
Highly Efficient Secrecy-Preserving Proofs
of Correctness of Computations and Applications

Michael O. Rabin∗

Harvard University SEAS
Cambridge, MA 02138

U.S.A.
rabin@seas.harvard.edu

Rocco A. Servedio†

Columbia University
New York, NY 10025

U.S.A.
rocco@cs.columbia.edu

Christopher Thorpe‡

Harvard University SEAS
Cambridge, MA 02138

U.S.A.
cat@seas.harvard.edu

Abstract

We present a highly efficient method for proving correct-
ness of computations while preserving secrecy of the input
values. This is done in an Evaluator-Prover model which
can also be realized by a secure processor. We describe an
application to secure auctions.

1 Background and Motivation

Zero Knowledge Proofs come in a number of flavors.
One is direct ZKPs for membership in a NP language, for
example proofs that a graph is 3-colorable. These proofs
are usually phrased in terms of the particular problem they
address, for example talking about graphs and their repre-
sentations. Another approach deals with circuits and the
bit-inputs resulting in certain outputs. This approach is of
course very comprehensive since other problem representa-
tions are directly translatable into problems about circuits.

There is an extensive literature dealing with ZKPs via
encryptions, especially homomorphic encryptions. Verifi-
cation of processes such as electronic elections or auctions
is done via encrypting the relevant numbers such as vote
counts or bids, and performing operations such as additions
or comparisons on these numbers in their encrypted form.
In [9] for example (see the literature quoted there), a proto-
col is proposed for conducting secure and secrecy preserv-
ing auctions. Bidders submit bids to an Auctioneer in an
encrypted and committed manner. The Auctioneer posts the
encrypted bids on a bulletin board. He then opens the bids
and computes, according to the posted auction rules, who
the winner(s) is (are) and their payments. The Auctioneer

∗Supported in part by NSF award CCR-0205423.
†Supported in part by NSF award CCF-0347282, by NSF award CCF-

0523664, and by a Sloan Foundation Fellowship.
‡Supported in part by NSF award CCR-0205423.

then posts a publicly verifiable Zero Knowledge proof for
the correctness of the results. This can be done in a manner
revealing the identities of the winners and their payments
or, if so desired, concealing that information. But in any
case, the bids of all other bidders except for those of the
winners remain secret. The only trust assumption made is
that the Auctioneer, who knows the bid values, will not re-
veal that information. The protocol of [9] employs Paillier’s
homomorphic encryption and proofs of order relations be-
tween bids, and correctness of other operations on bids are
presented by and verified on encrypted values.

It was shown in [9] that the protocols given there are
practical and that currently available computing power suf-
fices to implement auctions with thousands of bidders
within reasonably practical time. Still, that solution em-
ploys special encryption functions and the basic Paillier en-
cryption is a relatively heavy computation.

In the present paper we present a model of an Evaluator-
Prover (EP) who receives input valuesx1, . . . , xn which
are elements of a finite fieldFp wherep is, say, a 128-bit
prime. The Evaluator-Prover computes a function value
y = f(x1, . . . , xn) by a publicly announced and agreed
upon straight line computation (program) SLC. TheEP
then publishes the valuey and supplies a proof of the cor-
rectness of the computation. The proof of correctness can
be verified by anybody and this verification method ensures
that the probability that an incorrect published result will
not be detected is smaller than2−k, wherek is a security
parameter. Furthermore, the proof does not reveal anything
about the input values or any intermediate results of the
computation, except for what is implied by the published
outcome of the computation. The generality and efficiency
of this model allows numerous applications.

The main idea of the secrecy preserving verification is to
represent every numberx ∈ Fp involved in the SLC by a
randomly constructed representing pairX = (u1, u2) such
that x = u1 + u2. For the verification of correctness the

EP prepares translations of the SLC where for example
x, y, x+y (an addition step) is translated intoX = (u1, u2),
Y = (v1, v2), W = (w1, w2) = X + Y. The EP posts
commitments to all numbers in the translations. The Veri-
fier will randomly choose, say, the first coordinate, ask the
EP to reveal (de-commit)u1, v1 andw1, and check that
u1 + v1 = w1. A careful arrangement of the translation
process ensures that in the verification only truly indepen-
dently random numbersx, y, u, v, · · · ∈ Fp and their sums
or productsu + v or u × v are revealed and checked.

The advantages of this method are manifold. Work-
ing with single or double precision integers and their usual
arithmetic operations rather than with bits at the circuit level
is considerably more efficient. Also, the translation of high-
level operations into circuits raises the question of the cor-
rectness of the translation itself. Finally, expressing the
computation to be verified directly in terms of the numbers
and operations involved is more understandable and con-
vincing to general users.

When it comes to verification via encrypted values, in
previous approaches such as [9] there is the need to employ
special encryptions such as Paillier’s encryption, requiring
special intractability assumptions. Also, the operationson
encrypted values involve computations with numbers with
thousands of bits and are quite slow. Experimental compar-
ison between conducting a secure verifiable auction using
the method proposed here, and doing the same using [9],
shows a hundredfold efficiency improvement.

The applications of ZKP methodology to the conduct of
secure secrecy preserving auctions in particular pose strin-
gent requirements of efficiency on the one hand and of un-
derstandability and acceptability by the financial and busi-
ness communities on the other hand. We feel that in this
context the present method has clear advantages over other
solutions involving homomorphic encryptions, multi-party
computations, or reduction to obfuscated circuit computa-
tions, important as these approaches are on the theoretical
level.

2 Model and Definitions

Our computations are performed with elements of a fi-
nite field Fp, wherep is a moderately large (say 128 bits)
prime. Elements ofFp will be denoted by lower case Ro-
man lettersx, y, z, u, v, w, etc. and will be referred to as
numbers. Computations with numbers are, of course, per-
formed modp.

