
Towards an understanding of oversubscription in cloud

Salman A. Baset, Long Wang, Chunqiang Tang
IBM Research

ABSTRACT
Oversubscription can leverage under utilized capacity in the
cloud but can lead to overload. A cloud provider must
manage overload due to oversubscription for maximizing its
profit while minimizing any service level agreement (SLA)
violations. This paper develops an understanding of over-
subscription in cloud through modeling and simulations, and
explores the relationship between overload mitigation schemes
and SLAs.

1. INTRODUCTION
Cloud providers oversubscribe their data centers to lever-

age unused capacity and to maximize their profits. When a
cloud is oversubscribed, overload can happen. For a cloud
provider, the key to maximizing profits is to effectively mit-
igate overload while meeting SLAs promised to the cus-
tomers. If an SLA is violated, a provider may have to reim-
burse the customer for any violations. The mechanisms for
mitigating overload and the SLAs promised to the customer
determine the extent to which a provider can oversubscribe
its cloud for maximizing its profit, and how it should config-
ure and manage spare capacity for mitigating overload. The
goal of this paper is to develop an understanding of oversub-
scription in cloud and to explore the relationship between
oversubscription objectives (i.e., profits), overload mitiga-
tion schemes, and SLAs, through modeling and simulations.
The rest of the paper is organized as follows. Section 2

describes the problem setting. Section 3 gives an overview of
oversubscription including overload mitigation mechanisms
and service level agreements (SLAs). Section 4 provides a
theoretical basis for oversubscription problem and notes that
it is a variant of online multiple constraint multiple knap-
sack problem. Section 5 presents simulations and results
for evaluating various aspects of oversubscription problem,
such as the relationship between overload detection interval
and resource request interarrival time, and the performance
of VM quiescing and live migration schemes for mitigating
overload vs. a do-nothing approach. Section 6 lists some of
the questions that we are investigating as part of ongoing
work.

2. PROBLEM SETTING
We consider an Infrastructure as a Service (IaaS) cloud

provider which lets customers run multiple virtual machines
hosted on its physical machines (PMs) (or physical hosts).
The IaaS provider is multitenant, i.e., it runs workloads from
different customers. Although, we focus on IaaS providers
in this paper, we believe that our analysis can be extended
to other cloud service models such as Platform as a Service
(PaaS) and Software as a Service (SaaS). The exploration is
part of ongoing work.
A cloud provider can configure its physical and virtualized

infrastructure in several ways. One key aspect of this infras-
tructure is whether the virtual machines and their virtual

Figure 1: Conceptual overview of handling overload
in an oversubscribed environment.

disks are located on the same physical host or whether the
virtual disks are hosted on a shared SAN storage. If the vir-
tual disks are hosted on a local storage, then the complete
virtual disk does not need to be migrated to another physical
host during overload, which is a costly network operation,
and makes live migration time consuming and prohibitively
expensive. On the other hand, if the virtual disks are hosted
on shared storage, only the live memory footprint of a vir-
tual mahine needs to be migrated to another physical host.
For this paper, we assume that virtual disks are hosted on
a shared SAN storage.

An IaaS cloud provider lets its customers buy virtual ma-
chines of different ‘size’. Amazon EC2 [1] lets user purchase
small, medium, or large VMs (or instances). In this pa-
per, we consider that all VMs running on a PM are of the
same size. As part of ongoing work, we are exploring the
relationship between running VMs of different sizes on an
oversubscribed physical machine.

Assume a central scheduler similar to VMware’s DRS [7]
is configured with the overload mitigation policies and con-
tinuously monitors the performance of VMs. If a VM or
PM starts suffering from overload due to oversubscription,
the scheduler kicks in overload mitigation that are guided
by VM SLAs as discussed in Section 3.3.

3. OVERSUBSCRIPTION OVERVIEW
Overload can happen in an oversubscribed cloud. Con-

ceptually, there are two steps for handling overload, namely,
detection and mitigation, as shown in Figure 1.

