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Abstract

Polynomials can be factorized using various methods in fields which have been given by [Ber67],
[CZ81], [KU11] in finite fields, [LLL82] over rationals, [Lan85] over number fields, [Chi87], [CGO0O]
over p-adic fields etc. However there can be different factorizations when the ring is not a unique
factorization domain. In this project we explore the ways of factorization in rings of the form Z/p" Z
for a given prime p and an integer £ > 1 when it is given that the factorization splits the polynomial
completely into linear factors.
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1 Introduction

Polynomial factorization has been a famous question in the fields of mathematics and theoretical com-
puter science. There has been extensive work in this area and since the later half of the 20" century
several researchers have come up with factoring algorithms over various fields, for e.g. over finite fields
[Ber67], [CZ81], [KU11], over rationals [LLL82], number fields [Lan85], p-adic fields [Chi87], [CGO00] etc.
In our project we explore the techniques for factorization in rings of the form Zj’,f for a prime p and an
integer k. This has been reduced from factoring in the ring Z,, for any composite integer n, the reduction
of which follows easily from Chinese Remainder Theorem illustrated in the paper [vzZGH96a]. This has
widespread applications in error correcting codes and other branches of Computer Science. In this paper
our problem statement is to provide a factorization technique such that it yields the maximum number
of linear factors, from which we will eventually move on to providing a technique for maximum number
of factors of a polynomial.

The non-trivial nature of this problem can be illustrated by the following example.

Example 1.1 : Consider the polynomial 22 mod p?. This can yield one factorization (x)? and
another (z — p)(z + p), in which we are interested in the latter.

We have used the root find algorithm to find each representative root of a polynomial modulo prime
powers in randomized polynomial time. The representative roots modulo p¥ for a polynomial are of the
form A+ p's where A € Z/p'Z and * represents all the values that in Z/p¥~?Z. This is a compact datas-
tructure introduced in the paper [BLQ13] to find all the roots where the roots might be exponentially
many. [DMS19] gives an exposition of the algorithm which can be used to find all the roots in the ring
Z/p*Z.

To find a factorization we first find the representative roots using the ROOT-FIND algorithm. Then
building on the roots we attempt to find a factorization for the polynomial. We start by handling small
degree polynomials first.

In the following sections we start with explaining root sets of polynomials (Section 3) as they bear

resemblance with representative roots, explained later, as a set consisting of roots. After that a gentle
introduction to p-ordering sequences has been given in section 4.
In section 5 we explain some lifting techniques, mainly based on the papers [vzGH96a], [vzGH98] as
they give an idea of the factorization problem for integral polynomials modulo powers of primes. This
is followed by Section 6 giving a description of Representative Roots and an algorithm to find roots of a
polynomial in rings of our interest, which will be extensively used in our factorization techniques.

2 Preliminaries

Let R(+,.) be a ring and S be a subset of R. We denote aS = {a+ s|s € S} and a+ S = {a + s|s € S}
for any a € R.

Throughout this paper we are mainly interested in rings which are of the form Z/nZ, often written as
Z,, which is the ring taking modulo with n. However instead of n we work with p* for some prime p and
an integer k > 1 using the reduction using Chinese Remainder Theorem. Unless specified p will always
denote a prime integer and k will be an integer greater than or equal to 1, while n be represented as a
composite number.

Rest of the notations used as preliminaries have been explained in their respective sections to make this
paper more self-contained.

3 Root Sets of polynomials modulo prime powers

Root set R modulo n refers to a set of integers in Z/nZ such that there exists a polynomial in (Z/nZ)[x]
the roots of which are exactly the elements of R.
The analysis of properties of root sets presented in this chapter is based on the paper [DM97].



For an integer j and another integer m > 1, we define
=0 -G -2)...(—m+1)

Now for a prime p, the highest power of p in the factorization of n € N is denoted by €,(n). It can be
easily shown that
o0
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€p(0) is defined to be +oo

In the rest of this section we give some theorems on root sets of polynomials modulo powers of primes,
and how the can be decomposed into root sets which are divisible by p.

Lemma 3.1: For integers j,m > 0 we have €,(j™) > e,(m!)
Proof: We have e(j2) = ep((jfiin)!) =¢,(j!) — €,((j —m)!). Now we have [z] — [y] > [z — y] from which
the following result follows:

oo
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= ¢,(m!)