Let x1, . . . , xn be elements ofFp, sometimes referred to
asinputs. A straight line computation (SLC) on these inputs
is a sequence of numbers

x1, . . . , xn, xn+1, . . . , xL (1)

where for everyn < m ≤ L, there are two indicesi, j < m
such thatxm = xi ◦ xj where◦ is one of+, −, or×.

The numberxL is called the output or result of the
straight line computation. ClearlyxL is the value of a poly-
nomial functionf(x1, . . . , xn) of the input values.

We can also generalize our notion of a SLC to involve ad-
dition and multiplication by publicly known constants from
Fp, and to include the inverse operationxm = xi

−1, al-
lowed whenxi 6= 0. Our results readily extend to this gen-
eral case as well, though we do not treat it here for the sake
of simplicity.

We assumen partiesP1, . . . , Pn, respectively holding
the input valuesx1, . . . , xn. The parties wish to perform
the straight line computation (1) on the input values and ob-
tain the resultxL = f(x1, . . . , xn). They want to accom-
plish this by a secrecy preserving method, revealing nothing
about the input values or the intermediate values in the com-
putation, beyond what is implied by the value of the result
xL.1 At the same times the parties, and perhaps others, want
to be certain that the revealed valuexL is the correct result
of the straight line computation (1). Thus the protocol must
provide a secrecy preserving proof of correctness.

These requirements give rise to the following definitions.

Definition 1 An Evaluator-Prover (EP) for the SLC (1) is
an entity which, upon receiving input valuesx1, . . . , xn,
outputs the valuexL = f(x1, . . . , xn) and engages in
a proof of correctness to certify correctness of the result
value.

Definition 2 An Evaluator-Prover issecrecy preservingif
the proof of correctness does not reveal anything about the
input values or the intermediate values in the SLC (1) ex-
cept for the information implied by the output valuexL =
f(x1, . . . , xn). An EP istrustedif it outputs or reveals only
xL and the proof of correctness.

In the real world, an example of a trusted Evaluator-
Prover would be an auctioneerAU . The input values to
the computation are the values of bids submitted by parties
participating in the auction.2

There are protocols that ensure that the auctioneer cannot
reveal any bid before the closing of the auction or change or
suppress bids after the closing of the auction. The extent
of trust we place inAU is that he will not reveal any infor-
mation about the bids except for the outcome of the auction
and what is implied by announcement of the outcome. For
example, in a Vickrey auction where the item goes to the
highest bidder at the price bid by the second highest bid-
der, the announcement will reveal the identity of the winner.

1For example, ifxL = x7 − x11 and the value ofxL is revealed to be
0, then it follows thatx7 = x11.

2For the application to auctions we also require comparisonssuch as
“xi ≤ xj .” We show in Section 9 how our secrecy preserving proofs of
correctness can be extended to deal with comparisons.

Whether the winner’s payment will be revealed depends on
the announced rules of the auction. Our protocols can also
enforce secrecy of that payment, if so desired.

The rationale for this partial trust model is that illegally
and selectively leaking out bid valuesbeforethe closing of
the auction, or announcing a false auction result, can lead to
collusions greatly benefiting some bidders and the auction-
eer. Our protocols completely prevent such malfeasance.
On the other hand, leaking out bid valuesafter the end of
an auction helps bidders who received such information in
strategizing for future similar auctions. The value of this
information advantage is, however, relatively limited. Con-
sequently the auctioneer, who has his business reputation to
guard, has a substantial incentive not to leak out information
after the conclusion of auctions.

Another model is to implement the trusted Evaluator-
Prover by a secure co-processor. The secure processor is
a closed device for which all outputs are publicly observ-
able. The processor is trusted not to output any information
beyond that specified by the protocols. The published proof
of correctness assures the participants that the output result
is really the correct result of the SLC. The implementation
of this model, dealing with some of the subtleties it entails,
will be discussed in Section 10.

3 Overview of the method: Representations,
Translations and Aspects

Representations. In order to enable secrecy preserv-
ing proofs of correctness, the partiesP1, . . . , Pn and the
Evaluator-Prover represent the inputs and the intermediate
values in the SLC by pairs of numbers fromFp. In the fol-
lowing we shall use capital lettersX, Y, Z, U, V, etc. to de-
note elements ofFp × Fp, i.e. pairs of numbers fromFp.

Definition 3 We say thatU = (u1, u2) representsu ∈ Fp

if u = u1 + u2. We shall denoteu1 + u2 by val(U). A
participant in the protocol will create a random representa-
tion U of a numberu by randomly choosingu1 fromFp and
settingU to (u1, u − u1). Clearlyval(U) = u.

In particular, a random representationZ of zero is ob-
tained by randomly choosingz from Fp and settingZ to
(z,−z). We note that at the bit level, Kilian in [6] (inspired
by unpublished work of Bennett and Rudich) used a similar
representation scheme with “pair blobs” to represent binary
values (see also [1]).

The high-level idea of our protocols is that a verification
of an operation in the SLC will be implemented by ran-
domly selecting and revealing either the first or the second
coordinates of the pairs representing the numbers in ques-
tion. The idea is that revealing just one coordinate of a pair
reveals nothing about the value of the pair. We give details
and proofs in the following sections.

Translations. The secrecy preserving proof of correctness
of the published result of the SLC is achieved by a process
of “translation” of x1, . . . , xL into a sequenceTR(SLC)
of at mostO(L) pairs.The firstn pairs in the translation,
denotedX1, . . . , Xn, represent the input valuesx1, . . . , xn.
The pairsXn+1, . . . , XL−1 represent intermediate values
used in the SLC, and play an important role in verifying
the correctness of the SLC. The final pair in the translation
represents the outputxL of the computation, i.e. the value
of this final pair isxL = f(x1, . . . , xn).

