
1478 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

The Delay-Friendliness of TCP for Real-Time Traffic
Eli Brosh, Salman Abdul Baset, Graduate Student Member, IEEE, Vishal Misra, Member, IEEE,

Dan Rubenstein, Member, IEEE, and Henning Schulzrinne, Fellow, IEEE

Abstract—TCP has traditionally been considered inappropriate
for real-time applications. Nonetheless, popular applications such
as Skype use TCP since UDP packets cannot pass through restric-
tive network address translators (NATs) and firewalls. Motivated
by this observation, we study the delay performance of TCP for
real-time media flows. We develop an analytical performance
model for the delay of TCP. We use extensive experiments to
validate the model and to evaluate the impact of various TCP
mechanisms on its delay performance. Based on our results, we
derive the working region for VoIP and live video streaming ap-
plications and provide guidelines for delay-friendly TCP settings.
Our research indicates that simple application-level schemes, such
as packet splitting and parallel connections, can reduce the delay
of real-time TCP flows by as much as 30% and 90%, respectively.

Index Terms—Live video streaming, measurement, performance
modeling, TCP congestion control, VoIP.

I. INTRODUCTION

T HE popularity of real-time applications, such as VoIP and
video streaming, has grown rapidly in recent years. The

conventional wisdom is that TCP is inappropriate for such appli-
cations because its congestion-controlled reliable delivery may
lead to excessive end-to-end delays that violate the real-time
requirements of these applications. This has led to the design
of alternative unreliable transport protocols [19], [22], [32] that
favor timely data delivery over reliability while still providing
mechanisms for congestion control.
Despite the perceived shortcomings of TCP, it has been

reported that more than 50% of commercial streaming traffic
is carried over TCP [18]. Popular media applications such
as Skype [8] and Windows Media Services [18] use TCP to
pass through restrictive network address translators (NATs)
and firewalls that block UDP traffic. Furthermore, TCP is by
definition TCP-friendly [19] and is a mature and widely tested
protocol whose performance can be fine-tuned.

Manuscript received February 27, 2009; revised October 31, 2009; accepted
February 02, 2010; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor C. Dovrolis. Date of publication June 28, 2010; date of current version
October 15, 2010. This work was supported in part by the National Science
Foundation under grants CNS-0626795, CCR-0615126, and CNS-0202063, and
by FirstHand Technologies. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation or FirstHand Tech-
nologies.
The authors are with the Department of Computer Science, Columbia

University, New York, NY 10027 USA (e-mail: elibrosh@cs.columbia.edu;
salman@cs.columbia.edu; misra@cs.columbia.edu; danr@cs.columbia.edu;
hgs@cs.columbia.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNET.2010.2050780

The gap between the perceived shortcomings of TCP and its
wide adoption in real-world implementations motivated us to
investigate the delay performance of TCP. Our study seeks to
address the following questions: 1) Under what conditions can
TCP satisfy the delay requirements of real-time applications on
top of TCP? 2) Can the performance of these applications be en-
hanced using simple application-layer techniques? We address
these questions in the context of two real-time media applica-
tions that are characterized by timely and continuous data de-
livery: VoIP and live video streaming.
To understand a broad set of aspects of the performance of

real-time applications, we conduct an extensive performance
study using both an analytical model and real-world experi-
ments. The analytical model allows us to systematically ex-
plore the delay performance over a wide range of parameter set-
tings, a challenging process when relying on experimentation
alone. While there exists an extensive literature on TCP mod-
eling, it is geared toward the performance of file transfers [12],
[30], [31] and video streaming [21], [35] from the standpoint of
throughput rather than that of delay.
We use both test-bed and Internet experiments to validate the

model over a wide range of network environments. We ana-
lyze how the delay depends on the congestion control and re-
liable delivery mechanisms of TCP. We further study the im-
pact of recent extensions such as window validation [20] and
limited transmit [5]. The results obtained yield guidelines for
delay-friendly TCP settings and may further be used to com-
pare the performance of TCP with alternative protocols [19],
[22] and experimental real-time enhancements for TCP [17],
[24], [27]. We analyze two application-level schemes—namely,
packet splitting and parallel connections—that we find signifi-
cantly reduce the delay of live video streaming flows by as much
as 30% and 90%, respectively.
Our research reveals that real-time application performance

over TCP may not be as delay-unfriendly as is commonly
believed. One reason is that the congestion control mechanism
used by TCP regulates rate as a function of the number of
packets sent by the application. Such a packet-based congestion
control mechanism results in a significant performance bias in
favor of flows with small packet sizes, such as VoIP. Second,
due to implementation artifacts, the average congestion window
size can overestimate the actual load of a rate-limited flow.
This overestimation reduces the likelihood of timeouts and
consequently also reduces the resulting TCP delay.
The main contributions of this paper are the following.
• To the best of our knowledge, we are the first to present a
discrete-time Markov model of the delay distribution of a
real-time TCP flow (Section IV).

1063-6692/$26.00 © 2010 IEEE

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1479

• We derive the working region for VoIP and live streaming
flows based on our model and experiments (Section VI-A).
We find that under the same network conditions, VoIP
flows suffer from lower TCP delays than live video
streaming flows. VoIP operates well when the network
loss rate is at most 2% and RTT is at most 100 ms. Live
video streaming operates well when the network loss rate
is at most 3% and RTT is 100 ms.

• We study the impact of various mechanisms in TCP on
the TCP delay (Sections VI-C–VI-E). We then provide
TCP-level guidelines (Section VI-G) and simple applica-
tion-level heuristics (Section VII) for improving the per-
formance of real-time applications. We find that using par-
allel connections with shortest-queue-first policy achieves
up to 90% delay reduction.

II. APPLICATION SETTING

We study a general real-time media application, with a con-
stant bit-rate (CBR) source, that sends data across the network
using TCP. CBR is the most basic and dominant encoding
for media flows in the Internet [36]. Although our analysis is
general, we focus on CBR sources corresponding to VoIP and
live video streaming, as detailed in Section V. Furthermore, we
also discuss the applicability of our analysis to variable bit-rate
(VBR) flows in Section VI-B. Unlike greedy flows, such as FTP,
where the source rate is limited by the network, the sending rate
of VoIP flows is a function of media encoding and, thus, may or
may not be network-limited. We refer to the periods where the
source rate is not limited by the network as application-limited
periods. Specifically, in an application-limited period, the TCP
throughput satisfies the source’s rate requirement.
Throughout the paper, we refer to the transmission unit of

TCP as a segment and to the TCP payload (i.e., the applica-
tion-layer data unit) as a packet. The maximum segment size,
MSS, is determined by the maximum transmission unit of the
network path [33]. A common characteristic of real-time appli-
cations is their sensitivity to end-to-end delay which may vary
from application to application. For live video streaming, there
is usually minimal interactivity involved, so the application can
afford a startup delay on the order of seconds [18]. For VoIP,
low delay of no more than 400 ms is required in order to main-
tain acceptable interactivity [17]. To reduce end-to-end delays,
VoIP often uses small payloads (e.g., 160-byte packets) that cor-
respond to 20 ms or 30 ms of audio. Thus, in the context of
this paper, the difference between VoIP and live video streaming
flows is their packet sizes and their tolerance of delay.
We define TCP delay as the time it takes the application to get

a packet from source to destination through a TCP connection.
Packet delay, loss rate, and jitter are key parameters that deter-
mine the user-perceived media quality [14], [34]. We therefore
use the TCP delay distribution to evaluate the performance of
real-time applications. From the delay distribution, we derive
the portion of packets that arrive beyond their scheduled playout
time, i.e., the packet loss rate at the application level. The loss
rate metric is determined by the -percentile delay bound, de-
fined as follows. A delay value of -percentile corresponds to

portion of packets that are delayed more than time units.

Fig. 1. Transport-layer queueing delays.