Lemma 3.2: If jm! =0 mod p* then for every t € Z,x we have j.t™ =0 mod pk.
Proof of lemma 2.2 follows directly from lemma 2.1 as the power of p in j.m! is less than that in j.t™.

Based on these results the following theorems can be inferred, proofs of which can be found in [DM97].

Theorem 3.3: Let R be a root set modulo a prime power p*, for prime p and an integer k. Then
for each j =0,1,2...,p—1, there is a polynomial f;, the root set of which is exactly R; = {r € Rjr =j
mod p*}

Theorem 3.4: Let Ry, Ri,... Rp—1 be root sets modulo p* with R; having elements congruent to j
modulo p, then Ry UR; U---U R,_; is a root set modulo pk.

Theorem 3.3 shows that a root set can be decomposed into p disjoint segments with constant remain-
der modulo p while Theorem 3.4 says that given segments with constant remainder modulo p we can
join them together to give a bigger root set.

Theorem 3.5: If R is a root set modulo n, then j + R is also a root set modulo n for every j € Z,
Proof: If a polynomial f(x) has a root set as R then the polynomial f(x — j) has the root set j + R.

Based on these results we can restrict ourselves to finding root sets modulo p* to finding root sets
elements of which are divisible by p in Z.

4 p-ordering sequences and Factorial function generalization

This section shows how factorial functions can be generalized over subsets of integers other than the
entire set of integers. For this we describe the concept of p-ordering introduced in the paper [Bha00].
In this section we deal with subsets of Z only as we do not need the generalized version in our problem
of factoring polynomials. However a generalized version of these properties over arbitrary Dedekind
Domains can be found in [Bha97].

Definition 4.1: Given an integer a and a prime p we define the function v,(a) as
vp(a) =0 if a # 0 and p¥|a but p**
=0 ifa=0

Definition 4.2: [p-ordering] Let S be an arbitrary subset of Z and p be a given prime. A p-ordering
of S is a sequence which is formed inductively as follows:



Choose any element ag € S

Choose another element a1 € S such that v,(a1 — ag) is minimum.

Choose an element as € S such that v,((az — ap)(az — a1)) is minimum.

For the k" step choose a € S such that v,((ax — ag)(ax —a1) ... (ax — ax—1)) is minimumm.

Definition 4.3: We define v,(S, k) as the power of the prime p in the product (ar — ao)(ar —
ay)...(ag — ax—1) where {a, } forms the p-ordering sequence.

Definition 4.4:We define the associated p-sequence as the sequence of powers of primes associated
with a p-ordering sequence.

An important theorem with p-ordering sequences are:
Theorem 4.5: The associated p-sequence is unique for a given subset S C Z and a given prime p.

Note that p-ordering sequence might not be unique as we can start with any element in ag and then
as we inductively continue we can have a number of choices to choose from. But Theorem 4.5 states that
the powers of the prime p associated with the p-ordering sequence is always unique despite the choice of
the p-ordering, which has been proved in [Bha00].

We now show how a p-ordering sequence over subsets of Z behaves quite like the factorial function in Z
based on the results shown in [Bha00] which gives us a motivation that this might be useful in considering
p-ordering for our problem of factorization.

Definition 4.6: The factorial function of a set S upto k terms is denoted by k!g and is defined as
kls = (prime p)Vp(S, k)
Note that when we have the set S as Z this gives us the value of factorial over integers.
Lemma 4.7: For non-negative integers k and [, (k 4+ 1)!s is a multiple of k!gl!s.

In the following part we give some lemmas showing how this generalized factorial function acts as
normal factorial function over natural numbers, proofs of which can be directly found in [Bha00].
We denote d(S, f) = ged{f(a)|a € S}.

Lemma 4.8: For a primitive polynomial f of degree k, we have d(S, f)|k!s.
Lemma 4.9: Let ag,aq ...a, € S be any n+1 integers. Then we have 0lg1!s2!g ... nls|l;<;(a; —a;).
Lemma 4.10: The number of polynomials from S to Z,, is given by HZ;&WMS).