The computationsxm = xi ◦ xj , where◦ is one of
+,−,×, will be translated in a natural way into operations
on pairsU = (u1, u2), V = (v1, v2), W = (w1, w2) rep-
resentingxm, xi, xj . For examplexm = xi + xj is trans-
lated intoW = U + V, i.e. ordinary vector addition. Sub-
traction is entirely similar to addition, but the translation of
xm = xi ×xj is slightly more complicated and is described
in Section 5.

Aspects.Ultimately, to achieve a probability less than2−k

of accepting a false result of the SLC, we shall require
K = O(k) randomly created translations of the SLC. (We
shall see below thatK = γk is sufficient where the con-

stantγ
def
= 90.) As described in Section 7, in the verification

procedure the Verifier randomly samples some of theseK
translations and verifies various “aspects” of theEP ’s com-
putation in the selected translations. As described in Sec-
tion 6, these different “aspects” capture different elements
that are required for the overall computation to be correct:
one aspect deals with consistent representation of then in-
put values, one deals with correctness of the random repre-
sentations of zero mentioned above, one deals with correct-
ness of addition steps, and so on.

We now turn to the detailed description of the creation of
translations and of the proof of correctness.

4 Inputting and verifying the values
x1, . . . , xn

We require a commitment functionCOM(·) and digi-
tal signatures for the partiesP1, . . . , Pn. (We give details
about the properties we assume for our commitments in
Section 8.)

Each party Pm creates K random representations
X

(1)
m = (a1, b1), . . . , X

(K)
m = (aK , bK) of his input

valuexm. He privately sendsxm, SIGNm(COM(xm)),
and all K quadruples aj, bj, SIGNm(COM(aj)),
SIGNm(COM(bj)) to the Evaluator-ProverEP.

The EP verifies thatxm = val(X
(j)
m) = aj + bj for

1 ≤ j ≤ K, verifies all the4K + 1 commitments, and
verifies all digital signatures. If any verification fails, then
according to the protocol, the EP rejectsPm’s input value.

After all inputs were accepted by theEP, he posts,
for every party Pm, all the 2K signed commitments
SIGNm(COM(aj)), SIGNm(COM(bj)), 1 ≤ j ≤ K,
to the representations of the valuexm.

Every Verifier can check and verify all the digital sig-
natures and thereby verify that the respective commitments
were made by the partiesP1, . . . , Pn. Henceforth we shall
assume that the signature verifications were successful and
that all commitments to pairs representing values are as-
sumed to have originated with the parties.

Next, we present a method of secrecy preserving proofs
for the claim by theEP that for everyPm all committed-to
pairsX

(i)
m represent the same value. As we shall see, the

method will establish a useful approximation to the validity
of the claim.

Consider two pairsU = (u1, u2) and V = (v1, v2),
where commitmentsCOM(u1), COM(u2), COM(v1),
COM(v2) are posted. We haveval(U) = val(V) if and
only if (u1 − v1)+ (u2 − v2) = 0. To prove equality of val-
ues ofU andV, theEP postsd1 andd2, which are claimed
to be respectively the differences(u1 − v1) and(u2 − v2).
The Verifier randomly chooses an indexc ∈ {1, 2} and re-
quests thatEP reveal the values committed to by the posted
COM(uc) andCOM(vc). If d1 + d2 6= 0 or uc − vc 6= dc,
then the Verifier rejects the claim thatval(U) = val(V). It
is clear that if actuallyval(U) 6= val(V), then the probabil-
ity of the Verifier accepting the claim of equality of values
is at most1/2.

Consider now two arrays of pairsT1 = U1, . . . , Un and
T2 = V1, . . . , Vn where all commitments to components of
all pairs are posted, and the claim is being made that

val(Um) = val(Vm) for 1 ≤ m ≤ n. (2)

The Verifier uses the above verification procedure simul-
taneously for all couplesUm, Vm of pairs, employing the
same randomly chosenc for all couples. If the claim is not
true, then the probability of acceptance by the Verifier is at
most1/2.

We shall say that arraysT1 andT2 arevalue-consistent
if (2) holds true.

Let T (i) = X
(i)
1 , . . . , X

(i)
n , 1 ≤ i ≤ K, be theK ar-

rays of pairs of elements fromFp, whereX
(i)
m is the i-th

pair submitted toEP by Pm. Denote byCOM(T (i)) all
the2n commitments to the components of the pairs in the
array T (i). According to the procedure of submitting in-
put values, all those commitments were posted by theEP .
TheEP claims that these are commitments toK pair-wise
value-consistent arrays. Denoting byT (i)[m] them-th pair
in the arrayT (i), this means that for everym, all values
val(T (i)[m]) are equal.

Fix α
def
= 5.5. To validate theEP ’s claim, the Verifier

chooses a sequence of2αk different superscripts3 (i1, j1),
. . . , (iαk, jαk) uniformly at random from{1, . . . , K}. For
each value1 ≤ s ≤ αk, the Verifier obtains from theEP
a proof, as detailed above, that the arraysT (is) andT (js)

are value-consistent. If all proofs succeed then the Verifier
accepts.

Theorem 4 If theEP ’s claim that all pairs of arrays (given
by their posted commitments) are value-consistent is true,
thenEP can obviously pass the verification.

Fix β
def
= 2/3. To see that this is an effective verifi-

cation strategy, let us suppose that for every superscript
i ∈ {1, . . . , K}, fewer thanβK = βγk = 60k of the arrays
are value-consistent with the arrayT (i). We may view the
choices of the pairs of superscripts as being done sequen-
tially, i.e. in the(s + 1)-st round the pair(is+1, js+1) is
chosen from the remainingK − 2s superscripts.

