + x for any x € Z
2. (ap.x,a1.x,a9.2,...) is a p-ordering on x.S for any x € Z\{0}
The next theorem is from [17], another important theorem related to p-ordering,

which has been used to find a p-ordering on a subset of Z (not given in succinct

representation) in [13].
Theorem 2.9. Let S C Z, and S; = {s € S|s = j mod p} for j =0,1,...p—1.

Then for any x = j mod p, we have

Up(llaes(z — a)) = vy(Hpes; (x — b)) (2.4)

Although this theorem can be easily proved, it is a very important property, based
on which the algorithm to find p-ordering on a subset of integers has been developed
in [13].



Chapter 3

Root sets modulo prime powers

Root sets were defined in Definition [I.3] An important question in computer science
is to calculate the number of root sets modulo a prime power. We showed how every
subset S C Z/ p*Z is not a root set. In order to find the total number of root sets
modulo a prime power, we make use of some elementary yet important properties

which were more elaborately proven in [11].

Theorem 3.1. If S is a root set modulo a power of prime p, then ¥j € [p], S; =
{a € Sla =3 mod p} is also a root set modulo that power of p.

This theorem states that if we have a root set, we can reduce it to an union smaller
root sets. Similarly we can take an union of smaller root sets with elements congruent

to each other modulo p to find a bigger root set, given by the following theorem.

Theorem 3.2. If Sy, S1,...5,-1 1s a collection of root sets modulo a power of p,
such that all elements of S; are conguent to j modulo p ¥j € {0,1,...p — 1}, then

S1USyU...S,_1 s also a root set modulo the same power of p.

Based on these theorems, we can reduce any general root set to root sets only having
elements divisible by p. This simplifies our analysis of counting root sets, as now we
will have to deal only with numbers which are congruent to 0 mod p. Now if we
have a root set of the form {pay, pas, ... pa,}, then we can reduce this to a root set

modulo a lower power of prime p. This is the basis of counting the number of root

6
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sets done by [17] which we will now explain.

First we define N, to be the number of root sets modulo p* which contains only
elements that are divisible by p. Since we can write a root set S as (0 + Sp) U
(1+S)U...(p— 14 Sp—1), where each of S;’s are root sets only with elements
divisible by p (Theorem , we infer that the total number of root sets is ./\/;;7 - S0
it is sufficient for us to find the value of AN, to find the total number of root sets
modulo p*. [11] gives a table for some small primes and their powers, while [17]
gives an explicit recurrence relation with lower and upper bounds. The analysis also
extensively uses concepts from p-ordering as described in Chapter [2, We also denote

p-root sets modulo p* as root sets in Z/p*7Z such that all the elements are divisible

by p.

Definition 3.3. For a p-ordering on S C Z, we define the smallest j such that
PFlu,(S, 5) as (S, k). We also define u(¢, k) = 0.

Lemma 3.4. Let S C Z/p*Z and (a,) be a p-ordering on it.Given any polynomial
f(x) € Z)p*Z, we can write [ in the form

flx)=) cilr—ap)(z—a1)...(x—aqj) (3.1)

<.
I Mg
(e}

for some ¢; € Z/p*Z and d < u(S, k)

This result is inspired from Lemma [2.7] Note that when we consider S as a p-root
set, u(S,t) <t for every t. This means that over such p-root sets, the representation
of any polynomial f(x) will have degree less than or equal to k written in the form of
Lemma (3.4, However this is an unexpected result as we can choose a polynomial of
any degree, but there is always a representation, which gives the same evaluations,
but still has a lower degree. This representation of polynomials over p-root sets has
been exploited in the proofs of the theorems and lemmas due to [17] to be stated in

the remaining part of this chapter.

Lemma 3.5. If T = {sop, s1p, s2p, ...} C 7Z be a p-root set modulo p*, then S =

{s0, 51, 82,... } is a p-root set modulo pF=H(Sk),
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The proof of this follows directly by using the representation of f given by Lemma
and considering the set of a;’s as a p-ordering over elements of T'. Similarly we
can show the following lemma as well.

