Unconditional Lower Bounds \& Derandomization, Spring 2024 Official Homework Problems

Problem 1. (2024/01/23) We proved in class that at least a $1-1 / 2^{n}$ fraction of all 2^{n} Boolean functions have de Morgan formula size at least $2^{n} /(2 \log n)$, for n sufficiently large. In this problem you'll prove a related average-case lower bound: Show that at least a $1-1 / 2^{n}$ fraction of all 2^{n} Boolean functions f are such that any Boolean formula F of size at most $2^{n} /(\log n)^{2}$ satisfies

$$
\operatorname{Pr}_{\mathbf{U} \sim\{0,1\}^{n}}[F(\mathbf{U})=f(\mathbf{U})] \leq 1 / 2+\varepsilon(n)
$$

for some function $\varepsilon(n)=o_{n}(1)$. How small can you make the function $\varepsilon(n)$?
Problem 2. (2024/01/23) Show that the $2 n$-variable Andre'ev function $A(x, y)$, defined in class, is computed by an $O(n)$-size Boolean circuit.

Problem 3. (2024/01/30) Give a construction of depth- d circuits computing the n-variable parity function. Try to make the circuit size as small as you can, and analyze the circuit size of your construction. (You can assume d is not too large, say at most $c \log (n) / \log \log (n)$ for an absolute constant c.)

Problem 4. (2024/02/06) Let T be a proper decision tree over variables x_{1}, \ldots, x_{n} (so no variable occurs twice on any root-to-leaf path). Prove that the following two distributions over branches are equivalent (recall that a branch is a sequence $\left\langle\pi_{1}, \pi_{2}, \ldots\right\rangle$ where each π_{i} is a pair of the form $\left(x_{i_{1}}, b_{1}\right)$ where each b_{i} is a $0 / 1$ value):

- $\mathcal{D}_{1}(T)$: Draw $\boldsymbol{\rho} \sim \mathcal{R}_{p}$ and consider $T \upharpoonright \rho$. A draw from $\mathcal{D}_{1}(T)$ is obtained by outputting a branch $\boldsymbol{\sigma} \sim \mathcal{W}\left(T \upharpoonright_{\rho}\right)$, i.e. $\boldsymbol{\sigma}$ is a branch obtained by doing a random walk down from the root of $T \upharpoonright$.
- $\mathcal{D}_{2}(T)$: Draw $\boldsymbol{\pi}=\left\langle\boldsymbol{\pi}_{1}, \ldots, \boldsymbol{\pi}_{k}\right\rangle \sim \mathcal{W}(T)$. Output the sub-list of $\boldsymbol{\pi}$ obtained by going through $\boldsymbol{\pi}$ and independently including each element $\boldsymbol{\pi}_{i}$ with probability p.

Problem 5. (2024/02/06) As defined in class, let $\boldsymbol{X} \in\{w, w+1, \ldots\}$ be a random variable corresponding to the first time that w consecutive heads come up in a sequence of i.i.d. fair coin flips. Prove that $\mathbf{E}\left[\boldsymbol{X}^{t}\right] \leq\left(7 w t 2^{w}\right)^{t}$. (Hint: One way to do this is by induction on t.)

Problem 6. (2024/02/13) Show that any depth- 2 circuit that computes the $2 n$-variable function $\operatorname{DNFTRIBES}\left(a_{1}, \ldots, a_{n}\right) \vee C N F T R I B E S\left(b_{1}, \ldots, b_{n}\right)$ correctly on 99% of all $2^{2 n}$ many possible $2 n$-bit inputs must have size at least $2^{\Omega(n / \log n)}$. You may use any of the results we proved in class to do this.

Problem 7. (2024/02/27) Let \mathbb{F} be a field with $|\mathbb{F}|=n=2^{j}$ and let $i \leq j$. Show how to generate n random elements $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ of $\left\{0,1, \ldots, 2^{i}-1\right\}$ which are k-wise uniform using $k j$ independent uniform random bits. You may use any results from lecture.

Problem 8. (2024/02/27) Write down an explicit expression for the Fourier representation of IP : $\{0,1\}^{n} \rightarrow\{-1,+1\}, \operatorname{IP}\left(x_{1}, \ldots, x_{n}\right)=(-1)^{x_{1} x_{2}+\cdots+x_{n-1} x_{n} \bmod 2}$. Argue from this that for any degree-1 \mathbb{F}_{2}-polynomial p, we have $\operatorname{Pr}_{\boldsymbol{U}}[\operatorname{IP}(\boldsymbol{U})=p(\boldsymbol{U})]=1 / 2 \pm 2^{-n / 2}$.

Problem 9. (2024/02/27) Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a conjunction of literals over distinct variables. Show that $L_{1}(f)=1$.

Problem 10. (2024/03/26) Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Show that for fixed $J, S \subseteq[n]$ and uniform random $\boldsymbol{z} \sim\{-1,1\}^{\bar{J}}$, we have

$$
\begin{aligned}
\underset{z \sim\{-1,1\}^{\bar{J}}}{\mathbf{E}}\left[\widehat{f}_{J, z}(S)\right] & =\mathbf{1}[S \subseteq J] \cdot \widehat{f}(S) \\
\underset{z \sim\{-1,1\}^{\bar{J}}}{\mathbf{E}}\left[\widehat{f}_{J, z}(S)^{2}\right] & =\mathbf{1}[S \subseteq J] \cdot \sum_{T \subseteq \bar{J}} \widehat{f}(S \cup T)^{2},
\end{aligned}
$$

where $f_{J, z}$ is the restriction that leaves variables in J "alive" and fixes variables in $[n] \backslash J$ to the values specified by z.

Problem 11. (2024/03/26) Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Show that

$$
\begin{aligned}
\underset{(\mathbf{J}, \boldsymbol{z}) \sim \mathcal{R}_{p}}{\mathbf{E}}\left[\widehat{f}_{\mathbf{J}, \boldsymbol{z}}(S)\right] & =p^{|S|} \cdot \widehat{f}(S) \\
\underset{(\mathbf{J}, \boldsymbol{z}) \sim \mathcal{R}_{p}}{\mathbf{E}}\left[\widehat{f}_{\mathbf{J}, \boldsymbol{z}}(S)^{2}\right] & =\sum_{U \subseteq[n]} \widehat{f}(U)^{2} \cdot \operatorname{Pr}[U \cap \mathbf{J}=S],
\end{aligned}
$$

where " $(\mathbf{J}, \boldsymbol{z}) \sim \mathcal{R}_{p}$ " means that every variable is independently put into \mathbf{J} with probability p and \boldsymbol{z} is uniform random over $\{-1,1\}^{\bar{J}}$.

Problem 12. (2024/03/26) Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. Show that

$$
\underset{\mathbf{J}, \boldsymbol{z} \sim \mathcal{R}_{p}}{\mathbf{E}}\left[W^{\geq k}\left[f_{\mathbf{J}, z}\right]\right]=\sum_{r \geq k} W^{r}[f] \cdot \operatorname{Pr}[\operatorname{Bin}(r, p) \geq k],
$$

where $\operatorname{Bin}(r, p)$ denotes a draw from a Binomial random variable with success probability p.