Now for 0 ≤ s < αk, in the(s + 1)-st round, regardless
of the outcomes of previous rounds and of the value cho-
sen foris+1, there are at mostβγk = 60k superscripts that
are value-consistent withis+1 out of the remaining pool of
γk − 2s ≥ γk − 2αk = 79k possibilities forjs+1. So the
(s + 1)-st pair chosen is value-consistent with probability
at most βγk

γk−2αk
= 60

79 , and thus isnot value-consistent with

probability at leastγk−2αk−βγk
γk−2αk

= γ−2α−βγ
γ−2α

= 19
79 . If the

(s+1)-st pair chosen is not value-consistent, then the verifi-
cation survives the(s+1)-st round with probability at most
1/2. So in each of theαk rounds, regardless of what has
happened before, the probability that the verification sur-
vives that round is at most1 − γ−2α−βγ

2γ−4α
= (1 − 19

158).
Consequently, the overall probability that the Verifier ac-
cepts is at most(1 − γ−2α−βγ

2γ−4α
)αk = (1 − 19

158)5.5k. Since

0.4942 ≈ (1 − 19
158)5.5 < 1/2, we have proved:

Theorem 5 Suppose that for the sequence of arrays
T (1), . . . , T (K), where each array comprisesn pairs of
numbers fromFp, there is no subsetS with |S| ≥ βK such
that every two arrays inS are value-consistent. Then the
probability that the Verifier will accept the proof of value-
consistency of all couples of arrays in the sequence is at
most1/2k.

5 The Translation Process

Once the input values were submitted in pair represen-
tations and accepted by theEP as above, theEP prepares
K translations of the SLC (1) as follows. To avoid cumber-
some superscript/subscript notation, below we consider one
arrayT = X1, . . . , Xn of representations of then submit-
ted input values.

3That is, αk pairs of superscripts(i, j) used to identify the arrays
T (i), T (j) to be compared.

In the computation (1), an input or intermediate resultxi

will in general be involved in several subsequent operations
xi◦xj = xm. To enable our secrecy preserving proof of cor-
rectness, we prepare in the translation, onceXi (a represen-
tation ofxi) was inputted or computed, as many new ran-
dom representations ofval(Xi) as there are involvements of
xi in subsequent computations in the SLC (1).

Definition 6 LetX be a pair. Anew random representation
X ′ of x = val(X) is obtained by randomly choosingz from
Fp and settingX ′ to X + (z,−z), i.e. X ′ = X + Z, where
Z is a random representation of0.

The EP starts by extending the arrayX1, . . . , Xn by
Z1, . . . , Zs each of which is an independent random repre-
sentation of0, wheres = O(L) is the total number of new
representations that will be created in the translation pro-
cess. Next, if sayx1 occurs ins1 subsequent computations
in (1) (where we count a computationx1 ◦x1 as having two
occurrences ofx1), then theEP extends the translation ar-
ray by Y1, . . . , Ys1

. HereYj = X1 + Zj , 1 ≤ j ≤ s1.
The other inputsX2, . . . , Xn give rise to additional new
representationsYs1+1, . . . , Yt in a similar way. Each new
representation employs the next unusedZj.

Consider now the first operationxn+1 = xi ◦ xj of (1),
where on the right hand side we have input values. We first
consider the case that the operation◦ is the+ operation.
To translate this operation,EP chooses from the sequence
Y1, . . . , Yt the first new representations ofxi andxj . Call
these, to avoid double indices,Y ′ = (u1, v1) andY ′′ =
(u2, v2). The translation ofxn+1 = xi + xj is

Xn+1 = Y ′ + Y ′′ = (u1 + u2, v1 + v2). (3)

Next EP creates a first new representationNXn+1 of
val(Xn+1), which of course equalsxi + xj , by employing
Zt+1, the next unused representation of0 :

NXn+1 = Xn+1 + Zt+1 (4)

Now, if xn+1 is usedsn+1 times in the SLC (1), theEP
createssn+1 new random representations ofxn+1 by:

Yt+1 = NXn+1+Zt+2, . . . , Yt+sn+1
= NXn+1+Zt+1+sn+1

(5)
Note that in creating the new representations (5) we use

the first new representationNXn+1, rather than the repre-
sentationXn+1 of xn+1. The reason for that will become
clear in the proof for the secrecy preserving nature of the
proof of correctness.

In the other case, wherexn+1 = xi × xj , the translation
is more complicated. Let againY ′ = (u1, v1) andY ′′ =
(u2, v2) be the new representations ofxi andxj , as above.
We obtain the representationXn+1 of xn+1 = xi × xj via

four intermediate steps:

X
′

n+1 = (u1v1, 0) + Zt+1 (6a)

X
′′

n+1 = (u1v2, 0) + Zt+2 (6b)

X
′′′

n+1 = (u2v1, 0) + Zt+3 (6c)

X
′′′′

n+1 = (u2v2, 0) + Zt+4 (6d)

Xn+1 = X
′

n+1 + X
′′

n+1 + X
′′′

n+1 + X
′′′′

n+1. (6e)

It is clear from the distributive law thatval(Xn+1) =
val(U ′) × val(U ′′) = xi × xj = xn+1.

The first new random representationNXn+1 and the
subsequent new random representations ofxn+1 are ob-
tained as in (4) and (5), using new successive random rep-
resentationsZq of 0 from the given list.

The translation process of the SLC (1) now proceeds
inductively, operation by operation, similarly to the trans-
lation of xn+1 = xi ◦ xj , using new representations of
operands and of zero at every stage.