From this we note that p-ordering sequence behaves as normal factorials too. Also suppose that {a,}
is a p-ordering sequence in S then ay, is a root of f(z) = (z — a1)(x — ag)...(r — ar_1) mod p¥»(Sk),
which motivates the question, if there is any p-ordering relation in the roots of a polynomial in a given

set of integers.

5 Lifting of factorizations and Resultants

In this section we deal with lifting of a factorization. Lifting is basically the method of finding a factor-
ization of a polynomial modulo higher powers of an ideal given a factorization modulo that ideal and
subject to certain constraints. In our problem, we are restricted to working in the ring 7, for some



prime p (the ideal is (p), an ideal of Z). The contents of this section are broadly based on the work by
[vzGH96a], [v2GH96b] and the report by [K1i97].

First we need the notion of units in the ring Z,[z]. An unit is defined as an element v such that Ju’ in
the same ring and we have uu’ = 1.

Lemma 5.1: Given a polynomial f(z) and a prime p we can write it as f(x) = a(x) + pg(z) for
a(zx) € Z,[x].
Proof : For f(z) =Y, a;x" we can write it as )_,(c; + pb;)x’ where ¢; is the remainder on dividing a;
by p and b; is the quotient. So we choose g(z) = >, b;z* and a(z) = Y, ¢;a".

Theorem 5.2: For the ring Z,[z], an element is a unit if and only if it is of the form a + pf(x)
where a € Z,\{0} and f(x) € Zyr-1[z].
Proof: If we have a unit v € Z,[z] and another element v’ in the same ring such that uu’ = 1. Now
we know that u = fi +pfs and v’ = f] + pfs for some fi, fi € Zp[z] and fo, f5 € Zye-1[z], from the
previous lemma. From wu’ =1 in Z,» we have

(fi+pf)(fi +pf3) =1
= fifi+p(..)=1+p0
= fifi=1

Now f1, f] are both polynomials and by multiplication their degrees cannot reduce. So we indeed have
both of them as constants as right hand side of the equation does not consist of any variables. So
f1, fi € Z, and since they are units they belong to the group of units, i.e. Z,\{0}.

Now for the only if direction. Suppose we have an element of the form a+pf for a € Z, and f € Zjx-1[z].
So we have f = a(l — a='(—p)f). Consider the element obtained from the binomial expansion of
= =1+h+h*+h*+. ... We have

S
(1 —a"'(=p)f)

This is true as the higher terms have a factor of p* which is zero in Zyk. So we have an element u ™!
which exists in Z, [] such that wu~! =1, which implies u is a unit.
This also implies that if f mod p is a unit then f mod p* is a unit as well, and vice versa.

u Tt =a"l( )=a 1+ (@ (=p)f) + (@ (=p)f)? + -+ (@ (=p) )"

Now we move on to finding factors of a polynomial in Z,+ given a factorization in Z,. We already
have given factorizations in fields like in Z, and in this section we introduce a lifting technique to ”lift”
this factorization to mod p* from mod p. This lifting technique is due to Hensel (explained in detail
in [BS96]).

Theorem 5.3 [Hensel’s Lemma| If p is a prime and f, g, h € Z[z] be polynomials with gcd(g, h) =1
in Z,[z] and f = gh # 0 mod p then there exists polynomials §, h such that f = gh mod p* and g =g
mod p, h=h mod D.

Proof: We give an algorithm for finding such § and h. First find A and g in Zp|z], deg(A) < deg(h),
deg(p) <deg(g), such that A\g + ph =1 mod p (This can be done using Extended Euclidean Algorithm
which is explained in more detail in [vzGG99)).

Next we iteratively lift the factorization to modulo higher powers of p.



Algorithm 1: Hensel Lifting

Input : f, g, h, notation same as above
Output : g, h, notation same as above

Fori=2,3...k; do {
q<—’;?_glh mod p;
u < qu mod g;

v < g\ mod h;
g g+p Tty

h < h+p~lu;

%

return j =g, h = h;

The proof of correctness is my induction on i. Suppose that we have f = gh mod p’~!, then the
construction of ¢ is valid as p'~!|f — gh. Now it can be verified by substituting values of u, v, ¢ and using
the fact that ug + vh = ¢ mod g and ug + vh = ¢ mod h from which we get, using Chinese Remainder
Theorem that uh +vg = ¢ mod p*, that f — (g + p*~tu)(h +p'~1v) =0 mod p’.