Lemma 3.6. Let S = {sg,s1,...} C 7Z be aroot set modulo p*, thenT = {sop, s1p, ...}

is a p-root set modulo pFTHSH),

However from Lemmas and [3.6] the reader might be tempted to think that
for two sets S, T such that T = p.S, u(T,k + u(S,k)) = u(S, k) and the converse
(S, k — (T, k)) = u(T, k) will hold true. However this is not true. We can show
that indeed rlp = prlg, implying p(7', k + u(S, k)) = u(S, k). However the converse
is not always true. Since u(7,k) < k, we can only infer that u(S,k — u(7T,k)) <
p(T, k). However if equality held in this, we would have been able to get a one-one
correspondence between T' and S in Lemmas and [3.6] But since this does not
hold true, we will be able to find a lower bound (not a precise recursion) for F'(k,r)

defined as follows.

Definition 3.7. F(k,r) is defined as the number of p-root sets T modulo p* such
that u(T,k) =r

Note that N = S F(k,7). Now we give a lower bound of F(k,r) using the

inequalities stated above.

Theorem 3.8. For a prime p > k, consider the function f(k,r) such that f(k, k) =
1, f(k,0) =1, f(k,7) =0 for all v > k and otherwise, we have the recursion

fleory = Y (W f(k—rm)) (32)

ro+ o+ rp—1="

then F(k,r) is bounded below by f(k,r) Yk, r

The proof follows from recursively breaking down a p-root set to root sets modulo
smaller powers of p. A formal proof can be found in [17]. Using a similar technique

of this proof leads to another result giving the upper bound of F(k,r) given as

Theorem 3.9. For a prime p > k, consider the function g(k,r) such that g(k, k) =
1, g(k,0) =1, g(k,r) =0 for all r > k and otherwise, we have the recursion

glk,r)y =gk —r+ss)+ Y (Wglk—rr)) (3.3)

rot+-+rp_1="r
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then F(k,r) is bounded above by g(k,r) Vk,r

Theorems and give lower and upper bounds of F'(k,r), which are polynomials.
The leading terms of both of f(k,r) and g(k,r) are Lp"*="). Furthermore [17]

showed that if & —r > 1 then for both polynomials, we can find the second largest

degree term as —ﬁpr(k

Zf:o f(k,r) and Zf:o g(k,r) has leading term ckp[%, while the second largest term,

~7)=1 Tt can also be similarly shown that for fixed k < p,

for k > 4 is dkp[%]_l, where ¢, and dj, are defined as follows:

e\ !
Crp = (§'> if £ is even

—1 -1
= (El) + (E') otherwise
2 2
and for k > 4,

(5 (82) () o
() 05))

d 2
Hence the total number of root sets is N, which is approximately @(ef(ckp[kf])p)
for k > 4.

[17] also gave a more complicated recursion to explicitly obtain the function that
returns the total number of p-root sets modulo p* using more variables. We refer

the reader to Section 4 of [17] for more details regarding this.

Through this chapter we have seen the motivation to use p-ordering in root sets,
and methods to obtain u(S, k) and other functions. Having an algorithm to do so
will help in this and related problems, giving us a clear motivation for Chapter [5]
But before moving on to the main algorithm, we also describe representative roots
and succinct representation in the next chapter as the tools will be used in the

development of the algorithm.



Chapter 4

Representative Roots and Succinct

Representation

Representatives were introduced in [19]. We will use the symbol * as a representative,

which "represents” an entire ring R. In our article we are mainly concerned with

rings of the form Z/p*Z for a prime p and an integer k > 1.

In the case of R = Z/p*7Z, we will use the notation y = yo + y1p + ...y + p'Hx

such that i+ 1 < k and y; € R/(p) Vi. This representation of y stands for the entire

set S, C R given by:

L D T 2ty Zmaas 21 € R/ (p)}
(4.1)

Notice that * stands for the entire ring R but in this representation, we already have

Sy ={vo+yp+ .. Ymd™ + Zms1p

fixed the first ¢+ 1-coordinates, and are left with the remaining k —¢—1 ones. These
remaining coordinates are filled by all the elements of R and we get the size of S,
as pFim1,
We will also sometimes denote a representative in the above form as y = 8 + p*x,
where 8 € R/(p"™!). Now, for a polynomial f(z), y = 8+ p'™'* is termed as a

representative root if Va € S,, f(a) =0 mod p*.

Theorem 4.1 ([5]). A polynomial f(x) of degree d has at most d-many representa-

tive roots modulo p*.

