
Analysis and Signature of Skype VoIP Session Traffic
Fraunhofer FOKUS Technical Report NGNI-SKYPE-06b

Sven Ehlert, Sandrine Petgang
Fraunhofer FOKUS, Berlin, Germany
{ehlert, petgang}@fokus.fraunhofer.de

July 25th, 2006

Abstract
Skype is a peer-to-peer VoIP application that has
gained substantial popularity since its launch in 2003.
However, none of Skype's algorithms or its protocol
specification are available for public inspection, which
impedes evaluation from a security perspective.
In this report we present an analysis of Skype opera-
tion from the network point of view. From the anal-
ysis we develop traffic signatures that allow a third
party monitoring entity to detect the usage of the
Skype application. These signatures concentrate on
Skype signalling traffic and contain different charac-
teristics, including port usage, network packet sizes
and payload content. The application of theses sig-
natures in a detection tool shows their effectiveness
to properly detect Skype versions 1.4 and 2.0, and
2.5 traffic.

1 Introduction
Voice over IP (VoIP) has become rapidly popular
in recent times. Several international providers are
already offering free or low cost VoIP services, like
Google [1], Yahoo [2], Skype [3], or Gizmo Project
[4]. As many business and governmental organisa-
tions are considering or have deployed VoIP commu-
nication to extend or even replace POTS communi-
cation, security consideration are becoming more and
more crucial. For example, it is mandatory that the
VoIP service does only expose information the user
is willing to reveal and that confidential information

cannot be intercepted by third parties.
While many providers use the IETF Session Ini-

tiation Protocol (SIP) [5] (Yahoo, Gizmo Project;
Google Talk is currently considering SIP), the popu-
lar VoIP service Skype uses a proprietary signalling
and media protocol for voice calling, instant messag-
ing, audio conferencing and file transfers. Addition-
ally, all traffic is end-to-end encrypted. Thus, it is
currently not known what exact information is trans-
ported with the application. It also impedes protocol
analysis for potential security holes.

Much of Skype's success results from their concept
of delivering user friendly operation, e.g. the client
can operate without manual user configuration. How-
ever, this user friendliness is largely due to Skype's
ability to detect the current network configuration
(e.g. restrictions resulting from Network Address
Translators (NAT) or firewalls) and deliver mecha-
nisms to circumvent many applied network security
restrictions.

Monitoring Skype operation can thus show poten-
tial security breaches in the network and can help to
assess current security policies. Traffic monitoring for
security reasons is widely used in Intrusion Detection
Systems [6],[7].

In this report we examine Skype from a network
point of view. We analyse network traffic with the
goal to detect patterns that are intrinsic to the Skype
protocol. This information can then be fed into a
third party network monitoring tool, allowing a secu-
rity operator to monitor and detect Skype traffic.

Detecting Skype traffic has not yet been widely

1



covered in the research community, which is mainly
on account of Skype's closed operation model. Suh
et al. [8] monitor Skype traffic using relay nodes. In-
stead of examining payload content they use heuris-
tics and statistical analysis to detect Skype traffic.
Guha et al. [9] measure combined Skype signalling
and media traffic and present a Skype traffic model
and compare it to other peer-to-peer applications.

Baset and Schulzrinne [10] present a broad anal-
ysis of Skype operation mechanisms, including ba-
sic Skype message flows. Their analysis is based on
older versions of the Skype protocol up to version 1.4.
The protocol has significantly changed with version
2.0. They also focus on general Skype operation with-
out presenting a detection signature. Fabrice [11] re-
cently presented first results in his attempt to reverse
engineer Skype. He outlines possibilities to debug the
Skype binary application and shows initial results in
decrypting Skype's protocol operation. Other topics
of Skype research include Skype performance mea-
surements [12], [13].

This report is organized as follows: In Sect. 2 we
present an overview of Skype operation as far as it is
currently known. We give an overview of our analysis
method in Sect. 3, including a description of the uti-
lized testbed. The analysis consists of two parts: In
Sect. 4 we describe general Skype port usage analy-
sis. As port analysis alone can not give sufficient de-
tail to accurately describe Skype network traffic, we
present in Sect. 5 an analysis of session message flows
including payload patterns. Based on the gained data
we develop in Sect. 6 a signature of Skype session
traffic. We conclude our work in Sect. 7 and give
an outlook of open monitoring issues. A list of used
abbreviations is appended.

2 Skype Operation Overview

Baset [10] presents a broad overview of Skype oper-
ation and Skype network entities. We follow in this
report his naming and abbreviation scheme.

Unlike client-server based SIP, Skype uses an over-
lay peer-to-peer (P2P) network, similar to its file
sharing predecessor KaZaa [14]. There are three main
components in the Skype network.

• The Skype login server (LS) is one of the the few
central components of the network. Every user
is authenticated through the login server to gain
access to the network.

