1 Introduction

1.1 From Last Lecture

- Presented a BP (branching program) of size $O(n \text{ polylog } n)$ for

 $$\text{EXACT}(x) = \begin{cases}
1 & \text{if } \sum_{i=1}^{n} x_i = \frac{n}{2} \\
0 & \text{otherwise.}
\end{cases}$$

- Did most of the proof of Alon-Maass theorem: Any $O(1)$-width BP for MAJ
 must have size $\Omega(n \log \log n)$:
 - Communication complexity argument
 - Reduce to oblivious BPs
 - S, T alternations
 - **Key Lemma**: suppose string $z \in [n]^m$ is s.t. (i) $\forall i \in [n], i \in z$, (ii) $\forall S, T \subset [n]$ disjoint, $|S| = |T| = n^{1/3}$, z has $\Omega(\log n)$ alternations w.r.t S, T, then $m = \Omega(n \log \log n)$.

1.2 Today’s Topic

- Prove the “Intermediate Lemma” and finish Alon-Maass theorem.

- Prove the **Barrington’s Theorem**: if f can be computed by a Boolean formula of size s, then it has a width-5 (we only prove width-8) BP of size poly(s). (And it’s converse.)
2 Alon-Maass Theorem

Recall the statement of “intermediate lemma”:

Lemma 1 (“Intermediate Lemma”). Let \(z \in [n]^{kn} \). Divide \(z \) into \(r \) segments of equal length, each \(z^{(i)} \) has length \(\frac{kn}{r} \).

\[
\begin{array}{cccc}
128379 & 789172 & 238732 & 772382 \\
\rightarrow B_1 & \rightarrow B_1 & \rightarrow B_2 & \rightarrow B_1 \\
\end{array}
\]

Independently uniformly assign \(z^{(i)} \) to \(B_1 \) or \(B_2 \) with probability \(\frac{1}{2} \) each.

Define

- \(\text{unseen}(B_1) = \{ i \in [n] : i \text{ doesn’t occur in any } z^{(i)} \text{ in } B_1 \} \),
- \(X_1 = |\text{unseen}(B_1)| \) and \(\mu = E[|X_i|] \).

Then we have (1) \(\mu \geq \frac{n}{2k} \), (2) \(\Pr[|X_i - \mu| \geq \frac{\mu}{2}] \leq \frac{2^{k+2}k^2}{r} \).

Proof. For each \(i \in [n] \), let \(G_i \) be the event that \(i \) is in \(\text{unseen}(B_1) \). Then \(X_i = \sum_{i=1}^n 1[G_i] \) and \(\mu = E[\sum_{i=1}^n 1[G_i]] = \sum_{i=1}^n \Pr[G_i] \).

Let \(s_i \) be the number of segments that \(i \) appears in. \(\Pr[G_i] = \frac{1}{2s_i} \). The total occurrences of \(i \) is at least \(s_i \), we have \(kn \geq \sum_{i=1}^n s_i \). So

\[
\mu = \sum_{i=1}^n \Pr[G_i] = \sum_{i=1}^n \frac{1}{2s_i} \geq n \cdot \frac{1}{2\sum_{i=1}^n s_i/n} \geq \frac{n}{2k}.
\]

The second to last inequality is because of the AM-GM inequality \(x_1 + x_2 + \cdots + x_n \geq (x_1 x_2 \cdots x_n)^{1/n} \).

For (2), we’ll show \(\text{Var}[X_i] \leq \frac{k^2n\mu}{r} \). Given this, by Chebyshev’s inequality we have

\[
\Pr[|X_1 - \mu| \geq \frac{\mu}{2}] \leq \frac{\text{Var}[X_1]}{\frac{\mu^2}{4}} = \frac{4k^2n}{r\mu} \leq \frac{2^{k+2}k^2}{r}
\]
Consider
\[
\begin{align*}
\text{Var}[X_1] &= \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 \\
&= \mathbb{E} \left[\left(\sum_{i=1}^n \mathbb{1}[G_i] \right)^2 \right] - \mathbb{E} \left[\sum_{i=1}^n \mathbb{1}[G_i] \right]^2 \\
&= \sum_{i,i'} \mathbb{E}[\mathbb{1}[G_i] \cdot \mathbb{1}[G_{i'}]] - \left(\sum_{i=1}^n \mathbb{E}[\mathbb{1}[G_i]] \right)^2 \\
&= \sum_{i,i'} (\mathbb{P}[G_i \land G_{i'}] - \mathbb{E}[\mathbb{1}[G_i]] \cdot \mathbb{E}[\mathbb{1}[G_{i'}]]) \\
&= \sum_{i,i'} (\mathbb{P}[G_i \land G_{i'}] - \mathbb{P}[G_i] \cdot \mathbb{P}[G_{i'}])
\end{align*}
\]

Let’s say \(i \sim i' \) holds if \(i \) and \(i' \) appear together in at least one segment.