III. TCP DELAY COMPONENTS

Here, we examine the various ways in which delay is intro-
duced in a TCP connection with a CBR source. The delay in a
TCP connection consists of two main components, as depicted
in Fig. 1: 1) network delay, which is the time it takes a segment
to get across the network; 2) TCP-level delay, which is an arti-
fact of how TCP reacts to variations in the effective throughput.
While throughput variations can occur due to application-level
flow control, they are primarily the result of network congestion.
To understand TCP-level delays, we briefly describe the trans-
mission behavior of TCP. TCP is a window-based protocol that
uses twomain mechanisms to regulate its sending rate: additive-
increase–multiplicative-decrease (AIMD) and timeout. These
mechanisms may delay data delivery because they require TCP
to reduce its sending rate in response to network congestion. In
addition, TCP uses packet retransmissions to provide lossless
data delivery. This mechanism introduces additional delay for
data delivery. A detailed discussion of TCP’s mechanisms can
be found in [33].
TCP uses two buffers to provide congestion-controlled reli-

able data delivery; a send buffer and a receive buffer. The send
buffer serves two functions [17]. It absorbs rate mismatches be-
tween the application sending rate and the transmission rate of
TCP. It also stores a copy of the packets in transit in the net-
work for possible retransmission. Although these packets are
buffered, they do not introduce additional queuing delay for un-
sent packets. Only the unsent packets held in the send buffer,
hereafter referred to as the backlogged packets, contribute to the
delay of newly admitted packets to the send buffer. The purpose
of the receive buffer is to hold out-of-order packets while a loss
is being recovered. This buffering results in head-of-line (HOL)
blocking delay. The sender-side delay is caused by the conges-
tion control and reliable delivery mechanisms in TCP, whereas
the receiver-side delay is caused by the in-order delivery guar-
antee of TCP.
In this paper, we only consider packet backlogging due to net-

work congestion and ignore packet backlogging due to other
causes, such as application-level flow-control (e.g., a receiving
application that slows down an aggressive sender [33]). Ap-
plications usually minimize this backlogging by setting a large
receive buffer and operating with nonblocking sockets. Packet
backlogging can also occur due to Nagle’s algorithm [29] that
was added to TCP to limit the transmission of small segments.
This algorithm ensures that TCP sends data only when there
are at least MSS bytes of available data and, hence, improves
throughput at the expense of increased transmission delay. In

1480 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

Fig. 2. Evolution of the TCP delay and congestion window size for a video-like
CBR source. Time 0 refers to a point when the congestion window has already
stabilized. (a) TCP delay. (b) Congestion window size.

practice, many delay-sensitive applications disable this algo-
rithm to reduce transmission delays [39].We follow this practice
in our work.
Fig. 2(a) illustrates the delay experienced by a TCP flow

driven by a CBR source. The CBR source sends 50 MSS-sized
packets per second over a symmetric network with a 200-ms
round-trip time (RTT). An application-limited period is seen
from 0 to 0.5 s and from 2.4 to 2.8 s. In this period, the TCP delay
is determined by the network delay. A network-limited period
is seen from 0.5 to 2.4 s. During this time, the TCP throughput
no longer satisfies the source’s rate requirement, resulting in
TCP-level delays. TCPmoves to a network-limited period when
a packet loss occurs. Within the network-limited period there
are two subregions: loss recovery, seen from 0.5 to 0.76 s, and
packet backlogging, seen from 0.76 to 2.4 s. TCP uses retrans-
mission to recover the lost packet, which in turn causes HOL
blocking delay at the receiver. The receipt of a packet loss in-
dication at time 0.76 s triggers TCP to reduce its congestion
window size, resulting in packet backlogging.
Unlike application-limited periods, in network-limited

periods TCP probes for additional bandwidth to satisfy the
source’s rate requirement. In our example, the transmission
rate of TCP is governed by the AIMD mechanism and hence is
linearly increasing, as seen in Fig. 2(b). The mismatch between
the input and output rates at the TCP sender results in the
quadratic-like delay curve seen in Fig. 2(a). Later, at time 2.4 s,
TCP is again application-limited when the rates are matched.

A. TCP Interaction With VoIP-Like Flows

The performance of real-time applications that use small
packets (e.g., VoIP) is directly affected by whether the con-
gestion control mechanism in TCP is byte- or packet-based.
According to [7], there are two permitted approaches. First, a
TCP sender can track the congestion control state in terms of
outstanding bytes or outstanding packets. Second, a TCP sender
can update the congestion control state based on how many
bytes are acknowledged, a mechanism known as byte counting,
or by some constant for each acknowledgment (ACK) arrival,
a mechanism known as ACK counting. We compare the perfor-
mance of ACK- and byte-counting mechanisms (Section VI-D)

Fig. 3. High-level view of a model for a TCP connection with a CBR source.

and focus on the former due to its wide deployment [25], as
also verified by our measurements.

IV. MODELING TCP DELAY
Our model builds upon the detailed TCP model in [37]

that predicts the performance of TCP from the viewpoint of
throughput. We extend this model in three ways. First, we
include the TCP buffer dynamics in order to predict the delay
performance of TCP. Second, we model the window behavior
during application-limited periods [20] to accurately capture
the retransmission timeout probability. Third, we capture
the effect of window inflation [7] and the limited transmit
mechanism [5] to improve the accuracy of the model for small
congestion windows. We assume that the sender is using a
NewReno TCP implementation, the predominant TCP variant
in the Internet [25], and refer the interested reader to [15] and
[33] for a detailed description of TCP NewReno’s mechanisms.

A. A TCP Model
We consider a CBR source that sends fixed-size packets at

regular intervals across the network using TCP. Throughout the
paper, we assume that the average throughput provided by TCP
satisfies the rate requirement of the CBR source. However, tran-
sient congestion episodes in the network can still lead to TCP
throughput fluctuations and hence to TCP-level delays. These
episodes cause the TCP connection to alternate between ap-
plication-limited and network-limited periods, as described in
Section III.
Mimicking the behavior of a real-world TCP flow, our model

consists of two main states: application-limited and network-
limited. The system transitions from an application-limited state
to a network-limited state when a loss occurs. TCP-level delays
are introduced only during network-limited states. The system
transitions back to an application-limited state when the TCP
sender matches its input and output rates (e.g., when packet
backlog is cleared). While in a network-limited state, the system
moves among four states corresponding to TCP’s congestion
control phases: slow start (SS), congestion avoidance (CA), fast
recovery (FR), and retransmission timeouts (TO). A high-level
view of a model for a TCP connection with a CBR source is
shown in Fig. 3.
We make several simplifying assumptions in our model, as

follows. First, we assume that TCP increases the congestion
window by one packet per RTT, an assumption motivated by
the wide deployment of ACK-counting TCP implementations
[25]. Second, we assume that the TCP implementation does not

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1481

TABLE I
SUMMARY OF MODEL NOTATIONS

increase the congestion window when the TCP sender is ap-
plication-limited, which is the behavior observed for Linux and
Windows XP systems (see Section VI-E). Third, we assume that
the slow start threshold is statically set to half of the source’s
sending rate in packets per RTT. We expect it to stabilize at this
value when most losses are not timeouts. From our experience,
using a static SS threshold rather than a dynamic one has a mar-
ginal impact on the model’s prediction accuracy. Last, we do
not model the effect of delayed ACKs. Nonetheless, our model
can be easily extended to support delayed ACKs using a similar
approach to what is done in [31].
Our model characterizes the CBR source by two parameters,

the data generation rate in packets per second and the size of
a generated packet . We let denote the data generation rate in
packets per RTT. For convenience, we summarize the notations
used in this paper in Table I. We model the behavior of a TCP
source by a discrete-time Markov chain with a finite state space

and a probability transition matrix ,
. Each state permits at most three outgoing transitions

representing the following events: the receipt of a fast retransmit
loss indication, the receipt of a timeout loss indication, and suc-
cessful delivery of window data. Note that successful delivery
happens when the entire window of data is delivered rather than
a single packet. Each transition represents a certain number of
packet transmissions, and each packet in this transmission ex-
periences a delay.
In our model, each state is represented by an ordered triple

, where is the current congestion window size in seg-
ments, is the current backlog size in bytes, and indicates
whether a loss has been detected and data needs to be recovered

or not . The backlog size value is used to indi-
cate whether the sender is application-limited or
network-limited (or). The window
size value is used to distinguish between the two loss recovery
strategies employed by TCP: fast recovery
and retransmission timeout , where indicates
the current exponential backoff stage. Note that although TCP
never uses a window size of zero, it is convenient to use this
value to represent timeout states and exponential backoff states
since no packets are sent during these periods. Table II lists the
rules for classifying an arbitrary state according
to the congestion control phases of TCP. We use the notation

to denote the set
of states for which the application-limited condition holds. The
notations , , , and are defined in a similar way,
as shown in Table II.

