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Abstract
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Factorization and root finding are fundamental problems in mathematics and com-
puter algebra. It has some algorithms developed over fields like finite fields, rationals,
p-adics etc. However this gets more difficult when we consider rings, in our case of
the form of modulo prime powers, where the number of roots as well as factors might
become exponential. For example the polynomial 22 4+ px mod p? has all multiples
of p as its roots, which is exponentially many (exponential in logp)! The natural
question arises of how to find or count all the roots or find factorizations. Further-
more since rings do not have the same "nice” properties that fields have the problem
of finding roots/factors becomes increasingly difficult modulo higher powers of p. In
this article we explore problems of factorization and root finding, and present an
overview of current state of the art in research and explore ideas to possibly ex-
tend the already established results. Existence of roots is a problem explored in
Hilbert’s Nullstellensatz as well. So we explain algebraic geometric techniques and
Hilbert’s Nullstellensatz in this article as they might lead to progress related to root

finding/counting as well.
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Chapter 1

Introduction

Factorization of polynomials and root finding have been important questions to
computer scientists and mathematicians. There has been extensive work on these
fields since the late 20" century. Factorization in finite fields has been achieved in
12, 13, 5} |14].

However rings create more problems as they are not unique factorization domains. In
order to find a factorization we can Hensel’s lifing. But this is not possible for every
polynomial. Hensel’s lifting and its obstructions has been presented in Chapter
In that chapter we also explain an algorithm due to [4}, 9], and explained in greater
detail in Chapter [5, which gives us a compact way to find and store exponentially
many roots modulo powers of prime p of a polynomial in randomized polynomial
time (polynomial in degree of f, k and log p).

Next we describe Hilbert’s Nullstellensatz in Chapter 4 In Chapter [5 we describe
an algorithm to factorize polynomials in rings of the form Z/p*Z for k < 4 which was
presented in [9]. Then we describe an algorithm to count all the roots, which can be
extended to counting basic irreducible factors, that are basically those irreducible

factors of f modulo p* which remain irreducible mod p from [§]. Based on these
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we discuss some possible approaches and future work that can be done to obtain

new results in Chapter [6]



Chapter 2

Preliminaries

We will mainly work in rings of the form Z/p*Z, where p is a prime and k € N.
Let R(+,.) be a ring and S be a subset of R. We define the following notation for

a € R as:

e a.5 ={as|s € S}
e a+s={a+s|lseS}
We will also use the notation [n] to denote the set {1,2,...n}.

Throughout this article, p will be considered to be a prime number unless specified.

2.1 Basic Algebraic Geometry

We are now going to describe some algebraic geometry terminologies and definitions.

For a field k, we define affine space as follows:

AL ={(c1,¢9,...0n)|c; € k} (2.1)

3
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Now if S C k[zy,29,...2,] be a collection of polynomials, the ideal generated by

elements of S is called Ig. We define the affine variety as:
V(S) = {(v1,v2,...v,) € Al|p(v1,v2,...v,) =0 Vp € S} (2.2)

It directly follows that V(S) = V (Ig).

We also define an ideal Z over a zero set V C k™ as
Z(V)=Af € klxi,ze,...1,]|f(a) =0Va eV} (2.3)

Now we define the projective space. Intuitively it is a space such that we include the
line of intersection of two parallel lines (that do not intersect in the affine space).

Again for a field k, a projective space is defined as

B kn-i—l _C)

Py = (2.4)

~Y

where ~ is the equivalence relation defined by @ = b if and only if Vi € [n], a; = \b;
for some non-zero A € k. More related facts and definitions can be found in [13].

We also define radical of an ideal I, denoted as v/I given by:
VI ={fcklzy,zs,...2,)|3m e N; f" € I} (2.5)

It can be shown that radical of an ideal is also an ideal.
Now, for any two ideals a,b € klxy,xzo,...2,|, Zariski Topology states that a C
b = V(a) D V(b).

Lemma 2.1. The following relations hold true:

1. V(o) =k", V(k[zy,...2,]) = ¢

2. V(ab) = V(anb) = V(a) UV (D)
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8. V(X ierai) = Nier V(a) for a family of ideals (a;)ier

Proofs of these can be found in [17].

2.2 Representatives

We define the notation * to represent an entire ring R. For example, when we
consider R of the form Z/p*Z, for a prime p and a positive integer k, and write an
element in the form y = yo + y1p + vop® + ... Ymp™ + p™1x for y; € Z/pZ Vi €
{0,1,...m}, it refers to the set S, C R such that

ml Zkflpkil‘szrla Zm+2s - 2k—1 € R/(p)}

(2.6)

Sy =A{yo +p+ .. Ymp™ + Zmy1p

This is basically a collection of (exponentially many) elements from Z/p*Z which
has some fixed part denoted by the y;’s, and then all the elements from Z/p*~m~1Z.
We will sometimes write this as y = 8 + p™"'x where 3 is the fixed part. More

explanation about representatives can be found in [9]. We will also denote this as

the tuple (8, m + 1).

Definition 2.2 (Representative Root). For a polynomial f(x) € Z/p*Z[z] and
r = B + p'*, for some natural number i < k — 1 and 8 € Z/p'Z, r is called a
representative root of f(x) if Va € r, we have f(a) = 0 mod p*. This also means

that 8 + p'y is a root of f(x) mod p* Vy € Z/pF~7Z

2.3 Split Ideals

First we define zero divisors in the ring of polynomials R[x] where R = Z/p*7Z to be

the polynomials f(z) such that f(z) =0 mod p.
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The concept zero set of a polynomial or a set of polynomials in the ring R is same

as a variety. For S C R[z] we define the zero set as

Zr(S)={v € R"p(t) =0 mod p* ¥p € S} (2.7)

In Chapter [6] we will extensively use the concept of split ideals, to be defined
in this section. The main work will be done with polynomials ideals of the form
I = (ho(xo), h1(Z1), ho(Za), ... h(Z;)) with each h;(Z;) € F,[z;] where Z; denotes the
set of variables {xg, z1,...2;}. We will also add another property to this ideal that
Vi e [l +1]if a € Zr,(ho(x0), h1(Z1), ha(Z2), ... hi—1(Ti—1)), then the polynomial

hi(a, z;) splits completely into distinct linear factors.

Definition 2.3. Given a polynomial f(x) € R[z] and an ideal I C F[z;], we call [

a split ideal wrt f mod p* if

1. I is a triangular ideal of length [+ 1, i.e. I = (ho(z0), h1(Z1), ho(Z2), ... hi(Z)))
for some 0 <1 <k —1, and h;(z;) € Fp[z;] Vi € {0,1,2,...1}

2. |2, (I)| = Mi_gdega, (hi)

3. for every (ag,a1,...a) € Zg,(I), we have f(ag+aip+...qp") =0 mod p'*!

Also, the length of I is [ + 1 and its degree is deg(I) = II'_,deg,, (h;)

I+1Since

Now note that the split ideal contains a notion of the roots of f(x) mod p
the roots are present in the zero set of the triangular ideal, it is in some sense, a
product of all the possible coordinates that can appear in the p-adic expansion of a

root of f(x) in R/{p'*1).

