KNOWLEDGE IN LEARNING

CHAPTER 19



Concept Learning

e Data Set: collection of instances = D.

e Instance: (list of attributes, class) = d; = (x;, ¢(x;))

e Hypothesis: mapping h : x; — ¢ € C' (where C = set of classes)

e Consistent Hypothesis: Consistent(h, D) < Vd; € D h(x;) = c¢(x;)
e Classification = Hypothesis Elimination

— Begin with H* = whole hypothesis space, H.
—Foreach d, € D

x For each hy € H* : If hy(x;) # c(x;), then H* «— H* — h;.
— consistent(hg, D) Vhy € H*

H* can be VERY LARGE
Can we work with a single h and generalize and specialize it to fit D?
Yes, but lots of search, since 4 many ways to generalize and specialize!



Generalizing and Specializing a Hypothesis

e Extension of h = all instances that h classifies as positive.
e Generalize h: Changing h so as to expand its extension.

— Drop a conjunct:
red(x) A round(x) — round(x).
— Add a disjunct:
red(x) A round(x) — (red(x) V blue(x)) A round(x)
e Specialize h: changing h so as to contract its extension.

— Add a conjunct:

red(x) A round(x) — red(x) A striped(x) A round(x)
— Drop a disjunct:

red(x) V blue(x) — blue(x)




Hypothesis Refinement
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a The Consistent Hypothesis (h): h agrees with all the instance classifica-
tions.

b A false negative: h(x) = -, but C(x) = +, where C(x) = correct class of
instance x.

c Generalizing h to cover x.
d A false positive: h(y) = +, but C(y) = -.

e Specializing h to exclude y.



Hypothesis Filtering and Refinement
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Hypothesis Filtering and Refinement (2)
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Hypothesis Filtering and Refinement (3)
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Hypothesis Filtering and Refinement (4)
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Version Space
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Beauty of the Version Space

e The version space represents the entire space of consistent hypotheses.
e But only implicitly via the boundaries of that space:

— S - the set of most specific hypotheses, all of which cover every positive
example and no negative examples, but as few of the other instances
as possible.

— G - the set of most general hypotheses, all of which cover every positive
example and no negative examples, but as many of the other instances
as possible.

e As examples are presented, the version space contracts by:

— Generalizing the hypotheses in S to cover new positive examples.
— Specializing the hypotheses in G to avoid covering new negative exam-
ples.

e When all pos and neg examples have been seen, the current version space
represents all possible hypotheses that are consistent with each example.



Candidate Elimination Algorithm

Init G to max-general hypos
Init S to max-specific hypos

Vd; € D do:

o If C(d;) = + then:
—Vg € G 3 inconsistent(g,d): G «— G — g
—Vs € S 5 inconsistent(s,d):
xS «— S —s
* Add all minimal generalizations s,,, of s to S, where:
- consistent(s,,,,d;), and
- dg € G > more-general(g,Sy,)
* Vs1, 89 € S 3 more-general(sy, s2) S «+— S — 51



Candidate Elimination Algorithm (2)

o If C'(d;) = — then:

—Vs € S 3 inconsistent(s,d): S «— S — s
—Vg € G 3 inconsistent(g,d):
xG—G—g
x Add all minimal specializations g,,; of g to G, where:
- consistent(g,,s,d;), and
- ds € S > more-general(g,,s,s)
* Vg1, 92 € G > more-general(gy, g2) G «— G — g9

The target concept is precisely learned when G = S.

Before this convergence of G and S, the system may give ambiguous classi-
fications of some test cases: G may include it, while S may exclude it.

E.g. (blue ellipse) in the upcoming example.




Candidate Elimination Algorithm (3)

In general:

e S set summarizes (in most specific form) ALL pos examples seen so far.

—Vh(3ds € S > more-general(s,h)) — h fails to cover at least one pos
eg., d+
— Thus, d+ is a false negative of h.

e G set summarizes (in most general form) ALL neg examples seen so far.