Thus the outcome of the translation process for the case
xn+1 = xi + xj will be:

TR = X1, . . . , Xn, Z1,, Zs, Y1, . . . , Yt, Xn+1,

NXn+1, Yt+1, . . . , Yt+sn+1
, . . . , XL. (7a)

In (7a), all symbols retain their meaning from the above
discussion. That is,X1, . . . , Xn are representations of the
input values;Z1, . . . , Zs are random representations of0;
Y1, . . . , Yt are new random representations of the input val-
ues;Xn+1 is a representation ofxn+1, obtained as in (3);
NXn+1, is a next random representation ofxn+1, obtained
as in (4);Yt+1, . . . , Yt+sn+1

are further random representa-
tions ofxn+1, obtained as in (5), andXL is a representation
of the outputxL.

In the casexn+1 = xi × xj , the translation will look
like:

TR = X1, . . . , Xn, Z1, . . . , Zs, Y1, . . . , Yt,

X
′

n+1, . . . , X
′′′′

n+1, Xn+1, NXn+1,

Yt+1, . . . , Yt+sn+1
, . . . , XL (7b)

whereX
′

n+1, . . . , X
′′′′

n+1, Xn+1 are obtained as in (6a)–(6e).
Note that our notation is such that in a translationTR,

the pairsX1, . . . , Xn, Xn+1, . . . , XL correspond to the val-
uesx1, . . . , xn, xn+1, . . . , xL in the SLC (1). We next show
that the pairsXj actually represent the corresponding val-
uesxj .

Theorem 7 If val(Xi) = xi for 1 ≤ i ≤ n, thenval(Xj) =
xj for 1 ≤ j ≤ L.

Proof: Considerxn+1 = xi ◦ xj . The construction of
Xn+1 in the translation by (3) in the case of◦ = +,

and by (6a)–(6e) in the case of◦ = ×, together with the
fact thatval(Zt) = 0 for all 1 ≤ t ≤ s, implies that
val(Xn+1) = xn+1. The proof now proceeds by induction
onj.

6 Verifying Aspects of Translations

We recall that each of the partiesP1, . . . , Pn has cre-
ated and submitted toEP K representations of their input
values. TheEP verifies the digital signatures, the commit-
ments, and the fact that each partyPm has submittedK
representations of the same valuexm.

Next EP createsK translationsTR(j), 1 ≤ j ≤ K, of
the SLC (1):

TR(j) = X
(j)
1 , . . . , X(j)

n , Z
(j)
1 , . . . , Z(j)

s ,

Y
(j)
1 , . . . , Y

(j)
t , . . . , X

(j)
n+1, NX

(j)
n+1,

Y
(j)
t+1, . . . , Y

(j)
t+sn+1

, . . . , X
(j)
L . (8)

The arrayX(j)
1 , . . . , X

(j)
n , consisting of thej-th input pairs

submitted toEP by P1, . . . , Pn, is extended byEP to
TR(j) in the manner detailed in Section 5.

TheEP now posts all the signed commitments to (coor-
dinates of) the input pairs, and commitments to (coordinates
of) all the other pairs in all translations. TheEP claims that
the posted commitments are toK correct translations of the
SLC on the same input values. If that is indeed the case
he will be able to respond correctly to all challenges by the
Verifier. Thus the proof method is complete. All true state-
ments are provable.

The Verifier will verify the correctness of nine of what
we shall loosely call “aspects” of the posted translations.

Aspect 0.As demonstrated in Section 4 above, by randomly
choosingαk = 5.5k pairs of translations, the Verifier ver-
ifies with probability of error smaller than2−k that for at
leastβK = 2K/3 translations, for every partyPm, all sub-
mitted pairs represent the same valuexm. (See Theorem 5.)
We shall consider that uniquexm to bePm’s input to the
SLC.

Every translation involved in the above verification is
discarded and is not used in the following verifications of
other aspects of the proof. We now describe how aspects
1, . . . , 8 are verified for a given fixed translation, which we
denoteTR.

Aspect 1. For a posted translationTR, (7a) or (7b), we
shall say thatTR is correct with respect to representations
of 0, if for all 1 ≤ j ≤ s we haveval(Zj) = 0.

To verify thatTR is correct in Aspect 1, the Verifier re-
quests ofEP to reveal (de-commit) all coordinates of all
pairsZj and checks that for each pair the coordinates sum
up to0.

Aspect 2. We say thatTR is correct in Aspect 2 if every
computation of a new representationNXj from a represen-
tationXj, in the manner of (4), is correct.

To verify correctness in Aspect 2, Verifier randomly
choosesc ∈ {1, 2} and presentsc to EP. If c = 1 then
EP reveals (de-commits) the first coordinate in all com-
putations ofNXj = Xj + Ze(j) within TR. The Verifier
checks that the first coordinates ofXj andZe(j) sum up to
the first coordinate ofNXj . He rejects the whole proof if
even one of these checks fails. The casec = 2 is handled
similarly.

Note that if a translationTR does not satisfy the condi-
tion Xj + Ze(j) = NXj for all indicesj, then it will be
accepted by the Verifier with probability at most1/2.

Aspect 3. We say thatTR is correct in Aspect 3 if all
computations of the new representationsY1, . . . , Yt of the
input-representationsX1, . . . , Xn and all the further new
representations ofXj obtained fromNXj in the manner of
(5) are correct.

All of these computations are of the formY = Xj + Z
for the input value representations andY = NXj + Z for
representations of intermediate results of the SLC, where in
each caseZ is a specific representation of 0 from the list in
TR. So the Verifier has to verify the correctness of all these
addition operations. This is again done as in the verification
of Aspect 2, with probability of error at most1/2.

Aspect 4. We say thatTR is correct in Aspect 4 if all the
translations of addition operationsxm = xi + xj of the
SLC, in the manner of (3), as well as all additions of the
form Xm = X

′

m + · · · + X
′′′′

m arising in translations of
multiplications (see (6e) wherem = n + 1), are correct.