A PM has CPU, memory, disk, and network resources.
Overload on an oversubscribed host can manifest for each of
these resources. When there is memory overload, the hyper-
visor swaps pages from its physical memory to disk to make
room for new memory allocations requested by VMs. The
swapping process increases disk read and write traffic and la-
tency, causing the programs to thrash. Similarly, when there
is CPU overload, VMs and the monitoring agents running
with VMs may not get a chance to run, thereby increasing
the number of processes waiting in the VM’s CPU run queue.
Consequently, any monitoring agents running inside the VM
also may not get a chance to run, rendering inaccurate the
cloud provider’s view of VMs. Disk overload in shared SAN
storage environment can increase the network traffic, where
as in local storage it can degrade the performance of applica-



tions running in VMs. Lastly, network overload may result
in an under utilization of CPU, disk, and memory resources,
rendering ineffective any gains from oversubscription.
Overload can be detected by applications running on top

of VMs, or by the physical host running the VMs. Each ap-
proach has its pros and cons. The applications know their
performance best, so when they cannot obtain the provi-
sioned resources of a VM, it is an indication of overload. The
applications running on VMs can then funnel this informa-
tion to the management infrastructure of cloud. However,
this approach requires modification of applications. In the
overload detection within physical host, the host can infer
overload by monitoring CPU, disk, memory, and network
utilizations of each VM process, and by monitoring the us-
age of each of its resources. The benefit of this approach
is that no modification to the applications running on VMs
is required. However, overload detection may not be fully
accurate.
Another aspect of overload detection is the transient and

permanent nature of overload. Williams et al. [9] observe
memory overload to be transient for SPECweb like work-
loads. In Section 5, we explore the relationship between
overload detection interval, and interarrival rate of resource
requests that can cause overload.

3.1 Mechanisms for Mitigating Overload
There are several mechanisms for mitigating overload.

• Stealing allows an hypervisor to ‘steal’ resources from
other underloaded VMs running on the same PM, and
give them to an overloaded VM(s). As an example
of stealing, VMWare ESX server [8] was the first to
describe memory balloon drivers which allow remov-
ing memory pages from one VM and give them to a
needy VM. When an overload is detected, this is the
first strategy a hypervisor can employ for mitigating
overload.

• Quiescing VMs can be used to shutdown VMs on
an overloaded PM. The shutdown VMs can then be
restarted when PM no longer suffers from overload, or
can be migrated offline to an underloaded PM.

• Live Migration allows a provider to migrate a set of
VMs from an overloaded PM to an underloaded PM.
Live migration is a good solution when the storage
of VMs is located on a SAN-like device. This is be-
cause only the memory footprint of VM needs to be
migrated. When VM storage is local, live migration
may be prohibitive due to heavy utilization of data
center network for migrating the VM disk. A mecha-
nism like streaming disks can be used in such scenarios
(see below).

• Streaming Disks is similar to live migration except
that the complete transfer of disk is not necessary.
Instead, only a ‘small’ portion of VM’s local disk is
transferred to an underloaded PM which is sufficient
for the VM to start. Once the VM is started on the
underloaded PM, it can continue to access its remain-
ing disk on the original PM. The remaining disk is then
transferred when the network load connecting the PMs
involved is low. FVD [4] is an example of a streaming
disk solution.

If a streaming disk solution is not managed carefully,
the data center disk space can quickly become frag-
mented. That is, a number of migrated VMs may
be accessing their disks over network, crisscrossing the
data center network, and causing a network overload.
However, streaming disks is an attractive solution when
virtual disks and VMs are on the same PM.

• Network Memory allows a provider to utilize mem-
ory of another machine as a swap space over the net-
work. This mechanism has the advantage that it can
potentially alleviate load on the local disk of the physi-
cal machine due to swapping. Note that network mem-
ory is still more expensive than physical memory access
(nano second vs. micro second), but swapping to disk
is more expensive than network memory (micro second
vs. millisecond for spinning disks).