Lemma 2.4 ([8]). If I; = (ho(xo), h1(Z1), ha(Za), ... hy(Z1)) is a split ideal in F,[zy],
then I; = (ho(xo), h1(Z1), ha(Z2), ... h;i(Z;)) is also a split ideal in F,[z;] for every

0<j<l
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Lemma 2.5 ([8]). A split ideal I C Fy[z;] can be decomposed as I = Macz,  1a,
where I; = ((x — ag), (r — a1),...(x — @;)) such that a = (ag,ay,...q;). Also by

Chinese Remainder Theorem, we have R/I = @,z 1y R/1a-

The proofs of these lemmas can be found in [§].



Chapter 3

Hensel’s lifting and Representative

roots

Hensel’s lifting was given by Kurt Hensel to "lift” a factorization given modulo a
prime ideal to modulo higher powers of that ideal. In our case we will only deal with
the ideal being (p)z and lifting to modulo p* for integers k& > 1. We will describe
a few properties related to polynomials in rings of the form Z/p*Z. For further

reading, we refer the reader to [1].

Lemma 3.1. A polynomial f(x) € Z[z] can be uniquely written in the form f(z) =

a(x) + p.g(x) for a prime p, where a(x) € Z/pZ.

Proof. The proof directly follows from the fact that f(z) = >, a2’ = > .((a
mod p)z') + Y .(¢; — (¢; mod p))a’ and Z/pZ being an integral domain, implying

uniqueness. O

Lemma 3.2. A polynomial f(x) € Z/p*7Z[z] is an unit if and only if f(x) can be

written as f(x) = a+ p.g(x) where a € F.
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Proof. If f(z) is an unit, it can be written as f(z) = a(z) + p.g(x) by Lemma
. Now since this is an unit, there must be an inverse f(z)~! written in the form
a'(z)+pg'(x), product of which is one. By taking the product modulo p, we get that
a(x)a’(x) = 1. Now since both a,a’ are polynomials, there degree can not decrease
after multiplication, and hence must be constants. So we get a(z) € F).

For the converse, we find an inverse of f(x) = a + p.g(z) for a € F;. Applying

binomial theorem, we write (a + p.g(z))™* = a= (1 + p(a~tg(z))). Now using the

expansion (1 + )™ =1—-ax+ 22— ..., we get f(x)™! = a1 (1 — pla~tg(z)) +
p*(atg(z)? — -+ (=1)* Yatg(z))*1). It can be checked that f(x)~'f(x) is
indeed 1 over Z/p*Z[z]. O

Based on these we present Hensel’s lemma, which gives us a technique to lift factor-

izations of certain kinds of polynomials from modulo p to modulo pF.

Theorem 3.3. Let f, g, h € Z[z] be polynomials such that f(x) = g(x)h(x) mod p,
and ged(g(x) mod p,h(x) mod p) = 1 in Z/pZ[x], then there exists polynomials
(referred to as "lifts”) §,h € Z[z| such that f(x) = g(x)ﬁ(:z:) mod p* Vk € N, and

J=yg modp,flzh mod p.

Proof. We give an algorithm to prove this, which has also been explained in [1].
Since ged of g, h over F,, is one, I\, o € F,[x] such that A\g + ph =1 mod p. From
this we iteratively construct a factorization of f modulo higher powers of p as follows.

The proof of correctness is by induction on . At every step, each of the factors are

Algorithm 1 Hensel’s Lifting
1: forie2,3,...kdo

2 q:= J;Z-__gf’ mod p
3 u = qp

4: vi=gA

5 g=g+plu

6 h:=h+p~tv

7. return §j = g, h = h




Chapter : Hensel’s lifting and Representative roots 10

congruent to the previous factor modulo p. Suppose after update at i*" step, g, h
were g;_1,h;_1, and become updated to g, h respectively. Then we have f — gg =
f = (gie1 + p"tu)(hi—y + p"'v) mod p’. From this, if we substitute the values of
u,v and consider the fact that g;_1,h;_1 are coprime modulo p (since Ag + ph = 1
mod p), we can show that this expression is zero modulo p’. It can also be shown
that g, h are coprime over p, and the corresponding A and p can be found. For the

complete proof, we refer the reader to [1]. O

Corollary 3.4. Hensel’s lifting is unique upto multiplication by units.

However note that Hensel’s lifting can not proceed if g, h has some non-trivial ged
modulo p. This basically means that f(x) mod p is a perfect power of some irre-
ducible. [10] gives an analysis of the difficulties we face in this case. We now show
a method from [11] which shows some of the conditions that need to be satisfied in

order to lift.

Theorem 3.5 ([11]). Let f = gh mod p* such that f = ¢* mod p, where ¢ is an
irreducible polynomial modulo p, and e < /2 such that g = ¢¢ mod p, h = ¢*~¢

mod p. Then the following are equivalent:

1. f;kgh € Zlz] and divisible by g¢ over modulo p

2. For every ¢ € Zlx] with deg(y) < deg(g), there is a polynomial 0 € Z[x] with
deg(0) < deg(h) such that f = (g + pF)(h + p*d) mod p*+!

3. There exist polynomials 1,0 € Zlx|, with deg(v) < deg(g), deg(0) < deg(h)
such that f = (g + p*¥)(h + p*0) mod pFt!

4. There exist polynomials 1,0 € Z[x] with f = (g + p*)(h + p*0) mod p**!

Proof. (i) = (i) Let % = ¢°a mod p for some o € Zz], and 1, 0 € Z[z], with

deg(v)) < deg(g). Let 6 = o — g*=2¢) mod p. Then, using the fact that e < £/2, we
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can show that f — (g + p*y)(h + p*0) =0 mod p**!.
(11) = (1ii) = (iv) is directly follows. Now, we are required to show (iv) —
(7). Let ¥, 0 € Z[z] with f = (g + p*¥)(h + p*0) mod p**'. Then we have

—gh —e e —2e
fp,f] = Gg+ 0h = §g" + 0g° = P(g"* +6) mod p

This proves the theorem. O

From these we see that if the polynomial to be factored is not a power of some
irreducible modulo p, then we can lift it to modulo any p*. There will be unique fac-
tors (unique upto multiplication by units) and there is an one-one correspondence
of roots modulo p with roots modulo p*. However the more difficult case is left,
when we have f = ¢* mod p for some polynomial ¢(z) irreducible modulo p. There
have been some attempts to factorize polynomials of this form [19, 9], the best being
[9], which achieved factorization up to modulo p*. We will describe this in greater

details in Chapter

We had defined representatives in Section which represents exponentially many
elements in Z/p*Z in polynomial space (polynomial in &, log p). Similarly representa-
tive root was defined in Definition Motivation for defining roots of a polynomial
in this way was from the fact that a polynomial might have exponentially many
roots in a ring. For example 22+ pxr mod p? has roots which are all the multiples of
p, i.e. 2'98P_many roots! We can also write this as the representative root px. This

was first introduced in [1§].

Theorem 3.6 ([4]). A polynomial f(x) of degree d has at most d-many representa-

tive Toots modulo a prime power p*.
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Based on this result, |9] developed an algorithm to find all the roots of a polynomial

modulo any prime power in randomized polynomial time.

