Knowledge in Learning

Chapter 19
Concept Learning

- Data Set: collection of instances = D.
- Instance: (list of attributes, class) = \(d_i = (x_i, c(x_i)) \)
- Hypothesis: mapping \(h : x_i \rightarrow c \in C \) (where \(C = \) set of classes)
- Consistent Hypothesis: \(\text{Consistent}(h, D) \iff \forall d_i \in D \ h(x_i) = c(x_i) \)
- Classification = Hypothesis Elimination
 - Begin with \(H^* = \) whole hypothesis space, H.
 - For each \(d_i \in D \)
 * For each \(h_k \in H^* : \) If \(h_k(x_i) \neq c(x_i) \), then \(H^* \leftarrow H^* - h_i. \)
 - consistent\((h_k, D) \forall h_k \in H^* \)

\(H^* \) can be VERY LARGE
Can we work with a single h and generalize and specialize it to fit D?
Yes, but lots of search, since \(\exists \) many ways to generalize and specialize!
• **Extension** of $h = \text{all instances that } h \text{ classifies as positive.}$

• **Generalize** h: Changing h so as to **expand** its extension.

 – Drop a conjunct:

 $\text{red}(x) \land \text{round}(x) \rightarrow \text{round}(x).$

 – Add a disjunct:

 $\text{red}(x) \land \text{round}(x) \rightarrow (\text{red}(x) \lor \text{blue}(x)) \land \text{round}(x)$

• **Specialize** h: changing h so as to **contract** its extension.

 – Add a conjunct:

 $\text{red}(x) \land \text{round}(x) \rightarrow \text{red}(x) \land \text{striped}(x) \land \text{round}(x)$

 – Drop a disjunct:

 $\text{red}(x) \lor \text{blue}(x) \rightarrow \text{blue}(x)$
a The Consistent Hypothesis (h): h agrees with all the instance classifications.

b A false negative: h(x) = -, but C(x) = +, where C(x) = correct class of instance x.

c Generalizing h to cover x.

d A false positive: h(y) = +, but C(y) = -.

e Specializing h to exclude y.
Hypothesis Filtering and Refinement

Consistent Hypotheses:
- (blue polygon)
- (dark polygon)
- (blue figure)
- (dark figure)
- (colored polygon)
- (colored figure)

Specific General

General

Specific

Conic Section

Circle

Ellipse

Figure

Square

Polygon

Pentagon

Yellow

Orange

Blue

Black

Color

Light

Dark

Specific General
Hypothesis Filtering and Refinement (2)

Consistent Hypotheses:
- (blue polygon) - ok
- (dark polygon) - ok
- (blue figure) - ok
- (dark figure) - ok
- (colored polygon) - ok
- (colored figure) - false pos

Figure
- Circle
- Ellipse
- Square
- Polygon
- Pentagon

Color
- Yellow
- Orange
- Blue
- Black

Light
- Dark

Specific
- General
Hypothesis Filtering and Refinement (3)

Consistent Hypotheses:
- (blue polygon) - ok
- (dark polygon) - false pos
- (blue figure) - ok
- (dark figure) - false pos
- (colored polygon) - false pos

Specific

General

Figure
- Circle
- Ellipse
- Conic Section
- Square
- Polygon
- Pentagon

Color
- Yellow
- Orange
- Blue
- Black
- Light
- Dark

Specific

General
Hypothesis Filtering and Refinement (4)

Consistent Hypotheses:
- (blue polygon) - false neg
- (blue figure) - false pos
- ({Light or blue} polygon) - ok
- (blue polygon) or (yellow figure) - ok

Need disjunctive hypotheses

General ↔ Specific

Figure
- Circle
- Conic Section
- Ellipse
- Square
- Polygon
- Pentagon

Specific vs. General

Color
- Yellow
- Orange
- Blue
- Black

Light vs. Dark
Version Space

This region all inconsistent

\[G_1 \quad G_2 \quad G_3 \quad \ldots \quad G_m \]

\[S_1 \quad S_2 \quad \ldots \quad S_n \]

More general

More specific

This region all inconsistent
The version space represents the entire space of consistent hypotheses. But only implicitly via the boundaries of that space:

- S - the set of most specific hypotheses, all of which cover every positive example and no negative examples, but as few of the other instances as possible.
- G - the set of most general hypotheses, all of which cover every positive example and no negative examples, but as many of the other instances as possible.

As examples are presented, the version space contracts by:

- Generalizing the hypotheses in S to cover new positive examples.
- Specializing the hypotheses in G to avoid covering new negative examples.