Similar to streaming disks, network memory also suf-
fers from data center fragmentation.

In this paper, we assume that stealing has failed to mit-
igate overload, and therefore additional mechanisms
are required. Of the schemes discussed above, we only
consider ‘quiescing VMs’ and ’live migration’ for over-
load mitigation in this paper.

3.2 Constraints for Overload Mechanisms
A user or provider of VMs may specify constraints when

quiescing or live migrating a VM. The constraints will likely
reflect the interdependency among different components of
an application running in different VMs. As an example
of a user specified constraint, a VM may only be migrated
if all other VMs that are running other components of the
application are also migrated. The provider may specify a
constraint for administrative or management reasons, i.e.,
a VM may only be migrated or use network memory from
a PM in the same physical rack. The constrains can be
specified using a placement restriction matrix such as the
one used in [5].

3.3 Service Level Agreements (SLAs)
Service level agreement codifies the level of service that

a cloud (or any) provider promises its customers. It is the
sole compensation remedy for a customer if it does not re-
ceive the promised service. SLAs are equally important
for providers and consumers for cloud services. For cloud
providers, SLAs promised to the customers can determine
the extent to which a provider can oversubscribe its cloud
while meeting its SLAs. The definition of overload and its
detection is intrinsically tied to the SLA promised to the
customer. For example, an SLA may state that a VM is
considered unavailable if it is unable to request the provi-
sioned resources for a duration of five minutes, and SLA is
violated if such violations occur more than 0.1% of time.
Thus, a provider must perform overload detection and miti-
gation so that aggregate violations never exceed 0.1% of the
time.

What type of SLAs do the public cloud providers promise
their customers? A cursory look at the SLAs of Amazon
EC2 [2], Rackspace Cloud Servers [3], and Microsoft Azure [10]
reveals that these providers do not offer any performance
guarantees on the VMs and instead only provide uptime
guarantees. The uptime guarantees are also weak. In case of
Amazon EC2, the uptime guarantee is on a per data center



basis, i.e., a data center is considered unavailable if a cus-
tomer cannot access any of its instances in an Amazon data
center or launch replacement instances within the same data
center for a contiguous interval of five minutes. Rackspace
implicitly offers uptime guarantee on a per VM basis, but
similar to EC2, it does not offer any performance guaran-
tees. However, even if these providers do not promise any
performance SLAs, they must internally manage resources
per VMs so that the uptime SLA is less likely to be violated.

3.4 Group SLAs
Performance vs. uptime is one dimension along which the

SLAs can be considered. Another aspect is whether the
performance or uptime SLAs are promised on a per resource
or a group of resources. For instance, a provider may offer an
availability SLA (e.g., 99.9%) on a group of VMs, i.e., SLA is
violated if aggregate uptime of all VMs falls below 99.9%. A
group SLA is more flexible than a per resource SLA because
it leaves provider the wiggle room for repeatedly terminating
or migrating resource heavy instances while still meeting
the group SLAs. However, repeatedly terminating the same
instance may annoy the customer.

4. THEORETICAL BASIS FOR OVERSUB-
SCRIPTION PROBLEM

The oversubscription problem can be considered a variant
of online multiple constraint multiple knapsack problem. In
the classical single constraint single knapsack problem (SC-
SKP), the objective is to maximize profits of items in a knap-
sack while adhering to a single constraint, i.e., knapsack size.
In multiple constraint, single knapsack problem (MCSKP),
the number of constraints is more than one, such as size and
weight, but the objective is to maximize profit. For a phys-
ical machine, the constraints will be the maximum memory,
CPU, and disk utilization. In multiple constraint multiple
knapsack problem (MCMKP), the objective is to maximize
profit of items in all knapsacks while adhering to knapsack
constraints. MCMKP is an NP-hard problem.
The oversubscription problem and methods for overload

