
Active Learning Models and Noise

Sara Stolbach
COMS 6253, Advanced CLT

ss3067@columbia.edu

May 3, 2007

Abstract

I study active learning in general pool-based active learning models
as well noisy active learning algorithms and then compare them for
the class of linear separators under the uniform distribution.

1 Introduction

There are often cases where data is abundant and easily accessible but label-
ing the data is costly. For example, in bioinformatics many DNA sequences
are available but decoding one sequence can take many hours or days for one
person to achieve. This scenario is known as active learning ; the labels of
data are hidden and the learner can pay for the label of any example. This
is not captured in the typical PAC supervised learning scenario. An active
learning algorithm will want to minimize the number of examples it needs to
label due to the expense of labeling. In this paper I will focus on pool-based
active learning models, which is when the learner can pay for the label of
any example in a pool of unlabeled examples as opposed to another model
where points can be created synthetically.

A noisy dataset is difficult in the active learning setting since standard
active learning models seek to find the most informative examples which tend
to be the most noise-prone. I will first discuss some noiseless active learning
models and show why they are noise-prone and then discuss two noisy active
learning models and how they compare as well as discuss the next steps that
should be taken.

1

For the most part active learning methods fall under three orthogonal
techniques; generalized binary search, opportunistic priors or algorithmic
luckiness, and Bayesian assumptions. Opportunistic priors is when a uniform
bet over all Ĥ leads to standard VC generalization bounds. If the algorithm
places more weight on a certain hypothesis, it could be excellent if guessed
right but worse than usual if guessed wrong. This method is not as practical
because of its unpredictability. The other two methods are discussed in the
paper. Progress can be measured in a number of ways such as the rate at
which the size of the version space decreases and the number of label requests
needed. I will be focusing on the number of label requests needed.

2 Preliminaries

Some general definitions used throughout the paper are mentioned here; the
variables have these meanings unless specified differently. Let X be the
instance space of examples x that are i.i.d over the uniform input distribution
D in version space V . Let n be the number of label requests. Let C be the
concept class over distribution P . Let η denote the noise rate in noisy models.

A common application examined in active learning is linear separators
through the origin of a unit sphere in Rd. X is the set of all data on the
surface area of the sphere such that X = {x ∈ Rd : ||x|| = 1}. Each
example in X is denoted as (~x, t) where ~x is the direction of the example
and t is the offset. In other words X = Sd × [−1, +1] where Sd is the unit
sphere around the origin of Rd. The distribution D on X is uniform. H
is the class of linear separators through the origin, and any h ∈ H is a
homogeneous hyperplane. h is represented by a unit vector w ∈ X with the
classification rule h(x) = sign(w · x). The distance between two hypothesis,

u and v in H with respect to D is given by distanceD(u, v) = θ(u,v)
π

where
θ(u, v) = arccos(u · v).

3 General Models

3.1 Bayesian Model

The Query by Committee (QBC) algorithm [1] is one of the most significant
pool-based active learning algorithms. It shows that using queries over ran-
dom unlabeled examples can accelerate the learning concept of some classes

2

over standard learning approaches. Work is done in the Bayesian model
which differs from the PAC model in that it is assumed that the target
concept is chosen according to a prior distribution P over C and that this
distribution is known to the learner. A Bayesian Model has an immediate
benefit for active learning since if there is large agreement on unlabeled data
you can stop and output the current hypothesis.

The algorithm assumes realizability, meaning a perfect classifier exists.
The papers analysis is based on probabilistic assumptions and they show that
queries can help accelerate learning of concept classes that are deterministic
and noiseless. The paper also goes on to discuss a generalized form of QBC
that uses two distributions. It is more computationally intensive but can have
an outcome that is not binary or discrete and the inputs can be stochastic.