A more detailed proof can be found in [K1i97].

Theorem 5.4: Hensel’s lifting is unique upto multiplication by units.
A proof of this can be found in [BS96].

Now notice that Hensel Lifting cannot be done if the polynomial does not factorize into coprime fac-
tors modulo p, which is basically when the polynomial f is of the form ¢™ modulo p for some polynomial
¢. [vzGH96a], [vzGHI6b] had given algorithms by solving simultaneous equations to find the factoriza-
tion of polynomials of these form. Before introduction to that algorithm we need to define Resultant of
two polynomials.

Theorem 5.5: Let f,g € Z[z] be polynomials of degrees [ > 0 and m > 0 respectively. Then f and
g have a common factor of degree greater than or equal to 1 if and only if there exists polynomials A, B
satisfying the conditions:

1. AB#0
2. deg(A) <m —1and deg(B) <1—-1
3. Af+Bg=0

Proof: Suppose that we have f, g with a common factor h, deg(h) > 1 and that f = f1h,g = gih. Then
consider the polynomials A, B as A = g1, B = —hy. It can be verified that all the three conditions are
satisfied.

For the other direction, we are already given with polynomials A, B such that the three conditions are
satisfied. Let us assume f, g does not have any common factor and hence their ged is 1. So by Extended
Euclidean Algorithm we can find polynomials A’, B’ with deg(B’) <deg(f), deg(B’) <deg(g) such that
A’'f + B’g = 1. Now since we have Af + Bg = 0, multiplying the previous equation by B we get

B=B(A'f+B'g)= ABf + B'(Bg) = (A'B— AB)f

Now we already had the condition that B # 0 and degree of B is strictly less than f which is violated
by the above equation where the right hand side is either 0 or has a degree greater or equal to than that
of f. This gives a contradiction and hence f and g must have a common factor of degree atleast 1.

Now in order to check if f and g have a common factor we need an algorithm to determine so. This
problem reduced to finding a solution to a set of simultaneous equations. Let A = co+ciz+...cmo12™ !
and B = dy + dix + ...dj_12'71. We also write f = ap + a1z + ... a;z" and g ="by+ b+ ...bpzx™.
Substituting accordingly we get the set of simultaneous equations:

apCo +  bodo =0 Coefficient of z/T™m~!



aico + aocy + bidg + bod; =0 Coefficient of z/T™2

a;Cm—1 + bmdi—1 =0 Coefficient of z°
Now we introduce the sylvester matrix.
Definition 5.6 : Given polynomials f, g, notation as above, the Sylvester matrix of f and g is the

coefficient matrix of the set of the above system of equations. Let us denote Sylvester matrix of f, g as
S(f,g) by the following (I +m) x (I + m) matrix:

ap bm
a1 - bm—1
b'”L
ai—1  bo
ag bo

The empty spaces other than inside of the dots are filled with zero.
The Sylvester matrix is the coefficient matrix of the above system of equations. The resultant of poly-
nomials f, g denoted by Res(f,g) is the determinant of their Sylvester Matrix, i.e. Res(f,g) = [S(f,9)|.

Theorem 5.7: Given two polynomials f,g € Z[z], f and g have a common factor of degree greater
than or equal to 1 if and only if Res(f,g) = 0.
Proof: f,g donot have a common factor when there exists polynomials A, B such that Af + Bg = 1. If
A
B
1 and the rest of the coefficients of 2 are zero. Now they have a solution if |S| # 0, by Cramer’s rule.
From this the proof of Theorem 6.7 follows.

we construct a vector of the form (g) them S'x ( ): (?) has a solution, i.e. the constant term is

Theorem 5.8: Given f,g € Z[z], A, B € Z[x] with degrees less than those of g and f respectively,
such that Af + Bg = Res(f, g).
Proof: If f,g have a common factor, then resultant is 0 and we know from Theorem 5.5 that these
polynomials do exist. Suppose they donot have a common factor, we have A’, B’ with same degree
constraints such that A’f + B’g = 1. Now from the equations:

aoco + bodp =0 Coefficient of z!/t™m~1

ai1co + apcy + bidg + bod; =0 Coefficient of z/t™2

aiCm—1 + bmdi_1 =1 Coefficient of z°

We can solve these equations by Cramer’s rule to give the determinant with some coefficients in the
numerator and the determinant of the Sylvester matrix in denominator to give:

A
 Res(f.9)
(frg

/

B =

Res )

for some polynomials A and B, which we can find as we know A’, B’ from Extended Euclidean Algo-
rithm. Now from A’f + B’g = 1 it follows that for such A, B, we have Af + Bg = Res(f,g) where
deg(A) =deg(A’), deg(B) =deg(B’).