TABLE II
STATE CLASSIFICATION

B. Delay Performance Model

In this section, we model the three ways in which TCP in-
troduces delays: congestion control, retransmissions, and HOL
blocking, as detailed in Section III. We model the time packets
buffered at the sender before being transmitted (i.e., the conges-
tion control delay) by scaling the backlog size by the sources’s
rate. This delay model follows from the observation that the un-
sent packets left behind after a packet transmission must have
arrived to the send buffer while the transmitted packet was being
buffered. Since we consider a data source with a constant rate,
a transmitted packet that leaves behind a backlog of bytes
must have been buffered for at least , the backlog size
divided by the source’s rate in bytes per second. This modeling
approach introduces an error on the order of several packetiza-
tion intervals because it captures the backlog size evolution in
network-limited states at RTT granularity. The error can be re-
duced by keeping track of the intersending packet times. How-
ever, this will make the state space of the model prohibitively
large and hence will limit its usefulness.
We determine the HOL and the retransmission delay by the

loss recovery latency (i.e., the time it takes TCP to detect and
recover a lost packet). TCP interprets receipt of three duplicate
ACKs as an indication of a packet loss. It immediately retrans-
mits the lost packet upon the receipt of the third duplicate ACK.
Hence, we take the time required to receive a fast retransmit loss
indication to be ; the RTT term is the time needed
for the first duplicate ACK feedback, and the term is the
maximum time to generate three duplicate ACKs, which is at-
tained when the loss occurs in an application-limited state. For
the sake of simplicity, we assume that fast recovery always takes
a single RTT regardless of the number of packets lost in a trans-
mission window, as suggested by [12].
Using the above observations, we express the TCP delay of

the th packet sent in a transition from state to state as

if
otherwise (1)

where is the one-way sender-to-receiver network delay. For
loss-free transitions, the delay added by TCP is determined by
the backlogged packets and, hence, is modeled as , as
shown by the second case of (1). For transitions to fast recovery
states, an additional delay of is introduced by
the in-order delivery guarantee of TCP, as shown by the first
case of (1). Since the TCP sender is likely to be idle during
timeouts, packets are not sent in transitions to timeout states,
and consequently there is no associated delay.

1482 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

The number of CBR packets sent in a transition from to
is given by

if
if
if
if

(2)
Since our model evolves at packet-level granularity while in

an application-limited state (see Fig. 3), a single packet is sent in
a loss-free transition from an application-limited state, as cap-
tured by the first case of (2). The second case models the number
of packets sent in a loss-free transition from a network-limited
state, which is determined by the number of backlogged packets
that fit into the congestion window. The third case accounts
for the extra transmissions due to the receipt of the duplicate
ACKs needed to trigger a fast recovery, a mechanism known as
window inflation [7].
We obtain the stationary distribution of the Markov chain

for the TCP source using standard steady-state discrete-time
Markov analysis; see, for example, [38]. Let be the number
of packets successfully sent in some time interval , and let

be the number of packets out of that experience delay
. Then, the portion of packets sent that experience delay is
given by . Let be the steady-state delay distribution
of a TCP connection with a CBR source. Assume is defined
over some finite interval . Using renewal theory [38], we can
now compute the steady-state delay distribution.

(3)

where is the indicator function, is the steady-state distri-
bution of the chain, and and are given in (1) and (2),
respectively. The numerator and denominator correspond, re-
spectively, to the number of packets sent that experience delay
in steady-state and the number of packets sent in steady-state.
Equation (3) can be solved numerically to yield the performance
statistics of TCP: the delay jitter and the -delay percentile

, along with other useful statistics
such as the mean delay . Note that the input parameters to
the model, RTT and network loss rate , factor into the nu-
merical computation through the probability transmission ma-
trix that captures the probability of packet loss as well as
through (1) that represents the delay of a transmitted packet.
We remark that the complexity of solving theMarkov chain is

directly affected by the size of the state space. Let and be
the maximum supported congestion window size and backlog
size, respectively. Since we have six backoff timeout states and

nontimeout states with unique window sizes, the size of the
state space is . For the numerical computation, we
use and . This state space enables
us to efficiently evaluate the TCP delay for the range of network
environments considered in Section V.

C. Backlog and Congestion Window Evolution

In network-limited periods, TCP probes for additional band-
width to satisfy the rate requirement of the source. Specifically,
it increases the window size by one every RTT in the conges-
tion avoidance phase and doubles the window size every RTT
in the slow-start phase. However, it is pretty typical for TCP im-
plementations to not increase the congestion window when the
TCP sender is application-limited (see Section VI-E). Hence,
in the absence of packet loss, the TCP model transitions from
state to state if , to
state if , and to state if

. A detailed description of the Markov chain is given in
[11].
Since TCP is a byte stream protocol, it can assemble a number

of small application packets into one TCP segment. An appli-
cation that uses small packets (e.g., VoIP) yields a TCP flow
that dynamically varies its segment size, and hence the packet
size on the wire, depending on the congestion in the network.
During network-limited periods, the data backlog often enables
the TCP sender to use the maximum segment size. In applica-
tion-limited periods, however, there is no backlog at the sender,
and TCP matches the segment size to the application payload
size. Let be the size of a segment transmitted in a transition
from state . Hence, if , and
otherwise.
The backlog evolution (i.e., the TCP send buffer occupancy

evolution) for two successive states, and
, is modeled by

if
if
if
if

(4)
where is the time taken for the transition from to , which
can be found in [11]. The first term in (4), , models
the increase in backlog size due to newly admitted packets to the
send buffer. The second term models the decrease in backlog
size due to the transmission of segments, which is obtained by
applying similar reasoning to that used to derive (2).

V. MODEL VALIDATION

We evaluate the model using experiments in a controlled net-
work environment and Internet experiments using PlanetLab
and residential machines. We use “CBR-TCP” to denote a TCP
connection with a CBR source, “FTP” for a TCP connection
with bulk data transfer, and “short-lived” for a TCP connection
with short-lived bursty traffic.
We wrote a tool that can send and receive bidirectional CBR

over TCP flows with different packet sizes and different packe-
tization (intersending time) intervals. To validate our model, we
use CBR sources with packet sizes of 174, 724, and 1448 bytes,
and packetization intervals of 20 and 30 ms, as these choices
approximately reflect typical one-way voice [32], low-bit-rate
interactive video [17] and live video streaming [18]. The size
of the packet includes a 12-byte RTP header [32] and 2 bytes
for framing RTP packets over TCP [23]. Hence, excluding the
header size, the bit rate of the voice flows is 64 and 42 kb/s,

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1483

Fig. 4. Experiment setup for model verification in a controlled environment.
(a) Configured drop rates. (b) Drop-tail queue.

that of interactive video is 284 and 187 kb/s, and that of live
video streaming is 573 and 378 kb/s. Unless stated otherwise,
we refer to the voice flow with a bit rate of 64 kb/s as “VoIP”
and the live video streaming flow with a bit rate of 573 kb/s as
“video” flow, and due to lack of space, only present the results
using these parameters. Excluded results are available in [11].
We abuse notation and refer to the segment loss rate in the net-
work as the packet loss rate. These rates may be different for
VoIP flows because TCP can assemble several small packets
into one segment during network-limited periods.
All the experiments, except for those run in the PlanetLab

environment, were conducted using Linux (kernel versions
2.6.17.8 and 2.6.9) and Windows XP machines. Both operating
systems yielded similar delay performance, and hence Win-
dows XP results are not shown. PlanetLab experiments were
conducted using Linux machines. The system and session-level
TCP settings were determined according to the configuration
described in Section VI-G.

A. Model Validation Using Configured Drop Rates

We performed the model validation on a test bed that emu-
lates a wide range of network settings. The topology of the test
bed is shown in Fig. 4(a). We consider a single CBR-TCP flow
going through a router running NIST Net [2], a network emula-
tion program which can introduce constant delay and can drop
packets according to a configured loss process. We configured
NIST Net to drop packets uniformly at random irrespective of
their size.
NIST Net was configured with drop rates of 0.1%, 0.5%, 1%,

2%, 3%, 5%, and 10%, and a fixed round-trip propagation delay
of 20, 100, and 300 ms. These delay settings roughly reflect
the delay of sites on the same coast in the U.S., U.S. coast-to-
coast delays, and transcontinental delays [17]. Note that the
network environment does not include background traffic, so
there are no queuing delays on the round-trip path. We do not
consider loss rates greater than 10% because the average TCP
throughput (i.e., the available network bandwidth), as estimated
by Padhye’s equation [31], does not satisfy the rate requirement
of the CBR-TCP flow for the considered RTTs. For each set
of parameters, we ran the experiment for 5 min and repeated
each experiment 10 times. We present the average results of

Fig. 5. Predicted versus measured (a) mean delay and (b) 95th percentile TCP
delay (in seconds) for VoIP and video flows for various loss rates and RTT of
100 and 300 ms.