Algorithm 2 Find roots modulo p*

10:
11:

1:
2:
3
4:
5:
6
7
8
9

procedure ROOT-FIND (g(),p’)

if g(x) =0 mod p* OR ¢ < 0 then return {x}

g(z) = p*g(z) mod p’ for a € N, g € Z[x] such that g(z) Z0 mod p
R = roots of g(z) mod p using Cantor Zassenhaus algorithm
if R == ¢ then return {} (Dead-end)
S:=0¢
for each root @ € R do
Ja(r) == gla + px) '
T =ROOT-FIND(g,(z),p"~®)
S=SU(a+pT)

return S

This algorithm can be further extended to finding roots of a polynomial f(y) €

Z[x]/(p, ¢*) for some polynomial ¢*, irreducible modulo p.



Chapter 4

Hilbert’s Nullstellensatz

Hilbert’s Nullstellensatz is a theorem that links geometry with algebra. Nullstellen-
satz in German means ”theorem of zeroes” , and this theorem establishes a connection
between existence of zeroes of a system of polynomials with ideals of polynomials in
algebraically closed fields. This is a computational problem to determine efficiently
if Hilbert’s Nullstellensatz certificates can be found (and hence decide if a system of
polynomials has a common zero). For more details we refer the reader to [13].

Throughout this chapter, we will denote K as an algebraically closed field.

In mathematics, a fundamental question is the Consistency Question. Given a set
of polynomials fi, fo,... fm € K[z1,29,...2,] and the ideal I generated by them,
the consistency question asks if V(I) = ¢. For the decidability of this question,
Weak Hilbert’s Nullstellensatz (WHN) gives a certificate for this. The theorem can

be stated as follows:

Theorem 4.1 (WHN). For an ideal I C K[z, 2o,...2,), V(I) =¢ <= 1€ I.

Theorem also means the existence of polynomials g1, ga, . . . gm € K[z1, 22, ... 2]

such that fig1 + foge + ... fingm = 1. These polynomials g;’s are referred to as

13
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Nullstellensatz certificates. In order to prove Theorem we state some more
theorems and lemmas. The next theorem is called Strong Hilbert’s Nullstellensatz

(SHN).

Theorem 4.2 (SHN). For every ideal I € K[z, 2o, ... 3,], VI = I(V(I)).

Another theorem required is the Extension Theorem, stated as follows

Theorem 4.3 (Extension Theorem). Let I = (f1, fo, ... fm) C K[z1, 29, ... x,] such
that 3¢ with f; having highest degree term wrt x, as a non-zero constant in K, and
J = I NK[zy,xe,...001]. If (a1,a9,...a,_1) € V(J) then Ja, € K such that
(ay,a9,...a,) € V(I).

Proof. Proof of Theorem requires the idea of resultants. Basically, when we
have two polynomials f,g € (Fz1,22,...T,1])[x,], for a field F', we can write the
linear equation af + bg for a,b € (F[xy,xs,...x,1])[z,] for deg,, (a) < deg,,(g)
and deg,, (b) < deg,,(f). Now considering the coefficients of powers of z, in a,b
(which are in F[zq,xs,...x,_1]) and writing them as a column vector A, we can find
a matrix (from linear equations corresponding to each power of z,), S, such that
af+bg = SA. This matrix S is called the Sylvester matrix and resultant of f, g wrt
x, is defined as Res,, (f,g) = det(S).

From the definition, it is clear that Res,, € (f,g). We also have the fact that
Res,(f,g) = 0 if and only if gcd,,(f, g) is not trivial.

Also, if @ = (ay,...a, 1) € F"! then Res,, (f,g) = I°/9 Res,, (f(a,z,),9(a,x,)) ,

where cd(g) is the degree drop of g, given by deg,, (g(x1,...x,)) — deg., (g(a, x,)).

More properties of resultants are available at [13]. With this notion of resultant
established, we give the proof of Theorem [4.3] which is due to [7]. Denote a =
(ay,az,...a,—1) € V(J) and consider the homomorphism Kz, zo, ...z, — K|z,]

given by f(z1,29,...2,) — f(a,z,). Let I' = {f(a,z,|f € 1)} C K[z,]. Now,
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since I’ is a PID, 3f’ such that I’ = (f’). Here f can either be a constant or a
non-constant polynomial.

If f is not a constant, then Ja, € K such that f'(a,) = 0 (since K is algebraically
closed). From this we get (a,a,) € V(I). So it we choose any a from V(J) and
using the homomorphism and then considering the corresponding I’, we can choose
an a, as required.

Now, let f is a constant, say b € K. We are given that f; has leading coefficient wrt x,,
as ¢ € K. Also there must be a polynomial f” € I such that f”(a,x,) = f'(xz,) = 0.
Let r(zq,xa,...2,_1) = Resy, (fi, f"). Now since resultant is contained in the ideal
generated by the two polynomials, we have r € J. Hence r(a) = 0 as a € V(J).
We prove using properties of resultants, that this can not be true. We indeed have
r(a) = c®9=nF)(f,(a,x,),b) as degree drop of f is deg,, (f'). Now fi(a,x,),b) is
non-zero as a constant can not have a non-trivial gcd with a polynomial over a field.

Hence this is a contradiction and f’ can not be constant. O]

Proof of WHN. Note that one direction given by 1 € I = V(I) = ¢ is trivial.
Since 1 € I, 391,99, .- -9m € Klz1,... 2], 1.f1 + - + gmfmn = 1. Now, if V(1) is
not empty, Ja € V(I) such that f;(a) =0 Vi € [m)].

For the other direction, i.e. V(I) = ¢ = 1 € I, we prove by induction on the
number of variables, n.

For base case n = 1, it follows from the fact that an ideal formed from univariate
polynomials is a PID generated by their gcd, and since they do not have any common
factors, the gcd must be trivial. Hence 1 € I.

Now suppose this implication holds for n —1 variables. If any of the f;’s are constant
then we are done. So we can assume that they are non-constant with degree in z,, of

fi being d;. We now want to exploit Theorem [£.3] Choose some z1, zs, ... 2,—1 € K
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and apply the linear transformation

Tp—1 = Yn-1 T Zn—1Yn

T1=Y1 + Z1Yn

So fi(x1,...x,) can be written as g;(21, 2o, . . . 2n_1)y%+ (lower degree terms in y,,) =
fi(y1,y2, ... yn), where z;’s are seen as constants. Now, we can choose some (21, . . . 2,)
such that g;(z1, 22, ... 2,) is non-zero. Notice that if 1 € [ then 1 € (f{,... fl),
and vice versa, as well as we are just taking a linear transformation of the co-
ordinates. Suppose I’ = (f],...f}) and J = Klyi,...y,—1] N I'. We also have
VI)=¢ = V(') =¢,and V(I') = ¢ = V(J) = ¢, as if V(J) as not non-
empty, then neither would V(I)" be, by Extension Theorem. Hence by induction
hypothesis, 1 € J, and since J C [ — 1€l — 1€ 1.

This completes the proof of WHN. ]

Now in order to prove SHN, we show that SHN and WHN are same. This part of
the proof is from [20].
First note that v/I C I(V/(I)) is trivial as, if some polynomial f has a root, then f™

has the same root as well.

Lemma 4.4 (SHN = WHN). For an ideal I, ZV(I)) CVI,V(I)=¢ = 1€
1.

