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Abstract
The study of the preimage problem of an endofunction on circular compositions is mo-
tivated by the study of coloring circular-arc graphs. In this paper we establish a 1-1 cor-
respondence between preimages of a given circular composition S and proper S-sequences,
and also provide a necessary and sufficient condition for a sequence of subsets of the natural

numbers to be a proper S-sequence for some circular composition S.



¢I. Introduction

A graph G is an interval graph (also known as a circular-arc graph) if there exists a fam-
ily F of arcs of the unit circle and a one-to-one correspondence between vertices of G and

arcs of F such that two vertices are connected if and only if their corresponding arcs overlap.

A proper c-coloring of a graph G is a mapping from the vertices of G to the set {1,2,3,---, ¢}
such that no two adjacent vertices are mapped to the same number. The chromatic number
X(G) is the smallest value of ¢ for which there exists a proper c-coloring of G. It is known
that the chromatic number of an interval graph G is equal to the size of its maximum clique.

Given an angular position 6, let S(#) denote the set of arcs which pass through 6; |S(6)|
is known as the density of 6. Let A(G) and 6(G) denote the maximum density and the

minimum density of G.

Let #; be an angular position such that |S(6;)| is maximum. Since any two arcs in S(6;)
overlap each other, no two arcs in S(f;) can be assigned the same color. Hence x(G) > A(G).

Let 6, be an angular position such that |S(63)| is minimum. We assign the colors
1,2,3,--+,0(Q) to the arcs in S(fs) and assign other colors to other arcs. Let F = G\S(62).
F is an interval graph and x(F) = A(F). Therefore, there exists a A(G) + 0(G)-coloring of
G. Since x(G) > A(G), we have

A(G) +6(G) < 20(G) < 2x(G).

K. Tsai [9] has observed that an attempt to calculate the expected value of (A(G) +
d(G))/x(G) leads one to the study of the preimage of the endofunction f (defined below)
on circular compositions. Readers may also note that the study of circular compositions
is similar to the game of Bulgarian Solitaire which was discussed in a programming and

problem-solving seminar [4] at the Department of Computer Science at Stanford University.

A circular composition S = (s1,---, $y) is an arbitrary composition of a non-negative
integer n on m circularly labeled positions around a disk. For the sake of brevity, we hence-

forth refer to a circular composition simply as a state. The set of all states with m positions
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whose values add up to n is denoted T(n,m). A move f is performed on a state in the
following way: for each i, 1 < i < m, the value at position ¢ (a non-negative integer s;) is
distributed clockwise, one unit at a time, to itself and the following (s; — 1) positions. The
preimage of a state S is B(S) = {T" € T(n,m) : f(T) = S}. [11] contains the following re-
sult: (a)The necessary and sufficient conditions for cycle-states, root-states, and leaf-states.
(b) The sharp upper and lower bounds for the length of a path from a given non-trivial
state to its nearest LS in T(n,m). (c) Regardless of the initial state , one is sure to reach
a cyclic-state, which has only the values [n/m] and [(n + m — 1)/m] at all positions, in at
most m — 1 moves. But [11] did not answer Dr. K. Tsai’s original problem of finding the
number of preimages for a given circular composition S

In section II we present definitions and preliminary material relating to circular composi-
tions. In section III we demonstrate a bijection between preimages of a circular composition
S and proper S-sequences, thus obtaining a formula for finding the number of preimages for
a given circular composition S. In section IV, we provide a necessary and sufficient condition
for a sequence of subsets of the natural numbers to be a proper S-sequence for some circular

composition and give some examples.

¢II. Preliminaries

We require some definitions from [11].

Definition 1. A cycle-state is a state S such that there exists some k£ > 0 for which
7H(S) = 8.

Definition 2. A (n,m)-configuration is a matrix C' with n rows and m columns, with
entries either 0 or 1, having a total of n entries equal to 1. Let C(n,m) be the set of all

(n, m)-configurations.

According to our usage row 1 is at the bottom, and we will use the term “level " to refer
to row 4, and “position j” to refer to column j (positions are always added modulo m). We

will frequently refer to an entry of 1 in C as a coin. A state S = (s1, 2, -+, ) € T(n,m) is
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viewed as a configuration which has ones in levels 1, - - -, s; of position j and zeros everywhere

else. We thus have T(n,m) = {C € C(n,m) : no 1 in the matrix C has a 0 beneath it}.
Here is an equivalent definition of the move f.