When all pos and neg examples have been seen, the current version space represents all possible hypotheses that are consistent with each example.
Candidate Elimination Algorithm

Init G to max-general hypos
Init S to max-specific hypos
∀d_i ∈ D do:

• If C(d_i) = + then:
 - ∀g ∈ G ∋ inconsistent(g,d): G ← G − g
 - ∀s ∈ S ∋ inconsistent(s,d):
 * S ← S − s
 * Add all **minimal generalizations** s_{mg} of s to S, where:
 · consistent(s_{mg},d_i), and
 · ∃g ∈ G ∋ more-general(g,s_{mg})
 * ∀s_1, s_2 ∈ S ∋ more-general(s_1, s_2) S ← S − s_1
If $C(d_i) = -$ then:

- $\forall s \in S \ni \text{inconsistent}(s,d)$: $S \leftarrow S - s$
- $\forall g \in G \ni \text{inconsistent}(g,d)$:
 * $G \leftarrow G - g$
 * Add all minimal specializations g_{ms} of g to G, where:
 · $\text{consistent}(g_{ms}, d_i)$, and
 · $\exists s \in S \ni \text{more-general}(g_{ms}, s)$
 * $\forall g_1, g_2 \in G \ni \text{more-general}(g_1, g_2)$ $G \leftarrow G - g_2$

The target concept is precisely learned when $G = S$. Before this convergence of G and S, the system may give ambiguous classifications of some test cases: G may include it, while S may exclude it. E.g. (blue ellipse) in the upcoming example.
In general:

- S set summarizes (in most specific form) ALL pos examples seen so far.
 - \(\forall h (\exists s \in S \ni \text{more-general}(s,h)) \rightarrow h \text{ fails to cover at least one pos eg., } d^+ \)
 - Thus, \(d^+ \) is a false negative of \(h \).

- G set summarizes (in most general form) ALL neg examples seen so far.
 - \(\forall h (\exists g \in G \ni \text{more-general}(h,g)) \rightarrow h \text{ includes at least one neg eg., } d^- \)
 - Thus, \(d^- \) is a false positive of \(h \).
Candidate Elimination Example

Assume the following list of training examples:

1. (blue pentagon) - positive
2. (blue square) - positive
3. (orange ellipse) - negative
4. (black square) - negative

Use Candidate Elimination to filter the hypothesis space.

- Init: $G = \{(\text{Colored, Figure})\}$
- Init: $S = \{(\text{nil, nil})\}$
On seeing $d_1 = \text{(blue pentagon)}(\+)

- G is unchanged, since G’s only member is consistent with d_1.
- S’s only member is inconsistent with d_1, so it is removed and minimally generalized to cover d_1.
On seeing $d_2 = \text{(blue square)}(\+)

- G is unchanged, since G's only member is consistent with d_2.
- S's only member is inconsistent with d_2, so it is removed and minimally generalized to cover d_2.
The hypotheses in S and G have the same semantics:

- Everything that satisfies their description is a positive example.
- Everything else is a negative example.
On seeing $d_3 = \text{orange ellipse}$:

- G's only member is inconsistent with d_3, so it is removed and minimally specialized to avoid d_3.
- S's only member is consistent with d_3, so no change.
On seeing $d_4 = \text{(black square)}$:

- Both of G’s members are inconsistent with d_4, so remove and specialize both. But only one of the specializations is more general than a member of S (i.e. covers the pos exgs.).
- S’s only member is consistent with d_4, so no change.
Pros and Cons of Candidate Elimination

Pros:

- One-shot learning
- Independent of ordering of instances
- Elegant model for hypothesis-space filtering

Cons:

- Cannot handle noisy data (i.e. pos examples that are really negative).
- Difficulties with disjunctive concepts (e.g. (red polygon) or (dark circle))
- Totally dependent upon the attribute hierarchy.
• $4 \times 4 = 16$ instances $\rightarrow 2^{16} = 65536$ hypotheses.
• But only $7 \times 7 = 49$ conjunctive hypos are expressible in the rep.
• The rep **strongly biases** what the system can learn.
Expressibility - Generalizability Tradeoff

- Assume that unlimited disjunctions are allowed in the hypotheses.
- Consider a simple training set: $x_1(+)$, $x_2(+)$, $x_3(-)$, $x_4(-)$
- After seeing these examples, the candidate-elimination algorithm would have:
 - $G = \{(\neg x_3 \land \neg x_4)\}$
 - $S = \{(x_1 \lor x_2)\}$
 - since these are the most general and most specific (respectively) hypotheses that:
 * are expressible in the representation language
 * contain all pos examples and exclude all neg examples.
- But now, any new example, x_5, will be ambiguous, since G will consider it positive, and S will consider it negative.
- Only the previously-seen examples can be unambiguously classified.
- To learn target concept, system must see every pos example of it!
- Cannot generalize beyond what it sees \rightarrow memorization, not learning!
Inductive Leaps

• As shown above, a representation in which where EVERY possible combination of instances is a legal hypothesis:
 – has no inductive bias, but
 – has no ability to generalize beyond what it sees.
 – So it has no ability to classify previously-unseen examples.

• The inductive bias in a language enables **inductive leaps** beyond the immediate evidence.
 – In generalizing an \(s \in S \), the new \(s \) will often include more pos eggs than seen so far.
 – In specializing a \(g \in G \), the new \(g \) will often exclude more neg eggs than seen so far.

• In both cases, the system **takes a chance**: it makes an inference that is not purely deductive!

• So induction, like abduction, = non-deductive (possibly faulty) reasoning.

• Rep, via its bias, determines types of risk the learning system takes.