Definition 5.9: We define the discriminant of a polynomial f(z) = ag + a1z + ...a;z! as

CUZ pestr )

aj

1(1—1)

disc(f) =
where f’ is the derivative of f(z) wrt .
We will denote 7(f, g) = v,(f,g) and d(f, g) = v,(f,g) for polynomials f,g € Z[z] and prime p.

Theorem 5.10 [Hensel’s Lemma IT] Given a prime p, k¥ € N and polynomials f,u,w € Z[x] of
degrees n + m, n, m respectively satisfying the following properties:

1. f=ww mod p* with le(f) = le(uw)
2. Res(u,w) # 0
3. k> 2r(u,w)

Then there are polynomials g,h € Z,[x] such that f = gh in Z,, g = v mod ph—rlww) p= gy
mod pF—"(w®) for every t.

Proof: We provide an algorithm from which the proof follows. We have to inductively construct polyno-
mials ¢;,1; € Z[z] such that if f = ab mod z*t"~! with a,b € Z[z] with a =« mod pF—"(®) h =
mod pF~"(w®) then we will have

f = (CL +pk7r(u,w)+i+1wi)(b +pk7r(u,w)+i+1¢i) mod pk+i

Now from the fact that ¢ = v mod p*~"(“®) b = v mod p*"(»®) it can be shown that r(a,b) =
r(u,w). More elaborate proof can be found in Lemma 3.10 of [vzGH96a]. From theorem 6.8 we have
polynomials A, B such that

res(a,b) = Aa + Bb

— Aa+ Bb = p"(@b)] = prluw);

for some polynomial [. Considering ¢; = A and ; = B the lifting properties can be verified, i.e. we can
show _ ' _
f . (a +pk7r(u,w)+z+1¢i)(b +pkfr(u,w)+z+1¢i) =0 mod pk+z

This proves Theorem 5.10.

This can be extended when f has more than 2 factors. Let f = ITi<;<;g; over Z,), with disc(f) # 0,
| > 1land g; € Z(;,) be monic and irreducible for all i. Let f = gh mod p¥ with g, h € Z[x] and k > d(f).
Then there exists a partition {1,2,...,1} = SU S’ such that g = Il;c5g; mod p*~7) and h = I c5g;
mod p*~7 where o = r(Il;cs9:, Hjes g;).-

This above lifting procedures given were when f had two coprime factors. However we cannot
continue the same if f is a perfect power of some other polynomial. For this here is an algorithm for
lifting proposed in the paper [vzGH96b].

Theorem 5.11 : Let f = uw mod p* and f = ¢g° mod p for some polynomial g which is irreducible
over Zp[z] and e > 2. We also have u, w as monic and u = ¢ mod p,w = ¢°~! mod p for some | < 5.
Then the following are equivalent:

1. % € Z[z] and is divisible by g’ over Z,,.

2. For every ¢ € Z[z], deg(¢) <deg(u) there exists a polynomial ¢ € Z[z] with deg(y) <deg(w) such
that f = (u+ p*¢)(w + p¥1p) mod pF+!

3. There exists polynomials ¢,¢ € Z[z], with deg(¢) <deg(u), deg(¢h) <deg(w) such that f = (u +
P*e)(w +pM) mod pttt

4. There exists polynomials ¢, € Z[x] such that f = (u + p¥¢)(w + pFy) mod pk+!



Proof: For (1) = (2) we have f;}jw = g'a mod p for some a € Z[z]. For any ¢, choose 1) = a—g°~?'¢
mod p. From this is can be verified that f = (u + p*¢)(w + p¥1») mod pF+l.

Now we have (2) = (3) = (4) trivially.

For (4) = (1), let we have ¢, psi as mentioned such that f = (u + p*¢)(w + p*1) mod p**+!. Then

T = but vu =gl tog" +0) mod p

This is the proof of theorem 5.11.