10
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Based on this, |12] developed an algorithm to return all possible roots in terms of
representative roots of a polynomial f(x) modulo p* in randomized polynomial time
(polynomial in k, log p, d). Note that the total number of roots might be exponential,
but the representative roots act as compact data structures that return exponentially
many roots in polynomial space.

This property of a succinct data structure gives us the motivation to represent sets
of integers of size O(p*) into more succinct form by considering them as an union
of several representative roots. For example the set (1 + 7%%) U (9 + 7x) C Z/T°Z
contains about 392 numbers but we can represent them using only 2 representative
roots! A smaller example would be the set {1,3,6,8,11,13,16,18,21,23} C Z/5°Z
can be represented as the union of the representative roots 1 + 5'x and 3 + 5'x.
In the rest of this chapter we give properties of representative roots and succinct
representation of subsets of Z/p"Z based on the analysis provided in [13]. We will

start by defining succinct/minimal representation.
Definition 4.2. Let S C Z/p*Z. A set of representative roots S™ = {ry,ry,...7}
for r; = 3; + p¥ix is said to be in minimal representation if

2. Ar;,r; € 5™ such that r; C r;

3. Vi, B; —|—pki_1* Q S
[13] also proved the following theorem based on a few observations on representative
roots.

Theorem 4.3. Given any set S C Z/p*7Z, the minimal representation is unique.

In order to prove this, we need the following lemma.

Lemma 4.4. For any two representative roots ri = 31 + pF'x and ry = By + p2x,

we have the fact that either they are disjoint, or one is contained in another.

Proof. Suppose that r; and ry are not disjoint. We prove this in two cases.
First let us assume that k; = ky = £ (let). Since £, 3, C Z/p*~'Z, if there is an
element in their intersection, this implies 3b, ¢ such that 3; + p‘b = 35 + p‘c. Now
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considering this equation modulo p’ we get 5, = S5 implying 7 = 75.

Now, WLOG assume there is an element in their intersection and k; < ko. We can
find b, c such that B, + p*b = B + p*2c. Considering this equation modulo p*', we
have 3; = B2 mod p*'. This implies there is some « such that 3y = 3; +p* . From
this we get 11 = (8o + p*2x) = B1 + pM (a + pF2 M%) C ry. O

Based on these results, we consider a set given in succinct representation and give

an efficient algorithm to find a p-ordering on this set in the next chapter.



Chapter 5

Main Result: An algorithm to find

p-ordering

In Chapter |3| we saw the importance of p-ordering in analysis of root sets modulo
prime powers. Since the recurrence given by [17] uses p-ordering to find the total
number of root sets, a natural question arises to find an efficient algorithm to return
a p-ordering on a subset of integers.

A naive approach was given in [6]. Given S C Z/p*Z, we can find a p-ordering by
checking using brute force which element gives the minimum valuation wrt p for the
expression given in Definition [I.2] When we have already chosen a p-ordering of
length [ given by {ao,as,...a;—1}, the next element x is checked using brute force
on elements of S\{ag,a1,...a,—1} to minimize v,((x — ap)(x — a1) ... (z — @;—1)).
This takes time O(n3klogp). Moreover, [13] gave a more efficient algorithm to find
p-ordering in O(n*k log p) steps. However note that if the given subset is exponential
(of the order of a polynomial in p) and we want to find p-ordering upto only a few
number of terms (since we usually need to find the value u(S, k) which is usually
much less than the given susbet), this algorithm will not be quite efficient. This
gives us the motivation to find an algorithm for finding p-ordering on a subset of

integers given in succinct representation (Definition [4.2)).

In Chapter |5 we saw how representative roots can be used to succinctly represent
a set S C Z/p*Z containing exponentially many values in much smaller space. An

example (from [13]) on a p-ordering on this is as follows.

13
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Given a set S = {1,2,4,7,10,11, 13,16, 19,20, 22,25} and a prime p = 3. Consider-
ing the ring Z/3%Z, it can be written succinctly as {1+ 3%, 2+ 3%«}. A 3-ordering on
this set is given by {1,2,4,7,11, 10,20, 13,16, 19,22,25}. In this chapter, we give
an algorithm to find p-ordering like this with the set given in input as an union of

representative roots. The main theorem is as follows.