—Vh(3g € G > more-general(h,g)) — h includes at least one neg eg.,
d-

— Thus, d- is a false positive of h.



Candidate Elimination Example

Assume the following list of training examples:

. (blue pentagon) - positive
. (blue square) - positive

L (
2. (
3. (orange ellipse) - negative
4. (

. (black square) - negative
Use Candidate Elimination to filter the hypothesis space.

e Init: G = {(Colored, Figure) }
e Init: S = {(nil, nil)}



Candidate Elimination Example (2)

General —» Specific A

Circle
Conic
Section
Ellipse
Figure

Square

—
Polygon

~ S |
Pentagon | . |

—

Yellow Orange Blue Black  Specific
G1: {(Colored Figure)} N / \ /

Light
S1: {(Blue Pentagon)} 9 Dark

Color
General

On seeing d; = (blue pentagon)(+)

e G is unchanged, since G's only member is consistent with d;.

e S's only member is inconsistent with d;, so it is removed and minimally generalized to cover d;.



Candidate Elimination Example (3)
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On seeing dy = (blue square)(+)

e G is unchanged, since G's only member is consistent with ds.

e S's only member is inconsistent with ds, so it is removed and minimally generalized to cover ds.



Semantics of a Hypothesis
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The hypotheses in S and G have the same semantics:

e Everything that satisfies their description is a positive example.

e Everything else is a negative example.



Candidate Elimination Example (4)
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On seeing d3 = (orange ellipse)(-)

e G's only member is inconsistent with d3, so it is removed and minimally specialized to avoid dj3.

e S's only member is consistent with d3, so no change.



Candidate Elimination Example (5)
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On seeing dy = (black square)(-)

e Both of G's members are inconsistent with d4, so remove and specialize both. But only one of the
specializations is more general than a member of S (i.e. covers the pos egs.).

e S's only member is consistent with d4, so no change.




Pros and Cons of Candidate Elimination

Pros:

e One-shot learning
e Independent of ordering of instances

e Elegant model for hypothesis-space filtering
Cons:

e Cannot handle noisy data (i.e. pos examples that are really negative).
e Difficulties with disjunctive concepts (e.g. (red polygon) or (dark circle))
e [otally dependent upon the attribute hierarchy.



Inductive Learning Bias
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® 4 x 4 = 16 instances — 2'0 = 65536 hypotheses.

e But only 7 x 7 = 49 conjunctive hypos are expressible in the rep.

e The rep strongly biases what the system can learn.




Expressibility - Generalizability Tradeoft

e Assume that unlimited disjunctions are allowed in the hypotheses.
e Consider a simple training set: x(+), xo(+), 23(—), z4(—)

o After seeing these examples, the candidate-elimination algorithm would
have:

— G = {(—x3 A —xy4)}
=S ={(21 Va)}

— since these are the most general and most specific (respectively) hy-
potheses that:

x are expressible in the representation language
x contain all pos examples and exclude all neg examples.

e But now, any new example, x5, will be ambiguous, since G will consider
it positive, and S will consider it negative.

e Only the previously-seen examples can be unambiguously classified.
e To learn target concept, system must see every pos example of it!

e Cannot generalize beyond what it sees — memorization, not learning!



Inductive Leaps

e As shown above, a representation in which where EVERY possible com-
bination of instances is a legal hypothesis:

— has no inductive bias, but
— has no ability to generalize beyond what it sees.
— So it has no ability to classify previously-unseen examples.

e The inductive bias in a language enables inductive leaps beyond the
immediate evidence.

— In generalizing an s € S, the new s will often include more pos egs
than seen so far.

— In specializing a g € G, the new g will often exclude more neg egs
than seen so far.

e In both cases, the system takes a chance: it makes an inference that
is not purely deductive!

e So induction, like abduction, = non-deductive (possibly faulty) reasoning.

e Rep, via its bias, determines types of risk the learning system takes.