Proof. We have V(I) = ¢ and Z(¢) = K|[xy,...x,]. Now by SHN, Z(V(I)) C
VI = 1€ +/I. Now 3d € N such that 1 € I, ie. 1 € I. n
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Lemma 4.5 (WHN = SHN). For an ideal I, (V(I) = ¢ = 1 e€l) =
(V1) € VI,

Proof. First we take an arbitrary polynomial f € Z(V (7)) and proceed to show that
f € VI, by showing the existence of d € N such that f¢ = E@'e[m} qi fi.
Consider g = 1 — yf(z1,x9,...x,) and look at the ideal I' = (f1,... fm,9)

N

K[z1,...x,,y]. Notice that whenever f is zero, g is non-zero, and since V' (I) C
V (/1) (from Zariski Topology) and ¢’ is non-zero whenever all of f;’s are zero, we
have V(I') = ¢. Now WHN implies 1 € I'. So3q],...q,,q € K[z, x2,...x,,y], such
that Zie[m] ¢, f; +qg = 1. Using this identity over K(z1, ... z,)[y|, we substitute y =
m (for which g is zero) and hence get 1 =37, 1 qi(21, . .- T, m)fz(a:l)
Now, if D = max{deg,(q;(x1,...x,,y))|[t € [m]}, we can multiply both sides by
fP to get fP = 3 (@@, w0, $)fPf;) where each of ¢i(z1,...2m, 5)f7 €
K[zy,...x,]. This implies Vf € Z(V(I)), f € VI, and hence Z(V(I)) C v/I. Both
this and /I € Z(V(I)) prove SHN. O

Based on these results, the main question in computer science and computational
mathematics is to find these Nullstellensatz certificates. Another question is the
ideal membership problem, which asks if a given polynomial is present in the ideal
generated by a set of polynomials. Hilbert’s Nullstellensatz is a special case of this
which asks if 1 is present in the ideal. A way to solve for HN certificates can be found
in [6] where they gave an algorithm based on solving simultaneous linear equations.
[15] proved that HN is in polynomial hierarchy, and under Generalized Reimann
Hypothesis, it is actually in AM; while |12] proved that HN is in AM NcoAM under
GRH.



Chapter 5

Factorization of polynomials

modulo p4

Polynomial factorization in fields has been studied extensively by computer scientists
and mathematicians. Some of the randomized poly-time methods for factorization
of polynomials in fields are [16] over rationals, [2], [3], [5], [14] over finite fields etc.
However since rings are not unique factorization domains, polynomial factorization
is relatively difficult. In this chapter, we present the techniques of polynomial fac-
torization in rings of the form Z/p*Z for k < 4 given by [9]. Previously [19] had
given an algorithm for factorization unto & = 3, but [9] has the best results until

Nnow.

5.1 Main Idea

The main theorem of this chapter is:

Theorem 5.1 (|9]). Let p be a prime and k < 4 be an integer. Given a polynomial

f(x) € Z, we can factorize f(x) mod p* in randomized poly(deg(f),logp)-time.
18
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We give an algorithm due to 9] to find a factorization and prove its correctness to
show that Theorem holds true. Note that if f is not a power of an irreducible
modulo p then we can find two factors such that they do not have any non-trivial ged.
This implies that for every factorization mod p, there exists at most one unique
lift. So we deal with only the case of f being a power of an irreducible modulo p.

This can be seen as a generalization of Hensel’s lemma upto modulo p*.

We assume that f(z) = ¢(x)* mod p for some ¢(x) € Z[x] such that ¢ mod p is
irreducible. Note that a factor of f(x) mod p* will be of the form ¢* — py mod p*
for some y € (Z/p*Z)[z]. With this observation, we intend to reduce factorization to
that of root finding of some polynomial E(y) € (Z[z])[y] to find the value of y and
hence the factor ¢* — py. We will later prove that this root finding need to be done
in a local ring of the form Z/(p*, ¢**). The method of obtaining such an E(y) has
been inspired by binomial theorem and the fact that (1 —z)™' =1+ z+ 22+ ...,
which is quite like Lemma [3.2, We consider the expansion of f(z)/(¢* — py) and

while considering mod p¥, we want it to be divisible by ¢®.

In this problem we will consider the value of y in a ”sort of” p-adic expansion, decom-
posing the root of E(y) mod (p*, $**) into coordinates yo, y1, - .. yr—1 € Fy[z]/ ()
such that y = yo + y1p + ... yx_1p*F mod (p*, ¢**). We will later show that the
root does not depend on the last two coordinates and for the case of k = 4, we can
write E(y) as E'(yo,y1) in the ring F,[x]/(¢**) and the roots can be found from a
modification of Algorithm

We also write each y; as y; = Yio + ¥i1® + - - Yiaa_10* and write E’'(yo, y1) as
the sum of two univariates to apply root finding. This method of decomposing to
coordinates is a very strong one and the tool will be used to cound the number of

roots and basic irreducible factors in Chapter [6] as well.
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5.2 Towards the Algorithm

We want to establish an algorithm to factorize a polynomial f(z) mod p* of degree
d. It has been shown how we can assume f(z) = ¢* mod p for some irreducible
polynomial ¢ such that ¢deg(¢) < deg(f) without any loss of generality. So f(x) is

of the form ¢* + pg mod p* for some g(x) € Z[z].

First we reduce the problem of factorization to that of root finding of some other

polynmial depending on f in a local ring.

5.2.1 Reduction to root-finding

We want to find a factor h of f = ¢° +pg mod p* where h = ¢* — py for a < ¢ and
y € (Z/p*Z)[z].
We will denote the ring Z[x]/(p*, ¢°*) by R and F,[z]/(¢?*) as Ry. Consider the

polynomial E(y) € R[y]

E(y) = f(x)(¢"* ™V + ¢*® D (py) + -+ + ¢"(py)* > + (py)* ) (5.1)

Using E(y), we reduce factoring f mod p* to root finding as given by the following

theorem.

Theorem 5.2 ([9]). Let f(z),h(z) € Z[x] such that f = ¢* + pg mod p* and
h(z) = ¢* — py mod p*, where y,g € (Z/p*Z)[z] and a < ¢, then h(x) divides f(x)
modulo p* if and only if

E(y) =0 mod (p",¢") (5.2)

Proof. We denote @Q as the ring of fractions of (Z/p*Z)[z]. Now since ¢ is not a
zero divisor (as otherwise we could just consider f(z) as f(x)/p until ¢ is not a zero

divisor), we have E(y)/¢* € Q. We prove this theorem starting from the reverse
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direction.
Indeed if E(y) =0 mod (p*, ¢?*), then E(y) /¢ is a valid polynomial over (Z/p*Z)[x].
Multiplying E(y)/¢* mod p* with h = ¢* — py mod p*, we get

k—1

(6" — py) E(y)/¢"* = f(2)/6™ (6" — pu)(D_ " " D(py)’) mod p*

i=0
= (f/o™)(¢™ — (py)*) = f mod p*
This implies that h(z) divides f(z) modulo p*.

Now for the other direction. Suppose f(z) = h(x)ho(x) mod p* for some polyno-
mial ho(x) € Z[z]. We also have, from the proof of the reverse direction f(x) =

(E(y)/¢™)h(z). Subtracting the equations of these two factorizations, we get

hz)(g(x) — E(y)/¢™) =0 mod p"

Now since h(x) is not a zero divisor, we have E(y)/¢*®* = g(z) in Q. Now since

g(z) € (Z/p*7Z)[x], we have E(y) =0 mod (p*, ¢°*). O

Now notice that we can consider a < ¢/2 as otherwise we will be considering the
other factor which is f(z)/h(x) mod p*, since h(z) is not a zero divisor. Also, when
we consider y = yo + y1p + yop® + ... yp_1p" ! for each y; € Ry, we can neglect the

last two coordinates. This follows from the following lemma.