Algorithm 1 QBC Algorithm

Input: ε > 0, δ > 0, Gibbs, Sample, Label
Initialize: n = 0, V0 = C
repeat

Call the Sample oracle to get a random instance of x.
Call Gibbs twice to get two predictions p1 and p2 for x.
if p1 = p2 then

reject the example
else

call the Label(x) to get c(x), increase n by 1 and set Vn to be all
concepts c′ ∈ Vn−1 where c′(x) = c(x)

end if
until more than tn consecutive examples are rejected.
Output: the Gibbs prediction hypothesis

The Query by Committee algorithm (Algorithm 1) uses an oracle denoted
Gibbs(V, x) which computes the Gibbs prediction rule. It predicts the label
of a new example x by randomly choosing an h ∈ C according to D, restricted
to V ⊂ C, and labeling x according to it. Two calls to Gibbs with the same
V and x can result in different predictions. The goal is to label x in order
to maximize the expected information gain to cause an exponentially fast
decrease in the error of the Gibbs prediction rule. However, this is not
guaranteed mainly because distribution is ignored. If queries of the same
type are always called, the prediction error will stay large. The Sample
oracle returns an unlabeled example x ∈ X chosen according to D. A call to

3

the Label oracle with input x returns c(x) which is the label of x according
to the target concept. The iterations are done in a batch learning scenario
until some termination condition is achieved. The termination condition is
met when tn = 1

ε
ln π2(n+1)2

3δ
consecutive examples are rejected.

Theorem 1 If a concept class C has VC-dimension 0 < d < ∞ and the
expected information gain of queries made by QBC is uniformly bounded by
g > 0 bits, then with probability larger than 1− δ over the random choice of
the target concept, the sequence of examples, and the choices made by QBC,
the number of calls to Sample is smaller than

m0 = max

(
4d

εδ
,
160(d + 1)

gε
max

(
6, ln

80(d + 1)

εδ2g

)2
)

,

the number of calls to Label is smaller than

n0 =
10(d + 1)

g
ln

4m0

δ

and the probability that the Gibbs prediction that uses the final version space
of QBC makes a mistake is smaller than ε. [1]

It is easy to show that if QBC ever stops then the error of the resulting
hypothesis is small with high probability. The real question is will the QBC
algorithm stop; The proof of Theorem 1, in [1], shows that it will stop if the
number of examples that are rejected between consecutive queries increases
with the number of queries; a linear increase. This implies that the proba-
bility of accepting a query or making a prediction mistake is exponentially
small compared to the number of queries asked (based on information gain
g > 0).

A common class examined in Active Learning is uniformly distributed
half spaces through the origin of the unit sphere in Rd. The information
gain from random examples will vanish as d goes to infinity because in a
high dimension the volume of the sphere is concentrated near the equator. A
typical example will cut the sphere away from the equator which means that
query examples are especially important in high dimensions; QBC will likely
choose two random points near the equator so the example that separates
them will likely be near the equator which implies that QBC can attain a
finite information gain in high dimensions. [1] prove the lower bound on the

4

information gain which implies that Theorem 1 holds and that the number
of calls to the Sample oracle is O(d

ε
log 1

δε
) and the number of calls to the

label oracle is O(d
ε
).

The paper also proves that QBC Algorithm has such results for the per-
ceptron class as well by modeling it as a special case of the distributed half-
spaces problem. Dasgupta, et al [2] show an algorithm which uses a simple
modification to the perceptron update to provide even better results.

The perceptron algorithm uses the same concept class of linear separators
where datapoints are on the surface area of the unit sphere in Rd. It starts
with an initial hypothesis V0 ∈ Rd and in each iteration receives an unlabeled
point, makes a prediction sign(Vt ·xt) and during the filtering step it decides
whether to ask for its label based on |Vt · xt| ≤ threshold, st. If the label
is requested the update step is called. The regular perceptron update is ”if
(xt, yt) is misclassified then Vt+1 = Vt + ytxt”. The error rate cannot be
better than Ω(1/

√
lt) where lt is the number of labels queried up to time t.