• A Skype client (SC) is a participating user in
the network. SC provide all user functionality
to access the network, that is login, initiate and
receive calls, instant messages and file transfer.

• Super Node (SN). Any SC can also become a su-
per node, which provide additional functional-
ity to other SN and SC. A super node performs
routing tasks such as forwarding requests to
appropriate destinations and answer to queries
from other SC or SN. SN also can forward lo-
gin requests in case the login server is not di-
rectly reachable from a SC. Additionally, SN pro-
vide media proxying capabilities for other SC
that have only restricted internet access, be it
through Network Address Translation (NAT) or
restricted firewalls. Every SC will automatically
become a SN if it meets certain criteria, e.g. high
speed and unrestricted internet access. It is gen-
erally difficult to prohibit a SN from becoming a
SN. To log in to the network, a SC needs to con-
tact at least one SN. Several SN are hard coded
into the SC's executable. These bootstrap SN
are contacted upon first launch of the client to
gather an updated and more extensive list of cur-
rently available SN. Baset lists seven different
bootstrap SN [10], which we can confirm in our
experiments.

Except for some dedicated operations like authenti-
cation, user list storage or Skype-to-PSTN connectiv-
ity, there are no further central servers in the Skype
network. All other operations, e.g. user searches or
message forwarding are performed in a decentralized
way by the SN. Figure 1 depicts the Skype network
structure.

Both signalling and media traffic is encrypted for
any kind of Skype connection. There is only one mes-
sage containing plain text content after installation.
Here the SC contacts the Skype web page to check
for an updated version of the SC.

2



Figure 1: Skype P2P network. Skype clients are in-
terconnected through special clients (Super nodes) that
also provide additional routing and message forwarding
features to the Skype network. Users need to contact a
login server either directly or through a super node to
gain access to the network.

3 Analysis Method and Testbed

To detect characteristics of Skype's network be-
haviour, we have captured and analysed multiple
Skype session traces.

All test have been conducted on Windows XP com-
puters with Skype versions 1.4 and 2.0 1. Hence,
given results apply thus to all versions from version
1.4 on. If network traffic differs with later versions,
additional remarks are given.

We have installed the Ethereal packet sniffer to
record incoming and outgoing traffic during a Skype
session, both at the caller and callee’s side. Note,
that in this report we solely analyse signalling traffic.

The exact operation of the Skype protocol is cur-
rently unknown. To determine accurate Skype net-
work characteristics, we have modified network pa-
rameters at both nodes to gain a broader data set.

Firewall We applied three different settings: No
firewall protection at all, UDP / TCP incoming
port restrictions and both incoming and outgo-
ing port restrictions. See Sec. 4 for relevant
Skype port restrictions.

1Version 2.5 came out at the end of our study. We have
evaluated our developed signature with version 2.5

Network Address Translation We assigned pub-
lic IP addresses without NAT and private IP ad-
dresses behind a full-cone NAT [15]. Caller and
Callee have been both in the same and different
networks.

We have varied these combinations between caller
and callee to capture traces in different application
of these parameters. The following operations have
been conducted in every different network configura-
tion:

• Creating a Skype account through the client in-
terface.

• Logging in to the Skype network.

• Logging in to the Skype network with known
contacts of other Skype users are stored already
in Skype’s “Buddy list”. Two scenarios have been
created, where users (“Buddies”) are off-line or
on-line during login.

• Login with different user names, and also with
wrong credentials.

• Different call scenarios, e.g. call initiated from
a user already on the contact list, calls to users
having the caller blocked, conference calls, calls
with different presence information set (Avail-
able, Do Not Disturb), callee does not respond,
call into PSTN, etc.

The tests have been reiterated several times. For the
reiteration, two different methods have been applied:

• Simply logging off from the Skype network and
capturing a new trace after a following login.

• Complete deinstallation of the Skype client in-
cluding removal of System registry entries (us-
ing Windows Restoration Points) followed by a
fresh install of the client. This was conducted to
distinguish if Skype uses some communication
procedures only executed after a fresh login.

For the whole project more than 700 different traces
have been captured and used for the analysis.

3



The traces have been analysed with the goal to
detect Skype intrinsic network features. As most of
Skype's traffic is encrypted, our analysis focuses on
available identifying features:

• protocol and port usage,

• packet size (denoted as s). It is always given as
the message payload size, i.e. the content after
the UDP / TCP header,

• packet content, when clear characteristics are
discernible.

4 Skype Port Analysis

Skype uses for communication both UDP and TCP
connections. As a fallback mechanism it has the
ability to initiate connections to TCP ports 443
(HTTPS) and 80 (HTTP), in this order. To detect
the used port range we have imposed several network
port restrictions to force the SC to use different port
combinations to login to the Skype network.

