Unconditional Lower Bounds & Derandomization, Spring 2024 Official Homework Problems

Problem 1. (2024/01/23) We proved in class that at least a $1 - 1/2^n$ fraction of all 2^n Boolean functions have de Morgan formula size at least $2^n/(2\log n)$, for *n* sufficiently large. In this problem you'll prove a related *average-case* lower bound: Show that at least a $1 - 1/2^n$ fraction of all 2^n Boolean functions *f* are such that any Boolean formula *F* of size at most $2^n/(\log n)^2$ satisfies

$$\Pr_{\mathbf{U} \sim \{0,1\}^n} \left[F(\mathbf{U}) = f(\mathbf{U}) \right] \le 1/2 + \varepsilon(n)$$

for some function $\varepsilon(n) = o_n(1)$. How small can you make the function $\varepsilon(n)$?

Problem 2. (2024/01/23) Show that the 2*n*-variable Andre'ev function A(x, y), defined in class, is computed by an O(n)-size Boolean circuit.

Problem 3. (2024/01/30) Give a construction of depth-*d* circuits computing the *n*-variable parity function. Try to make the circuit size as small as you can, and analyze the circuit size of your construction. (You can assume *d* is not too large, say at most $c \log(n)/\log\log(n)$ for an absolute constant *c*.)

Problem 4. (2024/02/06) Let T be a proper decision tree over variables x_1, \ldots, x_n (so no variable occurs twice on any root-to-leaf path). Prove that the following two distributions over branches are equivalent (recall that a branch is a sequence $\langle \pi_1, \pi_2, \ldots \rangle$ where each π_i is a pair of the form (x_{i_1}, b_1) where each b_i is a 0/1 value):

- $\mathcal{D}_1(T)$: Draw $\rho \sim \mathcal{R}_p$ and consider $T \upharpoonright_{\rho}$. A draw from $\mathcal{D}_1(T)$ is obtained by outputting a branch $\sigma \sim \mathcal{W}(T \upharpoonright_{\rho})$, i.e. σ is a branch obtained by doing a random walk down from the root of $T \upharpoonright_{\rho}$.
- $\mathcal{D}_2(T)$: Draw $\boldsymbol{\pi} = \langle \boldsymbol{\pi}_1, \ldots, \boldsymbol{\pi}_k \rangle \sim \mathcal{W}(T)$. Output the sub-list of $\boldsymbol{\pi}$ obtained by going through $\boldsymbol{\pi}$ and independently including each element $\boldsymbol{\pi}_i$ with probability p.

Problem 5. (2024/02/06) As defined in class, let $X \in \{w, w + 1, ...\}$ be a random variable corresponding to the first time that w consecutive heads come up in a sequence of i.i.d. fair coin flips. Prove that $\mathbf{E}[X^t] \leq (7wt2^w)^t$. (Hint: One way to do this is by induction on t.)

Problem 6. (2024/02/13) Show that any depth-2 circuit that computes the 2*n*-variable function $DNFTRIBES(a_1,\ldots,a_n) \vee CNFTRIBES(b_1,\ldots,b_n)$ correctly on 99% of all 2^{2n} many possible 2*n*-bit inputs must have size at least $2^{\Omega(n/\log n)}$. You may use any of the results we proved in class to do this.

Problem 7. (2024/02/27) Let \mathbb{F} be a field with $|\mathbb{F}| = n = 2^j$ and let $i \leq j$. Show how to generate n random elements X_1, \ldots, X_n of $\{0, 1, \ldots, 2^i - 1\}$ which are k-wise uniform using kj independent uniform random bits. You may use any results from lecture.

Problem 8. (2024/02/27) Write down an explicit expression for the Fourier representation of IP: $\{0,1\}^n \to \{-1,+1\}$, IP $(x_1,\ldots,x_n) = (-1)^{x_1x_2+\cdots+x_{n-1}x_n \mod 2}$. Argue from this that for any degree-1 \mathbb{F}_2 -polynomial p, we have $\mathbf{Pr}_{\boldsymbol{U}}[\mathrm{IP}(\boldsymbol{U}) = p(\boldsymbol{U})] = 1/2 \pm 2^{-n/2}$.

Problem 9. (2024/02/27) Let $f : \{0,1\}^n \to \{0,1\}$ be a conjunction of literals over distinct variables. Show that $L_1(f) = 1$.

Problem 10. (2024/03/26) Let $f : \{-1, 1\}^n \to \{-1, 1\}$. Show that for fixed $J, S \subseteq [n]$ and uniform random $\boldsymbol{z} \sim \{-1, 1\}^{\bar{J}}$, we have

$$\mathbf{E}_{\boldsymbol{z} \sim \{-1,1\}^{\bar{J}}} \left[\widehat{f}_{J,\boldsymbol{z}}(S) \right] = \mathbf{1}[S \subseteq J] \cdot \widehat{f}(S) \\
\mathbf{E}_{\boldsymbol{z} \sim \{-1,1\}^{\bar{J}}} \left[\widehat{f}_{J,\boldsymbol{z}}(S)^2 \right] = \mathbf{1}[S \subseteq J] \cdot \sum_{T \subseteq \bar{J}} \widehat{f}(S \cup T)^2,$$

where $f_{J,z}$ is the restriction that leaves variables in J "alive" and fixes variables in $[n] \setminus J$ to the values specified by z.

Problem 11. (2024/03/26) Let $f: \{-1,1\}^n \to \{-1,1\}$. Show that

$$\begin{split} & \underset{(\mathbf{J}, \mathbf{z}) \sim \mathcal{R}_p}{\mathbf{E}} \left[\widehat{f}_{\mathbf{J}, \mathbf{z}}(S) \right] = p^{|S|} \cdot \widehat{f}(S) \\ & \underset{(\mathbf{J}, \mathbf{z}) \sim \mathcal{R}_p}{\mathbf{E}} \left[\widehat{f}_{\mathbf{J}, \mathbf{z}}(S)^2 \right] = \sum_{U \subseteq [n]} \widehat{f}(U)^2 \cdot \mathbf{Pr}[U \cap \mathbf{J} = S], \end{split}$$

where " $(\mathbf{J}, \mathbf{z}) \sim \mathcal{R}_p$ " means that every variable is independently put into \mathbf{J} with probability p and \mathbf{z} is uniform random over $\{-1, 1\}^{\bar{J}}$.

Problem 12. (2024/03/26) Let $f: \{-1,1\}^n \to \{-1,1\}$. Show that

$$\mathop{\mathbf{E}}_{\mathbf{J},\boldsymbol{z}\sim\mathcal{R}_p}\left[W^{\geq k}\left[f_{\mathbf{J},\boldsymbol{z}}\right]\right] = \sum_{r\geq k} W^r[f]\cdot \mathop{\mathbf{Pr}}\nolimits[\operatorname{Bin}(r,p)\geq k],$$

where Bin(r, p) denotes a draw from a Binomial random variable with success probability p.