Theorem 5.1. Given a set S C 7Z/p*Z written succinctly in terms of d rep-
resentative roots, we can efficiently find a p-ordering on this set of length n in

O(d?klog p + nklogp + np) time.

We prove this theorem by giving an algorithm to compute p-ordering.

5.1 The Algorithm

In order to construct an algorithm, we need to consider the change of p-values corre-
sponding to the addition of each element from some representative root. We consider
d representative roots given to us for the minimal representation which are of the

form S; + p¥ix for i € [d].

Lemma 5.2. If r; = B+ p*x, ry = B+ p*2x be two representative roots, then for

any a € ry and b € ry,

vp(a —b) = v,(B1 — B2)

Proof. If a = By + p*'y;, and b = By + p*2y, for some integers y, vy, we have a — b =
(B1 — B2) + (P"y1 — p*2y). WLOG assume that k; < k.

Now if v, (51 —2) > ki, then the first k; coordinates in the p-adic decomposition f; is
the same as 31, implying that r, C ry, which is a contradiction, as the representative

roots are disjoint as given in the succinct representation. ]

Lemma 5.3. If S = {ag,a1,...} is a p-ordering, and S; = {a;,a;,...} C 5,
consisting of elements from S which correspond to the " representative root taken

in the same order as in S, form a p-ordering
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Proof. First note from Lemma that 38; + p*{0,1,2,...} is a p-ordering. So it is
sufficient to show that all the elements corresponding to r; in S are present in this
form in a valid p-ordering. We prove this using induction on the length of p-ordering.
For one element definitely we can choose any element from r;, and for the sake of
our algorithm we choose 3; 4+ p*.0 = ;. This is a valid choice and hence base case
of induction is correct.

Suppose that we have added 8; + p*{0,1,2,...t — 1} to S in this order. Now, we
add another element, say x, from r; to the already existing p-ordering. Note that
this element will contribute only v,(8; — ;) to the p-value for any element from
representative root r; for i # j (Lemma irrespective of the choice of x from
r;. So, we need to minimize the valuation added only due to the already existing
elements from r; in S. Now since 3; +p*{0,1,2,...t — 1} are the elements present
in S from 7; until now, adding the element 3; + p*it gives us a valid p-ordering as

well. This concludes the proof. O

Hence, from Lemma we know that 8; +p"{0,1,2,...} are sub-sequences of the
required p-ordering. Our main task is to merge them properly such that valuation

wrt p is minimized at every step of addition of a new element.

Now, in order to consider the p-value, when we consider a new element x to be
added to the p-ordering, we need to take summation over v,(z — a;) for all a;’s
already added to the p-ordering. When we consider this summation, there can be 2

cases, x can belong to the same representative root of a;, or a different one.

If x and a; are from " and j representative roots respectively, v,(3; — f3;) is
added to the p-value. However if they are from the same representative root, say
the " representative root, we do that following. From Lemma , we get that
B + p*.{0,1,2,3,...} is a p-ordering. If there are already t elements in the p-
ordering from this i** representative root, when we add the (¢ + 1)"* element next,
the p-value contributed due to this i*" representative root will be tk; + v,(#!). Using
this idea, we maintain the valuations array. The " entry of this array basically
stores the p-value that we will encounter if we add an element to the already existing
p-ordering from the i** representative root. Also, due to Lemma , we know that
B;+p"{0,1,2,...} is a p-ordering on elements of ;. Hence, we store pointers i; for

every representative root, which represents the number of terms already added to
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the p-ordering from the j** representative root. The next term to be added to the

p-ordering from r; will thus be 3; + p*i;, and we will increment i; by one.

Based on these, we minimize the p-value increase at every step and give the following
algorithm, Algorithm [T}

The inputs are given as n, the required length of the p-ordering and S, a set given in
minimal representation consisting of d representative roots rq, s, ...rqy where each

of r; = B; + pFix.