For UDP traffic, it generally uses an arbitrarily set
port. The user can change this port number from
SC's configuration dialogue. If set, the SC is reach-
able by this port for UDP (and incoming TCP) traf-
fic. If the user does not specify a port, the SC selects
arbitrarily one port which it uses during operation.
The only fixed UDP port number is 33033, which is
used to contact statically configured bootstrap SN
from the SC. We could not devise a pattern for UDP
port usage if this port is not selected by the user.

While Skype uses both UDP and TCP connections,
UDP is not mandatory for its operation. In our ex-
periments the SC was able to login even with only
TCP traffic allowed.

For TCP the SC tries to contact other hosts at
ports higher than 1024. If firewall restrictions for this
port range are applied, it tries again to this host on
port 443. If this also fails it will initiate a connection
over port 80. Concurrently it tries this scheme at
other hosts.

The SC clients selects its source TCP port in the
following way: initially it starts at a port between

1026 and 1040, incrementing successively if no an-
swer arrives. Approximately 2 hours later it stops
sending packets for at least 30 minutes. After restart-
ing Skype, it continues incrementing with an average
gap of 5 from the previously stopped number (i.e. if
Skype stopped last time at 3945, it will begin with
port number 3950); Whenever we waited more than
one hour before restarting the client it started again
with a port between 1026 and 1040. After reach-
ing source port 5000, it starts over from port 1026.
Hence, the client depends on an open TCP source
port in the range from 1026 until 5000. If the client
is not able to establish a connection this way, it will
not be able to log in to the network.

Note, that this behaviour was only visible with
Skype version 1.4. Version 2.0 gives up after approx-
imately 8 minutes of unsuccessful login attempts and
reports an error.

4.1 Proxy Internet Configuration

The Windows version of SC allows the configuration
of an internet proxy to gain network access. In one
setup we have placed the SC behind a web proxy
(Squid on a Linux system), and allowed internet ac-
cess only through the use of this web proxy.

We have observed that the SC at first tries to di-
rectly contact other peers on an port over 1024, port
443, and port 80, in this order. It only uses the
proxy as a fall-back if it can not establish a direct
connection to other hosts. Thus, a proxy can be used
for Skype traffic monitoring only in a network setup
where internet access is available exclusively via this
proxy.

5 Skype Message Flow Analysis

We have investigated Skype message flows that occur
whenever a user logs in to the network.

5.1 General Query / Response Pat-
terns

We discovered a key feature for UDP messages ini-
tiating from the client to different destinations, i.e.

4



Figure 2: Key signalling messages. Initiating UDP
signalling messages seem to contain in their first two byte
an incrementing session identifier field.

packets that are not sent as a reply to another mes-
sage. The first two bytes of those UDP requests con-
tain a number that is increased by two on every new
request. (Figure 2). This number is of 16 bit size,
arranged in network byte order. The first request is
sent using an arbitrarily selected number. We have
not been able to determine the algorithm upon which
the first session number is generated. In our exper-
iments we did not encounter any sequence number
close to 0xff 0xff2 to observe a possible wrap-around.
The increase occurs with every new initiating connec-
tion, independent of the destination. We conjure that
this might be a global session identifier for Skype.

While we could not deduce a pattern for the first
two bytes in these responses, we have witnessed a
pattern for the third byte for messages with s = 26,
51 or 53 byte. These bytes are either set to 0x02 or
have the lower nibble3 set to 0xd.

5.2 Skype Network Traffic Analysis
We have observed three distinct tasks a SC performs
after application startup, which we call UDP Probe,
TCP SN Handshake and TCP Authentication. Note
that these names do not necessarily completely reflect
the actual performed Skype operation, as we have not
been able to fully decipher Skype operation.

UDP Probe We assume the SC client checks at this
stage network restrictions and contacts potential

2To distinguish hexadecimal number from decimal ones, all
hexadecimal numbers are prefixed with 0x.

3A nibble is a an aggregation of four bits. There a two
nibbles in a byte, a lower nibble (representing the lower four
bits) and a higher nibble (representing the higher four bits).

Figure 3: UDP Probe signalling. The SC exchanges
four messages with a SN to detect possible candidates
that allow it to connect to the Skype network (Skype
v1.4).

SN. We denote messages exchanged at this stage
U1 – U4.

TCP SN Handshake The SC connects to a SN to
establish a permanent connection to last for the
whole session. We denote messages exchanged
at this stage T1 – T4.

TCP Authentication The SC contacts a Login
Server (LS) for authentication. We denote mes-
sages exchanged at this stage L1 – L4.

5.2.1 UDP Probe

After startup, a SC initiates a double-two-way hand-
shake, involving two queries to a SN (U1 and U3)
and two responses (U2 and U4). The message or-
der and the corresponding message sizes can be seen
from Figure 3. As described in Sect. 4, the destina-
tion port is 33033 when contacting a bootstrap SN,
and defined by user preferences for other SN.