remediation such as quiescing a VM or live migration im-
pose several twists on the MCMKP problem. First, over-
subscription is an online version of MCMKP. The items in
a knapsack can grow and shrink, which correspond to VMs
using and releasing resources of a PM. When a constraint
is violated, the scheduler of online MCMKP must take ac-
tions for overload remediation using VM quiescing or live
migration. Each action has a corresponding cost. As long
as the cumulative cost of these actions is below the thresh-
olds specified in SLA, the actions can be taken without any
penalty.
More formally, consider a data center, comprising of M

physical machines (PMs) running an aggregate of V virtual
machines (VMs), where each physical machine is overcom-
mitted by a factor of oc. For instance, when oc = 2, the ag-
gregate provisioned resources of VMs (e.g., CPU and mem-
ory) running on a PM are twice that of the PMs resources.
The overcommit factor can also be different for every PM
and is the subject of exploration. For simplicity of analysis,
consider that the provider runs identically provisioned VMs
on PMs and charges the same cost per VM to the user of the
VMs. However, each user may run a workload which may
not always use the resources allocated to the VMs, thereby

providing an opportunity to oversubscribe the underlying
PM.

Let Ui,ki denote the utility function of the kth
i VM (vi,ki)

running on ith PM. It indicates whether the VM’s perfor-
mance meets the SLA requirement as promised by the provider
to the user of vi. We define the normalized range of the
utility function as between [−1, 1]. A negative utility cap-
tures the impact of potential SLA violations on the profits
of cloud provider. Since a VM can have multiple resources
r ∈ (CPU, memory, disk, network), we model the utility for
each resource, r, on a VM as Ur

i,ki
. In that case, the total

utility across all resources Ui,ki for vi,ki is as follows:

Ui,ki : R → [−1, 1] Ui,ki = min
r

Ur
i,ki

(1)

Here, we take the minimum value across all resources, in-
stead of their sum, because a single overloaded resource (e.g.,
memory swapping) can significantly impact the performance
of the running VM, easily causing an SLA violation.

Let vi,1, . . . , vi,ki be the VMs that are assigned to a PM
mi and vj,1, . . . , vj,kj be the VMs assigned to a PM mj .
ki and kj denote the total number of VMs run on PM i
and j, respectively. Let Ri,1, . . . , Ri,ri denote the resource
consumption of PM i. The assignment of VMs to PMs and
load on each VM and PM constitutes the state space A of
an oversubscribed data center. Specifically, state tuple a for
VMs running on PM i is defined as (2)-(4):

(vi,1 → mi, . . . , vi,ki → mi) (2)

(R((vi,1),1), . . . , R((vi,1),r), . . . , R((vi,ki
),1), . . . , R((vi,ki

),r)) (3)

(Ri,1 . . . Ri,ri) (4)

where (2) denotes the assignment of VMs to PM i, R((vi,1),r)

denotes the resource consumption of rth resource on VM
vi,1 in (3), and Ri,r denotes the resource consumption of
rth resource on PM i in (4). The total utility of all VMs in
this state a is the sum total of the utility of each VM, i.e.,
Ua =

∑
i

∑
ki

Ui,ki .

Assume a central scheduler similar to VMware’s DRS [7] is
configured with the overload mitigation policies and contin-
uously monitors the performance of VMs. If a VM starts suf-
fering from overload due to oversubscription, the scheduler
kicks in overload mitigation using one or more mechanisms
discussed in Section 3.1. A key issue in those mechanisms is
the selection of VMs for quiescing and live migrations while
meeting placement constraints, which can be according to a
configured policy.