They have changed the update to be ”if (xt, yt) is misclassified then Vt+1 =
Vt − 2(Vt · xt)xt”. This scaled the update by a factor of 2|Vt · xt| to avoid
oscillations cause by points close to the hyperplane. The filtering step is
based on st; its choice is crucial. [2] set it adaptively by starting it high and
keep dividing it in half until a level is reached where enough misclassification
points are queried.

The modified perceptron results in a theorem stating that O(d log 1
ε
) la-

bels are needed when drawing O(d
ε
log 1

ε
) data points at random from the

unit sphere in Rd, as opposed to the QBC’s need of O(d
ε2

) datapoints. It will
make O(d log 1

ε
) errors and have final error ≤ ε. The bound improvements

are based on the change to the update step and the threshold, st, used in the
filtering step.

The QBC Algorithm would have very poor results in a noisy setting be-
cause the wrong examples could be queried for labels producing poor version
spaces. In addition, an adversarial noise model could cause the algorithm to
never stop.

3.2 Generalized Binary Search

Active learning could also be looked at as an approach to improve the same
supervised setting. In a supervised setting of some class with VC dimension
d, and error rate ε over distribution P some m = m(ε, d) labeled points are
needed. Dasgupta, [3] uses a greedy generalized binary search to examine

5

Figure 1: The boundary can be found with just O(log m) labels using binary
search 1

if fewer then m labels are sufficient to learn the class if the points are not
labeled.

In the case of data lying on the real line, and a hypothesis class H of
simple threshold functions it is enough to draw m = O(1/ε) random labeled
examples from P and return a classifier consistent with them. However, as in
Figure 1, if we use unlabeled examples we can use a simple binary search to
find the transition from 0 to 1 which requires only log m labels to infer the rest
of them. Hence, there is an exponential improvement. However, what about
in the generalized case; Is it possible to pick among O(md) possibilities using
o(m) labels? If binary search were possible, just O(d log m) labels would be
needed. This is not the case. In d ≥ 2 there are some cases where the target
hypothesis cannot be identified without querying all the labels. However, in
the average case the number of labels needed is small.

A variant of a popular greedy scheme is used, where one always asks
for the label which most evenly divides the current effective version space
weighted by π. π is merely a device for averaging querying counts over some
uniform distribution Ĥ. Ĥ is used instead of H; it reflects the underlying
combinatorial structure of the problem, and π can often be chosen to mask its
structure. The expected number of labels needed by this strategy is at most
O(ln |Ĥ|) times that of any other strategy. This is a significant performance
guarantee.

A query tree structure is used; there is not always a tree of average depth
o(m). The best hope is to come close to minimizing the number of queries
and this is done using a greedy approach: Let S ⊆ Ĥ be the current version
space. For each unlabeled xi, let S+

i be the hypothesis which label xi positive
and S−

i the ones which label it negative. Pick the xi for which the positive and
negative are most nearly equal in π-mass; in other words min{π(S+

i), π(S−
i)}

is largest.
Generalized binary search would clearly have poor results in a noisy set-

1This figure was taken from Dasgupta’s paper [3]

6

ting because as previously mentioned, the datapoints that are chosen to be
labeled tend to be the most noise-prone. A small amount of adversarial noise
can cause the datapoints that would be chosen to divide the version space to
give virtually no help in learning the concept.

4 Noisy Models

There are two active learning models that work with arbitrary classification
noise. The only restriction is that samples are drawn i.i.d from some un-
derlying distribution. The results hold for any sort of mechanism used to
generate the noise. The algorithms have different restrictions on η. However
it is important to note that Kaariainen [10] shows a lower bound of Ω(η2

ε2
)

on the sample complexity of any active learner and therefore it can not be
hoped to achieve speedups when η is large.

4.1 Agnostic Active Learning

Balcan et al [4] describe an algorithm known as the A2 algorithm , (Algo-
rithm 2), which is noise tolerant. It was the first noise tolerant algorithm
and shows some positive results. They produce bounds for Linear Thresh-
old Functions and linear separators under the uniform distribution where
the algorithm is successful for any amount of noise and shows exponential
improvements if η < ε

16
. However, the algorithm is not very sample efficient.

