
Self-Service Financial Control and Organizational Governance in Cloud

Chunqiang Tang, Chang-shing Perng, and Salman A. Baset

IBM T.J. Watson Research Center
{ctang, perng, sabaset}@us.ibm.com

Abstract—Cloud computing touts the benefits of self service
and auto scaling, but its negative impact on an enterprise’s
business process and culture change is often neglected. This paper
addresses two risks introduced by Cloud, i.e., losing financial
control in IT spending and losing organizational governance.
The root cause of these risks is due to the fact that the account
structure in today’s Cloud does not reflect the typical hierarchical
organization structure in an enterprise. Therefore, it is hard
to implement in Cloud the traditional business processes that
enforce IT financial control and organizational governance. We
propose a solution where the Cloud provider offers mechanisms
to enforce financial control and organizational governance, while
the policies are provided by customers through self service in
the Cloud portal. Intuitively, we extend the concept of self service
from resource provisioning into the area of financial control and
organizational governance. Specifically, we introduce the concept
of credit token in Cloud to resemble how budget allocation trickles
down in a traditional organization, and introduce a hierarchical
structure among Cloud accounts so that an ancestor account has
privileges over a descendant account to enforce governance.

I. Introduction

Cloud Computing is widely considered as the next big

thing in IT evolution, and is getting rapid adoption in the

industry. Cloud promises customers with the benefits of a more

convenient way of provisioning IT resources at a faster speed

and with a lower cost. According to NIST [6], two key features

of Cloud are:

• “On-demand self-service, where a consumer can provision

compute and storage capabilities without requiring human

intervention from provider.”

• “Rapid elasticity, where resources used can be rapidly and in

some cases automatically increased or decreased to handle

demand.”

For enterprises, Cloud means not only a technology shift but

also changes in IT organization, business process, and culture.

On the one hand, self-service and elasticity improve produc-

tivity by eliminating human intervention and manual approval.

On the other hand, they bring the risk of circumventing the

traditional business processes that enforce IT financial control

and organizational governance. We illustrate the challenges

using several examples.

A. Challenges

Example 1: A student over-spends his professor’s credit

card on Cloud resources.

In a USENIX ATC’09 invited talk [5], Prof. Malan pre-

sented the experience of using Amazon EC2 [1] for computer

class education, eliminating the need for maintaining a phys-

ical lab. The per-student cost of using the Cloud was only

about $15. However, one concern reported was the network

bandwidth cost and lack of control over student spending.

Example 2: A large enterprise continuously adjusts its IT

budget allocation and organization structure, making it hard

for frontline engineers to balance spending.

Example 1 is relatively simple. The situation is much

more challenging for a large enterprise. It is common that

an enterprise’s budget allocation across the business units is

continuously adjusted throughout the year. For example, the

IT budget for an engineering team may be cut by 10% due to

stagnant sales. With the self-service model, it is the frontline

engineers who provision resources in Cloud. However, it is

hard for them to have a real-time view of the team’s latest

budget situation and the expense already accrued by other

team members. As a result, they can easily make mistakes

in one way or another, e.g., overspending and missing the

financial target, or underspending the budget and missing the

accelerated product launch cycle.

Example 3: Due to a bug in a Cloud application’s auto-

scaling controller, it mistakenly creates 1,000 virtual machines

(VMs) instantaneously.

Suppose an unexpected workload triggers the auto-scaling

controller to react, but that particular code path in the con-

troller was rarely exercised before. Due to a bug, it mistakenly

treats the elapse time one millisecond as one second, i.e., a

1,000x mistake. Instead of correctly adding 1 VM, the con-

troller mistakenly adds 1,000 VMs. As a result, the application

uses up its whole-year IT budget in a single hour.

Example 4: An employee provisions in the Cloud a public

facing VM using the company’s domain name, but it exposes

inappropriate Web contents, due to either mistake or abuse.

Suppose this problem is reported by an outsider to the

company’s top management team, and the decision is to

shut down the VM immediately. However, the action may

be delayed either because the order cannot quickly reach the

employee who owns the VM (e.g., on vacation), or because

the employ does not comply. This kind of governance problem

is not unique to Cloud, but it is aggravated by Cloud’s self-

service model and the convenience of setting up a VM.

One naive solution of the problems above is for an enterprise

to blindly embrace self-service and auto-scaling, and bear the978-3-901882-48-7 c© 2012 IFIP

potential damage of losing financial control and organizational

governance, which is not acceptable for many serious enter-

prise users of Cloud. Another equally naive solution is to give

up the self-service and auto-scaling features of Cloud, and

simply use the new Cloud technology in a restricted, old-

fashioned way. For example, individual developers are not

allowed to directly provision VMs. Instead, all VM provision-

ing requests go through a manual pre-approval process and

then the requests are manually submitted into the Cloud by a

dedicated IT support team. This solution, however, does not

fully benefit from Cloud’s capability to improve productivity

and make it impractical to implement auto scaling.