In one policy which we refer to as ‘min’, the VMs with the
smallest resource footprint can be selected as candidates for
live migration. For example, VM with the smallest con-
sumed memory is considered a candidate for live migration.
In the greedy or ‘max’ policy, the VM with largest resource
footprint is selected for live migration. If live migration may
not be possible because other ‘near by’ PMs are also over-
loaded, or if live migration is prohibitively expensive due to
lack of shared storage, VMs can be selected for quiescing ac-
cording to a similar policy, such as minimum or maximum
resource usage, or fairness. Our framework allows compar-
ing of different VM selection strategies for mitigating over-
load that take advantage of VM quiescing, live migration,
or combination of both.

Let PA denote the steady state probability matrix which
indicates the probability of a system being in state a. Let



λQ and λM be the rate of state transitions due to quiescing
and migration. λQ and λM are determined according to
the workload profile of VMs and the configured overload
mitigation policies which must kick in to satisfy the VM’s
SLA requirement and the corresponding utility function. Let
OQ and OM denote the overhead functions for quiescing
and migration, respectively, which have the same range as
the utility function. Then, the total utility of the system is
given as:

UA =
∑
A

Pa(Ua − (λQOQ + λMOM )) (5)

The formulation states that the aggregate utility of the
system is the utility of being in state a minus the rate of
stealing and migration (and the associated overhead) into
that state, times the probability of being in state a, summed
over all states. The formulation is useful both during re-
source planning in cloud and live cloud operation. For a
given workload distribution, a provider can iteratively use
this formulation to determine the maximum number of VMs
that can be run while meeting the SLAs. Similarly, for
a given overcommit factor (e.g., 2), a provider can deter-
mine the maximum VM resource request rate derived from
known distributions. Conversely, a provider can check for
different overcommit factors for different machines. In all
these scenarios, a provider can evaluate policies for mitigat-
ing overload that use a combination of VM quiescing or live
migration. To keep the state space of model tractable, one
can only consider equation (3) in utility calculations, albeit,
at some loss of accuracy.

4.1 Objective Function
Recall our assumption, that the provider configures all

VMs identically and charges same cost per VM to the user,
but the workload profile of each VM may be different. Thus,
by maximizing the utility function UA defined in (5), a
provider maximizes its profit. Specifically, the number of
VMs V for which the utility function is maximized, i.e.,

argmax
V

UA

5. SIMULATION AND RESULTS
We wrote an event drive simulator to develop an under-

standing of oversubscription in cloud. Our simulation setup
comprises of 40 PMs, each configured with 64GB of RAM.
Each PM is oversubscribed by a factor of two, i.e., the total
provisioned memory of VMs on a PM is twice the size of
physical host memory of 64GB. In our simulation, the num-
ber of VMs do not change, but the memory request rate on
each VM varies according to a known distribution. As a first
step, we only consider overload of physical memory; other re-
sources such as CPU, disk, and network are being considered
in the ongoing work. The reason we choose physical memory
overload over say CPU overload was that applications can-
not make any progress when suffering memory overload. In
contrast, in CPU overload, the applications may still be able
to progress, albeit at a reduced available processing power.
The simulation was run for 30 days of simulated time.
The memory request interarrival rate is exponentially dis-

tributed. Every interarrival time, the size of the request is
chosen from a probability distribution. In this paper, we ex-
periment with exponential and pareto distributions for mem-
ory request sizes, but omit the pareto results due to lack of

>99.9% >99.5% >99.0% >98.0% >97.0% >90.0% >80.0%
50

55

60

65

70

75

80

85

90

95

100

P
er

ce
nt

ag
e 

of
 V

M
s

not experiencing overload > x%.

 

 

10 mins
5 mins
2.5 mins

Figure 2: Relationship between overload detection
interval (fixed at 5 minutes) and request interarrival
time on VM (varied between 10 minutes, 5 minutes,
and 2.5 minutes).

space. The choice of these distributions is motivated by our
effort to bring insights into cloud oversubscription and by
our observation of VM memory requests in production data
centers. In the future, we plan to incorporate traces from
real VM workloads.