A2 relies on a subroutine such as the VC bound or Occam’s Razor bound
to compute the lower bound, LB(S, h, δ), and the upper bound, UB(S, h, δ)
on the true error rate of h, errP (h), by using a sample S of examples drawn
i.i.d from P such that LB(S, h, δ) ≤ errP (h) ≤ UB(S, h, δ) holds for all h
with probability 1− δ.

A2 algorithm can be viewed as a robust selective sampling algorithm [9].
Selective sampling keeps track of two spaces; the current version space, Hi,
consistent with all labels queried so far and the region of uncertainty, Ri.
The region of uncertainty includes all datapoints x ∈ X, which have two
hypothesis that do not agree on it. In each round i of the selective sam-
pling algorithm, a random unlabeled example is picked from Ri and queried,
eliminating all hypothesis in Hi inconsistent with the received label. In the
agnostic case we cannot eliminate an hypothesis based on a single example.

The A2 algorithm samples a set of examples Si and uses UB and LB to

7

calculate the disagreement of a region, DISAGD(Hi). The disagreement of a
region is DISAGD(Hi) = Prx D[∃h1, h2 ∈ G : h1(x) 6= h2(x)]. If all h ∈ Hi

agree on some region it can be safely eliminated thereby reducing the region
of uncertainty. This eliminates all hypotheses whose lower bound is greater
than the minimum upper bound. Each round completes when Si is large
enough to reduce half of its region of uncertainty. Therefore, the number of
rounds is bounded by log 1

ε
. The algorithm stops when

DISAGD(Hi)(minh∈H′
i
UB(Si, h, δk)−minh∈H′

i
LB(Si, h, δk)) ≤ ε.

A2 returns h = argmin(minh∈H′
i
UB(Si, h, δk)) where i and k is the iteration

that the algorithm was in when it satisfied the condition.
The bounds for the class of Linear Separators under the Uniform Distri-

bution over the unit sphere for A2 is described in a later section.

Algorithm 2 A2Algorithm

Input: ε, Sample Oracle for D, Label Oracle O, H
Initialize: i = 1, Di = D Hi = H, Si = ∅, and k = 1
while DISAGD(Hi)(minh∈Hi

UB(Si, h, δk)−minh∈Hi
LB(Si, h, δk)) > ε do

Set Si = ∅, H ′
i = Hi, k = k + 1

while DISAGD(H ′
i) ≥ 1

2
DISAGD(Hi) do

if DISAGD(H ′
i)(minh∈H′

i
UB(Si, h, δk) − minh∈H′

i
LB(Si, h, δk)) ≤ ε

then
Output: h = argmin(minh∈H′

i
UB(Si, h, δk))

else
S ′

i = 2|Si|+1 sample from D satisfying ∃h1, h2 ∈ Hi : h1(x) 6= h2(x)
Si = Si ∪ {(x, O(x)) : x ∈ S ′

i};
H ′

i = {h ∈ Hi : LB(Si, h, δk) ≤ minh∈H′
i
UB(Si, h

′, δk)}; k = k + 1;
end if

end while
Hi+1 = H ′

i, Di+1 = Di conditioned on ∃h1, h2 ∈ Hi : h1(x) 6= h2(x),
i = i + 1

end while
Output: h = argmin(minh∈H′

i
UB(Si, h, δk))

8

4.2 Teaching Dimension and Active Learning

Hanneke [5] describes a general active learning noise-tolerant algorithm which
is based on exact learning with membership queries. He shows the first
nontrivial general upper bound on label complexity in an active learning noise
model. In exact learning, the algorithm is required to identify the oracle’s
actual target function rather then approximating it with high probability.
There is no classification noise and the algorithm can ask for the label of any
example. In a sense it is a limiting case of PAC active learning. An additional
restriction to the algorithm in [5], is that it only works for arbitrary persistent
classification noise; meaning the label of a datapoint cannot change from one
query to the next.