Thus the Verifier has to check all equalities of the form
Xm = Y ′ +Y ′′ and of the formXm = X

′

m + · · ·+X
′′′′

m in
the translation. This is again done by checking correctness
of additions, with probability of error at most1/2.

Aspects 5–8 deal with correctness of the translations of
product computationsxm = xi × xj . Let Xm be the repre-
sentation ofxm andY ′ = (u1, v1) andY ′′ = (u2, v2), be
respectively the representations ofxi andxj in TR, used in
the translation of the product computation.

Aspect 5. We say thatTR is correct in Aspect 5 if for all
translations of product operations in the manner of (6a)–
(6d), the equations

X
′

m = (u1v1, 0) + Z, (9)

whereZ is a specific representation of0 from the list inTR
(a differentZ for everym), are true.

Again the Verifier randomly choosesc ∈ {1, 2} and
presentsc to EP. If c = 1 thenEP reveals for all trans-
lations of products the first coordinatesw of X

′

m, z of Z,
and u1, v1 of Y ′, Y ′′. The verifier accepts only ifw =

u1 × v1 + z is true for all translations of product compu-
tations in SLC. Ifc = 2 thenEP reveals for all translations
of products the second coordinatesw′ of X

′

m, z′ of Z. The
verifier accepts only ifw′ = z′ is true for all translations of
product computations in SLC. Clearly, ifTR is not correct
in Aspect 5, then the Verifier will accept with probability at
most1/2.

Aspects 6, 7 and 8 of a translationTR of the SLC deal
with the correctness of the translations ofX

′′

m, X
′′′

m and
X

′′′′

m respectively, according to (6b), (6c) and (6d). They
are defined, and are checked by the Verifier, in a way simi-
lar to the treatment of Aspect 5. In each case the probability
of erroneous acceptance is at most1/2.

7 Proof of Correctness and Error Probability

Putting together the verification procedures described
above, we now describe the overall proof of correctness of
the posted resultxL of the SLC, and prove an upper bound
of 1/2k for the probability of error.

In the first step of verification, theEP postsK trans-
lations of the SLC (1) in the form of commitments to all
coordinates of the pairs in the translations.

Aspect0 of the correctness of the translationsTR(j),

1 ≤ j ≤ K, is that the arraysX(j)
1 , . . . , X

(j)
n , 1 ≤ j ≤ K,

of representations of the input values to the SLC are pair-
wise value-consistent. The Verifier checks this by randomly
choosingαk = 5.5k pairs of translations and performing
the tests described in Section 4. As described in Theorem 5,
if there are fewer thanβK = 2K/3 = 60k translations
with pair-wise value-consistent input value arrays, then the
Verifier will accept the whole proof with probability less
than1/2k.

Denote byS1 the translations not involved in testing

Aspect 0, and denote byK1
def
= K − 2αk the number

of translations inS1. Recalling thatK = γk, we have
K1 = (γ − 2α)k = 79k.

Consider the case in which at leastβK of the original
K translations have pair-wise value-consistent input value
arrays. SinceK = γk, at leastβK−2αk = (βγ−2α)k =
49k of theK1 = (γ − 2α)k = 60k translations inS1 have
pair-wise value-consistent arrays of inputs. The common
valuesx1, . . . , xn represented by the pairs in those consis-
tent arrays are, by definition, the input values of the SLC.

Fix δ
def
= 29. The verifications of the correctness of As-

pects 1–8 of the translations inS1 proceed as follows. The
Verifier chooses a set ofδk translations uniformly from
S1. For each translationTR(j) of theseδk, he randomly
chooses an integerr ∈ {1, . . . , 8} and a challengec ∈
{1, 2} and performs a check for the correctness ofTR(j)

in Aspectr. If any of theδk checks fail, then the Verifier
rejects.

As described in Section 6, ifTR(j) is incorrect in Aspect
r, it will pass the test with probability at most1/2. Conse-
quently, ifTR(j) is incorrect in any one of the Aspects 1–8,
it will fail its check with probability at least1/16. We will
use this observation to prove the following:

Theorem 8 Fix ǫ
def
= 31. Suppose that of theK1 = K −

2αk = (γ − 2α)k = 79k translations inS1, fewer thanǫk
translations are correct in all Aspects 1–8. Then the prob-
ability that all δk = 29k of the Verifier’s checks succeed is
smaller than1/2k.

Proof: We view theδk choices fromS1 as being done se-
quentially, i.e. in the(s + 1)-st round the translation is cho-
sen from the remainingK1−s translations. By assumption,
for 0 ≤ s < δk, in the(s + 1)-st round, regardless of the
outcomes of previous rounds, there are at mostǫk = 31k
translations that are correct in all aspects 1–8 among the re-
maining(γ−2α)k−s ≥ (γ−2α−δ)k = 50k translations.
So the(s + 1)-st translation chosen is correct in all aspects
with probability at most ǫ

γ−2α−δ
= 31

50 , and is incorrect in

some aspect with probability at leastγ−2α−δ−ǫ
γ−2α−δ

= 19
50 . By

the observation above, this means that regardless of what
has happened before, for each value0 ≤ s < δk, the verifi-
cation survives the(s+1)-st round with probability at most
(1 − γ−2α−δ−ǫ

16(γ−2α−δ)) = (1 − 19
800). Consequently the overall

probability that allδk = 29k of the Verifier’s checks suc-
ceed is at most(1 − γ−2α−δ−ǫ

16(γ−2α−δ))
δk = (1 − 19

800)29k. Since

0.4980 ≈ (1 − 19
800)29 < 1/2, the theorem is proved.

After performing the verifications of pairwise consis-
tency of translations of input values and the verifications
of the correctness of Aspects 1–8 of the translations, there

remainK2
def
= K1 − δk = (γ − 2α− δ)k = 50k untouched

translations. The verifier now asks theEP to open all the
commitments to the components of the pairsX

(j)
L in these

K2 translations. If nowval(X
(j)
L) = xL for all theseX(j)

L ,
then the Verifier acceptsxL as the result of the SLC.