Within Skype versions 1.4 and 2.0 there are differ-
ent message sizes for U1 and U3. With Skype v1.4
sU1 is fixed at 18 byte, while v2.0, sU1 varies. In
both versions the following holds true: sU3 = sU1
+ 5 byte. Also in both versions sU2 = 11 byte and
sU4 is either 18, 51, or 53 byte. We have analysed
these messages regarding their payload and have dis-
covered different types of content exchange, which we
call session identifiers, function parameters, and IP
address exchange.

Session identifiers. U1 is a initiating message as
described in Sec. 5.1, hence the first two bytes

5



in this message contain a session identifier. We
have discovered equal session identifiers in U2
and U3. However, this match is not kept with
U4.

Function parameter The third byte of a message
seems to be a message type encoding. We have
observed that this value is 0x02 for U1 and U4.
The value changes for both U2 and U3, however,
the lower nibble stays always the same. It is 0x7
for U2 and 0x3 for U3. In the case of U3, in our
experiments we have witnessed that the 4th byte
of the message has always the value 0x01.

IP Address exchange The remainder of these
messages contain four four-byte-values ex-
changed between the SC and the SN. We have
discovered that two of these 4-tuples contain IP
addresses of the originating and destination net-
work. We observed these exchanges within U2
and U3. If Mx-y denotes the payload bytes x to
y in message M then U24-7 contains the SC's IP
address, while U39-12 contains the SN's IP ad-
dress.

We assume that this message exchange is part of
Skype's NAT detection algorithm, which oper-
ates similar to STUN (Simple Traversal of UDP
over NAT) [16]. Note, that these address fields
never contain private addresses. Instead, the
host's publicly visible (e.g. the address of the
NAT device) is transferred.

Two other 4-tuples are transported twice over
the network and occur in the following way:
U18-11 = U313-16, and U28-11 = U35-8. The sig-
nificance of these two 4-tuples is unknown.

The full UDP probe message exchange is depicted in
Figure 4.

If sU4 = 18 byte, the SC successively attempts to
establish a TCP connection to the same SN; in case
of an answer with s = 51 or 53 byte, no TCP con-
nection is initiated and the SC contacts another host
with a simpler handshake. Note that the originator
of a 51 or 53 byte reply is not contacted any further
during the whole session. Especially bootstrap SN al-
ways reply in this way. It seems that only an 18-byte

Figure 4: UPD Probe payload content. A SC and a
SN exchange four 4-tuples. Among them seem to be IP
addresses to detect Network Address Translators.

answer is an affirmative answer, i.e. the SN is ready
to accept further communication. An answer of 51
or 53 byte seems to indicate a rejecting or redirecting
answer.

The successive, simpler handshake consists only of
a message like U1 with an answer resembling U4; U2
and U3 don't occur. Again, sU4 = 51 or 53 byte seem
to indicate a negative reply. This simpler pattern is
continued until a TCP connection is established. De-
pending on the number of messages exchanged (four
or two) we refer to a full UDP probe or a partial UDP
probe. We denote the handshake positive in case of
sU4 = 18 byte or negative in case of sU4 = 51 or 53
byte.

The SC continues to initiate partial UDP probes,
even after it has been logged into the Skype network.
This is necessary in case the SC changes its contacted
SN (see Sect. 5.2.2).

5.2.2 TCP SN Handshake

We have observed that the SC needs at least one open
TCP connection to a SN to successfully login to the
network. The general TCP connection setup works
as follows:

1. A TCP connection is initiated to a potential SN
after a positive UDP probe. The TCP connec-
tion is established to the same port the previous
UDP message was received from.

2. If the TCP connection is closed or times out, the
SC initiates other TCP connections to different
hosts that previously have been positively UDP
probed.

6



3. If a TCP connection is successful, SC and SN ex-
change messages. After this handshake the TCP
connection either is kept alive or closed.

4. Generally, if the TCP connection is kept alive
after step 3, it is closed only when the user ter-
minates the application. However, we have ob-
served several instances of the termination of the
TCP connection before ap plication close and the
establishment of a new TCP connection to a dif-
ferent host. We assume that this happens if the
previous SN can not operate as a SN any more
or becomes unavailable. In this case the new
TCP connection is established in the same way
the previous connection was established.

This TCP message flow consists of several messages
exchanges between SC and SN. Within the first six
messages exchanged, the SC and SN agree upon keep-
ing this connection or dropping it. As this traffic is
completely encrypted, we have not been able to deter-
mine a significant payload signature. Hence, we con-
centrate our observation on TCP packet sizes. Due
to the fact that Skype “pushes” – i.e. sends TCP
messages with the PSH bit set – we've been able to
to determine a pattern based on TCP payload size
(Figure 5).