Fig. 6. Relative modeling error for (a) VoIP and (b) video flows as a function
of loss rate.

these experiments and compare them to the ones obtained using
our model. The model assumes random packet losses (see [11]),
similar to the considered environment.
Fig. 5(a) and (b) present the predicted versus measured mean

and 95th percentile TCP delay, respectively, for VoIP and video
flows for various network packet loss rates and RTTs of 100 and
300ms. As shown, the model provides satisfactory matching for
the majority of cases, specifically when the measured delay is
below 0.6 s. To better see the modeling accuracy across various
loss rates and RTTs, we plot the relative prediction error of the
average TCP delay with respect to the actual measurement for
VoIP and video flows in Fig. 6. Observe that for VoIP flows, the
average error is less than 10% for loss rates up to 2%. For video
flows, the relative prediction error is on the order of 20% for loss
rates up to 1% and 0.1%, and RTT of 100 and 300 ms, respec-
tively. The increase in relative error is due to high variability
in sender packet backlog. Video flows have a higher backlog
buildup than VoIP flows since they use higher bit rates.
There are several explanations for the modeling mismatches.

First, there are the simplifying assumptions made by the model,
such as the recovery of multiple losses in a single transmission
window within one RTT, which introduce error. Second, al-
though our model accurately captures the backlog size at RTT
granularity, it ignores backlog evolution at smaller time scales.
A more detailed discussion of these issues can be found in
Sections IV-A and IV-B.
Observe from Fig. 6 that the prediction error increases with

the network loss rate. This is because the size of the model’s

1484 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

Fig. 7. Model validation using (a) PlanetLab experiments and (b) drop-tail
router experiments for VoIP and video flows.

state space is truncated to reduce computational complexity, as
explained in Section IV-B. Furthermore, for video flows, the
jump in the prediction error at loss rate of 0.5% and 1% for RTT
of 100 and 300 ms, respectively, occurs because the achievable
TCP throughput is close to or below the bit rate of the video
flow. When the CBR rate is close to the TCP throughput, the
TCP connection increasingly exhibits sawtooth-like transmis-
sion behavior, resulting in large variability in packet backlog
buildup. This variability causes the high modeling error. When
the throughput of the TCP connection is below the CBR rate, the
CBR-TCP flow can be delayed indefinitely. For TCP throughput
of at least twice the bit rate of VoIP and video flows, the mod-
eling error is below 20%.
In general, the modeling error increases as the rate of the CBR

source approaches the achievable TCP throughput. The 95th-
percentile measure pinpoints cases of largest deviation from the
measurement, providing a highly conservative measure for the
validity of the model; the average measure demonstrates a better
match between the model and the experimental results. Similar
results were obtained for the variance and the maximum TCP
delay measures.

B. Model Validation Using Internet Experiments
We performed model validation using the PlanetLab environ-

ment and hosts connected to residential DSL and cable modems.
We conducted the PlanetLab experiments on machines located
in the U.S. (California, New York, Texas), Europe (Germany,
Italy, U.K.), and Asia (China, India, Japan, Taiwan). For each
sender and receiver pair, we ran our tool to generate VoIP and
video flows for 30 min. The DSL experiments were conducted
from hosts in the U.S., Israel, and Pakistan to hosts in New York
and California.
For the majority of the PlanetLab and DSL experiments, we

observed only a handful of losses (0.5%), whereas in a few
cases, the throughput of the TCP connection did not meet the
rate requirement of the CBR-TCP flow. We therefore started
multiple FTP flows in tandemwith the CBR-TCP flows, thereby

increasing the congestion on the link and causing higher loss
rates for CBR-TCP flows. Fig. 7(a) plots the predicted versus
measured 95th percentile delay for VoIP and video flows for
a range of sites around the world. All the sites shown had FTP
flows running in tandem to increase the link congestion. The top
four entries in the legend of the figure refer to VoIP flows, and
the bottom four refer to video flows. The network loss rates
and RTTs seen by the flows are also indicated. The figure shows
a good match between the model and the measured delay.

C. Model Validation Using Drop-Tail Routers

We consider a scenario where multiple CBR-TCP flows com-
pete with FTP and short-lived bursty flows for a bottleneck
router with a drop-tail queueing scheme, as shown in Fig. 4(b).
We note that the lines in the figure connecting the data sources
and sinks to the end-hosts are for illustration purposes only and
do not represent actual links.
We used the test-bed from Section V-A and modified NIST

Net to incorporate a drop-tail queue. We devised a multiflow
setting in which five VoIP CBR-TCP flows compete with five
long-lived FTP flows and a varying number of short-lived flows.
We repeated the experiment for video flows. We used the SRI
and ISI traffic generator [3] to generate exponentially distributed
short-lived flows with a mean duration of 50 ms and a constant
packet size of 512 bytes. The choice of the number of FTP and
short-lived flows and packet size for short-lived flows was in-
spired by the configuration used to evaluate the performance of
TFRC small-packets [16]. The round-trip propagation delaywas
set to 100 ms for all experiments. The link capacity was set to 3
and 30 Mb/s for voice and video CBR-TCP flows, respectively,
so that the ratio of cumulative bit rate of five CBR-TCP flows
to link capacity was 1:10.
The queue at the bottleneck router may be maintained in

packets or bytes [22]. If the router maintains its queue in bytes,
then small packets are less likely to be dropped than large
packets. The preferential drop may cause TCP flows with small
packets to experience lower delay than those with large packets.
Due to lack of space, we only present the delay results for the
drop-tail queue maintained in packets and refer the reader to
[11] when the drop-tail queue is maintained in bytes. We con-
figured the packet-based drop-tail queue to hold 100 packets.
Although, this choice introduces different queueing delays for
link capacities of 3 and 30 Mb/s, our focus is on comparing the
results predicted by the model to the experimental results and
not a delay comparison between VoIP and video flows. Fig. 8
provides an effective comparison of delay results for VoIP
and video flows across similar loss rates and network delays.
For each configuration, we ran the experiment for 5 min and
repeated it five times, and we present the average of the results.
For each experimental data point shown in Fig. 7(b), we ob-

tained the input parameters for the model, i.e., network loss
rate and RTT, which are averaged over five runs. The network
RTT consists of round-trip propagation delay of 100 ms and
the queuing delay at the router. For the VoIP and video exper-
iments, the network delay of VoIP and video flows was more
than 300 and 100 ms, respectively, across all data points. The
delays are different because the link bandwidth is different in the
two settings. Some of the prediction inaccuracies in the drop-tail

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1485

Fig. 8. Working region for (a) VoIP and (b) video streaming as a function of
RTT and packet loss rate.

router experiments are caused by inaccurate characterization
of the loss process. In this environment, as in our PlanetLab
experiments, the model assumes correlated packet losses (see
[11]). However, the actual burstiness of losses experienced by
the CBR-TCP flows varies depending on the level of statistical
multiplexing at the router.

VI. DISCUSSION
In this section, we explore the performance of real-time de-

livery over TCP. We experimentally characterize the working
region for VoIP and live video streaming applications with bit
rates of 64 and 573 kb/s, respectively. We use the model to
demonstrate that the working region for other bit rates has a
similar characterization. Then, we study the impact of various
mechanisms in TCP on its delay performance and use the model
to gain an insight into the reason why VoIP flows typically per-
form better than video flows under the same network conditions.
Finally, we use the insights gained to provide guidelines for con-
figuring TCP for real-time applications.

A. Working Region
Here, we characterize the working region for VoIP and live

video streaming applications, i.e., the conditions under which
the performance of these applications is satisfactory. In general,
the user-perceived media quality is acceptable when the fraction
of packets that arrive beyond their playout time is low and the
end-to-end delay is low.
For interactive applications, ITU G.114 recommends that the

worst-case one-way delay should be 400 ms. Studies show that
200 ms is an acceptable one-way delay limit for VoIP applica-
tions [28]. The choice of the delay limit for live video streaming
is more flexible because people can usually tolerate a few sec-
onds of startup delay. For the analysis, we consider a 5-s startup
delay, as suggested by [18]. While VoIP can tolerate up to 5% of
packets that miss their playout deadline without a significant ef-
fect on intelligibility [28], video viewing quality drops rapidly at

0.1% packet loss [35]. We follow these guidelines and define the
working region for VoIP and live video streaming as the range
of network loss rates and RTTs where the 95th percentile and
maximum TCP delay is at most 200 ms and 5 s, respectively.
We explore how the performance varies with the delay limit in
Section VI-F.
Fig. 8(a) plots the 95th percentile delay for various loss rates

from 0.1% to 10% and RTTs of 20, 100, and 300 ms for a VoIP
flow with a bit rate of 64 kb/s. The results shown were obtained
empirically using the environment described in Section V-A.
Observe that when the RTT is 100 ms, the delay tolerance for
VoIP is satisfied when the network loss rate is at most 2%. How-
ever, when the RTT is only 20ms, the results indicate a tolerance
of up to 5%. At the boundary of the working region, the delay
added by TCP causes 5% of the packets to miss their playback
deadline. Fig. 8(b) plots the maximum delay for a live video
streaming flow with a bit rate of 573 kb/s. When the RTT is
100 ms, the streaming threshold is satisfied when the loss rate
is at most 3%. For an RTT of 300 ms, it is satisfied at a net-
work loss rate of 0.1%. The jump in the maximum delay at a
network loss rate of 0.5% and RTT of 300 ms occurs because
the 5-s startup delay is no longer sufficient to completely mask
TCP delays. This knee of the curve typically occurs when the
achievable TCP throughput is close to the bit rate of the video
flow, as explained in Section V-A.
The bit rates of 64 and 573 kb/s are the highest among the

bit rates considered in Section V for VoIP and video flows,
and therefore, they give the most conservative estimate of the
working region. We used the model to compute the working
region for the other bit rates. While the working region was
less constrained due to the lower bit rates, the results follow
similar pattern as in Fig. 8. Furthermore, the working region
can be significantly constrained if the application does not use
delay-friendly TCP settings, as discussed in Section VI-G.

