
COMS 6998-3: Sub-Linear Algorithms in Learn-
ing and Testing

Spring 2014

Lecture 1: 01/22/2014
Lecturer: Rocco Servedio Scribes: Clément Canonne and Richard Stark

1 Today
• High-level overview

• Administrative details

• Some content

Relevant Readings:

• Ergün, Kannan, Kumar, Rubinfeld and Viswanathan, 1998: Spot-checkers. [EKK+98]

• Ron, 2008: Property Testing: A Learning Theory Perspective. [Ron08]

2 High-level overview

2.1 What is this course about?
Goal Get information from some massive data object – so humongous we cannot
possibly look at the whole object. Instead, we must use sublinear-time algorithms to
have any hope of getting something done.

This immediately triggers the first natural question – is it even possible to do
anything? As we shall see, the answer is – perhaps surprisingly – yes.

What kind of “objects”? We will be mainly interested in 3 different sorts of
ginormous objects: Boolean functions, graphs and probability distributions.

Example 1. The object is a Boolean function f : {0, 1}n → {0, 1}, of size 2n, to which
we have query access:

1



2 HIGH-LEVEL OVERVIEW 2

f

x ∈ {0, 1}n

f(x)

Example 2. The object is a graph G = (V,E) where V = [N ] = {1, . . . , N}, for
N = 2n; we have query access to its adjacency matrix:

G

(i, j) ∈ V × V

Yes iff (i, j) ∈ E

Example 3. The object is a probability distribution D over [N ], and we have access
to independent samples:

D

“Sample-delivering
Button”

i ∼ D

What can we hope for? For most questions, it is impossible to get an exact answer
in sublinear time. Think for instance of deciding whether a function is identically zero
or not; until all 2n points have been queried, there is no way to be certain of the answer.
However, by accepting approximate answers, we can do a lot.

Similarly, it is not hard to see that it is paramount that our algorithms are random-
ized. Deterministic ones are easy to “fool”. So, we will seek algorithms that give good
approximations with high probability.

randomization + approximation

2.2 Kinds of algorithmic problems
We will consider two main families of problems over the three types of objects introduced
above: learning and property testing.



2 HIGH-LEVEL OVERVIEW 3

2.2.1 Learning problems

The goal is to output some high-quality approximation of the object O. Note
that we can only do this if we know O is highly structured. For instance, learning a
completely random Boolean function f defined by tossing a coin to generate a truth
table (for each x ∈ {0, 1}n, f(x) is chosen uniformly, independently at random in {0, 1})
clearly cannot be done with an efficient number of queries.

Example 4 (Learning decision trees). Assume f : {0, 1}n → {0, 1} is computed by a
poly(n)-size decision tree (DT). E.g., for x = (x1, . . . , x8), f(x) is given by the value
at the leaf reached by going down the following tree (0: left, 1: right):

x7

x5

0 1

x4

x3

1 x1

0 1

x5

0 x6

1 0

(in this example, f(11001100) = 1). The distance measure used here will be the
Hamming distance: for f, g : {0, 1}n → {0, 1},

d(f, g) def= |{ x ∈ {0, 1}
n : f(x) 6= g(x) }|

2n = Pr
x∼U{0,1}n

[ f(x) 6= g(x) ] (1)

Question: Can we, given black-box access to f (promised to be computed by a poly(n)-
size DT), run in poly(n, 1/ε) time and output some hypothesis h : {0, 1}n → {0, 1} s.t.
d(f, g) ≤ ε?
. Spoiler: yes – we will cover this in future lectures.



2 HIGH-LEVEL OVERVIEW 4

Example 5 (Learning distributions). Distribution D over [N ]. Assume D has struc-
ture;1 more particularly, for this example, assume D is monotone (non-increasing):

D(1) ≥ D(2) ≥ · · · ≥ D(N)

D(i)

i1 2 3 4 . . . N

Figure 1: Example of a monotone distribution D.

The distance measure considered will be the total variation distance (TV)2: for
D1,D2 distributions over [N ],

dTV(D1,D2) def= max
S⊆[N ]

(D1(S)−D2(S)) = 1
2
∑
i∈[N ]
|D1(i)−D2(i)| (2)

where the second equality (known as Scheffé’s Identity) is left as an exercise. It is not Hint: can
be shown by
considering
the set S =
{ i ∈ [N ] : D1(i) > D2(i) }.

hard to see that dTV(D1,D2) ∈ [0, 1] (where the upper bound is for instance achieved
for D1, D2 with disjoint supports).

1As we will show later in the class, if D is arbitrary, the number of samples are needed for learning
is linear in N, specifically, Θ

(
N/ε2

)
.

2A (very stringent) metric also referred to as statistical distance, or (half) the L1 distance.