Now we can upper bound the probability that the Verifier
will accept a wrong value for the outputxm of the SLC (1):

Theorem 9 [Main Theorem.] Assume that the Verifier ac-
cepted all components of the proof of correctness, i.e. the
proof of pair-wise value-consistency of the arrays of inputs
values of theK translations, the proofs of correctness of the
translations in respect to Aspects 1–8, and the agreement of
all revealed values of the pairsX(j)

L . Then the common re-

vealedxL = val(X
(j)
L) is the output value of the SLC with

probability of error smaller than3/2k.

Proof: It was shown above that the successful verification
of Aspect 0 – the pair-wise value-consistency of the repre-
sentations of the input values – assures with probability of

error at most1/2k that at least aβ = 2/3 fraction of the
K = γk = 90k translations are pair-wise value-consistent
with respect to the arrays of then input values. Thus at least
K1−(1−β)K = (γ−2α)k−(1−β)γk = (βγ−2α) = 49k
of the remainingK1 = (γ − 2α)k = 79k translations are
pair-wise input-value consistent. This defines a unique se-
quence of common valuesx1, . . . , xn represented by the
pairs in these consistent arrays (which form a majority of
the K1 remaining arrays); these values are, by definition,
the input values of the SLC.

By Theorem 8, if the translations inS1 passed the tests
on the randomly chosenδk = 29k translations, then with
probability of error smaller than1/2k, more thanǫk = 31k
of the translations are correct in all Aspects 1–8. This im-
plies that among the at least(βγ − 2α)k = 49k pair-wise
input-value consistent translations inS1, at least(βγ −
2α)k + ǫk− (γ−2α)k = (ǫ−γ(1−β))k = k translations
are also correct in all aspects, this with probability of error
at most1/2k. Let S3 denote any fixed set ofk translations
that are correct in all aspects.

Now we observe that the probability that theδk = 29k
translations randomly chosen fromS1 include allk transla-
tions inS3 is

(

K1−k
δk−k

)

(

K1

δk

) =
δk(δk − 1) · · · (δk − k + 1)

K1(K1 − 1) · · · (K1 − k + 1)

<

(

δk

K1

)k

=

(

δ

γ − 2α

)k

= (29/79)k.

Since0.3671 ≈ 29/79 < 1/2, we have that with probabil-
ity of error smaller than1/2k, after theδk = 29k transla-
tions are removed fromS1, there remains at least one trans-
lation that is correct, has the correct representations forthe
inputs valuesx1, . . . , xn, and was not used in any of the ver-
ifications. Since the revealedval(X

(j)
L) is the same for all

the translationsTR(j) not used in any of the verifications,
that value is the correct output valuexL of the SLC (1). The
total probability of error is less than3/2k.

8 The Verification of Correctness is Secrecy
Preserving

We shall conduct our proof of the secrecy preserv-
ing property in the random oracle model for the com-
mitment functionCOM. Thus we assume thatCOM :
{0, 1}k+128 → {0, 1}k+128 is a random permutation.
Whenever theEP or the Verifier has an argument value
w ∈ {0, 1}k+128, he can call onCOM and get the value
v = COM(w). To commit to a numberx ∈ Fp, the com-
mitter randomly chooses a help valuer ∈ {0, 1}k and ob-
tainsv = COM(r||x). To de-commitv, the committer re-
vealsr andx, and then the commitment tox is verified by

calling the functionCOM. (See [4] for a related but more
sophisticated approach to commitments.)

The EP prepares theK translations of the SLC (1) as
detailed in Sections 4 and 5, and posts commitments to all
the coordinates of all the pairs appearing in the translations,
keeping to himself the help valuesr1, r2, . . . employed in
the commitments.

The main idea of the proof is that in the verification pro-
cess all that is being revealed are randomly independent ele-
ments ofFp, and relations of the formu1+u2+· · ·+us = v
or u1×u2 = v, for randomly independentu1, u2, . . . in Fp.
The properties of the commitment scheme ensure that noth-
ing can be learned about a valueu ∈ Fp from a commitment
to it.

To simplify the proof of the secrecy preserving nature
of the verification process, we assume that every partyPj

is proper and submits to theEP K randomly independent
representationsX(1)

j , . . . , X
(K)
j of his input valuexj . Al-

lowing improper parties does not change the essence of the
proof and the result.

We shall consider the verifications of Aspects 0–8 of the
translationsTR(j), 1 ≤ j ≤ K, posted by theEP via
commitments.

Aspect 0 relates to the pair-wise value-consistency of the
arrays of inputs. In the basic step the Verifier requests of the
EP to reveal for two representationsX(i)

m andX
(j)
m of in-

putxm submitted by partyPm, the values of, say, their first
coordinatesu(i)

m and u
(j)
m . The Verifier then verifies that

u
(i)
m −u

(j)
m equalsd1, a value that was posted byEP. Since,

according to the protocol, partyPm used random represen-
tations ofxm (see the beginning of Section 4), all these first
coordinates are independent random elements ofFp.

We recall that every translationTR(j) (see (8)) con-
tains representationsZ(j)

1 , . . . , Z
(j)
s of 0; new representa-

tions Y
(j)
1 , . . . , Y

(j)
t , . . . so that everyxm in the SLC has

as many new representations as the number of times it is
involved in computations of the SLC; and representations
NX

(j)
m for everyxm resulting from a computation in the

SLC. Aspects 1, 2 and 3 respectively deal with the correct-
ness of theseZ, Y andNX representations.

The first lemma addresses theZ ’s:

Lemma 10 In the set of translations{TR(1), . . . , TR(K)},
any collection of coordinates of representations of 0 which
does not contain both coordinates of the same representa-
tion, consists of independently randomly chosen numbers
fromFp.