B. Performance of VBR Flows

So far, the discussion has focused on modeling and analyzing
TCP delay for CBR VoIP and live video streaming flows. How-
ever, such flows may not necessarily be CBR. In this section,
we extend our discussion and analysis to variable rate flows.
The key to our analysis is characterizing the sources of vari-

ability in VoIP and live video streaming flows. For VBR VoIP
flows, the bit rate can be broadly characterized by two types
of variabilities: 1) switching between different encoding rates
of a codec due to network conditions [1]; 2) idle periods due
to silence suppression. In the former case, the analytical model
can be applied separately for each encoding rate to compute the
TCP delay and working region. The working region for multiple
bit rates can then be determined by the most constrained region
among those computed. In the latter case, since VoIP flows may
have idle periods, TCP may reduce its window size, requiring
it to ramp up when sending the subsequent talkspurt, which in
turn may introduce additional delay. Although our model and
delay analysis do not capture these idle periods, it is not strictly
necessary, as it is in the applications’ interest to transmit packets
during silence periods to maintain TCP congestion window. For
example, this can be accomplished by sending three packets per
RTT during idle periods, as suggested by [26].

1486 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

Fig. 9. Comparison of the TCP delay for a measured VBR flow and the delay
predicted by our model.

For VBR live video streaming flows, the traffic bit rate is dy-
namically adjusted to capture the rate of change in the scene. In
addition, like VoIP flows, a VBR source may switch between
different encoding rates. To accurately capture this behavior, it
is necessary to incorporate amultiparameter VBR sourcemodel,
which is beyond the scope of this paper. Instead, we explore a
simpler question: How does the delay of VBR flows that dy-
namically adjust their rates compare to the delay of CBR flows
with an equivalent bit rate?
We study this question using real-world VBR flows. We ob-

tained each VBR flow by establishing a video call between two
Skype clients. The caller’s camera captured a music video run-
ning on another machine and directly transmitted it to the callee
Skype client for a duration of 8 min. We examined four VBR
Skype flows, two TCP and two UDP with different bit rates.
For each flow, we captured the payloads, fed them into our TCP
sender, and obtained TCP delays for a range of network loss
rates and propagation delays. We found that the results follow a
similar trend. We thus show the results for a single VBR flow.
The average and standard deviation of bit rate, packet size, and
interpacket time of this flow are 605 and 25 kb/s, 1082 and
480 bytes, and 14 and 16 ms, respectively. We ran the model
with a CBR flow that has the same bit rate as the VBR flow.
We set the model parameters, packet size and interpacket gap,
according to the average values of the VBR flow.
In Fig. 9, we show the 95th-percentile delay results for the

VBR flow, as well as that predicted by our model, for an RTT
of 100 ms and varying loss rates. As expected, the delays in-
crease with loss rates. We observe that the characteristic form
of the predicted delay is similar to the experimental one. We re-
peated the experiment for a large spectrum of network loss rates
(0%–3%) and RTTs (20–300 ms) and observe similar behavior.
We also observe that the model underestimates the measured
delay. The underestimation occurs because the model does not
capture the variability in VBR flows. Although not shown, the
relative error of the model (in comparison to the measured re-
sults) is high for low loss rates and decreases as the loss rates
increase. For example, for 0.1% loss rate, the predicted and the
measured delay are 50 and 110 ms, respectively, whereas for
loss rate of 3%, the predicted and the measured delay are 2.05
and 2.35 s. The relative error at low loss rates is high because the
packet backlog at the sender is small and the TCP delay is domi-
nated by the inherent variability of the video source, which is re-
flected in the packet sizes and the interpacket times. At high loss
rates, the model’s accuracy improves because the TCP delay be-
comes more dominated by the packet backlog at the sender. The
backlog is similar for the VBR and CBR flows because they
have the same average bit rate.

Fig. 10. (a) Delay performance of two TCP flows having the same load in kb/s
but different load in pps, and a VoIP flow. (b) Delay breakdown: the portion of
TCP-level delays caused by the congestion control mechanism.

In general, although the source variability is not captured
by our model, we observe that our model is relevant in under-
standing the TCP delays of VBR flows. This is because the de-
lays predicted by the model follow the same trend as the mea-
sured ones and the relative error is low for loss rates greater than
1%. It can be argued that for video traffic the main concern is
the video frame delay (which comprises multiple packets) rather
than the packet delay. While this may be true, our analysis is
focused on characterizing the TCP delay for packets. The Inter-
frame delay analysis is left for future work.

C. Effect of Packet Size on Performance
Our experiments indicate that under the same network condi-

tions, VoIP flows perform significantly better than video flows.
Fig. 10(a) plots the 95% delay for VoIP and video flows with the
same workload in packets per second (pps), but substantially
different workload in terms of bits per second (kb/s), i.e., the
VoIP flow has a bit rate of 64 kb/s, whereas the video flow has a
bit rate of 573 kb/s. The figure clearly shows a performance bias
toward the VoIP flow. This happens because a video flow has a
higher bit rate than a VoIP flow. Hence, during network-lim-
ited periods, a TCP sender transmitting a video flow builds up
a larger packet backlog and consequently requires more time to
drain this backlog. For VoIP flows, the TCP sender groups sev-
eral queued VoIP packets into one transmission packet as per-
mitted by the MSS. This further increases the queue drain rate,
thereby reducing the queuing delay at the TCP sender.
An interesting question is the following: Among two flows

having the sameworkload in kb/s, does TCP have a performance
bias toward a flow with a larger workload in pps? To address
this question, we measured the delay performance of two flows
having the same workload in kb/s but different workloads in
pps. The results are shown by the curves labeled video and
video+split in Fig. 10(a). The packet rate of video+split flow
is twice of the video flow, but the application-level workload
rate in bytes is the same. Surprisingly, there is a performance
bias toward the flow with twice the packet rate of the other
flow.
We illustrate the reason for this performance difference in

Fig. 11, which plots the TCP delay and congestion window

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1487

Fig. 11. TCP delay and congestion window evolution for two flows with the
same workload in kb/s but different packet sizes, MSS and half-MSS. (a) TCP
delay, MSS packets. (b) Congestion window size, MSS packets. (c) TCP delay,
MSS/2 packets. (d) Congestion window size, MSS/2 packets.

size for two flows with the same application-level workload in
kb/s. The flow in Fig. 11(a) and (b) corresponds to an applica-
tion that sends 100 MSS-sized packets per second. The flow in
Fig. 11(c) and (d) corresponds to an application that sends 200
half-MSS-sized packets per second. Both flows operate over
a symmetric network with 200 ms RTT and experience a pair
of nearby losses. Observe that the flow with half MSS-sized
packets experiences lower delay than the other. This happens
because the AIMD mechanism updates the congestion control
state as a function of the number of packets ACKed, rather than
as a function of the number of bytesACKed (see Section III-A).
Since TCP adapts its congestion control state, and hence its
throughput based on the number of packets ACKed, the magni-
tude of the throughput fluctuations (in bytes) is smaller for the
flow with smaller packet size and higher packet rate, resulting
in lower delays. For example, the peak delay of the flow with
half-MSS-sized packets in Fig. 11 is 45% lower than that of the
one with MSS-sized packets.
As shown, the performance gain of a TCP flow with small

packets (e.g., VoIP) comes from the reduction in the delays
caused by the AIMD mechanism. That is, video flows suffer
from a larger packet backlog than VoIP flows. However, re-
ducing the packet size has side effects such as increased in-
stances of packet reordering [25]. We analyze the breakdown of
TCP-level delays by computing the time packets backlogged at
the sender (i.e., the congestion control delay component) and the
time it takes the TCP sender to get a packet to the receiving ap-
plication (i.e., the retransmission and HOL delay components).
Fig. 10(b) shows the delay breakdown in terms of these two
components for VoIP and video flows. As shown, the delays of
a VoIP flow over TCP tend to be dominated by the loss recovery
latency, whereas those of a video flow tend to be dominated by
the delays caused by the congestion control mechanism. Similar
results were obtained for CBR sources with other bit rates.