B. Solution Overview

We propose a different approach to address the challenges.

The Cloud provider builds mechanisms in Cloud to enforce

financial control and organizational governance. The policies

for financial control and organizational governance are pro-

vided by each customer through self-service in the Cloud

portal. Intuitively, we extend the concept of self-service from

resource provisioning into the area of financial control and

organizational governance.

Our solution consists of two parts, one for financial control

and another for organizational governance. First, we allow a

customer to use the Cloud portal to conceptually construct

a directed acyclic graph (so-called budget-flow-DAG) that re-

sembles how budget allocation trickles down in an enterprise.

A vertex in the DAG represents an account and an edge

P → C from account P to account C represents budget

allocation from P to C. The edge P → C is annotated with

a set of (potentially sophisticated) financial control policies

called credit token.

Below, we discuss how the budget-flow-DAG helps address

the challenges in financial control.

• For Example 1 above, the professor account (as a parent

node in the DAG) can impose a policy on a student account

(as a child node in the DAG) that its total spending cannot

exceed $30.

• For Example 2 above, if a senior manager wants to transfer

some budget from one department X he manages to another

department Y he manages, he can do so easily through

self-service in the Cloud portal, with neither higher-level

management nor lower-level management involved. Then

the Cloud ensures that department X cannot spend beyond

its new, reduced budget.

• For Example 3 above, the account owner of the auto-scaling

application can impose a policy with three conjunctive

conditions: 1) the hourly spending of the account cannot

exceed $50, 2) the daily spending of the account cannot

exceed $300, and 3) the monthly spending of the account

cannot exceed $3,000. The buggy program’s attempt to

create 1,000 VMs would be rejected, because the hourly

spending of 1,000 VMs exceeds the hourly limit of $50.

The second part of our solution enables organizational

governance. The budget-flow-DAG described above is related

but not identical to an enterprise’s organization structure. For

example, a development team may get funding not from its

parent organization but instead from a parallel sales organi-

zation. Therefore, the budget-flow-DAG does not necessarily

reflect the organization structure.

We propose a separate concept called organization-tree to

help enforce organizational governance. The administrators

of an enterprise can use the self-service Cloud portal to

construct an organization-tree that resembles the enterprise’s

structure. Alternatively, the organization-tree may simply be

pulled from the enterprise’s LDAP server. An edge P → C in

the organization-tree means that account P is the upper-line

management of account C. An ancestor account in the tree

has authority over the resources provisioned by its descendant

accounts.

For Example 4 above, suppose the problematic VM is

created by the owner of account C1 and its upper-line manage-

ment account is P1. Then the owner of account P1 can use the

Cloud portal to directly shut down the VM and disable account

C1 without the owner of account C1 involved. In this case,

the Cloud governance mechanism supports a scenario that

resembles what may happen in an enterprise outside Cloud.

II. Organizational Governance

We first define some terminology about account, user, and

resources. An account in Cloud represents an organization

entity, large or small. Just like organization entities in the

real world forming a hierarchy, accounts in Cloud form a tree

structure, where a parent node in the tree is the upper-line

management organization of a child node in the tree.

Multiple users can be associated with a single account,

performing operations on behalf of the account. The users

can have different roles. For example, an administrator can

provision VMs, whereas a restricted user can only use the

account’s existing VMs but cannot provision new VMs.

Resources such as VMs are owned by accounts rather than

users. Suppose a user u provisions a VM v on behalf of an

account P . Even if the user u leaves the company, the account

P owns the VM v, and other users of the account P can still

de-provision the VM.

Below, we present some major use cases of self-service

organizational governance in Cloud.

a) User creation: An employee can create a user ID in

Cloud on his own, but the ID is not linked with any account

initially and cannot provision VMs on behalf of any account.

b) Standalone account creation: A user u can create an

account P in Cloud and becomes the administrator of the

account P . The user u can associate other users with account

P so that they can also perform operations on behalf of the

account P . In order to provision resources, the account P must

be backed by either an actual line of credit (e.g., credit card

or contract) or a virtual credit token (see Section III).

c) Child account creation: The administrator u of an

account P can create a child account C, and link P to C,

i.e., creating an edge P → C in the organization-tree. The

administrator u can associate more users of different roles with

the new child account C so that they can perform operations

on behalf of C. The child account creation process can be

performed recursively to construct a complex organization-

tree. Using the self-service Cloud portal, the administrator of

an account in the organization-tree can independently create

its own child accounts, without other accounts involved. There

is no need for a central authority in the enterprise to manage

every change to the organization-tree. Otherwise, the solution

would not be scalable.

d) Ancestor account privilege: Just like the hierarchical

line management structure in the real world, an ancestor

account in the Cloud has authority over descendant accounts.