2 HIGH-LEVEL OVERVIEW 5

Question: Given access to independent samples from some D, unknown monotone
distribution over [N ], what are the sample and time complexity required to output (a
succinct representation of) a hypothesis distribution D′ s.t. dTV(D,D′) ≤ ε?
. Good news: can do this with O(logN/ε3) samples and runtime – and this is optimal.

2.2.2 Property testing problems

The object O is now arbitrary, and we are interested in some property P on the set of
all objects. The goal is to distinguish whether: (a) O has the property P , of (b) O is
“far” from every O′ with property P . We don’t care about the in-between cases where
O is “close” to having property P . In such cases we can give whatever answer we want.
Equivalently, this setting can be seen as a “promise” problem, where we are “promised”
that all objects will either have property P or be “far” from having property P .

Far from P P

For instance, for the property P (on Boolean functions) of “being the identically
zero function”, f is ε-far from P if it takes value 1 on at least an ε fraction of the inputs.

Example 6 (Testing f : {0, 1}n → {0, 1} for monotonicity).

Definition 7. A Boolean function f is monotone (non-decreasing) if x � y implies
f(x) ≤ f(y); where x � y means xi ≤ yi for all i ∈ [n]. For instance, f defined by
f(x) = x1 ∧ x17 is monotone; f(x) = x̄1 is not.

Taking our property P to be monotonicity (equivalently, P = { f : {0, 1}n → {0, 1} : f is monotone };
the set of all functions with the property), we define the distance of f from P as follows:

dist(f,P) def= min
g∈P

d(f, g) (3)



2 HIGH-LEVEL OVERVIEW 6

(where d(f, g) is the Hamming distance defined in Equation (1)). We define a testing
algorithm T for monotonicity as follows: given parameter ε ∈ (0, 1], and query access
to any f ,

• if f is monotone, T should accept (with probability ≥ 9/10);

• if dist(f,P) > ε, T should reject (with probability ≥ 9/10).

. As it turns out, testing monotonicity of Boolean functions can be done with O
(
n
ε

)
queries and runtime.

Example 8 (Bipartiteness testing for graphs). Given an arbitrary graph G = ([N ], E),
we would like to design a testing algorithm T which, given oracle access to the adjacency
matrix of G,

• if G is bipartite, accepts (with probability ≥ 9/10);

• if dist(G,Bip) > ε, rejects (with probability ≥ 9/10)

where Bip is the set of all bipartite graphs over vertex set [N ], and dist(G,Bip) =
minG′∈Bip d(G,G′) with d(G,G′) def= |E(G)4E(G′)|

(N
2 ) the edit distance between G and G′.

. Somewhat surprisingly, testing bipartiteness can be done with poly(1
ε
) queries and

runtime, independent of N .

2.3 Summary
Most of the topics covered in the class will fit into this 2× 3 table:

Boolean functions Graphs Probability distributions

Learning eg, DTs eg, monotone

Testing eg, Monotonicity eg, Bipartiteness

Flavor of the course algorithms and lower bounds; Fourier analysis over {−1, 1}n;
probability; graph theory. . .



3 ADMINISTRATIVE DETAILS 7

3 Administrative details
See webpage: http://www.cs.columbia.edu/˜rocco/Teaching/S14/

4 Some content – Testing Sortedness
The first topic covered will be the leftmost top cell – learning Boolean functions.
However, before doing so, we will get a taste of property testing with the example of
testing sortedness of a list (an example slightly out of the above summary table, yet
which captures the “spirit” of many property testing results).

Problem: Given access to a list ā = (a1, . . . , aN ) ∈ ZN , figure out whether it is sorted
– that is, if a1 ≤ a2 ≤ . . . aN . More precisely, we want to distinguish sorted lists from
lists which are “far from sorted”.

Definition 9. For ε ∈ [0, 1], we say a list of N integers ā = (a1, . . . , aN) is ε-
approximately sorted if there exists b̄ = (b1, . . . , bN) ∈ ZN such that Suggestion:

write this in
terms of some
distance
dist
(

ā, b̄
)

.

(i) b̄ is sorted; and
(ii) |{ i ∈ [N ] : ai 6= bi }| ≤ εN

Remark 1. This definition is equivalent to saying that ā is ε-approximately sorted if it
has a (1− ε)N-length sorted subsequence.

Goal: Design an algorithm which queries “few” elements ai (here a “query” means
providing the value i to an oracle, and being given ai as response) and

• if ā is sorted, accepts with high probability;

• if ā is not ε-approximately sorted, rejects with high probability.

Remark 2. Deterministic algorithms will not work here; indeed, consider any deter-
ministic algorithm which reads at most N/2 of the ai’s; it is possible to change any
sorted input on the unchecked spots to make it Θ(1)-far from sorted, and the algorithm
cannot distinguish between the two cases.