Fig. 12. 95% and maximum delay for a VoIP flow using ACK and byte
counting.

D. Sensitivity to Byte Counting
In order to provide a measured response to ACKs that cover

only small amounts of data, [4] proposes to increase the con-
gestion window based on the number of bytes acknowledged
by each incoming ACK rather than on the number of ACKs
received. This mechanism is known as byte counting. Byte
counting is configured on a per-system rather than per-con-
nection basis in Linux and is disabled by default. It is not
implemented in Windows XP. This begs the question: How
does the performance of VoIP flows change when TCP in-
creases its congestion window by the number of bytes sent?
We address this question by measuring the delay of five VoIP

flows competing with five long-lived TCP flows and varying
number of short-lived bursty flows in a drop-tail queue environ-
ment (see Section V-C). Fig. 12 shows the 95th percentile and
maximum delay for a VoIP flow with ACK and byte counting.
As shown, the use of byte counting degrades the performance.
On average, it increases the TCP delay by 10%–20%. The delay
increases because TCP with byte counting increases its trans-
mission rate in proportion to the number of bytes sent rather than
the number of packets sent. Hence, a byte-counting TCP can
be viewed as more fair than ACK-counting TCP with respect
to the congestion control behavior. The support for byte-based
congestion control mechanism must come from the underlying
operating system. However, since Linux and Windows XP use
ACK counting by default, VoIP flows implicitly benefit.

E. Effect of Timeouts on Performance
Since a real-time flow is rate-limited, it has the potential of

causing the connection’s congestion window to be small. Hence,
the chance of sending enough segments for the receiver to gen-
erate the three duplicate ACKs also becomes small. This can
harm the delay performance as the sender may need to rely on
lengthy retransmission timeouts for loss recovery. Nonetheless,
our traces show that the likelihood of timeouts is low.
The likelihood of timeouts is directly affected by the behavior

of TCP during application-limited periods. According to [20],
there are three possibilities. A TCP sender can reduce the con-
gestion window so that it would reflect the actual amount of
data sent, as suggested by the window validation extension [20].
It may increase the congestion window, resulting in an arbi-
trarily large window value, or it may maintain the same conges-
tion window, resulting in an invalid window value. We focus
on the latter case, as it is the one observed in our measure-
ments for Windows XP and Linux systems. The invalid con-
gestion window overestimates the actual amount of data sent
and, hence, reduces the likelihood of timeouts. This overesti-
mation happens implicitly for CBR-TCP flows because during

1488 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

Fig. 13. Timeout probability predicted by our model, Beomjoon et al. model
(BHJ), and the measured probability for various loss rates.

application-limited periods, the TCP sender retains memory of
an “inflated” congestion window used to clear the recent data
backlog. The congestion window behavior can be observed in
Fig. 11(b) and (d). The window value overestimates the actual
load by 30% and 40%, respectively, for the flow with MSS-
byte and MSS/2-byte packets. The other factor that influences
the likelihood of retransmission timeouts is the limited transmit
mechanism [5], which is enabled by default in Linux 2.6 and
Windows XP. This mechanism allows a TCP sender to send a
new data segment upon the receipt of each of the first two du-
plicate ACKs, thereby increasing the chances of receiving the
three duplicate ACKs required to trigger a fast retransmission.
To quantify the impact of these mechanisms (i.e., lim-

ited transmit and invalid congestion window) on TCP’s loss
recovery efficiency, we compared the timeout probability pre-
dicted by of our model to that predicted by a recent detailed loss
recovery model proposed by Beomjoon et al. [9]. The latter
model does not consider the impact of the two mechanisms.
The derivation of the timeout probability for our model is
given in detail in [11]. We show the results in Fig. 13 for an
average window size of 3. To validate the results, we also
measured the timeout probability of several VoIP flows that
send three packets per RTT in an environment with random
packet losses. The figure shows that, for small windows, the
absence of limited transmit and invalid congestion window has
a nonnegligible impact on the timeout probability.

F. Playout Buffer Size Setting

Real-time applications use a playout buffer to compensate for
variability in network delay. The receiving application delays
the playout of received media packets for some time so that a
large fraction of the packets is received before their scheduled
playout times. A question of interest is how should an applica-
tion factor in the TCP-level delays in computing the appropriate
playout buffer size.
TCP is a reliable and in-order delivery protocol that

adds transport-layer delay for lost packets. As explained in
Section IV-B, TCP needs at least to detect and
recover a lost packet using a fast retransmit, where is
the packetization interval. The time TCP needs to detect a
lost packet using a retransmission timeout is at least the base
timeout value, often approximated by [19]. Hence, the
minimum playout delay is determined by the minimum of these
two thresholds plus the one-way network delay .
We investigate the sensitively of the application to the playout

delay value by measuring the fraction of packets that miss their
deadlines, hereafter referred to as late packets, as a function of

Fig. 14. Required playout delay for (a) VoIP and (b) video flows and various
RTTs and loss rates (p).

the playout delay. The playout delay remains fixed throughout
the lifetime of a flow. Fig. 14 shows the results for VoIP and live
video streaming flows obtained in the network environment de-
scribed in Section V-A. The plot indicates that the application’s
sensitivity to the playout delay value decreases with RTT. That
is, the decrease in the fraction of late packets due to an increase
in the playback delay decreases with RTT. Furthermore, it indi-
cates that VoIP flows require smaller playout delays than video
flows for the same fraction of late packets. This happens because
video flows suffer from larger packet backlog than VoIP flows
(see Section VI-C). In these experiments, TCP can recover from
a packet loss using fast retransmit within ms be-
cause the packetization interval is 20 ms and the network delay
is symmetric. Setting the playout delay for VoIP and video flows
to this threshold results in up to 5% of late packets for RTTs of
up to 100 ms and network loss rates of up to 2%.
We use the model to evaluate the effectiveness of this playout

setting for the working regions defined in Section VI-A.We find
that a buffer with a playout delay of can mask
out TCP delays for a large portion of the VoIP working region.
This setting, however, does not mask out TCP delays for the
video working region because the delay of video flows is dom-
inated by the packet backlog rather than by the loss recovery
latency.

G. TCP and OS Settings

We provide a comprehensive set of guidelines for
delay-friendly settings of TCP and OS parameters. While
several settings such as disabling Nagle’s algorithm and using
large receive buffers are common practices in delay-sensitive
applications, the impact of others—specifically, window vali-
dation, byte counting, and limited transmit—is less obvious.
As discussed in Section III, Nagle’s algorithm should be dis-

abled as it introduces transmission delays at the TCP sender.
CBR-TCP applications should set a large receive buffer and op-
erate with nonblocking sockets so that the TCP transmission is
not limited by the flow control mechanism. To increase the loss
efficiency of TCP, SACK should be enabled [13] and limited
transmit be used. The latter is helpful for a TCP connection with
small windows. Byte counting and congestion window valida-
tion during application-limited periods and should be disabled.
The initial window size should be set to four segments as it can
remove delays of up to three RTTs and a timeout during the ini-
tial slow-start period [6].

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1489

VII. DELAY REDUCTION APPROACHES
In this section, we discuss application-level heuristics that

can improve the performance of real-time media applications
without additional help from the network. We analyze whether
the delay reduction comes at the expense of other flows, in par-
ticular long-lived FTP flows. In the following, we first discuss
a packet splitting scheme and then consider the use of parallel
connections. We show that both schemes are effective for video
flows but have only a marginal impact on VoIP flows.