For Skype v1.4, after the SC has established the
TCP connection to a potential SN, it sends a message
with s = 14 byte (T1). This is followed by a message
with varying sizes. Following, the SC sends a third
message with s between 22 and 29 byte, replied with
a message with varying sizes (T3). This message is
finally acknowledged by the SC with a message with
s = 4, 15, 16, or 17 byte (T4).

The most significant case is whenever the SN sends
T3 with s = 339 byte. In all theses cases the TCP
connection is terminated and the SC tries to establish
a different connection to another SN. If, however the
described reply has any other size different from 339
byte and bigger than 57 byte, the TCP connection
will be kept alive. This node will become the SN for
the SC for the whole duration the user is connected to
the network unless the SN itself becomes unavailable.

This procedure is similar with Skype v2.0, except
that sT1 is not fixed at 14 bytes, but varies. An

Figure 5: TCP SN signalling. The SC seems to nego-
tiate with the SN if the SC is allowed to access the Skype
network through this SN.

Figure 6: Restricted network signalling . A modi-
fied TCP SN handshake is preceded by three additional
messages when communicating over ports 443 and 80.

additonal messages is sent to the SN before T2. T2,
T3, and T4 stay the same.

TCP Restrictions Applied. When a SC client
cannot establish a regular TCP connection to a SN
after a previous UDP probe, it will try to establish
a TCP connection over ports 443 and 80. Note, that
although Skype does communicate over those well-
known ports, this does not command the usage of
the respective protocols. As a matter of fact, Skype
seems to use a modification of the Transport Layer
Security (TLS) protocol [17] for port 443, but it does
not utilize HTTP over port 80.pattern

When operatin in restricted mode, three messages
R1 – R3 are exchanged, followed by a slightly modi-
fied SN TCP handshake consisting only of messages
T2 – T4 (See Figure 6). R1 – R3 vary depending on
port usage and Skype version.

7



Port 443 Operation. We observed that in both
versions sR1 = 72 byte. Additionally, R1's payload
begins with the 56 byte sequence (hexadecimal nota-
tion)

80 46 01 03 01 00 2d 00
00 00 10 00 00 05 00 00
04 00 00 0a 00 00 09 00
00 64 00 00 62 00 00 08
00 00 03 00 00 06 01 00
80 07 00 c0 03 00 80 06
00 40 02 00 80 04 00 80.

We have observed that this message is a fully com-
pliant TLS 1.0 ClientHello message wrapped in a
SSLv2 record layer [17]. All observed R1 messages
differ only in the last 16 byte (R157-72), which in TLS
describe a variable attribute challenge.

The size of the reply R2 varies, however in about
40% we noticed 93 byte. Additionally, the first 79
bytes of R2 are always (hexadecimal notation)

16 03 01 00 4a 02 00 00
46 03 01 40 1b e4 86 02
ad e0 29 e1 77 74 e5 44
b9 c9 9c b4 31 31 5e 02
dd 77 9d 15 4a 96 09 ba
5d a8 70 20 1c a0 e4 f6
4c 63 51 ae 2f 8e 4e e1
e6 76 6a 0a 88 d5 d8 c5
5c ae 98 c5 e4 81 f2 2a
69 bf 90 58 00 05 00.

This pattern is partly modelled after a TLS
ServerHello message. Especially interesting are
here fields which in TLS context must not be
static, while they are in Skype's usage. These
are gmt_unix_time (R212-15) which is fixed at Jan,
31, 2004 18:23:18:000000000, and random_bytes
(R216-43).

The remainder of R2 starting from byte 80 does
not comply to the TLS standard.

The SC responds with R3, with sR3 = 14 byte for
Skype v1.4, while it varies for v2.0.

Port 80 Operation. With Skype v1.4, R1 has al-
ways a size of 16 byte. R2 has varying sizes and sR3
= 14 byte. We observed varying sizes for R1 – R3

Figure 7: Port 80 signature (v1.4 and v2.0). When
communicating over port 80, several nibble sequences (in-
dicated in bold) occur twice in all R1 messages. Note the
shift by one position of the first occurrence between Skype
v1.4 (topmost) and v2.0 (three remaining).

in Skype v2.0 traffic. Additionally, no static payload
is transmitted as in the case with port 443. How-
ever, we have been able to determine a pattern in the
payload content of R1.

In Skype v1.4 we have observed that the higher
nibbles of R15-6 are the same as the higher nibbles
R115-16. In Skype v2.0, the higher nibbles of R16-14
(note the start at the 6th byte in comparison to v1.4)
are the same as the higher nibbles of R116-24. This
has special implications if sR1 < 24 byte, as the com-
parison range will be shorter. See Figure 7.

5.2.3 TCP Authentication

After a TCP connection is established to a SN, the
SC client needs to authenticate itself. Baset [10]
detected two login servers (LS) 195.215.8.141 and
212.72.49.141, which we confirmed in our experiment.