Suppose \(i \not\sim i' \) then \(G_i \) and \(G_{i'} \) are independent because they never appear in the same segment, and the contribution of \((i,i') \) to the sum is 0 since \(\mathbb{P}[G_i \land G_{i'}] = \mathbb{P}[G_i] \cdot \mathbb{P}[G_{i'}] \).

In the case where \(i \sim i' \), \(G_i \) and \(G_{i'} \) may not be independent. But we still have
\[
\mathbb{P}[G_i \land G_{i'}] - \mathbb{P}[G_i] \cdot \mathbb{P}[G_{i'}] \leq \mathbb{P}[G_i]
\]

Plus the fact that, the number of \(i' \) that occurs in at least one segment with \(i \) is no more than \(s_i \cdot \left(\frac{kn}{r}\right) \), we have
\[
\begin{align*}
\text{Var}[X_1] &\leq \sum_{i \sim i'} \mathbb{P}[G_i] \leq \sum_{i=1}^n \mathbb{P}[G_i] \cdot s_i \cdot \left(\frac{kn}{r}\right) \\
&= \frac{kn}{r} \cdot \sum_{i=1}^n s_i \cdot \frac{1}{2^{s_i}} \leq \frac{k}{r} \left(\sum_{i=1}^n s_i \right) \cdot \frac{1}{2^{s_i}} = \frac{k2^n \cdot \mu}{r}
\end{align*}
\]

The (?) inequality follows from the Chebyshev’s sum inequality after we carefully rearrange the sequence of \(s_i \)’s and \(\frac{1}{2^{s_i}} \)’s. ■

Proposition 2 (Chebyshev’s sum inequality). If we have 2 sequences such that \(a_1 \leq a_2 \leq \cdots \leq a_n \) and \(b_1 \geq b_2 \geq \cdots \geq b_n \), then
\[
\sum_{i=1}^n a_i b_i \leq \left(\sum_{i=1}^n a_i \right) \left(\sum_{i=1}^n b_i \right)
\]
Proof. Consider \(\sum_{i=1}^{n} \sum_{j=1}^{n} (a_i - a_j)(b_i - b_j) \).

For any \(i, j \), \((a_i - a_j)(b_i - b_j) \leq 0\), so
\[
\sum_{i=1}^{n} \sum_{j=1}^{n} (a_i - a_j)(b_i - b_j) \leq 0
\]

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} (a_ib_i - a_ib_j - a_jb_i + a_jb_j) \leq 0
\]

\[
2n \cdot \sum_{i=1}^{n} a_i b_i \leq 2 \sum_{i=1}^{n} \sum_{j=1}^{n} a_ib_j = 2 \left(\sum_{i=1}^{n} a_i \right) \left(\sum_{i=1}^{n} b_i \right)
\]

\[\blacksquare\]

3 Barrington’s Theorem

In this section we’ll show the surprising “equivalence” between constant width branching program and small size Boolean formula. We start by proving the easy direction of Barrington’s Theorem.

Theorem 3. If \(f \) has a width-\(w = O(1) \), length-\(s \) branching program, then \(f \) is computed by an \(O(\log s) \)-depth poly(s)-size fan-in-2 Boolean circuit/formula.

Proof. The idea behind is “divide and conquer”.

Consider a width-\(w \), length-\(s \) branching program, we can assume WLOG that there’s only one 1-leaf in the last level. Otherwise we can always modify the branching program to be so which only increase the width \(w \) by 1, as the example in the following figure:
Let $d_w(s) = d(s)$ be the maximum depth of Boolean formula needed to compute width-w length-s branching program, i.e. to check that the input x reaches the unique 1-node in the last layer.

Given length-s, width-w branching program computing f, let v_1, \ldots, v_w be the nodes in layer $s/2$.

We have $f(x) = 1$ if and only if there exists a v_i such that x reaches v_i first and starting from v_i, x reaches the 1-sink. That is:

Note that each leaf is a function that is computed by a width-w length-$s/2$ branching program. By induction each of them has a circuit of $O(\log w) \cdot (\log \frac{s}{2}) = O(\log w) \cdot (\log s - 1)$ depth.

Therefore the whole circuit computing f has depth $O(\log w) \cdot \log s = O(\log s)$.