For example, the administrator of an ancestor account can

suspend a descendant account, or de-provision or power off

a VM owned by a descendant account.

e) Cloud consumption reporting: Using the Cloud portal,

the administrator of an account can easily produce reports at all

levels, e.g., resources consumed by the account itself excluding

resources consumed by its descendant accounts, or resource

consumed by itself plus all its descendant accounts.

f) Account migration: As an enterprise’s organization

structure evolves over time, the changes need be reflected in

the organization-tree maintained in Cloud. Suppose an account

C’s parent account need be changed from Pold to Pnew, be-

cause C’s upper-line management changes. The administrator

of account Pold initiates the change, by using the Cloud portal

to send to account Pnew a migration request for account C.

If the administrator of account Pnew approves the request,

account C becomes a child of account Pnew in the new

organization-tree.

g) VM ownership transfer: Suppose a VM is provisioned

for account Cold, but it need be transferred to another account

Cnew. The administrator of account Cold initiates this change,

by using the Cloud portal to send to account Cnew a transfer

request for the VM. If the administrator of account Cnew

approves the request, the transfer completes and the VM shows

up in the Cloud portal under account Cnew. Accordingly, the

cost of the VM will be charged to account Cnew.

III. Financial Control

Our financial control solution allows a customer to use

the Cloud portal to conceptually construct a budget-flow-DAG

that resembles how budget allocation trickles down in an

enterprise. A vertex in the DAG represents an account and an

edge P → C from account P to account C represents budget

allocation from P to C. The edge P → C is annotated with

a set of financial control policies called credit tokens.

A. Credit Token

Definition 1: A credit token is defined as a tuple C =
(R,P, F, T). Here R is a list of resources the credit can be

used on. P = 〈S,E〉 is the lifetime of the token, where S is

the starting date and E is the ending date. F is the amount

of the fund. 0 ≤ T ≤ 1 is the ratio of surplus that can be

retained by the credit recipient.

A “root” credit token is obtained from the Cloud provider

and backed by an actual line of credit, e.g., credit card or

contract. The owner account of a credit token can either spend

the fund by itself, or divide the token and issue “child” credit

tokens to other accounts, meaning passing on part of the fund.

There are some constraints for dividing a credit token:

Rule 1: A credit token C = (R,P, F, T) can be divided

into a set of child credit tokens {Ci|i ∈ I} where I is an

index set and Ci = (Ri, P, Fi, Ti). The division has to satisfy

the following conditions:

1) The credit can only be used on the same or the subset of

the originally specified resources, i.e., for i ∈ I , Ri ⊂ R.

2) The credit can only be used in the originally specified

spending period, i.e., for i ∈ I , Pi ⊂ P .

3) The total fund of the divided tokens cannot exceed the

original fund, i.e.,
∑

i∈I
Fi ≤ F .

4) The amount of the fund that can be retained does not

increase, i.e.,
∑

i∈I
Fi × Ti ≤ F × T, because the

owner of the original credit token still needs to return

the fraction (1− T) back to the source account.

A credit token can be issued manually or automatically. By

defining and registering a credit-issuing function (cif) with

the Cloud, an account can automate the task of periodically

re-creating credit tokens based on changing conditions.

Definition 2: A credit-issuing function is of the form

cif(B, 〈L1, · · · , Ln〉) = 〈C1, · · · , Cn〉 where B is the total

amount of allocated base credit or expected incoming credit for

the period, Li is the surplus returned by the receiving account

i, Ci is the new credit token to be distributed to account i.

Credit-issuing functions can be written in a safe script

language. Below is one example that can be supported by

a credit-issuing function. Suppose an account has decided

to allocate $4,000 each week for a year for the two child

accounts A and B, such that each month at least $2,000 goes

to A and at least $1,000 goes to B. Each child account can

retain 50% for future use and return 50% to this account. The

surplus is distributed to the accounts by the amount inversely

proportional to the surplus they had for the previous period.

B. Spending Monitoring

Proactive spending monitor helps an organization manages

its financial status. Following the ECA paradigm (event,

condition, and action), our solution allows accounts to define

spending monitoring rules. When an event specified by a rule

is detected, the system checks the corresponding condition. If

the condition is satisfied, the action is fired.

a) Events: There are three types of events.