Lemma 5.3 ([9)). Ify = yo + 110+ 20+ ... yp_10" ! is a root of E(y) in R, then

all the elements of y = yo + y1p + yop® + . . . Yr_3p" 3 + p* 2% are also roots of E(y).

Proof. Notice that in the expansion of E(y) all the y’s that are present are multiplied
by p, which implies y;_; will have coefficient divisible by p*, which is 0 in R. Also

for yi_o, all the terms of the form (py)’ for i« > 2 do not contribute as they are
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zero in R. The only remaining term is f(x)¢** =2 py. Now f(z)¢uh—2) = getak—2a

mod (p, »?*) which also vanishes modulo (p*, $?*), as e > 2a as we have assumed. [

From now on we consider £ = 4 and analyze the problem of factorization as done

by [9]. We have

E(y) = f(x)(6* + ¢**(py) + ¢“(py)* + (py)®) mod (p*, ') (5.3)

From Lemma [5.3, we use y = yo + py; and use the equation

f X (6°* + ¢*p(yo + py1) + 6P (Y5 + 2pyoyr) + (py)*) =0 mod (p*, ¢**) (5.4)

From this, our main idea is to first solve this modulo (p?, $*®. Note that since f = ¢*
mod p, we can say that considering modulo (p?, ¢??), the variable y; is redundant.
The following lemma gives us a way to find the representative roots in this ring,
which basically reduces the root finding to characteristic p, and from [9], we are able

to find roots in rings of the form R,.

Lemma 5.4 (|9]). We can efficiently find a unique set Sy of representative pairs

(ap, o), ap € Ro,io € N such that

E((ag + ¢i0yo) +py) = p3El(y07 y1) mod <P4, ¢4a>

for E'(yo,11) € Rolyo,y1] depending on the representative root pair. Also we will

have:
1. |So| < 2. If the algorithm fails to find any such E' then E(y) =0 mod (p*, ¢*?)
has no solutions

2. E'(yo,11) = E1(yo) + E2(yo)yr where E1(yo), E2(vo) € Rolyo, E1 is a cubic in

Yo and Fsy is a linear in g



Chapter : Factorization of polynomials modulo p* 23

3. For every rooty € R of E(y) =0 mod (p*, ¢**), I(ag, i) € Sy, and (a1, as) €
R x R such that y = ag + ¢™ay + pay and E'(ay,a) =0 mod (p, $**)

Proof. We first look at the equation E(y) = 0(p*, ¢**) modulo p?. Hence

fo**(¢" + pyo) = Omod(p?, ™)
Substituting f = ¢° + pg we get pg¢®a =0 mod (p?, ¢**) implying

g=0 mod (p,¢")

which is a necessary condition for y, to exist.

Also from this we get that g1 = pg; + ¢*ga.

We consider modulo p? and get f(¢%a + ¢**pyo + ¢*p*y3) = 0 mod (p?, $**). Now

substituting the value of f = ¢° + pg and the value of g = pg; + ¢*gs we get

p2(¢e+ay8 + ¢3a92y0 + ¢3agl) =0 mod <p37¢4a>

Now we can divide this equation by p?¢>® (since e > 2a) we get an equation modulo
(p, »*) which is a quadratic in yo and its roots can be found using root-find algorithm
with the modification due to [9]. So Sy has atmost 2 representative roots according

to theorem 5 of the form (ag, ). So for every y € ag + ¢ x +p* satisfies

E(y)=0 mod (p°,¢")

Substituting y = ag + ¢™yo + py; we have

E(ag + ¢™yo + py1) = p°F'(yo,y1) mod (p*, ¢**)
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Substituting this value of y in E(y) we can find E; and FE; as well which are cubic

and linear respectively. O

With E’(yo, 1) established as above, we now move on to finding its roots modulo

(p, o).

5.2.2 Root finding of E’'(yy, 1) modulo (p, ¢**)

We already have E'(yo, y1) of the form E(yo) + F2(yo)ys where Ej is linear in yo and
FE is a cubic. Pertaining to the normal definition of valuations, we define valuation
wrt a polynomial ¢ as vg(u) = ris r is the largest integer such that ¢"|u over modulo
p. The remaining part of the strategy is to go over all possible valuations 0 < r < 4a
and find yo such that Es(yo) has valuation wrt ¢ exactly r, but E;(yo) has valuation
greater than or equal to r. From this y; can be obtained by dividing Fi(yo) by
E5(yo). From this we will have y1 = —(Ei(y0)/¢")/(E2(y0)/¢") mod (p,¢"*™").

This gives rise to the following lemma. Note that if r = 4a, we take y; to be .

Lemma 5.5 ([9]). A tuple (yo,y1) € Ro x Ry satisfies E1(yo) + y1Ea(yo) = 0

mod (p, $'*) if and only if vs(E1(yo)) > vs(E2(yo))-

Finally we prove another lemma which will be used in filtering out the "bad” s

for which valuation of Fs(yg) is more than r.

Lemma 5.6. /[[9]] Given Es(yo) € Rolyo], which is a linear polynomial, and for
some 0 <r < 4a—1, let (b,i) be a representative root modulo (p, "), consider the
quotient Eb(yo) = Fa(b + ¢'yo) /¢

If Ei(yo) is not identically zero modulo (p,®), then there exists at most one 6 €
Ry /{(¢) such that E(0) =0 mod (p, ), and this 6 can be efficiently found.
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Proof. We can write Fs(yo) as u+ vy, mod (p, ¢"). Since yo can take any value, we

have vs(u), vg(v) > r. Now, in the three cases as follows, we can find 0 as:

1. valy(u) > r and valy(v) = r, then F»(6) =0 mod (p, ¢) only when 6 = *(EJ“/{;;;)
mod (p, ¢)

2. valy(u) = r and val,(v) > r, Ey(6) will never be zero modulo (p, ¢) for any 6
in Ro/(¢)

3. valy(u) > r and val,(v) > r, then consider some 7’ > r and do the same.

Using these results we give the algorithm to factorize a polynomial modulo p* in the

next section.

5.3 The Algorithm

The following algorithm correctly finds a factor of f(x) mod p* where f = ¢°

mod p for some irreducible polynomial ¢.

Theorem 5.7 ([9]). The output of the algorithm[d (the set Z — Z') contains only
those yo € Ry such that there is some y; € Ry with y = yo + y1p as a root of E(y)
in R. We can do this computation in randomized poly(deg(f),logp) time. Thus we

can find all the roots y = yo + y1p + y2p® of E(y) in R where y, = x in R.