The choice of keeping VMs and overcommit factor con-
stant but varying the memory requests on VM was mo-
tivated by our desire to keep simulation tractable and to
bring forth useful insights. The converse is also possible,
i.e., varying the VM interarrival time and overcommit fac-
tor, but keeping the memory request rate constant will yield
similar insights.

5.1 Defining Overload
We consider overload to have occurred if a physical host

experiences memory pressure above a threshold for more
than five minutes. The choice of five minutes is motivated
by Amazon EC2 SLA described in Section 3.3, which states
that a VM is considered unavailable if a customer cannot
access it for five contiguous minutes or launch replacement
instances within five contiguous minutes. Our overload de-
tection threshold is set to 95% of the provisioned PM mem-
ory or 60.8GB. We assume that during period of memory
overload, a customer is unable to access its instances.

5.2 Relationship Between Overload Detection
Interval and Request Interarrival Time

As our first experiment, we explore the relationship be-
tween overload detection threshold and VM memory request
interarrival interval, both of which are derived from expo-
nential distributions. We vary the interarrival rate so that
the ratio of memory detection threshold time period to aver-
age interarrival interval is 2, 1, and 0.5, respectively. Specif-
ically, the overload detection interval is kept constant at
five minutes, where as the interarrival time between mem-
ory request is varied between 2.5minutes, 5minutes, and
10minutes. The overcommit factor was two, and each PM
ran 64VMs, and each VM was configured with provisioned
memory of 2GB. Thus, a total of 40 physical machines were
running 2,560VMs. The mean memory request size on each
VM was 32.5% of the provisioned VM memory (or 650MB)



32.5 35 37.5 40 42.5 45 47.5 50
0

50

100
up

tim
e 

>
 9

9.
9%

 

 

quiesce
no quiesce

32.5 35 37.5 40 42.5 45 47.5 50
0

50

100

%
 o

f V
M

s 
ki

lle
d

32.5 35 37.5 40 42.5 45 47.5 50
0

100

200

M
ax

. #
 V

M
 k

ill
ed

Load on VMs as a function of their provisioned capacity. Overcommit factor is 2.

Figure 3: (Top) Performance of quiesce scheme for
mitigating overload vs. do-nothing approach. (Mid-
dle) Percentage of VMs terminated. (Bottom) Max-
imum number of times any of the 2,560 VMs was
shutdown.

and was exponentially distributed. Therefore, the total av-
erage memory consumption on a PM running 64 VMs was
41.6GB. If the mean request size on each VM was 50% of
provisioned memory, then the total average memory con-
sumption on the physical host will be 64GB or equal to
its maximum capacity. However, since the request size is
capped at the maximum provisioned VM memory, the av-
erage PM memory consumption is slightly lower than ex-
pected.
Figure 2 shows the result. The x-axis represents VMs not

experiencing overload more than x% of the time, and y-axis
shows the percentage of VMs. Consider the left most bar in
the graph, which indicates that close to 90% of 2,560VMs do
not experience overload more than 99.9% of the time. The
figure clearly shows a drop by a factor of 1.4 in percentage
of VMs not experiencing overload, when interarrival time
reduces from 10minutes to 2.5minutes. Recall, that over-
load detection interval was fixed at five minutes. The figure
clearly shows that overload detection time must be smaller
or close to resource request interarrival times. Similar re-
sults were obtained when request size and interarrival time
were pareto distributed.