Generally, four TCP messages (L1 – L4) are ex-
changed between the SC and a LS, with the first two
messages with a size of 5 bytes and varying sizes for
successive messages (see Figure 8).

Further messages are exchanged when the user sup-
plies a wrong password. After user authentication the
connection to the LS is closed.

All message have some significant payload bytes:

• L11-5: 0x16 0x03 0x01 0x00 0x00. Note, that
this is already the whole content of L1.

8



Figure 8: TCP authentication signalling. The SC
tries first to contact the LS directly. The number of mes-
sages exchanges depends on the success or failure of the
login attempt.

• L21-5: 0x17 0x03 0x01 0x00 0x00. Note, that
this is already the whole content of L2.

• L31-15: 0x16 0x03 0x01 0x00 0xcd 0x41 0x03
0x00 0x09 0x80 0x40 0x04 0x08 0xc0 0x01. Addi-
tionally, the byte sequence 0x00 0x0c 0x01 0x17
0x03 0x01 0x00 occurs at an undetermined posi-
tion within L3.

• L41-4: 0x17 0x03 0x01 0x00.

Again, the bytes sequence 0x16 0x03 0x01 0x00 0x00
also occurs in the beginning of TLS ServerHello
messages. However, in the same context 0x17 0x03
0x01 0x00 0x00 is not a valid TLS message fragment
[10].

We have encountered this traffic pattern also
when communicating to two other groups of Skype
servers. One group consists of hosts 195.215.8.140
and 212.72.49.155. As these servers are only con-
nected when a users tries to call another user in
the PSTN network, we assume them to be Skype-to-
PSTN gateways (SkypeOut) [18]. The other group
are hosts 195.215.8.142 and 212.72.49.142. We have
not been able to determine their functionality, how-
ever they are connected whenever a user adds, blocks
or deletes an address on his contact list.

Restricting Access to LS. Whenever access to a
LS or any of the other described servers is not pos-
sible, the SC relays this traffic through another SN
[10]. In this case we could only detect messages L3
and L4 exchanged with a randomly selected SN. We
did not observe messages L1 and L2 exchanged.

Restricted TCP Access. In the case that TCP
access over port 1024 was not allowed, the SC initi-
ated the same handshake over ports 443 and 80. In
all three cases the handshake does not differ.

Automatic Login. Upon statup of the Skype
application, the user is given the opportunity to
save his credentials for further logins to the net-
work. In this case the Skype application stores
this information and retrieves it the next time the
user starts up the application. The users does not
have to enter his credentials again for further login
attempts. This behaviour is the default in the
Skype application. We assume that this information
is stored encrypted in the file C:\Documents
and Settings\<username\Application
Data\Skype\user\config.xml, which contains
a section <Account> with subsection <credentials>
that only occurs whenever the Automatic Login
option is enabled.

With this option enabled, no connection to any
login server is performed at application startup, i.e.
there is no data present in the traffic that matches
messages L1 – L4.

Enabling Automatic Login only affects login traffic,
neither UDP probes nor TCP SN traffic is affected.

6 Skype Detection Signature
With our analysis of the protocol at hand we can
develop a signature to detect Skype login traffic. A
signature should meet three criteria:

1. It should be as compact as possible. A complex
signature complicates the monitoring unit which
results in less performance with multiple concur-
rent traffic patterns to monitor.

2. The signature should consider all possible cases
how traffic could be injected in the network; Oth-
erwise Skype sessions might evade detection.

3. The number of detected false positives, i.e. the
detection of a Skype session if in reality no
Skype session was established, should optimally
be zero.

9



From our analysis we have learnt that all three goals
are difficult to achieve with Skype traffic. For exm-
ple, a first idea could be to scan for packets with
byte sequence 0x16 0x03 0x01 0x00 0xcd 0x41 0x03
0x00 0x09 0x80 0x40 0x04 0x08 0xc0 0x01, as they
always occur in packets exchanged with the LS. With
this method however, one can not detect subsequent
logins to the LS as desribed in Sect. 5.2.3. Further-
more, it it impossible to determine the end of the
Skype session.

We therefore propose a different signature which is
based on UDP probe detection and TCP SN hand-
shake detection. Additionally, we monitor ports 443
and 80, in case the SC is deployed behind a restricted
network. The signature consists of multiple steps,
with the actual detection desribed in steps 7 to 9.

1. Network traffic scans for UDP packets with a
payload size of 18 bytes and the third byte of the
payload set to 0x02 (U1). Note, that for Skype
v2.0 detection only payload scanning is feasible,
as the size of the packets might differ. Save
both IP address / port tuple of the originator
(CONSC) and the destination (CONSN ). Also,
save the first two bytes of this message (U11-2).

2. Scan for a reply CONSC ← CONSN (U2) with
s = 11 byte and U21-2 = U11-2 and the lower
nibble of U23 = 7. Alternatively, scan for the
message described in step 4 (In case of a partial
UDP probe).