1) Resource changes. This includes any change to the

amount of resources owned by an account, e.g., pro-

visioning or de-provisioning VMs.

2) Usage alerts. This type of event is generated when

the usage of a resource exceeds a threshold. Typical

resource usages include network, disk I/O, and database

transaction.

3) Periodic check. The system checks a condition periodi-

cally.

b) Conditions: The condition is a boolean expression of a set

of variables. The following types of variables are supported

by the system and can be used in customer-defined rules.

1) Information in a credit token.

2) Amount of fund already spent.

3) Service request history, e.g., time of VM creation and

persistent storage allocation.

4) Allocated and active resources, e.g., the number and type

of active VMs.

5) Metered I/O, e.g., network data transfer and disk I/O.

6) Historical spending rate, e.g., hourly, daily, weekly, or

monthly.

7) Sustainable spending rate, which is the maximum spend-

ing rate that can be maintained toward the end of a

spending period.

The rule conditions can defect interesting situations that

need attention. One situation is usage burst. For example, a

condition may detect there are more than 50 virtual machines

provisioned in the last hour. Another situation is trend viola-

tion, i.e., a prediction that the current spending rate would not

be able to sustain till the end of the spending period covered

by the credit token.

c) Actions: Typical actions fired by a rule include:

1) Notify owner account of the credit token and provide

the situation summary. This is a default action for all

triggered rules.

2) Disable a request that would increase spending.

3) Release resources in possession to reduce spending.

4) Disable an account until corrective actions are taken.

d) Examples: Below are some rule examples.

1) To monitor sudden burst of VM provisioning:
event: every 60 minute

condition: requested more than 20 VMs

action: disable provisioning

2) To prevent unsustainable spending rate:
event: every 4 hours

condition: Spending rate of last 4 hours

is not sustainable for the period

action: de-provision non-essential servers

IV. Related Work

Large enterprises have mostly manual mechanisms for en-

forcing financial control and organizational governance. The

self-service nature of Cloud necessitates an automated solu-

tion. Cloudability [3] provides services that monitor spending

in multiple Clouds and send email alerts when a condition

is met, e.g., spending beyond a certain threshold. Cloudability

and our solution differ in capability and philosophy. Cloudabil-

ity provides simple functions without requiring Cloud provider

support, whereas we advocate building mechanisms into Cloud

to provide a comprehensive solution. Cloudability does not

cover organizational governance. It can monitor but cannot

enforce financial control.

Credit based tokens have been described in other contexts

such as spectrum sharing between different cell phone oper-

ators [4]. However, the use of credit tokens within Cloud for

financial control and organizational governance is novel.

Amazon Identity and Access Management [2] manages user

identities and access control for Amazon web services (AWS).

These services include group management of Cloud users,

federation between corporate directory and AWS services, and

fine grained access to Cloud services. However, it does not pro-

vide any mechanism for financial control and organizational

governance described in this paper.

V. Conclusion

In this paper, we discussed the challenges introduced by

Cloud in the area of financial control and organizational

governance. We proposed building mechanisms into Cloud so

that customers can define policies in a self-service portal to

enforce financial control and organizational governance, in a

way familiar to customers outside Cloud, while not losing

the benefits of self-service provisioning and auto scaling.

Specifically, we presented the concept of credit token, which

resembles how budget allocation trickles down in an enter-

prise. We also proposed a hierarchical structure among Cloud

accounts so that an ancestor account has privileges over a

descendant account to enforce governance.

To our knowledge, this is the first work that proposes

self-service financial control and organizational governance

in Cloud, covering an often neglected but critically important

topic. Currently, we are actively implementing the proposed

solution based on OpenStack [7]. We anticipate that user

feedback will change and/or enhance some design decisions

in this paper.

References

[1] Amazon elastic compute cloud (amazon ec2). http://aws.amazon.com/
ec2/, 2008.

[2] Amazon Identity and Access Management. https://aws.amazon.com/iam/,
2012.

[3] Cloudability. https://cloudability.com/.
[4] D. Grandblaise, K. Moessner, G. Vivier, and R. Tafazolli. Credit

token based rental protocol for dynamic channel allocation. In 1st

International Conference on Cognitive Radio Oriented Wireless Networks

and Communications, pages 1–5, June 2006.
[5] D. J. Malan. Teaching Computer Science in the Cloud, 2009. Invited talk

at USENIX ATC’09. http://static.usenix.org/events/usenix09/tech/slides/
malan.pdf.

[6] P. Mell and T. Grance. The NIST Definition of Cloud Computing. NIST
Special Publication 800-145, September 2011.

[7] OpenStack. https://www.openstack.org, 2012.