5.3 Mitigating Overload By Quiescing VMs
When a PM’s memory is overloaded, all VMs running on

the PM are potentially affected. As discussed in Section 3.1,
one way to relieve overload on a PM is to quiesce or shut-
down one or several VMs. The terminated VMs can even-
tually be restarted when the PM is no longer overloaded.
The key question is how much is the gain in VMs’ SLAs
(non-overloaded uptime) when quiescing is used compared
with a do-nothing approach? To answer this question, we
use the same simulation setup as described in Section 5.2.
We implement the VM quiescing scheme on a PM as follows.
If a PM is overloaded for more than one half of overload de-
tection threshold (5 minutes in our setting), we select the
VM among all running VMs with the most memory used
and terminate it, thus following a ‘max’ strategy. Our al-

32.5 35 37.5 40 42.5 45 47.5 50
0

5

10

15

m
ig

ra
tio

ns
 / 

m
in

 

 

mig−all
mig−1

32.5 35 37.5 40 42.5 45 47.5 50
0

20

40

60

80

100

no
t o

ve
rlo

ad
ed

 >
 9

9.
9%

Load on VMs as a function of their provsioned capacity. Overcommit factor is 2.

Figure 4: Performance of a live migration scheme,
which migrates VMs until overload is relieved (mig-
all) and which can at most migrate one VM per
minute (mig-1).

gorithm repeatedly terminates VMs till overload is relieved.
Once the overload has been relieved, our algorithm at least
waits for a full minute before restarting the terminated VMs.
The algorithm restarts the VM that has been shutdown for
the longest duration. The algorithm does not immediately
restart all the VMs, but rather restarts one VM, every time
any VM makes a new memory request.

Figure 3 [top] shows the percentage of non-overloaded
VMs with uptime > 99.9% as load on each VM is increased.
The x-axis represents the mean request size per VM as a
function of its provisioned memory size, while y-axis repre-
sent the percentage of VMs. The results clearly show that
quiescing VMs to relieve overload can greatly improve the
percentage of running VMs not experiencing overload (ap-
proximately, by a factor of 2) when compared with a do-
nothing approach.

Another interesting question is what is the maximum num-
ber of times any VM is shutdown during entire simulation
run of 30 days? Since the arrival request size is exponentially
distributed, it comes as no suprise that maximum number
of times a VM is shutdown is small (< 5), when percentage
of VMs with uptime greater than 99.9% is more than 80%.
However, if few VMs were to be heavy hitters in terms of
memory requests, the ‘max’ scheme will repeatedly quiesce
those VMs, which may not be a desirable outcome from the
perspective of that VM’s user.

Figure 3 [middle] shows the number of VMs that were
terminated one or more time to mitigate overload as mean
request per VM increases. The top and middle figures show
a close co-relation between percentage of VMs with uptime
> 99.9% and percentage of VMs killed one or more time.

5.4 Mitigating Overload By Live Migration
Using the setup used in earlier section, we performed sim-

ulations to determine if live migration can alleviate overload
without terminating VMs. We implement the live migration
scheme on a PM as follows. If a PM is overloaded for more
than one half of overload detection threshold (5 minutes in
our setting), we select the VM among all running VMs with



the most memory used and migrate it to a PM with the most
spare memory. Our algorithm ‘mig-all’ repeatedly migrates
VMs till overload is relieved. To understand the maximum
gains possible using live migration, we assume the cost of
live migration to be zero. Figure 4 plots the migrations per
minute and percentage of VMs not experiencing overload.
The x-axis represents the mean request size per VM as a
function of its provisioned memory size. The figure shows
that the number of VM migrations per minute is 14, when
mean request size per VM is 50% of its provisioned memory
size. Recall that overcommit factor was two. Live migration
involves migrating the live memory foot print of a 2GB pro-
visioning VM memory. Given the mean request size per VM
is 50% of provisioned memory, the live memory footprint is
1GB on average. It is unrealistic to expect that more than
one VM per minute can be live migrated to another PM
when each PM is connected to 1Gb/s Ethernet.
We implemented a scheme ‘mig-1’ which migrates at most

one VM per minute to alleviate overload. Figure 4 shows the
performance of this scheme. Although, the number of VMs
being migrated per minute never exceeds one, PMs start
to experience overload at much lower memory request sizes.
The figure clearly shows that simply using live migration
may not be sufficient to alleviate overload, and that a com-
bination of VM quiescing and live migration schemes may
be needed. We are exploring this combined scheme as part
of ongoing work.