For using 6.11 we need to find a proper ¢ with coefficients as variables satisfying lifting condition
such that the lifting continues for more powers than p*+!. However these unknowns get really messy
and some examples can be found in [vzGH96b].

6 Representative Roots and the ROOT-FIND Algorithm

Rings of the form Z,x for some prime p and integer k¥ > 1 are not integral domains and hence polynomials
of degree d can have more than d roots. The goal of this section is to use an algorithm which returns all
the roots of the polynomial in randomized polynomial time. However the roots of a polynomial can be
exponentially many, for which we use the concept of representative roots.

For example the polynomial f(z) = 2%2—92+8 in Z74 has the set of roots {1, 8,344, 351, 687,694, 1030, 1037,
1373, 1380, 1716, 1723, 2059, 2066 }, which are of the order O(p®), which is exponentially many. However
it can be seen that all the roots of a polynomial in Z,» can be decomposed into sets of form a + piy for
some a € Zpi and Vy € Zyk—i—1. This gives us a notion of representative roots.

Representative roots are roots of a polynomial written in the form a + p’+ which means that all the roots
have the form a + p’y for every y € Zpr—i-1. The symbol * represents the entire ring y € Z,x—i—1 and a
is a p-adic integer. This can be seen as a compact datastructure to represent exponentially many values
(exponential in log p). For a in the form ag + aip + asp? +...a;—1p"~* for some a;’s € Z, then we have
the set of representative roots as

Sa = {ao +arp+azp® +..caimp” Fyp' Fyep™ 4 F g™ y; € Z,)
We will consider * as an entire ring, R and the following convention of writing will be followed:
o u+ {x}={u+x*}u{x}={ux}Vue R
o c+{a+bx} ={(a+c)+bx},c{la+ bx} = {ca+ cbx}Va,b,c € R

Representative roots and the notation {+} has been explained in greater detail in the recent paper
[DMS19] which gives a factorization technique for polynomials upto modulo p*

Definition 6.1: For a p-adic number n of the form ag + pa; + p%as + ...p"ay,, we define the "
coordinate of n as the coefficient of p? in its p-adic representation, i.e. a; in this case.

Definition 6.2: For two p-adic numbers [ and n we say they are truncated upto i if j** coordinate
for both [ and m are equal for 0 < j < i. We say,

trp(l,m) =1

In our problem we use the ROOT-FIND algorithm introduced in [BLQ13] to give all the representa-
tive roots of a given polynomial in a ring of the form Z,» in randomized polynomial time. A better and
more generalized version of that algorithm can be found in [DMS19].

Theorem 6.3 A polynomial of degree d over Z/p*Z can have atmost d many representative roots,

all of which are returned by the ROOT-FIND algorithm.
A proof of Theorem 6.3 can be found in [BLQ13]
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7 Main Results: Factorization using Representative Roots

Next we move on to factorization of polynomials using the representative roots obtained from the ROOT-
FIND algorithm. We want to give a factorization such that we can get highest number of linear factors.
We approach this problem with low degree polynomials looking at properties of roots and factorizations.

7.1 Degree 2 polynomials

Suppose we have a quadratic polynomial f(z) = 22 4+ ax + b in Z/p*Z, where p is a prime. Using
ROOT-FIND suppose we have a root A + p's for some A € Z/p'Z and i < k,i € Z.

Theorem 7.1.1: For a quadratic polynomial in f(x) = 22 + az + b in Z/p*¥Z, given a representative
root 7 = A + p'x, we have a factorization f(z) = (z —7)(z + (a +r)) mod p¥, where r' = —(a +7) is
another representative root.

Proof: To find a factorization the basic idea is to perform long division. We already know that, since it
is a quadratic, any root r corresponds to a factor (x — r) and by long division the quotient on dividing
f(z) by (x —r) yields (x + a + r), which is another factor of f(x). This can be verified easily using the
fact that f(r) =r?>+ar +b=0 mod p*.