Proof. This algorithm basically outputs the roots of E(y) = f(z)(¢** + ¢**(py) +
¢*(py)* + (py)*) mod (p*, ') where y = yo + y1p + yop® with y; € Ry.
Using Lemma [5.4] the algorithm fixes some yo from the set Sy and attempts to find

roots of E'(yg,y1) mod (p, ¢**). This lets us count all the roots y,’s as well for which



Chapter : Factorization of polynomials modulo p* 26

Algorithm 3 Factorization modulo p*

1:

Given E(yo + py1), let Sy be set of all representative pairs (ag,ip) such that
P*|E((ao + ¢™yo) + py1) mod (p*, ¢**)

. Initialize sets Z = ¢, Z' = ¢, seen as subsets of Ry

3: for each (ag, i) € Sy do

10:
11:

12:
13:
14:
15:

16:
17:
18:

Substitute yo — ag + ¢"yo, let E'(yo,y1) = E1(yo) + y1E2(yo) mod (p, $**)
be as defined before
if Ey(yo) Z0 mod (p, ¢) then find 0 as in Lemma [5.6] such that F(f) =0
mod (p, ¢). Update Z < Z U (ag + ¢*) and Z' < Z' U (ag + ¢ (0 + ¢x))
for r € [4a] do
Initialize sets Z, = ¢ and Z| = ¢
Call modified root-find algorithm on E;,¢" to get set S; of rep. pairs
(a1,11) such that Ei(a; + ¢"yo) =0 mod (p, ¢")
for each (ai,i;) € S; do
Consider E(yo) = Fay(a1 + ¢"yo) mod (p, ¢**)
Call modified root-find algorithm on E), ¢" to get rep. pair (as,is)
such that E}(as + ¢yo) =0 mod (p, ¢")
if r = 4a then
Update Z, « Z, U (a; + ¢" (ag + ¢™x%)) and Z « Z/ U {}
else if E}(ay + ¢™1y) #0 mod (p, ¢" ') then
Get 0, if exists, such that Fj(as+¢2 (04 dyo)) =0 mod (p,¢" ™).
Update Z! + Z! U (a1 + ¢" (ag + ¢"2(0 + ¢%)))
Update Z, + Z, U (a1 + ¢" (ag + ¢'2%))
Z <+ ZU(ag+¢*Z,) and Z' < Z' U (ag + ¢ Z")

return 7, 7'

y1 exists. In this way we find all the solutions of E’(yo, 1) by looping over all the

possible valuations wrt ¢ of Es(yp). Lemma shows why doing this is sufficient.

Next we consider all the representative roots b + ¢'+ such that, for a fixed valu-

ation 7, Ey(b + ¢'yg) = FEa(b+ ¢'yp) = 0 mod (p, ¢"), where b + ¢’ is basically

ai + ¢"(as + ¢™x) as obtained in Steps 13 and 16 of Algorithm ?7.

We are now left to filter out those yy’s for which Ey(b + ¢'yo) has valuation wrt ¢

as more than r. This can be done from Lemma 5.6/ to obtain an unique 6 € Ry/{¢)

such that Es(b+ ¢ (6 + ¢yo)) =0 mod (p, o).

The partial roots are stored in the sets Z, and Z/, where Z, contains these ”bad”

values filtered out, while Z, contains all the possible roots in b + ¢%x.
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So if we choose a ”good” zy € Z,—Z!, we can find 2y given by (E(z0)/¢")/(Ea(z0)/¢")
mod (p, $**~"). From this we get the final sets Z = ag + ¢*Z, and Z' = ag + ¢ Z!
for (ag,i9) € Sy for the corresponding r, as given in Lemma From this we get

our desired results as outputs. ]

This proof of correctness of the algorithm also gives us the proof of Theorem
explained through the algorithm. This can be used to find the number of factors
as well. But in the next chapter, we give another new algorithm due to [§] which
gives the count of all the basic irreducible factors modulo p* for any integer k > 1

in deterministic polynomial time, using more techniques from mathematics.



Chapter 6

Counting roots modulo p]’C

In this chapter we describe a deterministic approach to root counting of a polynomial
modulo p¥ given by [8]. This is an important result as it is the first deterministic
algorithm to count the total number of roots modulo p* for any integer & > 1. We
have seen in Chapter [5| how factorization can be done modulo p* for k < 4, but this
is a randomized algorithm and does not work beyond mod p*. However although
we are yet not able to achieve deterministic polynomial factorization in rings of the
form Z/p*7Z, deterministic root counting was a progress towards the problem of root
finding, and establishes some results which can be used in root finding as well. The
paper [8] discusses methods to count basic irreducible factors as well, but in this
article we only state the main idea which is used to count only the total number of
roots to give a summary of the ideas that we might use in future. Also, we consider

R=17/p"Z.

28
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6.1 Main Idea

We give an algorithm which is due to [8] to the following theorem to deterministically

count all the roots of a polynomial to prove the following theorem:

Theorem 6.1 ([8]). Given a polynomial f(x) € Z|x], we can count all the roots of

f(x) mod p* in deterministic poly(deg(f), klog p)-time.

The main idea is to partition the root set of f mod p* into d disjoint sets, quite
like representative roots store them. However now we store this roots in split ideals
defined in Chapter [2, In this way we show how we can count them. However a spe-
cific root can still not be obtained from this in deterministic time. The algorithm

basically counts all the lifts of each root of f mod p to f mod p*.

6.1.1 Data Structures Involved

In order to make this algorithm feasible, we need to construct efficient data structures
to store the split ideals and perform computations on them. We define the list data
structure £ which partitions the root set of f mod p* into deg(f) many disjoint
subsets. The construction and other operations on this £ is done using some special
arithmetic tools that we will discuss in the next section. One can draw a similarity
between each representative root and one disjoint subset stored in £, as we will soon
see that the construction of £ is quite similar to Algorithm [2 by considering a new

polynomial f(a + pz) if a is a root.

A split ideal, as defined in Section [2.3], is denoted as an ideal I; formed by [+1 polyno-
mials and is of degree b. We saw how it is a triangular ideal I; = (ho(xo), h1(Z1), h2(Z2)
... () and b = TIL_ deg,, (hi(Z;)) with properties states in Definition [2.3] It ba-

sically stores a subset of the root set of f mod p* of size b, where the roots are



Chapter @: Counting roots modulo p* 30

considered upto precision [+ 1, i.e. the first [+ 1 coordinates of the p-adic expansion
taken.

Now, we keep splitting these ideals until we reach a maximal ideal, which we will call
maximal split ideal. Note that these do not give us the implicit roots, but gives us
the root count. However, if we were able to solve a system of polynomial equations
and find the variety generated, we would be able to find roots of a given polynomial

modulo p* in deterministic time as well!

We also describe the list data structure £ which we will use. It basically stores
a subset of the root set of f mod p*, might partition it as well. This is basi-
cally a technical way to represent the ideal I; and store all of them, after splitting,
in the form of a tree. We can view the maximal split ideal as a representative
root, and in the end of the algorithm, L stores at most d maximal ideals. Sup-
pose L = {I,(l1,dy), Is(l2,ds), ... I,(l,,dy,)}, where each ideal I; C F,[Z;_1] has two
parameters, the length [; and degree d;. After repeated partitioning, a maximal
split ideal I(l, D) stores a subset of the root set of f mod p* which is of size D.
Now [ means the number of coordinates considered, and the rest will be included in
the = portion of the representative roots. This implies that (I, D) has size Dp*~
for the corresponding root. For efficiency of the algorithm, we consider a stack S,
where we store tuples of the form (1, f,), and will keep updating the values. Now,

fr, = flzo+pry +pPas + ... phi ey, + pha) mod I;.

Based on these we also use the root tree data structure. It will be used to show that
|£] and degree of split ideals in £ always remains at most deg(f). We will call this
tree as RT.