Theorem 10. There exists a O
(

logN
ε

)
-query algorithm for ε-testing sortedness. Further,

this tester is one-sided:

• if ā is sorted, it accepts with probability 1;

• if ā is not ε-approximately sorted, rejects with probability ≥ 2/3.

http://www.cs.columbia.edu/~rocco/Teaching/S14/


4 SOME CONTENT – TESTING SORTEDNESS 8

4.1 First naive attempt
Natural idea: read logN

ε
random spots, and accept iff the induced sublist is sorted.

Why does it fail? Consider the (1/2-far from sorted) list

ā = (11, 10, 21, 20, 31, 30, . . . , 10100 + 1, 10100).

A violation will only be detected if certain consecutive elements – e.g., 21, 20 – are
queried, which happens with probability o(1) if we make O

(
1
ε

logN
)

queries. (Think
of “ε” as being a small constant like 1/100.)

ai

i
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •

1 . . . N

4.2 Second naive attempt
Since the previous approach failed at finding local violations, let us focus on such
violations: draw pairs of consecutive elements, checking if each pair is sorted, and
accept iff all pairs drawn pass the test.

Why does it fail? Consider the list

ā = (1, 2, 3, . . . , N/2, 1, 2, 3, . . . , N/2).

Once again, ā is 1/2-far from sorted, yet there is only one pair of consecutive elements
that may show a violation.



4 SOME CONTENT – TESTING SORTEDNESS 9

ai

i• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •• •

1 . . .
N
2

N
2 + 1 N

4.3 Third (and right) attempt
Some preliminary setup: first, observe that we can assume without loss of generality
that all ai’s are distinct. Indeed, we can always ensure it is the case by replacing on-
the-fly ai by bi

def= Nai + i. It is not hard to see that the bi’s are now distinct, and
moreover that ai ≤ aj iff bi < bj.

Furthermore, suppose x̄ is a sorted list of N distinct integers. In such a list, one
can use binary search to check in logN queries whether a given value x′ is in x̄.

Definition 11. Given a (not necessarily sorted) list ā, we say that ai is well-positioned
if a binary search on ai ends up at the ith location (where it successfully finds ai). In
particular, if ā is sorted, all its elements are well-positioned.

For instance, in
ā = (1, 2, 100, 4, 5, 6, . . . , 98, 99)

a3 = 100 is not well-positioned; while a75 = 75 is.
Note that with 1 + logN queries, one can query location i to get ai and then use

binary search on ai to determine whether ai is well-positioned.

The algorithm
for 10

ε
iterations do

Pick i ∈ [N ] uniformly at random. Query and get ai.
Do binary search on ai ; if ai is not well-positioned, halt and return REJECT

end for
return ACCEPT

. makes 10
ε

(1 + logN) = O
(

logN
ε

)
queries, as claimed.



REFERENCES 10

. if ā is sorted, all elements are well-positioned and the tester accepts with proba-
bility 1.

. It remains to prove that if ā is ε-far from sorted, the algorithm will reject with
probability at least 2/3. Equivalently, we will show the contrapositive – if ā is
such that Pr[ ACCEPT ] ≥ 1/3, then ā is ε-approximately sorted (i.e. has a sorted
subsequence of size at least (1− ε)N).
Suppose that Pr[ ACCEPT on ā ] ≥ 1/3, and define W ⊆ [N ] to be the set of all
well-positioned indices. If we had |W | ≤ (1− ε)N , then the probability that the
algorithm accepts would be at most

Pr[ ACCEPT on ā ] ≤ (1− ε)10/ε < 0.01

so it must be the case that |W | ≥ (1− ε)N . Therefore, it is sufficient to prove
that the set W is sorted, that is, for all i, j ∈ W such that i < j, ai < aj . Fix any
two such i, j; clearly, if there were an index k s.t. (1) i ≤ k ≤ j, (2) the binary
search for ai visits k, and (3) the binary search for aj visits k, then this would
entail that ai ≤ ak ≤ aj.
So it is enough to argue such a k exists. To see why, note that both binary
searches for ai and aj start at the same index N/2; and there must be a last
common index to both searches, as they end on different indices i and j. Take k
to be this last common index; as the two binary searches diverge at k, it has to
be between i and j.

References
[EKK+98] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and

Mahesh Viswanathan. Spot-checkers. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages 259–268, New
York, NY, USA, 1998. ACM.

[Ron08] Dana Ron. Property testing: A learning theory perspective. Foundations
and Trends in Machine Learning, 1(3):307–402, 2008.


	Today
	High-level overview
	What is this course about?
	Kinds of algorithmic problems
	Learning problems
	Property testing problems

	Summary

	Administrative details
	Some content – Testing Sortedness
	First naive attempt
	Second naive attempt
	Third (and right) attempt