The goal of exact learning is to ask for labels f(x) until the only concept
in C consistent with the observed labels is the target f ∈ C. C ⊆ CF

where F is the corresponding σ-algebra of set X and CF is the set of all F -
measurable f : X → {−1, 1}. MembHalving (Hegedüs [6]) is an example of
an exact learning algorithm. It uses majority vote to continously minimize
the version space until only one hypothesis is left. Querying a specifying
set for hmaj guarantees that we at least halve the version space each round
because it is guaranteed that either h makes a mistake or we identify f .

Definition 1 ∀f ∈ CF , XTD(f, V, U) = inf({t|∃R ⊆ U : |{h ∈ V : h(R) =
f(R)}| ≤ 1 ∧ |R| ≤ t}

The teaching dimension is the minimum number of instances a teacher
must reveal to uniquely identify any target concept chosen from the class.
The exact teaching dimension is a more restrictive form; The function, f(R),
of a minimal subset, R ⊆ U , can be satisfied by only one hypothesis, h(R),
and |R| is at most the value of t = XTD.

The Teaching Dimension and Active Learning algorithm (TDA), (Algo-
rithm 3), works by continuously reducing the size of the version space until
it is between specified sizes. The method Reduce achieves this by getting
the minimal specifying set, Ri, of the subsequence Si ∈ U based upon the
majority, hmaj, of V . V̄i is the set of h ∈ V where h(Ri) 6= Oracle(Ri).
Reduce gets the minimal set r times where V̄ is all h ∈ V that did ap-
peared in > θ · r of the sets h(Ri). It returns V ′ = V \V̄ ; it is unlikely that
these datapoints are noisy. It then get the labels from the version space that
should be used for the final hypothesis via the method Label and returns the
hypothesis which has the smallest error. Label gets the minimal specifying

9

Algorithm 3 ReduceAndLabel (TDA)

Input: Finite V ∈ CF , U = {x1, x2, . . . , xm} ∈ Xm, values ε, δ, η̂ ∈ (0, 1].
Initialize: u = b|U |/(5 ln |V |)c, V0 = V, i = 0
repeat

i = i + 1
Let Ui = {x1+u(i−1), x2+u(i−1), . . . , xui}
Vi = Reduce(Vi−1, Ui,

δ
48 ln |V | , η̂ + ε

2
)

until |Vi| > 3
4
|Vi−1 or |Vi| ≤ 1

Let Ū = {xui+1), xui+2), . . . , xui+l}, where l = d12 η̂
ε2

ln 12|V |
δ
e

L = Label(Vi−1, Ū , δ
12

, η̂ + ε
2
)

Output: Concept h ∈ Vi having smallest erL(h), (or any h ∈ V if Vi = ∅).

set for V based upon hmaj as in Reduce, and labels those points. It then
looks at all examples in Ū that were not in the minimal set and labels those
based upon its majority value over its value all its values from the subsets if
h(Ri) = hmaj(Ri) = Oracle(Ri).

It is important to use subsamples of size < 1
16η

in TDA because the
probability of such a subsample containing a noisy sample is small.

Theorem 2 Let n = b 1
16(η+3ε/4)

c, and let N be the size of a minimal ε
2
-

cover of C. Let l = d48η+ε/2
ε2

ln 12N
δ
e. Let s = d(397 ln 96 ln N

δ
)e(4 ln N) +

d167 l
n

ln 36l
δ
e, and t = XTD(C, D, n, δ

2s
). Then the number of labels queried

in C, D, ε, δ, η is ≤ ts = O(t(η2

ε2
+ 1)(d log 1

ε
+ log 1

δ
)(log d

εδ
)). [5]

The theorem states that the bound is st; s is based on n, N , and l, and t
is the extended teaching dimension. This implies that the upper bound for
any concept class is based upon its extended teaching dimension.