Theorem 4 (Barrington’s Theorem). If f is computed by a size-s Boolean formula, then f is computed by a poly(s)-length, width-5 branching program. (We only prove a width of 8.)

Plan of the proof we are going to transform a size-s Boolean formula into a equivalent branching program step by step in the following way:

-size-s Boolean formula

\[\Downarrow\text{(Lemma 0)}\]
\(O(\log s)\)-depth Boolean formula
\[\Downarrow (\text{Lemma 1})\]
\(O(\log s)\)-depth algebraic formula
\[\Downarrow (\text{Lemma 2})\]
\(\text{poly}(s)\)-length, 3-bit linear bijection straight-line program (LBSLP)
\[\Downarrow (\text{Lemma 3})\]
\(\text{poly}(s)\)-length, width-8 branching program

Remind that lemma 0 is already obtained in previous classes, that any size-\(s\) Boolean formula can be rebalanced to a \(O(\log s)\)-depth one.

We start the rest of proof by defining algebraic formula: view \(\{0, 1\}\) as in GF\([2]\], “+” gate as the PAR-gate in Boolean formula, “\(\cdot\)” gate as the AND-gate, “1 + \(x\)” as the NOT-gate.

Definition 5. An algebraic formula over \(x_1, \ldots, x_n\) is a rooted binary tree. Each internal node has 2 children and labelled with \(\cdot\) or \(+\). Each leaf is labelled with \(x_0\) or 0 or 1.

- *Size of algebraic formula is the number of \(x_i\)-leaves.*
- *Depth of algebraic formula is the depth of the binary tree.*

Lemma 6 (Lemma 1 in the figure). If \(f\) is computed by size-\(s\), depth-\(d\) Boolean formulas, then \(f\) is computed by size-\(s\), depth-\(O(d)\) algebraic formulas.

Proof. Given Boolean formula \(F\) with \(\wedge, \vee, \neg\) gates. We do the following transformation:

\[
(G \vee H) \equiv \overline{G \wedge H}
\]

Easy to verify that the size remains the same and the depth blows up by a multiplicative factor of at most 3. \(\blacksquare\)
Note that the converse doesn’t hold. One quick example is the parity function. \(\text{PAR}(x_1, \ldots, x_n) \) has a size-\(n \) algebraic formula. But from Khrapchenko lower bound we know that any Boolean formula for PAR has size \(\Omega(n^2) \).

Now we give the definition for linear bijection straight-line program (LBSLP). More precisely, a \(k \)-bit LBSLP is

- Register \(R_1, \ldots, R_k \) each holds 0 or 1.
- A \(k \)-bit LBSLP is a sequence of register offset instructions of the form \(R_j \leftarrow R_j + (R_i \cdot c) \) or \(R_j \leftarrow (R_i \cdot x_u) \) where \(i \neq j, c \in \{0, 1\} \) and \(u \in [n] \).
- Initially \(R_2 = 1, R_i = 0 \) for all \(i \neq 2 \).
- Length of LBSLP is the number of instructions.
- Output of LBSLP is the value ultimately in \(R_1 \) at the end of the program.

The reason to call it “linear bijection straight-line program” is: first it’s clearly a straight-line program. For linear bijection part, at any step, we can view the “state” of the program as the vector \((R_1, \ldots, R_k) \in \text{GF}[2]^k\). Then each instruction is a linear bijection from \(\text{GF}[2]^k \) to itself.

As an example, suppose \(k = 3 \). For instruction \(R_1 \leftarrow R_1 + R_2 \cdot x_1 \), we have

\[
(R_1, R_2, R_3) \begin{pmatrix} 1 & 0 & 0 \\ x_1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (R_1 + R_2 \cdot x_1, R_3, R_3)
\]

where the 3 by 3 matrix is invertible.

Lemma 7 (Lemma 3 in the figure). If \(f \) is computed by a length-\(l \) \(k \)-bit LBSLP, then \(f \) is computed by a length-\(l \) width-\(2^k \) branching program.

Proof. We construct the branching program as follow: \(j \)-th layer of branching program corresponds to the state of \(k \) registers at step \(j \) of the computation of LBSLP.

For example, say \(k = 3 \) and there are 2 instructions:
Then in the last layer, we label each terminal node according to the value of R_1. That is, we accept all the states whose R_1 is 1, and reject all others.

Lemma 8 (Lemma 2 in the figure). If f is computed by a depth-d algebraic formula, then f is computed by a 3-bit LBSLP of length 4^d.

We’ll prove this final step by induction on d in the next lecture.