6. ONGOING WORK
The simulations help us develop an understanding of over-

subscription in cloud, but several questions remain. We list
some of these questions below.

• To what extent a combination of VM quiescing and live
migration schemes perform better than the individual
schemes?

• Does asymmetry in oversubscription levels across PMs
(within the same rack) and workload distributions lead
to a higher overcommit level?

• When identical or asymmetric capacity VMs have dif-
ferent SLAs, which overload mitigation scheme gives
the best results?

• When the available SLAs are defined per VM group
instead of per VM, can it be leveraged to improve the
performance of underlying overload mitigation scheme?

• How are the results affected when other resources such
as CPU, network, and disk are oversubscribed?

• How can we answer all of the above questions for real
workloads in a test-bed or deployed environment?

7. RELATED WORK
The related work for modeling can be divided into the

systems and theoretical work.
Urgoankar et al. [6] were the first to show the feasibility

and benefits of oversubscrition for running different com-
ponents of heterogeneous applications in a non-virtualized
multiple physical machine environment. They demonstrated
oversubscription of CPU and network resources of phys-
ical machines. Tang et al. [5] considered an application

placement controller for non-virtualized environments. Sand
Piper [11] work devised black box and gray box strategies
for VM migration. However, they did not consider an over-
subscribed environment and did not compare the cost of mi-
gration with that of VM quiescing. Further, their hotspot
mitigation scheme was not directly tied to a concrete SLA.

8. CONCLUSION
We have developed a framework for understanding over-

subscription in a cloud environment. We presented over-
load mitigation mechanisms and service level agreements,
which must be coalesced together in any overload mitiga-
tion algorithm. We then described the theoretical basis of
the oversubscription problem, and presented results from
simulations which evaluate the relationship between over-
load detection interval and request interarrival time, and
evaluated the performance of an overload mitigation scheme
which terminates VMs and performs live migration for re-
lieving overload. As part of ongoing work, we are exploring
the impact of a combination of VM quiescing and live mi-
gration schemes, asymmetry in oversubscription levels and
SLAs, and group SLAs.

9. REFERENCES
[1] Amazon EC2. https://aws.amazon.com/ec2/, 2011.

[Online; accessed January 2012].

[2] Amazon EC2 SLA.
https://aws.amazon.com/ec2-sla/, 2011. [Online;
accessed August 2011].

[3] Rackspace Cloud Servers SLA.
http://www.rackspace.com/cloud/legal/sla/, 2011.
[Online; accessed August 2011].

[4] C. Tang. Fvd: a high-performance virtual machine
image format for cloud. In Proceedings of the 2011
USENIX conference on USENIX annual technical
conference, USENIXATC’11, pages 18–18, Berkeley,
CA, USA, 2011. USENIX Association.

[5] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A
scalable application placement controller for enterprise
data centers. In Proc. of WWW, 2007.

[6] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
overbooking and application profiling in shared
hosting platforms. In Proc. of OSDI, Boston, MA,
Dec. 2002.

[7] VMware. Distributed Resource Scheduler. http:
//www.vmware.com/products/drs/overview.html,
2011. [Online; accessed April 2011].

[8] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proc. of USENIX OSDI,
Boston, MA, Dec. 2002.

[9] D. Williams, H. Weatherspoon, H. Jamjoom, and
Y.-H. Liu. Overdriver: Handling memory overload in
an oversubscribed cloud. In Proc. of VEE, March 2011.

[10] Windows Azure Compute SLA.
https://www.microsoft.com/download/en/details.

aspx?displaylang=en&id=24434, 2011. [Online;
accessed August 2011].

[11] T. Wood, P. Shenoy, and A. Venkataramani.
Black-box and gray-box strategies for virtual machine
migration. In Proc. of USENIX NSDI, Cambridge,
MA, Apr. 2007.


