Rank-\(r \) decision trees are a subclass of \(r \)-decision lists

Avrim Blum *

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Communicated by M.J. Atallah
Received 20 January 1992
Revised 11 March 1992

Abstract

Blum, A., Rank-\(r \) decision trees are a subclass of \(r \)-decision lists, Information Processing Letters 42 (1992) 183-185.

In this note, we prove that the concept class of rank-\(r \) decision trees (defined by Ehrenfeucht and Haussler) is contained within the class of \(r \)-decision lists (defined by Rivest). Each class is known to be learnable in polynomial time in the PAC model, for constant \(r \). One result of this note, however, is that the simpler algorithm of Rivest can be used for both.

Keywords: Machine learning theory, decision trees, decision lists, analysis of algorithms

1. Introduction

Rivest [5] defines the notion of a decision list as a representation for Boolean functions. He shows that \(k \)-decision lists, a generalization of \(k \)-CNF and \(k \)-DNF formulas, are learnable for constant \(k \) in the PAC (or distribution-free) learning model [8,3]. Ehrenfeucht and Haussler [1] define the notion of the rank of a decision tree, and prove that decision trees of constant rank are also learnable in the PAC model, using a more complicated algorithm. In this note, we prove that any concept (Boolean function) that can be described as a rank-\(r \) decision tree can also be described as an \(r \)-decision list. Thus, the simpler algorithm of Rivest can be used for both cases. Littlestone’s modification of Rivest’s algorithm [4] (generalized by Helmbold, Sloan, and Warmuth [2]) learns decision lists in the more stringent on-line mistake-bound learning model. So, the result given here implies that constant-rank decision trees can be learned in the mistake-bound model as well. In addition, this extends the result of Ehrenfeucht and Haussler that polynomial-size decision trees over \(n \) variables can be learned in time \(O(n^{O(\log n)}) \) from the PAC to the mistake-bound model.

Simon [7] shows that the class of decision trees of rank at most \(r \) over \(n \) variables has VC-dimension \(\sum_{i=0}^{r} \binom{n}{i} \). If only a rough upper bound is needed, then a simpler \(O(n^r) \) bound follows from this note and the known observation that 1-decision lists are a special type of linear separator (and the known VC-dimension of linear separators [9]). Work on learning both constant-rank
decision trees and \(k \)-decision lists in the presence of noise has been done by Sakakibara [6].

1.1. Definitions

An example \(\bar{x} \) is a boolean vector \(\{0, 1\}^n \), and we write \(x_i \) to denote the \(i \)th bit of \(\bar{x} \). Let \(V_n \) be a set of \(n \) boolean variables \(v_1, \ldots, v_n \), and define a literal to be either a variable or a negation of a variable. We say example \(\bar{x} \) satisfies variable \(v_i \) if \(x_i = 1 \), and \(\bar{x} \) satisfies \(\overline{v_i} \) if \(x_i = 0 \). A term or monomial is a conjunction of literals; that is, an example satisfies a term if it satisfies all literals in the term.

A decision list is a list of items, each of which is of the form \(\text{term}_i \Rightarrow b_i \), where \(\text{term}_i \) is a monomial and \(b_i \in \{0, 1\} \). The last term in the list must be identically true. The function computed by a decision list \((\text{term}_1 \Rightarrow b_1, \text{term}_2 \Rightarrow b_2, \ldots, \text{term}_m \Rightarrow b_m)\) is as follows. If \(\text{term}_1 \) is satisfied by the example, then the value is \(b_1 \); otherwise, if \(\text{term}_2 \) is satisfied then the value is \(b_2 \), and so forth. A \(k \)-decision list is a decision list where each term contains at most \(k \) literals. The length of a decision list is the number of items.

A decision tree over \(V_n \) is a full binary tree (each internal node has two children), with each internal node labeled with some variable in \(V_n \) and each leaf labeled with "0" or "1". The same variable may appear in multiple internal nodes of tree. A decision tree \(T \) represents a boolean function \(f_T \) over \(\{0, 1\}^n \) defined as follows. If \(T \) is a single leaf with label \(b \in \{0, 1\} \), then \(f_T \) is the constant function \(b \). Otherwise, if \(v_i \) is the label in the root of \(T \), and \(T_0 \) and \(T_1 \) are the left and right subtrees respectively, then \(f_T(x) = f_{T_0}(x) \) if \(x_i = 0 \) and \(f_T(x) = f_{T_1}(x) \) if \(x_i = 1 \).