So for a representative root A + p'x, let us fix a variable y € *, i.e. y € Z/p*~"71Z, and hence A + p'y
is a root of f(z). Now we consider y as a variable and this represents a set of roots of f(x) denoted by
the same representative root for different values of y. Dividing f(x) by (z — (A + p'y)) gives the factor
(v+(a+A+p'y)), and hence giving a factorization pattern. For each value of y € *, i.e. y € Z/p*—~1Z,
we will have a factorization determined by this.

From this we infer that the other representative root is 7’ = —(a+ A+ p'x). So r and r’ differ in the fixed
coordinate (the first i coordinates) by a mod p’ with a negative sign, and for each value of y as above in
r, the corresponding coordinate will be negative of the coordinate in y added to the same coordinate in a.

Corollary 7.1.2 The * in both representative roots of a quadratic have the same cardinality.
This means if the representative roots are r = aq + p''* and 79 = ap + p*2%, then i; = is.
Proof: This is true as for each value of y as in the previous proof there exists a factorization in linear
which gives a corresponding root.

7.2 Degree 3 Polynomials

For a given polynomial f(z) = 23 + az? + bx + ¢ in Z/p*Z, we attempt to find a factorization such that
we get three linear factors.

From ROOT-FIND algorithm we can get sets of three distinct representative roots. If any two of
them are equal then f(z) is not square free but we can easily make it square free by checking which of
its representative roots is a root of its derivative as well, and removing the linear factor for the root.
Hence we can assume that we have three distinct representative roots and attempt to find a factorization.
The next theorem gives us an idea to find an algorithm to find the factors in terms of representative
roots of the polynomial.

Theorem 7.2.1: If three distinct representative roots exist then we have a factorization containing
three of them together.
Proof: This means if the roots are r; = aj + p'tx, ro = ag + p2%, 13 = az + p®x (where each of
i1,19,13 < k, as if they are exactly k, then we can divide by the linear factor corresponding to that root
and continue with the degree 2 case), then we will have factorization f(z) = (z — a1)(z — a2)(x — ag) for
some aj € 11, ag € r9, az € r3. Since all the values of 71,7y, 73 are roots of f(x) and roots from all three
sets of representative roots are present we will often write the factorization as (x — r1)(z — ro)(z — r3).
Proof: Suppose that there exists a factorization f(z) = (z — a1)(x — a})(z — a3), where ay,a) € ry,
az € r3. This can be written as (z — (a1 +py1))(z — (a1 + p"y)))(x — (a3 + p'3ys3)), where y;’s belong
to the corresponding * set of each representative root.
Now this factorization of f(z) will give powers of p greater than k for all values of x in ro, as they are
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the roots in Z/p*Z. Now since i3 < k, trp(az, ay some power of p needs to be generated from the factors
(x — a1), (x — a}) to make it divisible by p*. For this to occur, let any value az € 72 be truncated with
ap till r, a} till s, ag till £. So we must have r 4+ s +¢ > k as the power of p in their difference is exactly
the index upto which it is truncated. We will use this fact to arrive at a contradiction.

First let us assume that 71 > i5. Now we know that i3 < k and hence some power of p must come from
the first two factors when we evaluate the factorization with values from ro. Now since f(z) is zero
modulo p* for all values of rq, i.e. as + p™2%, we will have values from r; truncated at a point which
belongs to the constant part of rq, i.e. truncated upto < is. This is true as a; and a are fixed and for
all values from 75 it is divisible by p¥. Hence the index of truncation for each ay € o, f (a2) = 0 with a4
and a} is always less than or equal to is.

Let j = max({trp(az,a1) | a2 € ro}, {trp(az,al) | az € ro}). We have j < i;.

Also any number in a; or aj with coordinate greater than j do not result in making the powers of p
less than k, and hence for any value in coordinates higher than j we will have p* dividing it, i.e. a
representative root of f(x) in Z/p*Z. But this root is a superset of 7; and we already have 71 as a
distinct root with a definite ¢;. But now we are getting another representative root truncated with ry
upto j, which is a contradiction. Hence this case of i; > is cannot give a factorization as above.

Now we assume i; < i5. For any root as € ro, it will be truncated upto less than is places with both
a; and af. WLOG if it was truncated upto iz places (cannot be more than iy as after that we can use
any value in ) with a;, then a; would be a value in 7y itself. So the factorization will now be of a form
(x —r1)(x —ra)(x —r3) as desired. So we can say that it is truncated upto less than is coordinates, i.e.,
upto some coordinate in as.