In RT, each generator hy in any I € L corresponds to an edge, and each node denotes
the splitting of that ideal. There is an attribute to each node, called the degree,
which measures the possible extensions to the next level. This degree is distributed

to its children degrees.
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Definition 6.2. Degree of leaves is defined to be 1.

Let Ny = (I, fr) be a node corresponding to a split ideal I C F,[z;], where f;(z;, z) €
R[Z;,x]. Let a be the largest power of p dividing f; mod I and g1(z,x) = fr/p”
mod I (g; = 0if a > k), then the degree of N denoted by [N] is [N] = max(1, deg, (g
mod ) x deg([)).

We also define, for each node Ny = ((0), fioy = f(z)). We will set deg((0)) = 1.
So this follows from the definition that [Nyy] = d = deg(f). [8] gives some more

properties of the degree defined in this way.

The construction of the RT is as follows.

In order to show an upper bound, we will use the concept of the roots tree (RT),
which basically keeps track of the updates on S. A node is given by N = (I, f1),
where (I, fr) is an element of the stack S. Each push into the stack will create a
new node.

The root of RT is given by Ny = ((0), fo) = f(x)). Add a child node Ny, to the root
which corresponds to initialization of the stack with (I, f1,), where Iy = (ho(xo))
as defined before.

If at some time, the algorithm pops ([;_1, fi—1) from S, then we make our current

node the leaf node corresponding to (I;_1, fi—1) and do the following changes:

1. If [,y is grown as [; = I;_1 4+ (h—1(Z;—1)), then we create a child of Nj,_, using
edge label h; and label this new node Ny,

2. If the algorithm reaches a dead-end (no updates in S and L occur at this
point), then add a child labelled D to Ny,_,. This indicates a dead-end in this
branch. Similarly, if we obtain a maximal split ideal, then we add M as its

child.
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3. Suppose processing a split ideal I;_; needs us to factorize h; and hence factor
each ideal in S. Then we consider each U and move to the ancestor node of it
which corresponds to an ideal of length i, say Ny, , = (U;_1, fu,_,). Then we
make m copies of the subtree at Ny, , and these subtrees are attached with

an edge h; ; for every j € [m].

6.1.2 Mathematical Tools

The main tool involved in counting the roots is considering the p-adic representation.
We know that for a polynomial f mod p*, a root has p-adic decomposition as ry +

1 where

rip+...7r_1p" "', Thus we represent each root as xo+x1p+zop*+. . . Tp_1p"
x;’s are variables storing each coordinate of a root, and for some z; corresponding
to a root, it depends on the previous z;’s, 0 <7 < j.

Another tool used is the Frobenius polynomial ” —x mod p. This contains all the
roots of f(z) mod p and we can consider ged of this frobenius polynomial with f(x)
in modulo p to find a product of all the roots. Thus the degree of the ged represents
the number of roots of f in [F,. The next challenge is to find a method to store the
next coordinate in the p-adic representation of each root. We have the polynomial
ho(zg) as the ged of f with 27 — z modulo p and store the ideal Iy = (ho(xo)).

In order to obtain the next coordinate, we consider the bivariate polynomial g(z¢, x;)
as f(xg + pxr) = p*g(x0,21) mod Iy, where I is a lift of I, which we will explain
later, and « is such that g # 0 mod p. Note that the main idea for using modulo
the ideal [, is basically because, for a multivariate polynomial h(x1, xo, ... x;, ), and
constants a;’s, we have h(ai,as,...a;,z) = h(zy,xq,...2,x) mod (x; — ay,xe —
as,...xr; — a;). Now. notice that if we fix zg to any root of f mod p, then the
set of possible 1 are the roots of g(xg,z) mod p for some fixed xg. So we again
calculate the ged as ged(g(xg,x) mod p,a? — z) mod Iy and denote this as h;.

Now we increment the split ideal as Iy = Iy + (hi(xo,21)). In this way we get
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a count of roots upto modulo p?. In order to obtain till precision modulo p!*!
from p', we continue doing this method. We solve for a new g each step given
by f(zo + x1p + ... 0" + 2p'™) = pg(Z;,7) mod I;. Then we consider hy . =
gcd(g(zy, x) mod p,z? —x) mod I[; and update Iy = I + (hs1(Z141). We update

these ideals by adding to £, which we will describe later.

We also need to show that this construction of £ is efficient and |£| < deg(f).
We saw in the description of RT how the degree represented in every node gets
distributed to its children. Note that the operations on £ like reduction modulo
current split ideal, inversion, zero divisor testing, gcd, exponentiation, counting
valuations wrt p etc. are all bounded by poly(deg(f), klogp, deg(I)). However its
more difficult to bound the number of iterations and deg(/). We analyze the number
of iterations with the help of roots-tree RT. Every node of the RT corresponds to
an intermediate split Ideal I, where an edge height ¢ from the root corresponds to
hi(Z;), which is a generator of I. Whenever we update the split as I, = I,_1 + h(7;),
a child is added to the node that corresponds to [;_;, and the edge connecting this
child to the parent is labelled as h;. Similarly, when we split an ideal at some h;(Z;)
into say m ideals, m new subtrees are created which is connected to the parent by
edges labelled as h;. In this way the depth of the RT upper bounds the number of
iterations.

Now, in order to look at the degree distributions (Definition in the RT, we look
at each node N with an associated parameter [N], which will denote the degree of
node N. We can see how degree of a parent distributes to the degrees of its children.
This gives an intuition to measure the possible extensions of x; modulo [;_;, which
is a multiple of deg(I;—1). Now, from the distributive property of [N] for some ideal
I,y comes from the fact that, when we update I, = I;_1 + (h;), the degree of the
child is bounded by the multiplicity of roots in h;(a,x) times deg(l;_1), for some

root a € Zg,([;—1). These details will be explained later.
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We now give an algorithm to prove that Theorem holds true.

6.2 The Algorithm

In this section we develop an algorithm due to [§], used to partition the root sets
of f(x) mod p*¥ and count the total number of roots using the idea developed in
Section . This algorithm takes a monic f mod p* of degree d and returns a set of
at most d maximal split ideals, whose zero sets partition the root set of f mod p*.
For the maximal ideal I; = (ho(%o), h1(Z1), ... hi(Z;)), its root set Zg, (I;) has size

F=1=1 zeroes of f mod p* (denotes

I_,deg,.hi(Z;), and each such zero represents p
a representative root of the form 8 + p!*'x). Adding over all j’s we can thus get a

count of the total number of roots of f mod p*.

The algorithm starts with initializing the stack S containing the roots of f mod p,
i.e. S contains only the ideal Iy = (ho(xo)), where ho(zg) = ged(f(xo) mod p, xf —
10). The zero set of this ideal contains all the roots of f mod p. By Iy C R[], the
lift of Iy, we refer to the ideal generated by {ho(x¢)} over R[zo].

During the iterations of the main while loop of the algorithm, we pop a split ideal
from S, and try to increase its precision, i.e. find out the next coordinate of the
roots in their p-adic decomposition. This process leads to two cases. First case is
that we get another split ideal such that the precision of the root set has increased
by a new coordinate x;,1, or the current split ideal factors into more split ideals,
seen as children in the RT. Now after the splitting, in order to include x;,; into the
coordinates of the roots, we update f; as f;(Z;, x;11 + pxr) mod j, where J is the
new split ideal. Next we compute g(7;, ) as f(zo+zip+. .. zp +p'la) = p¥g (7, x)
mod [ to prevent the degree blowup.