Ehrenfeucht and Haussler [1] define the rank of a decision tree as follows: If \(T \) is a single leaf, then \(\text{rank}(T) = 0 \). Otherwise, if \(T_0 \) and \(T_1 \) are the left and right subtrees, then

\[
\text{rank}(T) = \begin{cases}
\max(\text{rank}(T_0), \text{rank}(T_1)) & \text{if } \text{rank}(T_0) \neq \text{rank}(T_1), \\
\text{rank}(T_0) + 1 & \text{otherwise.}
\end{cases}
\]

2. The containment theory

Before proving the main theorem, we first note the following simple lemma.

Lemma 1. A rank-\(r \) decision tree has some leaf at distance at most \(r \) from the root.

Proof. Consider a rank-\(r \) decision tree \(T \). By definition of rank, either the left or right subtree of \(T \) must have rank at most \(r - 1 \). Let us call that subtree \(T' \). Similarly, one of the two subtrees of \(T' \) must have rank at most \(r - 2 \), and so forth. Since a rank-0 decision tree is just a single leaf, this means there must be some leaf with distance at most \(r \) from the root. \(\square \)

So, for example, in a rank-1 decision tree, one of the children of the root must be a leaf; in a rank-2 decision tree, one of the grandchildren of the root must be a leaf.

The basic idea for writing a rank-\(r \) decision tree as an \(r \)-decision list is just as follows. We find a leaf in the decision tree at distance at most \(r \) from the root, and place the literals along the path to the leaf as a monomial at the top of a new decision list. More formally, we prove by induction the following theorem.

Theorem 2. For any rank-\(r \) decision tree of \(m \) leaves there exists an equivalent \(r \)-decision list of length at most \(m \).

Proof. First, note that a rank-1 decision tree is immediately a 1-decision list, so that is easy. We now argue for general \(r \) by induction on the number of leaves of the decision tree; the base case is handled by the fact that a decision tree of two leaves must have rank 1.

Let \(T \) be the given rank-\(r \) decision tree. There must be some leaf \(l \) at distance at most \(r \) from the root, and let us denote the nodes on the path to \(l \) by \(N_1, N_2, \ldots, N_r \), labeled with variables \(v_{i_1}, \ldots, v_{i_r} \) respectively. Let \(y_1, y_2, \ldots, y_r \) denote
the sequence of literals that must hold true for an example to follow the path to \(l \). For example, if \(l \) is the right child of \(N_r \) then \(Y_r = v_i \), and if \(l \) is the left child then \(Y_r = \overline{v_i} \). Thus, if \(b \in \{0, 1\} \) is the label of \(l \), we know that
\[
y_1 \land y_2 \land \cdots \land y_{r-1} \land y_r \Rightarrow b
\]
in the function defined by \(T \). So, we can put implication (1) at the top of our new \(r \)-decision list, which we will call "\(L \)."

We know that node \(N_r \) has two children in \(T \). Leaf \(l \) is one of them, and let \(N_{r+1} \) be the other (\(N_{r+1} \) may also be a leaf).

We now use the following fact. The decision list \(L \) must be consistent with \(T \). However, if we did not exit at the first line of \(L \), it must be that if "\(y_1 \land \cdots \land y_{r-1} \)" holds, then \(y_r \) must not hold. Thus, (here is the key point) it suffices in creating the decision list after the first line of \(L \) to be consistent with the decision tree \(T' \) obtained by bypassing node \(N_r \) and directly linking \(N_{r-1} \) to \(N_{r+1} \). Now, the decision tree \(T' \) is a tree of rank at most \(r \) which only \(m - 1 \) leaves; we know the rank of \(T' \) is at most \(r \), because the rank of the subtree of \(T \) rooted at node \(N_{r-1} \) cannot be higher than the rank of the subtree rooted at \(N_r \). Thus, by induction, \(T' \) is equivalent to an \(r \)-decision list (or \(r' \)-decision list for \(r' < r \)) \(L' \) of length at most \(m - 1 \). So, we are done: we just output \(L \) as item (1) followed by \(L' \). \(\square \)

Acknowledgment

This work came out of discussions in Ron Rivest’s machine learning theory reading group at MIT. I would like to thank Ron and the members of the reading group for their help in simplifying parts of the argument given here.

References