Algorithm 1 Find p-ordering from minimal notation

1: procedure CORRELATE(S)
2 Corr < [0]axa

3 Corr < [0]axa

4 for j € [1,...,d] do

5: for k€ [1,...,d] do
6 Corrljllk] <= v,(B; — Br)

7 return Corr

8: procedure p-EXPONENT_INCREASE(n)
9

vp(1) 1
10: for j €[1,...,n] do
11: up((J + DY) = v + 1) * v, (1)
12: p-exponent[j] < v,((7 + 1)) — v,(5")
13: return p_exponent
14: procedure FIND_p-ORDERING (S, n)
15: corr <+ CORRELATE(SS)
16: increase <— p-EXPONENT_INCREASE(n)
17: valuations < [0]4
18: p-ordering < {}
19: il,ig...i‘g‘ +~ 0
20: forie {1,2,...n} do
21: min <— min{valuations}
22: index < argmin{valuations}
23: p_ordering.append(Binges + P * dinges)
24: for j €[1,....,d] do
25: if 7 = index then
26: valuations[j] < valuations[j] + Kindex + increaseli;]
27: else
28: valuations[j| < valuations|j] + corr(index, j)
29: lindez < lindex + 1

30: return p_ordering




Chapter : Main Result: An algorithm to find p-ordering 17

5.2 Proof of Correctness and Time Complexity

Theorem 5.4. Algorithm [1] correctly returns a valid p-ordering on S.

Proof. According to the definition of valuations array, we first show that it cor-
rectly stores the p-value which will occur if we add the next element from the
representative root in its i entry. When we add a new element from the 7; to the
p-ordering, we update valuations[t] in Step 33 for every i # j according to Lemma
b2

Now, when we update valuations|j], we have seen how the valuations corresponding
to the same representative root will be i;k; 4 v,((i; —1)!), for a pointer ¢; storing the
number of elements from 7; in the p-ordering until now. However after adding this
element to the p-ordering, the p-value due to the same representative root would
be (i;)k; + vp((7;)!), and hence the increase is k; + v,((i;)!) — v,((i; — 1)!). This is
precisely what is being done in Step 31.

Next, we add an element from r; such that valuations[j] has minimum valuation

wrt p, and hence pertains to the definition of p-ordering (Definition O

Theorem 5.5. Algorithm |1 takes O(d?klogp + nklogp + np) time to return a p-
ordering of length n, where the set S C Z/p*Z is given as a union of d many

representative roots.

Proof. The procedure CORRELATE(S) runs a double for loop, calculating valu-
ations every time taking O(klogp) time, and hence takes O(d?klogp) in total.
The procedure p-EXPONENT_INCREASE(n) runs a single for loop n times with
each iteration taking O(klogp)-time, and hence O(nklogp) due to this. Finally
in FIND_p-ORDERING(S), the main for loop runs n-times and in each iteration
we perform operations taking O(d) time, and hence total time due to FIND_p-
ORDERING(S) is O(nklogp). Adding these, the total time taken by Algorithm
is O(d?klog p + nklog p + np). O

Proof of Theorem [5.1] follows from the proofs of Theorems [5.4] and [5.5



Bibliography

Leonard Adleman and Hendrik Lenstra. “Finding Irreducible Polynomials over
Finite Fields”. In: Proc. 18th Annual ACM Symp. on Theory of Computing
(STOC), 350 - 355 (1986). Nov. 1986, pp. 350-355. DOI: 10.1145/12130.
12166.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”. In:
Annals of mathematics (2004), pp. 781-793.

E. R. Berlekamp. “Factoring polynomials over finite fields”. In: Bell System
Technical Journal 46(8) (1967), pp. 1853-1859.

E.R. Berlekamp. “Factoring polynomials over large finite fields”. In: Mathe-
matics of Computation 24 (July 1970), pp. 713-735. DOI: |10.1090/S50025-
5718-1970-0276200-X.

Jérémy Berthomieu, Grégoire Lecerf, and Guillaume Quintin. “Polynomial
root finding over local rings and application to error correcting codes”. In: Ap-
plicable Algebra in Engineering, Communication and Computing 24.6 (2013),
pp. 413-443.

Manjul Bhargava. “P-orderings and polynomial functions on arbitrary subsets
of Dedekind rings”. In: Journal Fur Die Reine Und Angewandte Mathematik
- J REINE ANGEW MATH 1997 (Jan. 1997), pp. 101-128. por: 10. 1515/
crll.1997.490.101.

Manjul Bhargava. “The Factorial Function and Generalizations”. In: American

Mathematical Monthly 107 (Nov. 2000). DOI: |10.2307/2695734.

R.C. Bose and D.K. Ray-Chaudhuri. “On a class of error correcting binary
group codes *”. In: Information and Control 3 (Mar. 1960), pp. 68-79. DOI:
10.1016/S0019-9958(60)90287-4.