Continuing in this way, whenever we get a maximal split ideal, we move it to L.

However if the ideal can not be extended then we get a dead end and discard that
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ideal. Intuitively this is because a number which is a root of f mod p' for some
| < k might not always be a root of f mod p*. In both these cases, the size of the
stack decreases. We keep on doing this and terminate the algorithm when the size

of S becomes 0.

In Algorithm 4} we use the following procedures:

1. Modify f: We do this whenever we push elements into the stack. We have
a given split ideal I C F,[z,] and let f;(Z;,z) € R[Z;,z] be reduced mod 1.
Let J C F,[Z;41] such that J = I; + (hyy1(2141)), and J be its lift to R[Z;41].
Then we can perform operations like creating f;(Z;41,x) = f1(Z;, x141 + px)
mod J in deterministic poly-time. A formal proof is available in [CITE]. Also,
when we have the tuple (U = (ho(20), h1(Z1),... (%)), fury) € S, we can
consider the factorization h; = h;1h;s ... h;,, and create tuples (Uj, f<Uj>) in

deterministic poly-time. This has also been showin in [CITE].

2. REDUCE(a(Z,), J;) returns reduced form of a modulo J,. [CITE] gives an
algorithm to do this as well, by recursively reducing while fixing every variable

and doing operations only on the last variable x; as x.

3. TEST-ZERO-D1v(a(Z;, I})) either reports that a mod I is not a zero divisor,
or outputs a factorization of one of the generators of I; when true. In this
as well, operations are done by fixing all the variables but the last one and
recursively calling and checking the leading term of x; wrt I;_;, which is a

polynomial in z;_;.

4. GCD(a(zy, x), b(Z;, x), I;) computes the ged if a(z;, z) mod I, b(Z;, ) mod I,
considering x as a variable, or returns False if a zero divisor occurs in inter-

mediate calculations.
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Based on these, the algorithm to calculate the number of roots of f mod p* is as

follows.

Algorithm 4 Count roots modulo p*

— = = =
Bl

14:
15:
16:

17:
18:

19:
20:

21:
22:

23:

24:

L=2¢
S=9¢
Let f(zo) = f(70) mod p, degree d
ho(xo) = ged(f, a8 — xo), I = (ho(wo)) € Rolwo), 1 is lift of T to R[]
fr(wo,z) = f(zo + pr) mod I
S < push(I, fr)
while S # ¢ do
Stop <— pop(S), Let Siop = ({ho(x0), - .. (@), f1(Z1, )
Compute «, g such that f; = p*g(z;,z) mod I such that p*||fr mod I
if a > k then Update £L =L U I, Go to Step 7
Let ¢ = g(Z;,z) mod I with g,(Z;) being leading coefficient wrt x
if TEST-ZERO-D1v(¢1(Z;,1)) = True then
TEST-ZERO-D1v(¢1(Z;, 1))  returns  factorization  h;(Z;) =
hi1(Zi)hi2(Z;) ... him(Z;) mod I,_; for some i, Go To Step 23
Filter out distinct I, roots by taking ged with 27 — z
Recompute § = g(Z;, x).g1(7;)"" mod I
Using repeated squaring and reducing modulo I + (g), compute 41 (%, ) =
2P —x mod [
if ged(§, sy, I) = False then
This returns factorization h;(Z;) = h;1(Z;)hi2(Z;) ... him(Z;) mod I;_4
for some i, Go To Step 23
else if g and leH are coprime then
Ideal can not grow more, Go To Step 7
else
gcdy(§, hiyr) mod T is non-trivial, say hyi1 (%, ), which is monic wrt .
Substitute = by z;41 and update J = I + (hj41(Z141)). Let J be the lift of J to
R[Z;11]). Compute f;(Z141) = f(Zy, x4 + pxr) mod J, puch (J, fs) to S, Go To
Step 7
We are given factorization of h; | 1;_;. Push Sy, back in stack. For every
(U, fry) € S, find m split ideals U;’s, compute (Uj, fi,y) and push all of them
to stack for j € [m)]

return L, the list of maximal splitting ideals partitioning root set.
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6.3 Analysis of Algorithm

In order to prove the correctness of the algorithm, the main goal is to prove the

following;:

Theorem 6.3 ([3]). Algom'thm describes the partition of the root set of f mod pF
through a list data structure L, which is a collection of maximal ideals Iy, I, ... I,.

It partitions the root set such that Zgr(f) = Ujen)S;, where S; = Zg, (I;)

Proof Outline. It was proven in [§] that S always contains split ideals, [ < k and
« > [ at any iteration. The also proved the interesting result that, for any two
polynomials z(z;), w(z;) € Fplz;], and a split ideal I,_; € F,[z;_;], the algorithm
given to compute GCD(z(7;), w(Z;), [;—1) in [8] returns a polynomial h(z;) such that
for any a € I;_1, h(a,z) is same as ged(z(a, x), w(a, z)) upto multiplication by units
in F}.

It is also assured that the algorithm finally terminates. This is true as, we know the
degree of the node is distributed among its children in the RT. Whenever we have
a dead end, it is same as removing that polynomial along with the degree. Now,
it can be shown that the number of disjoint polynomials always increases and the
total number is upper bounded by the degree. So the algorithm must terminate.

The complete proof of this can be found in [8] (Theorem 9). O

Based on the construction of the RT, [8] also showed some properties of RT which
were used to later prove that the algorithm terminates after polynomial many steps.
Note that at each step, the size of RT increases, but we never delete any node from
it. So the number of iterations is upper bounded by the size of this tree after it is
completely constructed.

From the construction, also note that for a node N; = (I, f(Z;,z)), and its child

Ny = (J, f7(Z121,2))[8] proved that this algorithm runs for polynomial many steps,
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i.e. time complexity is polynomial in degree of f and klog p.

Using this approach and the same calculations, [§] also give a method to count
the basic irreducible factors mod p*. They use the fact that a basic irreducible
factor g(z) € (Z/p*Z)[z] of f mod p* of degree b completely splits in the Galois
ring G(p*,b) = Zly]/(p*, #(y)), wherre ¢(y) mod p is an irreducible polynomial of
degree b. Conversely finding roots of a polynomial f in G(p*,b) is same as finding

its basic irreducible factors, and the same approach follows.



Chapter 7

Conclusion and future work

In Chapters [ and [6] we saw methods which are used to find factors and count roots
of polynomials modulo prime powers. The approach in [5| gets increasingly difficult
going modulo p® with more number of variables. For this we intend to employ tech-
niques used to find roots of polynomials having more than one variables, efficiently.
Indeed we saw in both Chapters 5] and [6| how writing the p-adic representation helps
in approaches. So if we consider the each coordinate as a variable as intend to apply
certain conditions to reduce them to root finding of polynomials. Chapter [5| did use
root finding of a given polynomial F(y). If we can solve this modulo higher powers
of p, this approach might be possible to factorize polynomials modulo p® and higher.
Indeed split ideals as used in [0 also is a system of polynomials. We can intend to
do something similar and apply Hilbert’s Nullstellensatz to decide if they are have

a common root, and hence decide irreducibility.
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