A. Packet Splitting
As described in Section VI-C, the congestion control mech-

anism of TCP results in a performance bias in favor of flows
with small packets. A question of interest is whether the delay
performance of real-time applications can be improved by mas-
querading TCP flows with large packets as flows with small
packets. The application can split every large packet into a few
smaller ones while maintaining the same workload in bytes per
second. We call this scheme split- , where is the number
of small packets generated. Packet splitting, however, may also
backfire: If all CBR-TCP flows started using packet splitting,
the network could quickly become congested due to the TCP
header overhead. Hence, a wide-scale adoption of such an ap-
proach runs the risk of degrading the performance of all flows.
Furthermore, reducing the packet size can increase instances of
packet reordering [25].
We analyze the upper bound on the delay reduction of a

split- scheme for both video and VoIP flows by applying
our model in the environment with configured packet drops
described in Section V-A. The split-2 scheme reduced the
95th delay percentile by 60% on average. See [11] for de-
tailed results. This is consistent with the observation made in
Section VI-C that a TCP flow with small packets experiences
smaller packet backlogs, and hence smaller delays, than that of
a flow with large packets. For VoIP flows, the scheme yielded
diminishing gains due to the low backlog levels experienced
by these flows.
To understand the performance of split- within a wide-

scale deployment, we measured the delay of a video flow (i.e.,
a 573-kb/s video source) in an environment with a drop-tail
queue, as described in Section V-C. As shown in Fig. 15(a), the
split-2 scheme reduces TCP delay by up to 30% under low and
moderate loss rates, whereas schemes with higher split factors
yield diminishing gains or perform even worse than a no-split
scheme. The performance degradation is partially due to the in-
crease in the burstiness of the flow with packet splitting. This
burstiness can be reduced to some extent by evenly spacing
split-packets over the packetization interval. However, perfect
pacing may be difficult to achieve at the application layer due to
the small packetization intervals (e.g., 20 ms) used in practice.
During periods of high congestion (100 short-lived flows),

a TCP sender using a split- scheme is heavily backlogged
and is hence unable to improve performance using the split-
scheme. We used the drop-tail queue environment to study the
fairness implications of this scheme. In particular, we measured
the throughput of long-lived TCP flows that share a congested
link with video flows employing packet splitting. As shown in
Fig. 15(b), the split- scheme impacts the throughput of the

Fig. 15. (a) Performance impact. Reduction in the 95th delay percentile of a
video flow using split- in a drop-tail queue environment. (b) Fairness impact.
Throughput of background FTP flows in the same environment.

long-lived TCP flows. For example, the use of split-4 reduces
the throughput of a background TCP flow by 27% on average.
From the plot, we observe that the throughput reduces quickly
with the split factor.

B. Parallel Connections
A straightforward approach to improve the delay perfor-

mance of a CBR-TCP flow is to stripe its load across parallel
TCP connections. The idea is that several TCP streams are
more aggressive than one TCP stream with respect to the
congestion control behavior [36], which can result in lower
TCP delays. Previous exploration of parallel TCP connections
for streaming and data-intensive applications has focused
mainly on enhancing the throughput. However, we focus on
reducing the delay. Specifically, we provide insights on the
delay performance of parallel connection schemes for real-time
applications.
Packet striping can be done in a delay-agnostic or delay-

aware fashion. The simplest approach is to use a delay-agnostic
(“blind”) parallel connection scheme that sends packets over
parallel TCP connections in a round-robin fashion. We show
the performance improvement and impact on fairness of this
scheme for video flows using the drop-tail queue environment
described in Section V-C. Fig. 16(a) shows that five parallel con-
nections reduce the 95th delay percentile by 90% on average.
The delay reduction stems from lowering the load per connec-
tion, which in turn reduces sender backlog buildup and receiver
HOL blocking per connection, and hence the TCP delay. The
performance gain was negligible for VoIP flows. See [11] for de-
tailed results. The gain was negligible because the delay reduc-
tion is offset by the decrease in TCP’s loss recovery efficiency
caused by small congestion windows (see Section VI-E). The
small congestion windows are due to the low load per connec-
tion. We note that the scheme yielded diminishing gains when
more than five connections were used.
We propose a delay-aware (“intelligent”) scheme that selects

a connection for packet transmission that has the smallest TCP
send queue and is not in the timeout state, and we show the
results in Fig. 16(a). The “intelligent” scheme outperforms the
“blind” scheme because it dynamically avoids connections with
large queues and in timeout states. Furthermore, due to its dy-
namic nature, this scheme copes better with connections with
small congestion windows. Similar to the “blind” scheme, we
observe that using more than five parallel connections results
in diminishing gains. We note that the parallelization spectrum

1490 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 5, OCTOBER 2010

Fig. 16. (a) Performance impact. Reduction in the 95th delay percentile for a
“blind” and an “intelligent” scheme with connections in a drop-tail queue
environment. (b) Fairness impact. Throughput of background FTP flows in the
same environment.

ranges from a single flow to having as many flows as the packet
rate per RTT. Similar to packet splitting, we study the fairness
impact of these schemes on the background traffic using a drop-
tail queue environment. We present the results in Fig. 16(b).
As shown, both “intelligent” and “blind” schemes have a neg-
ligible impact on the throughput of the background long-lived
FTP flows. The impact is negligible because these schemes do
not introduce additional traffic besides session setup and tear-
down. Though parallel TCP streams are more aggressive than a
single TCP stream, their aggregated throughput is still limited
by the rate of the CBR source.

VIII. RELATED WORK
There is extensive literature on analytical and experimental

evaluation of TCP. We present only those studies closely
related to ours and refer the reader to [30] for a comprehensive
survey of TCP modeling. The majority of TCP modeling
studies are geared toward file transfers assuming either persis-
tent [31] or short-lived flows [12]. Our work differs from past
work in that we consider nongreedy rate-limited flows with
real-time delivery constraints. More recently, the performance
of TCP-based video streaming has been analytically analyzed
by [35]. The receive buffer size requirement for TCP streaming
has been determined in [21]. These papers combine TCP
throughput and application-layer buffering models to compute
the portion of late packets, whereas we directly model the
transport-layer delay of TCP. Our work further differs from
those above in that we consider applications with tight delay
constraints such as VoIP. Wang et al. [36] have performed a
comprehensive analytical study of the performance of multi-
path video streaming using TCP. Their work explains that the
performance of TCP streaming increases as the ratio of the
aggregated TCP throughput to video encoding rate increases.
However, our contribution is the insights on the TCP delay
performance.
Goel et al. [17] present an empirical study of kernel-level

TCP enhancements to reduce the delays induced by conges-
tion control for streaming flows. The performance of TCP for
real-time flows has also been considered by [24] and [27]. How-
ever, unlike our study, these papers propose amodification to the
TCP stack. Application-layer heuristics for improving the loss
recovery latency of TCP are suggested [26]. These heuristics are
geared toward bursty traffic flows and hence may not be effec-
tive for real-time flows. This paper expands on our earlier work

[10] by including a discussion on the computational complexity
of the proposed model (Section IV-B), analysis of VBR VoIP
and live video streaming flows (Section VI-B), and recommen-
dations for setting the playout buffer for real-time applications
(Section VI-F).

IX. CONCLUSION AND FUTURE WORK
We have presented a Markov-chain TCP delay model for

CBR-TCP flows. The model captures the behavior of VoIP and
streaming flows. We used experiments and the model to derive
the working region of these flows, and verified the model in
a test-bed and in PlanetLab. We explored the impact of TCP
mechanisms and presented guidelines for improving the delay
friendliness of CBR-TCP applications. The delay performance
of a video flow can be improved using packet splitting or par-
allel connection heuristics.
This study provides insights on the use of TCP for VoIP and

live-video streaming applications. A direct comparison of real-
time delivery over TCP versus unreliable protocols is left for
future work. We have used delay percentiles to evaluate the per-
formance of CBR-TCP flows. However, mean opinion score
(MOS) is considered a better metric for evaluating user-per-
ceived performance. This is another potential topic for future
work.

REFERENCES
[1] ”AMR” [Online]. Available: http://en.wikipedia.org/wiki/Adap-

tive_multi-rate_compression
[2] “NIST Net” [Online]. Available: http://www-x.antd.nist.gov/nistnet/
[3] “SRI and ISI traffic generator” [Online]. Available: http://www.postel.

org/tg/tg.html
[4] M. Allman, “TCP congestion control with appropriate byte counting

(ABC),” RFC 3465 (Experimental), Feb. 2003.
[5] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s loss re-

covery using limited transmit,” RFC 3042, Jan. 2001.
[6] M. Allman, S. Floyd, and C. Patridge, “Increasing TCP’s initial

window,” RFC 3390, Oct. 2002.
[7] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”

RFC 2581, Apr. 1999.
[8] S. A. Baset and H. Schulzrinne, “An analysis of the Skype peer-to-peer

Internet telephony protocol,” in Proc. IEEE INFOCOM, Barcelona,
Spain, Apr. 2006.

[9] K. Beomjoon, C. Yong-Hoon, and L. Jaiyong, “An extended model for
TCP loss recovery latency with random packet losses,” IEICE Trans.
Commun., vol. 89, no. 1, pp. 28–37, Jan. 2006.

[10] E. Brosh, S. A. Baset, V. Misra, D. Rubenstein, and H. Schulzrinne,
“The delay-friendliness of TCP,” in Proc. ACM SIGMETRICS, Jun.
2008, pp. 49–60.