Definition 3. Let f; : T(n,m) — C(n, m) (also referred to as the first step of a move)
be the function which moves each k-level coin in a given position to level & of the (k — 1)-st
subsequent position. (figure 1(a) — 1(b))

Let fo : C(n,m) — T(n,m) (also referred to as the second step of a move) be
the function which “compresses” each position by eliminating the vertical gaps (i.e., zeros)
between coins and letting the coins fall to the bottom of each column.(figure 1(b) — 1(c))

A move f : T(n,m) — T(n,m) consists of successively performing the first and second

steps; in other words, f = fy o fi.
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Figure 1. a move: f((e530241))=(3444443) where e = 11.

Definition 4. Let S € C(n,m). A k-level coin z in position j is called a slanted coin if
a coin exists at every (k — i) level in the ith previous position to j for 1 <i < k, i.e., there

are no gaps along the diagonal line L which passes through level & of position j, level £ — 1
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of position j — 1, ... , level 1 of position j — k£ + 1. Infinite lines which are parallel to L will

be referred to as right-diagonal lines.
The following lemma is evident.

Lemma 5. Given a configuration C € C(n,m), every coin is slanted if and only if the
following condition holds : for all j = 1,---,m and ¢ > 1, if there is a coin in level 7 of

position j, then there is a coin in level 7 — 1 of position j — 1.
An element T € B(S) is obtained from S by performing the backward move f~'.

Definition 6. A backward move consists of the following two steps:

1. In the first backward step, f, ' (not unique), coins in each position may or may not
be lifted some levels so that all coins are slanted coins.

2. In the second backward step, f; !, each k-level coin is moved to level k of the
(k — 1)-st previous position.

A backward move f!: T(n,m) — T(n,m) consists of successively performing the

first backward step and the second backward step; in other words, f~! = f; 1o fy'.

Since fi! is unique, there is a 1-1 correspondence between preimages T € B(S) and
configurations f;*(S). In section III we will count the elements of B(S) by counting con-
figurations C' € f, '(S); these are configurations with s; coins in position i, lifted in such a
way that every coin is a slanted coin. We will call such configurations slanted configurations

of state S.
SITI. Preimage of state S and proper S-sequence

Now for our main result. We establish a bijection between the set of slanted configura-

tions of a state S and a certain collection of finite sequences, thus obtaining a formula for
IB(S)I.
Definition 7. Given a particular arrangement of slanted coins in position j of a configura-

tion C, a slot in position j 4+ 1 of C'is a level at which a slanted coin could be placed.
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If there are s; slanted coins at levels hy, - - -, hs; in position j, then there are s; + 1 slots
in position j + 1 at levels 1,h; +1,---, h,; + 1. We will always refer to slots 1,2,---,s; + 1
going from the lowest slot (which is always at level 1) on up.

For a given state S = (s1,+ -+, Si), let A; be the set {1,2,---,s;_1+1}. Let H(S) be the
set of m-element sequences a = (ay,as,- -, ap) in which a; C A; and |a;| = s;_1 + 1 — s;.

si1+1 Si-1+1 )
There are < -1 ) = ( -1 choices for each a;, so there are

Sj—1 +1-— Sj Sj
ﬁ (Sj_l + 1)
j=1 Sj

elements in #H(S). Since there are s;_; + 1 slots in position j and s; coins in position j, we
can view a letter a; of a given sequence a as a set of slots in position j which are to be left
blank.

Suppose we now add the condition that at each position j, the top slot s;_; +1 is not to

be left blank (i.e., s;_1 +1 ¢ a; for each j). In this case there are (j]’:ll) choices for each a;,

o s
so the number of elements of H(S) which satisfy this requirement is [ ( / 11>.
j=1 \% —

Let W(S) = {a € H(S): there exists some j such that s;_1 + 1 € a;}. It follows that
wis) =1 <Sj‘1_+1> 11 ( o )
j=1 §j s s — 1
We henceforth refer to sequences a € W(S) as proper S-sequences.
There is a simple algorithm for constructing a slanted configuration of state S from
a proper S-sequence a = (a1, --,a,) of W(S). In the following algorithm, a space is
unmarked if it contains neither a coin nor an X. At the beginning of the algorithm all

spaces are unmarked.

Step 0. Leti=0.

Step 1. Let ¢ =¢+ 1. If there are any unmarked spaces in level 7, go to step 2. If there
are no unmarked spaces in level 7, then stop.

Step 2. Consider all unmarked spaces in level 7, one at a time, going from left to right.

If an unmarked space in position j of level i is the g-th slot in position j and ¢ ¢ a;, then
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place a coin at position j in level 7. If an unmarked space is the ¢-th slot in position j and
g € aj, then mark an X at position j in level 7, and mark with an X every unmarked space
which the right-diagonal line from position j of row i passes through. (Each of the infinitely

many unmarked spaces on the right-diagonal line is at a level greater than i.) Go to step 1.