18


https://doi.org/10.1145/12130.12166
https://doi.org/10.1145/12130.12166
https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1515/crll.1997.490.101
https://doi.org/10.1515/crll.1997.490.101
https://doi.org/10.2307/2695734
https://doi.org/10.1016/S0019-9958(60)90287-4

Bibliography 19

[11]

[12]

[13]

[14]

[15]

[18]

[19]

David Cantor and Hans Zassenhaus. “A New Algorithm for Factoring Poly-
nomials Over Finite Fields”. In: Mathematics of Computation 36 (Apr. 1981).
DOI: 10.2307/2007663.

Benny Chor and Ronald Rivest. “A Knapsack Type Public Key Cryptosystem
Based On Arithmetic in Finite Fields”. In: IEEE Transactions on Information
Theory 34 (Sept. 2001). DOI: [10.1109/18.21214.

Bruce Dearden and Jerry Metzger. “Roots of Polynomials Modulo Prime Pow-
ers”. In: EBur. J. Comb. 18 (Aug. 1997), pp. 601-606. DOI: 10.1006/eujc .
1996.0124.

Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. “Efficiently Factoring Poly-
nomials Modulo p*”. In: International Symposium on Symbolic and Algebraic
Computation (ISSAC) (July 2019), pp. 139-146. DOI: |10 . 1145 /3326229 .
3326233

Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal. “On algorithms to find
p-ordering”. In: International Conference on Algorithms and Discrete Applied

Mathematics (CALDAM) (Feb. 2021).

A. Hocquenghem. “Codes Correcteurs D’Erreurs”. In: Chiffres, Revue de [’Association
Francaise de Calcul 2 (Jan. 1959).

Arjen Lenstra, H. Lenstra, and Laszlé Lovasz. “Factoring Polynomials with
Rational Coefficients”. In: Mathematische Annalen 261 (Dec. 1982). DOI: 10.
1007/BF01457454.

H. Lenstra. “On the Chor—Rivest knapsack cryptosystem”. In: Journal of
Cryptology 3 (Jan. 1991), pp. 149-155. DO1: 10.1007/BF00196908.

Davesh Maulik. “Root Sets of Polynomials Modulo Prime Powers”. In: J.
Comb. Theory, Ser. A 93 (Jan. 2001), pp. 125-140. DOI: 10 . 1006/ jcta.
2000.3069.

A. Odlyzko. “Discrete logarithms and their cryptographic significance”. In:
Advances in Cryptography, EUROCRYPT ’8}, Proceedings, Lecture Notes in
Computer Science 209 (1985), pp. 224-314.

Peter N Panayi. “Computation of Leopoldt’s P-adic regulator.” PhD thesis.
University of East Anglia, 1995.


https://doi.org/10.2307/2007663
https://doi.org/10.1109/18.21214
https://doi.org/10.1006/eujc.1996.0124
https://doi.org/10.1006/eujc.1996.0124
https://doi.org/10.1145/3326229.3326233
https://doi.org/10.1145/3326229.3326233
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF00196908
https://doi.org/10.1006/jcta.2000.3069
https://doi.org/10.1006/jcta.2000.3069

Bibliography 20

[20] I. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In:
Journal of the Society for Industrial and Applied Mathematics 8 (June 1960),
pp. 300-304. DOT: [10.2307/2098968.

[21] M Sudan. “Decoding Reed Solomon Codes beyond the Error-Correction Bound”.

In: Journal of Complezity 13 (Mar. 1997), pp. 180-193. DOI: 10.1006/ jcom.
1997.0439.

[22] Hans Zassenhaus. “On Hensel factorization II". In: Journal of Number Theory

1 (July 1969), pp. 291-311. por: [10.1016/0022-314X(69) 90047-X.


https://doi.org/10.2307/2098968
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1016/0022-314X(69)90047-X

	1858b7b730db506d898f73fdb2e4f4878c7d8d5030a9bead5c2e14220a72f18f.pdf
	Declaration
	Certificate
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	2 p-ordering on subsets of integers
	3 Root sets modulo prime powers
	4 Representative Roots and Succinct Representation
	5 Main Result: An algorithm to find p-ordering
	5.1 The Algorithm
	5.2 Proof of Correctness and Time Complexity

	Bibliography