Now suppose j = max(trp(ai, as2),trp(al, a2)). We have j < i3 < iy (if 41 = 42, then having them
truncated to i; would mean that they belong to the same set of representative roots and oy = as, but we
have r1 and rs as distinct) and with the similar arguement as above, this already generates a k power of
p and the coordinates after j in ro can be anything. This again shows a contradiction as we have another
representative root which is a superset of ro while we had a distinct representative root ro from the
ROOT-FIND algorithm and pre-processing as explained before. Hence we cannot have a factorization
as above too.

From this we conclude that a factorization of f(z) must be of the form (z — 71 )(z — r2)(x — r3).

From this we extend with the idea of an algorithm to find the factorization of a cubic polynomial in
the ring Z,».

Our main idea is to consider the factorization (x — (a1 +p"y1))(z — (o1 +py)))(z — (a3 +p®ys)) in
terms of the variables ¥, yo, y3, with notation same as the proof of theorem 8.2.1. Now we can expand
this sum to find equations in terms of y1, y2, y3 (more specifically piiy, p™2ys, p'3y3) and comparing with
the coefficients of f(z) = 2% + ax? 4 bx + ¢ we get a set of simultaneous equations modulo p*. We can
also eliminate p*3y3 by replacing it with p‘tyiy3 = —(a + a1 + pty; + as + p2ys + a3) and solving the
remaining equations for the rest of the roots.

However if we have less than 3 representative roots we can apply the same approach after checking its
with its derivative in rings Zpij for each j and separate out the repeating linear factor.

8 Future Work

We next want to move on to a general polynomial. However for that intuitively if we can find some
factorization technique for degree 4 we can extend that idea to higher degrees.

For degree 4 polynomials the same proof does not proceed through for every case. Suppose that we
want to use the same proof as of theorem 8.2.1. Let us assume that the monic polynomial f(z)
has 4 sets of representative roots ri,79,73,74 and WLOG let us assume there exists a factorization
(x —a1)(x — a})(x — a3)(x — aq4) with a1,a] € r1,a3 € r3,a4 € r4. We can now proceed with the same
proof only if we have the condition tr,(rs, as) + trp(re, as) < k. However this might not always be the
case, which raises the next question.

Question 8.1: Given a degree < 4 polynomial modulo p* with representative roots of the form
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aj +plix, a; € Z,i;, what can be the maximum value of |i; — ig].
For case of degree 2 we know that this is 0, however no such results have yet been discovered for higher

degree polynomials.
Another question that can be raised for degree 3 polynomials modulo p* is the following:

Question 8.2: For representative roots ri, 2,73, if 7; 4 Zm!:j trp(a;, o) > k, notation as above,
we will be able to arrive at a similar contradiction. What will this imply? Will it mean that i; = is = i3
or it will imply something else?

Now moving on to the case of degree 4, the following contains some ideas and intuitions into factoring
using similar techniques.
As discussed in the case of degree 3 we can attempt to consider variables y.s to fix from the * part
of the representative roots and continue with solving equations. When we have a root the rest of the
factorization reduces to the factorization of degree 3 case which has been illustrated in section 7.2. In
order to fix the variables we need to find the representative root to which that part of the factor belongs
to, which can be checking by factorizing the polynomial upto mod p% for each j and checking if the
rest of the part gives us linear factors. Also if there are more than one linear factor from the same
representative root, we can check the ged, if exists, with its derivative, modulo each of p%. In this way
we may proceed to handle the case of degree 4.
However, this method can get messy for higher degrees but there might be a way to reduce the solution
of the set of equations to finding roots of polynomials of lesser degrees. Also since it has multivariates
another approach might be to first find a bivariate factorization by extending the technique given in this
paper using the way Kaltofen did in [Kal82] using Hensel Lifting. Solving this might lead to solving
another problem proposed by [DMS19] on bivariate factorization applied to ROOT-FIND algorithm.

Furthermore instead of looking at maximum possible linear factors it might be interesting to proceed
into the question of finding maximum possible factors, for example, if a degree 5 polynomial has two

irreducible factors of degrees 1 and 4 or if it has 3 factors of degrees 1,2 and 2, by probably inductively
considering factorizations of lower degrees solved before that.
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