Example 1. S =(3,4,4,4,4,4,3), a = ({2},0, {4}, {1}, {5}, {3}, {3,4}).

We have A; = Ay = {1,2,3,4}, A3 = Ay = A; = Ag = A7 = {1,2,3,4,5}. For each i we
have a; C A; and |a;| = s; 1 +1—s;, and 5 = maxas = max As, so a is a proper S-sequence.
The reader may verify that the configuration of coins which results from performing the

algorithm on «a is shown in Figure 1(b).

We can immediately state some simple facts about the algorithm. Each element of a
given a; corresponds to a right-diagonal line of X’s which is marked down. The number of
elements in all of the a;, for j = 1,2,---,m, is 37" ,(s; + 1 — s;.1) = m. The algorithm
will stop only when the m-th right-diagonal line of X’s is marked down, since at that point
there will be no unmarked spaces left. In level 1 every space is a slot, and if the algorithm
has been performed on levels 1,---,4, then any space in level 7 + 1 that is not a slot must
already be marked with an X. Consequently, after performing step 1, the unmarked spaces
in level 7 are precisely the spaces in that level which are slots in their respective positions.

Let g be the function which acts on an element ¢ € W(S) by performing the algorithm

described above.

Lemma 8. The function g is well-defined from W(S) to f, *(S).
Proof. f;'(S) is the set of all slanted configurations of state S, i.e. configurations with 5
coins in position j and with every coin slanted. Since coins can only be placed into slots,
all coins in g(a) are slanted, so we need only prove that g(a) has precisely s; coins in every
position j.

Case 1:  g(a) has some position j which contains more than s; coins. Let k be the
position which is the first one in the course of the algorithm to receive sy 4+ 1 coins. We

“interrupt” the algorithm and consider the configuration C' which exists immediately after



the (si + 1)-st coin is placed into position k. Let ¢; = the number of coins which are in
position j of configuration C, so ¢, = s+ 1 and for j # k, ¢; < s;. By step 2 of the
algorithm and the definition of the sequence a, position £ of C must have sx_; + 1 — s;, slots
that have been marked with an X in addition to its sy + 1 coins, so the uppermost coin in
position k£ of C' must be occuping slot sx_1 + 2. But if slot sx_; + 2 exists in position & of
C, then ¢,_1 > s,_1 + 1 coins, which contradicts our choice of k.

Case 2:  g(a) has some position j which contains fewer than s; coins. Let t;= the
number of coins which are in position 7 of configuration g(a), so t; < s;. If ;-1 = s;_1,
then there are s;_; + 1 slots in position j, and since the algorithm permits us to leave at
most s;_; + 1 — s; slots blank in position j, it follows that ¢; = s;. But this contradicts
our assumption, so we have ¢;_; < s;_ 1. Iteratively, we have t; < s; for all ©. Let k£ be a
position at which the top slot is to be left blank, i.e. sx_; + 1 € a) (such a position must
exist by the definition of a). The algorithm cannot stop before the right-diagonal line of
X’s corresponding to sp_; + 1 € ax has been marked down, but that line must originate at
slot sx_1 + 1 of position k, and if slot s, ; + 1 of position £ is to exist then we must have
tx—1 > Skp_1. This contradiction implies that the algorithm can never stop; but if it never
stops then clearly for every j we have t; > s;. O
Theorem 9. |B(S)| = ﬁ <5j1 + 1) B ﬁ ( 51 )

j=1 Sj jmi\si—1
Proof. We need only show that ¢ is a bijection. Injectivity is simple; if a = (a1, -, @)
and b = (by,---,by) are distinct elements of W(S), then for some k we have a; # by, so the
coins in position k of the configuration g(a) occupy different slots than the coins in position
k of g(b), and g(a) and g(b) must be distinct configurations.

Choose a configuration C' € f3'(S). Foreach j, 1 < j < m, let a; = {the slots in position
j-+1 which are blank}. To prove surjectivity, we will show that the sequence a = (a1, - -, @)
is in W(S) and that g(a) = C. Clearly a € H(S).

Suppose that there is no position j such that the top slot is left blank, i.e., we have

s;+1 ¢ a; for all j. Let x be a coin of maximal height in C, and let us say the level of x



is k and it is at position j. Level k£ + 1 of position j + 1 must be the top slot in position
7+ 1, but since the top slot is never left blank, there must be a coin at level £+ 1 of position
j + 1, which is impossible. It follows that there must exist some j such that s;_; +1 € aj,
so a € W(S).