The number of datapoints TDA requires is based upon the size of V where
it is known that |V | ≤ N < 2(4e

ε
ln 4e

ε

2
) [11]. So, the number of datapoints is

m ≤

⌈
224

η + ε/2

ε2
ln

48 ln |2(4e
ε

ln 4e
ε

2
)|

δ

⌉
(5 ln |2(

4e

ε
ln

4e

ε

2

)|).

The concept class of axis aligned rectangles is shown as an application

whose XTD(C, D, n, δ) ≤ O
(

n2

λ
log nm

δ

)
. Results were not shown for any

other concept classes; in particular the most common application in the active

10

learning model as described in QBC and A2 is not mentioned. Why wasn’t
this concept class examined? How does this algorithm compare to the other
noisy model, A2?

4.3 Linear Separators under the Uniform Distribution

Model # of Datapoints # of Labels Queried

QBC O(d
ε
log 1

δε
) O(d

ε
)

Modified Perceptron O(d
ε
log 1

ε
) O(d log 1

ε
)

A2 64
ε2

(
2d ln(12

ε
) + ln(4

δ
)
)

O
(
d
(
d ln d + ln 1

δ′

)
ln 1

ε

)
TDA

⌈
224η+ε/2

ε2
ln

48 ln |2(4e
ε

ln 4e
ε

2
)|

δ

⌉
× O > ((2d

√
d
)(η2

ε2
+ 1)×

(5 ln |2(4e
ε

ln 4e
ε

2
)|) (d log 1

ε
+ log 1

δ
)(log d

εδ
))

Table 1: Bounds for models with the class of linear separators under D

A common application analyzed is data drawn from the unit sphere in Rd

where the labels are divided by a linear separator that goes through the origin
of the sphere. The teaching dimension and active learning model did not
examine this case which would be useful in analyzing the difference between
the two noisy models. I will show the upper bounds for each algorithm with
this application and provide an analysis of the two relative to eachother.
Table 1 displays the bounds on datapoints and queries for each of the models
mentioned that analyzed this classifier. QBC and Modified Perceptron use
the Perceptron algorithm on the classifier to produce these bounds.

4.3.1 A2

A2 algorithm shows exponential improvements for the linear separator over
the unit sphere. It is well-designed for this application due to the minimiza-
tion that it does to the area of uncertainty.

Theorem 3 Let X, H, andD be as defined above, and let LB and UB be the
VC bound. Then for any 0 < ε < 1

2
, 0 < η < ε

16
√

d
, and δ > 0, with probability

11

1− δ, the algorithm A2 requires

O

(
d

(
d ln d + ln

1

δ′

)
ln

1

ε

)
calls to the labeling oracle for linear separators under the uniform distribu-

tion, where δ′ = δ
N2(ε,δ,H)

and N(ε, δ,H) = O
(
ln 1

ε

(
d2 ln d + ln d ln 1/ε

δ

))
. [4]

δ is based on N(ε, δ,H) which is an upper bound on the number of bound
(LB and UB) evaluations needed in the algorithm.

If H is a set of functions from X to {−1, 1} with finite VC Dimension,
d ≥ 1, then for any ε, δ > 0, the sample size required from D, an arbitrary but
fixed probability distribution, is 64

ε2

(
2d ln(12

ε
) + ln(4

δ
)
)
. This is based upon

standard sample complexity bounds from Anthony and Bartlett [12] and it
implies with probability at least 1−δ that |err(h)− ˆerr(h)| ≤ ε for all h ∈ H.

4.3.2 TDA

The number of queries required in the TDA model is based upon the ex-
act teaching dimension of the concept class. This proposes some problems
because regardless of the number of datapoints given by the teacher the sep-
arator cannot be learned. This is because there are infinitely many linear
separators in Rd. The concept space must be discretized to X = {0, 1}d to
produce some results.