3. Scan for another request CONSC →
CONSN (U3), with the following three con-
ditions: 1) sU3 = sU1 + 5; 2) U31-2 = U11-2;
and 3) lower nibble of U33 = 3.

4. Scan for a reply CONSC ← CONSN (U4) with
sU4 = 18 and U43 = 0x02. We now have detected
Skype usage in the network.

5. Scan for subsequent occurrences of steps 1-4.
This is necessary to detect a possible SN change.

6. Scan for a TCP connection CONSC → CONSN.
Note, that any of the tuples CONSC / CONSC
as described in steps 1-4 need to be taken into

account..This might become the TCP SN hand-
shake.

7. Within this TCP connection scan from a packet
CONSC → CONSN with s between 22 and 29
byte (T2).

8. Scan for a reply from CONSC ← CONSN (T3).
Check if sT3 = 339 byte, in this case the con-
tacted node will not become the SN. Continue
again from step 6.

9. If sT3 6= 339 and sT3 > 57, scan for a final reply
from CONSC → CONSN, with s = 4, 15, 16,
or 17 byte. We now have detected a successful
connection from the SC to a SN.

10. Continue scanning from step 6 onward to detect
a possible SN change during the session. After a
SN change, keep the parameters of the last active
SN, discarding previous SN parameters.

11. Scan for TCP connection close of the last active
SN connection. This signals the termination of
Skype usage by the client.

To take detection over ports 443 and 80 into ac-
count, the following steps need to executed:

For port 443 traffic, scan for outgoing packets with
s = 72 byte that begin with the hexadecimal pattern

80 46 01 03 01 00 2d 00
00 00 10 00 00 05 00 00
04 00 00 0a 00 00 09 00
00 64 00 00 62 00 00 08
00 00 03 00 00 06 01 00
80 07 00 c0 03 00 80 06
00 40 02 00 80 04 00 80.

As in step 1, save both IP address / port tuple of the
originator (CONSC) and the destination (CONSN).

This is a already very strong indication of Skype
traffic. However, for more evidence scan for a reply
CONSC ← CONSN beginning with

16 03 01 00 4a 02 00 00
46 03 01 40 1b e4 86 02
ad e0 29 e1 77 74 e5 44
b9 c9 9c b4 31 31 5e 02
dd 77 9d 15 4a 96 09 ba
5d a8 70 20 1c a0 e4 f6

10



4c 63 51 ae 2f 8e 4e e1
e6 76 6a 0a 88 d5 d8 c5
5c ae 98 c5 e4 81 f2 2a
69 bf 90 58 00 05 00.

We have detect initial SN communication. Continue
with step 7.

For port 80 communication examine outgoing
packets (R1) where the higher nibble of R15-6 =
higher nibble of R115-16 (for Skype v1.4) or the higher
nibble of R16-24 = higher nibble of R116-24 (for Skype
v2.0). We have detect initial SN communication.
Continue with step 7.

6.1 Signature Analysis

This signature is complete in a way that it can suc-
cessfully detect Skype session start and stop under
all known Skype network operation modes. For this,
this signature does not need to take TCP Authen-
tication traffic into account. It is sufficient to mon-
itor traffic involving SN connections, as authentica-
tion traffic occurs after a connection to a SN has been
established. Only in the unlikely case that the user
has no automatic login activated and provides wrong
credentials, this signature detects Skype usage while
in fact only the application is running.

Note, that the actual detection is performed in
steps 6 to 9. Other steps are applied to imporve de-
tection accuracy.

6.2 Application

We have incorporated the signature as a module
into the OpenIMP measurement platform [19]. We
have thouroughfully tested the monitoring capabil-
ities with all our previously recorded tracefiles and
also installed it as a life monitor for an internal net-
work. In all cases, the monitor was able to success-
fully detect Skype network traffic. Additionally, we
have run different other internet services like VoIP
(SIP, IAX2), Web Access (HTTP / HTTPS), and
Messaging Services (MSN) in the same network. The
monitoring tool did never falsy classify them as Skype
traffic.

We also installed Skype v2.5 in our test network.
The monitoring tool was able to successfully detect

Skype session. However, there seems to be a variation
in port 80 restricted traffic (R1). The monitoring tool
was still able to detect port 80 restricted Skype traffic
by checking the TCP SN handshake (signature steps
7 to 9).

7 Conclusions and Future Work

In this report we have presented an analysis of dif-
ferent message flows of the Skype VoIP application.
Skype implements several features impeding Skype
usage detection from a network level, which are un-
available protocol specification, complete encryption
of all messages, clandestine port number usage and
several different operation modes.