We prove g(a) = C by induction on levels. In level 1, it has coins in precisely those
positions j such that 1 ¢ a;; this condition characterizes the placement of coins in level 1 in
C' as well. Assume that g(a) and C are identical in levels 1,..., h. In level h + 1 of C, there
are coins in precisely those positions j such that level h of position j is a slot ¢ which is not
in a;. This condition characterizes the coins in level A + 1 of g(a) as well, so C and g(a) are

identical up to level h+ 1. By induction, we have g(a) = C' and the map g is surjective. O

We single out some special cases as corollaries:

Corollary 10. If S is such that for some j we have s; = 0, then B(S) = [] (8’ ¥ >
j=1 Sj

Corollary 11. If a state S = (k,k,---,k, k), then B(S) = (k+ 1)™ — k™.

Corollary 12. If a state S contains a coin which is not slanted, then B(S) = 0.
§IV. Characterization of proper S-sequences

Given a state S, we have shown how to obtain the set of proper S-sequences W(S) which
corresponds to B(.S). It is natural to ask the following questions: Given some finite sequence
a of finite sets of natural numbers, under what conditions does there exist a state S such
that a is a proper S-sequence?

In this section we will provide necessary and sufficient conditions on a. Furthermore, we
show that given a, we can determine S without performing g(a).

It is easy to derive a necessary condition on a: if a = (ay, - - -, a,,) is a proper S-sequence,

then |a;| = s;.1 +1 — s; for each 4, so

m

i\az\ :Z(Si,1+1—$i) =1m. (1)

i=1

We will show that this condition is sufficient as well.

Let a = (a1, --,an,) be a sequence of sets of natural numbers which satisfies condition
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(1). If S is a state such that a is a proper S-sequence, then sy = s14+1—|as|, s3 = so+1—az =
s1+ 2 — |ag| — |as|, and for each i =1,---,m, we have s; = s + ¢;, with
i
ci:i—l—Z\aj| (2)
j=2
Note that ¢; = 0. If a; # 0, then let @; denote maxa; = max{v|v € a;}. If a is a proper
S-sequence, then there must exist an ¢ such that s; + 1 =a; 11, 1.e. s1+¢ +1=a;11.

Let s} be the number which satisfies the following condition: there exists some £ such

that s} + ¢y + 1 = @41, and if ¢ is such that there exists a j for which ¢ +¢; +1 = @41,

then ¢ < sy. In other words, s\ = maz{z;|z; +¢;+1=a;41,i=1,2,---,m}.

We also let s} = s| +¢; for i = 2,3,---,m. Then we have the following characterization
theorem.

Theorem 13. Let a = (a1,---,a,) be a sequence of sets of natural numbers. If a satisfies
condition (1) above, then a is a proper S-sequence for S = (s, --,s!.) with s, as defined
above.

Proof. We must show that for all j, a; is a (s;_, +1—s’)-element subset of {1,---,s;_,+1}

and that for some k we have s; € agy1. By the definition of s; and equation (2), we have

Jj—1 J
Sig—si+l=c—c+1=7-2= la| = (G —1=_las) +1=a;|.
=2 =2
The definition of s} implies that s, _; +1 = s| + ¢;_1 +1 > @; for every 4, so we have
a; C {1,---,s;_, + 1} for every i. Let k be such that s} + c¢x + 1 = @41. Then since

s, = 8| + ¢k, we have sj, + 1 =apy1. O
We close this paper by giving some examples.

Example 2. Let a = ({h1}, {h2}, -, {hwn}) for some natural numbers hy,---, hy,. Con-
dition (1) is clearly satisfied since |a;| = 1. Fori=1,---, m we have¢c; =i—1—(i—1) =0,

so the equations expressing s; in terms of s; are all simply s; = s; for ¢ = 1,---,m. For



k=1,---,m we have Gxy1 = hgy1, so let h = max{hy}; we have s| = h — 1 and the desired
state S'is (h —1,h—1,---,h — 1). Note that in the case hy = hy = --- = 1 we obtain the

trivial circular composition S = (0,---,0).

Example 3. Let a be the m-element sequence ({hy, ha, -, hn},0, -, 0) with hy < --- <
hm. By formula (2) we have ¢; =i —1s0 s, =s1+i—1fori=1,---,m. Clearly k = m is
the only value at which @y, is defined, so we have @; = h,, and s; = h,,, — 1. This gives us

S=(hm =1, s B + 1, h +m — 2).

Example 4. Let a = ({2},0,{4},{1},{5},{3},{3,4}). We have ¢; = ¢; =0, ¢y = ¢c3 =
¢y = ¢5 = cg = 1. The values for @; are 2, undefined, 4, 1, 5, 3, 4 for : = 1, - - -, 7 respectively,
so s§ = 3 is the maximum value such that for some k£ we have s| + ¢x +1 = Gy41. Conse-

quently we obtain S = (3,4,4,4,4,4,3), which agrees with Example 1.
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