Theorem 4 Let XTD be as defined above and X = {0, 1}d and no datapoints
lie on the separator. The bound on the number of labels queried in C, D, ε, δ, η
for linear separators under the uniform distribution in X is > (2d

√
d
)(η2

ε2
+

1)(d log 1
ε
+ log 1

δ
)(log d

εδ
)

Proof: The teaching dimension of linearly separable functions is 2d [8]. We
are only concerned with linear separators through the origin which implies
that we only need to be concerned about the datapoints that lie near the
origin. It is possible to shift any one of those datapoints slightly without
changing the others and thereby require a different linear separator. The
teaching dimension is on the order of 2d

√
d
.2 The XTD is even worse since it is

a more restrictive case. However, the TD is poor in itself and it is therefore

2This value was received from Rocco Servedio

12

not necessary to find the XTD. The proof is therefore an approximate bounds
based on substituting t = XTD with TD and s as defined in Theorem 2. 2

Based upon Theorem 4, it would not be a good idea to use TDA for
linear separators under the uniform distribution. The poor bounds in this
class were caused by the dependence of the TDA algorithm on the XTD. It
can be assumed that if the XTD for a class is small that the algorithm would
perform well and therefore be a good algorithm to use. It would appear
that this was the reason that linear separators over the unit sphere was
not examined in [5]. Hanneke shows the classifier of axis-aligned rectangles,
which have a low XTD. (However, they required discreteness as well). In the
class of linear separators under the uniform distribution, A2 algorithm has
un upper bound of significantly less queries and would therefore be a better
choice.

5 Conclusion and Open Questions

I have described a number of active learning algorithms and analyzed and
compared the A2 and TDA algorithms. I have produced results that show
that A2 is better for linear separators over the unit sphere. Some open
questions:

1. In order to fully analyze and compare the two algorithms, what bounds
does A2 have for axis-aligned rectangles? (the concept class shown
using TDA)

2. TDA is useful since it is a general active learning and noisy model,
however it does not do well in the setting analyzed by many other
papers in this topic. Can TDA be altered so that it does not depend
on the exact teaching dimension?

3. Can a general algorithm be written which would produce reasonable
bounds for all the applications?

4. Can general bounds be made for A2?

13

6 References

[1] Y. Freund, S. Seung, E. Shamir, and N. Tishby. (1997) Selective Sampling
using the query by committee algorithm. Machine Learning, 28:133-168.
[2] S. Dasgupta, A. Kalai, and C. Monteleoni. (2005) Analysis of perceptron-
based active learning. COLT.
[3] S. Dasgupta (2004) Analysis of a greedy active learning strategy. NIPS.
[4] M.-F. Balcan, A. Beygelzimer, J. Langford. (2006) Agnostic Active Learn-
ing. Proc. of the 23rd International Conference on Machine Learning.
[5] S. Hanneke. (2007) Teaching Dimension and the Complexity of Active
Learning. COLT.
[6] T. Hegedüs. (1995) Generalised teaching dimensionand the query com-
plexity of learning. Proc. of the 8th Annual Conference on Computational
Learning Theory.
[7] S. A. Goldman and M. J. Kearns. (1995) On the complexity of teaching.
Journal of Computer and System Sciences, 50:20-31.
[8] M. Anthony, G. Brightwell, J. Shawe-Taylor (1995) On specifying Boolean
functions by labelled examples. Discrete Applied Mathematics, 61:1-25.
[9] D. Cohen, L. Atlas, & R. Ladner (1994). Improving generalization with
active learning. Machine Learning, 15(2), 201-221.
[10] M. Kaarianen (2005). On active learning in the nonrealizable case. NIPS
Workshop on foundations of Active Learning.
[11] D. Haussler (1992). Decision theoretic generalizations of the PAC model
for neural net and other learning applications. Information and Computation,
100:78-150.
[12] M. Anthony & P. Bartlett (1999). Neural Network Learning: Theoretical
Foundations. Cambridge University Press.

14