We have been able through packet inspection to
determine several characteristics of the Skype proto-
col that can be used for packet monitoring. Skype
detection is possible through deep packet inspection
in combination with port usage correlations. Our de-
veloped signature is able to detect Skype v1.4 and
v2.0 usage from the moment the user logs into the
Skype network until it logs out from the service.

Still, detecting Skype traffic is not a lightweight
task. Because of Skype's P2P character, the security
operater has to install monitoring systems at all net-
work egress points to detect all user operation. Addi-
tionally, exact detection of Skype usage in high traffic
scenarios requires powerful monitoring hardware, as
monitoring with our signature needs to operate state-
fully, and multiple packets have to be analysed down
to the payload level. Successful detection requires
continuous monitoring, i.e. it is not possible to take
network snapshots and present a result solely on this
snapshot analysis. We have seen that patterns dif-
fer between the examined version 1.4, 2.0, and 2.5.
It is likely that this will continue with newer Skype
versions.

In future work we would like to overcome some of
these limitations. Our main interest lies in the de-
tection of actual voice calls. i.e. the detection of ac-
tive usage of the application. We see two possibilities
here. First, it might be possible to detect signatures
also for voice signalling traffic. However, we judge the
probability to detect such signature rather low. Much

11



of the traffic patterns we describe in this report are
detectable due to the fact that we have concentrated
our efforts on Skype traffic occurring immediately af-
ter application launch, where full encryption of traffic
still has to be established. This is not the case when
the user is already logged in to the network. We are
therefore following the recent progress in decrypting
Skype operation with interest [11]. A second possibil-
ity to detect voice calls lies in the analysis of the voice
traffic itself. Detecting unique patterns in this traf-
fic would also allow eliminate the requirement of the
monitoring agent to constantly analyse all incoming
traffic.

Acknowledgements. We would like to thank
Thomas Günther for additional input and initial test-
ing tools.

Used Abbreviations

CON Connection tuple (address / port)

Lx TCP login server authentication message

LS Login Server

PSTN Public switched telephone network

Rx Restricted access message

s size of packet payload

SC Skype Client

SN Super node

TLS Transport Layer Security

Tx TCP super node handshake message

Ux UDP probe message

References

[1] Google talk (beta).
http://www.google.com/talk.

[2] Yahoo messenger with voice.
http://messenger.yahoo.com.

[3] Skype - the whole world can talk for free.
http://www.skype.com.

[4] Gizmo - a free phone for your computer.
http://www.gizmoproject.com.

[5] G. Camarillo A. Johnston J. Peterson R.
Spark M. Handley E. Schooler J. Rosenberg,
H. Schulzrinne. Session initiation protocol. RFC
3261, 2002.

[6] V. Paxon. Bro: A system for detecting net-
work intruders in real-time. Computer Networks,
31(23-24), 1999.

[7] A. Valdes and K. Skinner. Adaptive, model-
based monitoring for cyber attack detection.
RAID 2000, 2000.

[8] J. Kurose D. Towsley K. Suh, D.R. Figueiredo.
Characterizing and detecting relayed traffic: A
case study using skype. UMass Computer Sci-
ence Technical Report 2005-50, 2005.

[9] N. Daswani S. Guha and R. Jain. An experi-
mental study of the skype peer-to-peer voip sys-
tem. 5th International Workshop on Peer-to-
Peer Systems (IPTPS '06), 2006.

[10] H. Schulzrinne S. A. Baset. An analysis of the
skype peer-to-peer internet telephony protocol.
IEEE Infocom, 2006.

[11] D. Fabrice. Skype uncovered, 2005.
http://www.ossir.org/windows/supports/liste-
windows-2005.shtml.

[12] G. Lisha and L. Junzhou. Performance analysis
of a p2p-based voip software. Advanced Interna-
tional Conference on Telecommunications and-
International Conference on Internet and Web
Applications and Services (AICT/ICIW 2006),
2006.

[13] M. Fiedler K. Tutschku T. Hossfeld, A. Binzen-
hoefer. Measurement and analysis of skype
voip traffic in 3g umts systems. University of

12



Wuerzburg - Institute of Computer Sciencet -
Report No. 377, 2005.

[14] K. W. Ross J. Liang, R. Kumar. The kazaa over-
lay: A measurement study. Computer Networks
49, 6, 2005.

[15] M. Holdrege P. Srisuresh. Ip network address
translator (nat) terminology and considerations.
RFC 2663, 1999.

[16] C. Huitema R. Mahy J. Rosenberg, J. Wein-
berger. Stun - simple traversal of user datagram
protocol (udp) through network address transla-
tors (nats). RFC 3489, 2003.

[17] C. Allen T. Dierks. The tls protocol version 1.0.
RFC 2246, 1999.

[18] Skypeout skype-to-pstn service, 2004.
http://www.skype.com/products/skypeout/.

[19] Open imp – internet measurement project.
http://www.ip-measurement.org/openimp/.

13