[11] E. Brosh, S. A. Baset, V. Misra, D. Rubenstein, and H. Schulzrinne,
“The delay-friendliness of TCP,” Department of Computer Science,
Columbia University, New York, Tech. Rep. CUCS-014-08, Mar.
2008.

[12] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency,”
in Proc. IEEE INFOCOM, Tel-Aviv, Israel, Mar. 2000, vol. 3, pp.
1742–1751.

[13] K. Chen, C. Huang, P. Huang, and C. Lei, “An empirical evaluation
of TCP performance in online games,” in Proc. ACM SIGCHI ACE,
Montréal, QC, Canada, Apr. 2006, Article no. 5.

[14] K. Chen, C. Huang, P. Huang, and C. Lei, “Quantifying Skype user
satisfaction,” in Proc. ACM SIGCOMM, Pisa, Italy, Sep. 2006, pp.
399–410.

[15] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno modification
to TCP’s fast recovery algorithm,” RFC 3782, Apr. 2004.

[16] S. Floyd and E. Kohler, “TCP friendly rate control (TFRC): The small-
packet (SP) variant,” RFC 4828 (Experimental), Apr. 2007.

[17] A. Goel, C. Krasic, K. Li, and J. Walpole, “Supporting low-latency
TCP based media streams,” in Proc. IWQoS, Miami, FL, May 2002,
pp. 193–203.

BROSH et al.: DELAY-FRIENDLINESS OF TCP FOR REAL-TIME TRAFFIC 1491

[18] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and X. Zhang,
“Delving into Internet streaming media delivery: A quality and re-
source utilization perspective,” in Proc. IMC, Rio de Janeiro, Brazil,
Oct. 2006, pp. 217–230.

[19] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP friendly rate
control (TFRC): Protocol specification,” RFC 3448, Jan. 2003.

[20] M. Handley, J. Padhye, and S. Floyd, “TCP congestion window vali-
dation,” RFC 2861 (Experimental), Jun. 2000.

[21] T. Kim and M. H. Ammar, “Receiver buffer requirement for video
streaming over TCP,” in Proc. SPIE, San Jose, CA, Jan. 2006, p.
607718.

[22] E. Kohler, M. Handley, and S. Floyd, “Designing DCCP: Congestion
control without reliability,” in Proc. ACM SIGCOMM, Pisa, Italy, Sep.
2006, pp. 27–38.

[23] J. Lazzaro, “Framing real-time transport protocol (RTP) and RTP con-
trol protocol (RTCP) packets over connection-oriented transport,” RFC
4571, Jul. 2006.

[24] D. McCreary, K. Li, S. A. Watterson, and D. K. Lowenthal, “TCP-RC:
A receiver-centered TCP protocol for delay-sensitive applications,” in
Proc. MMCN, San Jose, CA, Jan. 2005, pp. 126–130.

[25] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of
transport protocols in the Internet,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 2, pp. 37–52, Apr. 2005.

[26] A. Mondal and A. Kuzmanovic, “When TCP friendliness becomes
harmful,” in Proc. IEEE INFOCOM, Anchorage, AK, May 2007, pp.
152–160.

[27] B. Mukherjee and T. Brecht, “Time-lined TCP for the TCP-friendly
delivery of streaming media,” in Proc. ICNP, Osaka, Japan, Nov. 2000,
pp. 165–176.

[28] S. Na and S. Yoo, “Allowable propagation delay for VoIP calls of ac-
ceptable quality,” in Proc. AISA, London, U.K., Aug. 2002, pp. 47–56.

[29] J. Nagle, “Congestion control in IP/TCP Internetworks,” RFC 896, Jan.
1984.

[30] J. Olsen, “Stochastic modeling and simulation of the TCP protocol,”
Ph.D. dissertation, Uppsala University, Uppsala, Sweden, Oct. 2003.

[31] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc.
ACM SIGCOMM, Vancouver, BC, Canada, Sep. 1998, pp. 303–314.

[32] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” RFC 3550, Jul. 2003.

[33] W. R. Stevens, TCP/IP Illustrated. Reading, MA: Addison-Wesley,
Nov. 1994, vol. 1.

[34] S. Tao, J. Apostolopoulos, and R. Gu, “Real-time monitoring of video
quality in IP networks,” inProc. NOSSDAV, Stevenson,WA, Jun. 2005,
pp. 129–134.

[35] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia
streaming via TCP: An analytic performance study,” in Proc. ACM
Multimedia, New York, Oct. 2004, pp. 908–915.

[36] B. Wang, W. Wei, and D. Towsley, “Multipath live streaming via TCP:
Scheme, performance and benefits,” inProc. CoNEXT, NewYork, Dec.
2007, Article no. 11.

[37] A.Wierman, T. Osogami, and J. Olsen, “A unified framework for mod-
eling TCP-Vegas, TCP-SACK, and TCP-Reno,” in Proc. MASCOTS,
Orlando, FL, Oct. 2003, pp. 269–278.

[38] R. W. Wolff, Stochastic Modeling and Theory of Queues. New York:
Prentice-Hall, 1989.

[39] X. Zhang and H. Schulzrinne, “Voice over TCP and UDP” Department
of Computer Science, Columbia University, Tech. Rep. CUCS-033-04,
Sep. 2004.

Eli Brosh received the B.Sc. degree in computer sci-
ence, statistics, and operations research and theM.Sc.
degree in electrical engineering from Tel-Aviv Uni-
versity, Tel-Aviv, Israel, in 1998 and 2003, respec-
tively. He is currently a Ph.D. candidate with the De-
partment of Computer Science, Columbia University,
New York, NY.
He worked in the telecom industry as a Systems

Engineer and Architect. His research interests
include performance evaluation and mathematical
modeling of network systems and design and anal-

ysis of P2P networks.

SalmanAbdul Baset (S’06) received the B.S. degree
in computer systems engineering from GIK Institute,
Topi, Pakistan, in 2001, and the M.S. degree in com-
puter science from Columbia University, New York,
NY, in 2004, where he is currently a Ph.D. candidate
with the Department of Computer Science. His re-
search is focused on the reliability, session quality,
protocol design, measurement, and energy efficiency
issues in peer-to-peer communication systems.

Vishal Misra (S’98–M’99) received the B.Tech.
degree from the Indian Institute of Technology,
Bombay, India, in 1992, and the Ph.D. degree from
the University of Massachusetts Amherst, Amherst,
in 2000, both in electrical engineering.
He is an Associate Professor of computer science

with Columbia University, New York, NY. His
research emphasis is on mathematical modeling of
computer systems, bridging the gap between practice
and analysis. His recent work includes the areas
of Internet economics, peer-to-peer networks, and

efficient scheduling policies.
Dr. Misra has received an NSF CAREER Award, a DoE CAREER Award,

and IBM Faculty awards. He has served as the Guest Editor for the Journal
of Performance Evaluation and as Technical Program Committee Chair and
General Chair of the ACM SIGMETRICS conference. He has participated as
a member of program committees for conferences such as the IEEE INFO-
COMM, ACM SIGMETRICS, ACM SiGCOMM, IFIP Performance, and IEEE
ICNP. He serves on the Board of Directors of ACM SIGMETRICS.

Dan Rubenstein (M’00) received the B.S. degree
in mathematics from the Massachusetts Institute of
Technology, Cambridge, in 1992; the M.A. degree in
math from the University of California, Los Angeles,
in 1994; and the Ph.D. degree in computer science
from the University of Massachusetts Amherst,
Amherst, in 2000.
He is an Associate Professor with the Department

of Computer Science, Columbia University, New
York, NY. His research interests are in network tech-
nologies, applications, and performance analysis,

with a recent emphasis on resilient, secure, and ultra-low power networking.
Dr. Rubenstein received an NSF CAREER Award, IBM Faculty Award, the

Best Student Paper Award from the ACM SIGMETRICS 2000 conference, and
Best Paper awards from the IEEE ICNP 2003 Conference and ACM CoNext
2008 Conference. He is an Editor for the IEEE/ACM TRANSACTIONS ON
NETWORKING.

Henning Schulzrinne (F’06) received the Ph.D. de-
gree from the University of Massachusetts Amherst,
Amherst, in 1992.
He is the Levi Professor of Computer Science

at Columbia University, New York, NY. He was
a Member of Technical Staff with AT&T Bell
Laboratories, Murray Hill, NJ, and an Associate
Department Head at GMD-Fokus, Berlin, Germany,
before joining the Computer Science and Electrical
Engineering departments at Columbia University.
He served as Chair of Computer Science at the uni-

versity from 2004 to 2009. Protocols co-developed by him, such as RTP, RTSP,
and SIP, are now Internet standards, used by almost all Internet telephony and
multimedia applications. His research interests include Internet multimedia
systems, ubiquitous computing, and mobile systems.