Proof: This follows from the construction of the random
representations of 0.

The next lemma addresses theY ’s and theNX ’s:

Lemma 11 In the set of translations{TR(1), . . . , TR(K)},

any collection of coordinates of the representationsY
(j)
i

andNX
(j)
m which does not contain both coordinates of the

same representation, consists of independently randomly
chosen numbers fromFp.

Proof: Every such representationY (j)
i or NX

(j)
m is the

result of an operation of the formY (j)
i = X + Z or

NX
(j)
m = X + Z, whereX is some previous pair inTR(j)

and Z is a random representation of0 from TR(j), and
whereZ is used only once. The result now follows from
the previous Lemma.

Checking Aspect 1 of a translation involves the revela-
tion by theEP of all coordinates of all representations of0
in a number of translations. By construction of the transla-
tions, all representations(z,−z) of 0 were constructed by
theEP using independently random choices ofz, and no
other value in those translations is revealed. Thus the re-
vealed values are randomly independent and randomly in-
dependent from any other values revealed in the total verifi-
cation.

We recall that in a translationTR, the symbols
X1, X2, . . . , Xm, . . . , XL denote representations of the val-
uesx1, x2, . . . , xm, . . . , xL of the SLC (1).

Lemma 12 Let U = {X
(j)
(n+1), . . . , X

(j)
L | 1 ≤ j ≤

K} be the set of all representations of non-input values
xn+1, . . . , xL in all translationsTR(j), 1 ≤ j ≤ K, of the
SLC (1). Then any collection of coordinates of the repre-
sentations inU which does not contain both coordinates of
the same representation consists of independently randomly
chosen numbers fromFp.

Proof: By the construction of a pairX(j)
m in the translation

TR(j), if xm = xi+xj in the SLC (1) thenX(j)
m = Y ′+Y ′′

whereY ′, Y ′′ are new random representations ofxi and
xj (see (3)). Thus the claim follows from Lemma 11. If

xm = xi × xj thenX
(j)
m is constructed from new random

representationsY ′, Y ′′ of xi andxj according to (6a)–(6e).
The use of random representations of 0 in (6a)–(6e) estab-
lishes the claim.

Remark. Under the assumption that all parties
P1, . . . , Pn are proper, Lemma 12 extends to the coordi-
nates of the representationsX

(j)
1 , . . . , X

(j)
L of all the num-

bersx1, . . . , xL of the SLC (1).

Lemma 13 Verifying Aspect 2 of a translationTR involves
checking equations of the formu + z = v where all the
numbersu, z that are revealed (de-commited) are randomly
independent elements inFp.

Proof: The equations to be simultaneously verified are of
the formXj + Ze(j) = NXj whereZe(j) is a new random
representation of 0 for every equation. The verification is
done by checking equations of the formu + z = v where
in each caseu, z, v are simultaneously the first or simulta-
neously the second coordinates ofXj , Ze(j) andNXj. The
random independence claim for theu, v now follows from
Lemma 12.

Lemma 14 Verifying Aspect 3 of a translationTR involves
checking equations of the formu+z = v where all the num-
bersu, z revealed (de-commited) are randomly independent
elements inFp.

Proof: Verifying Aspect 3 involves verifying all equations
of the formY = Xj + Z for the input value representa-
tions andY = NXj + Z for representations of intermedi-
ate results of the SLC, where in each caseZ is a different
representation of 0 from the listZ1, . . . , Zs of representa-
tions of 0 inTR. The result follows from Lemma 12, the
construction ofZ1, . . . Zs, and the fact that verifying such
an addition of representations (pairs) involves revelation of
either all first coordinates or all second coordinates of the
pairs in question.

Lemma 15 Verifying Aspect 4 of a translationTR involves
checking equations of the formu1 +u2 = v andw1 + · · ·+
w4 = w where all the numbersu1, u2, w1, . . . , w4 revealed
(de-commited) are randomly independent elements inFp.

Proof: This follows from the definition of Aspect 4 in a
manner similar to the proof of Lemma 14.

We move directly to the statement that the verification of
Aspect 6 is secrecy preserving. The proof for the secrecy
preserving nature of Aspects 5 and 7–8 is similar.

Lemma 16 Verifying Aspect 6 of a translationTR involves
checking equations of the formu1 × v2 + z = w1 where
the numbersu1, v2, z revealed (de-commited) are randomly
independent elements inFp.

Proof: Verifying Aspect 6 involves checking inTR simul-
taneously all equations of the form (6b) arising in trans-
lations of multiplicationsxm = xi × xj of the SLC (1).
Such a translation employs unique random representations
Y ′ = (u1, v1) andY ′′ = (u2, v2) of xi andxj and a repre-
sentationZ = (z,−z) of 0. To be verified simultaneously
are all additionsX

′′

m = (u1 × v2, 0)+Z in TR. If the chal-
lenge isc andX

′′

m = (w1, w2) then all theu1, v2, z andw1

are revealed by theEP and all equationsu1 × v2 + z = w1

are checked by the Verifier. By Lemma 11, all the revealed
u1, v2, z are randomly independent elements ofFp.

Theorem 17 The verification of correctness of theK trans-
lationsTR(j), 1 ≤ j ≤ K, of the SLC (1) is secrecy pre-
serving.

Proof: The verification process involves randomly choos-
ing 2αk = 11k translations for verifying Aspect 0 (the
value-consistency of the input arrays) and randomly choos-
ing δk = 29k arrays for verifying Aspects 1–8.

Let C1, . . . , CK be a collection of coordinates of repre-
sentations of values from the translationsTR(j), 1 ≤ j ≤
K, such that noCj contains both coordinates of the same
representation (pair). By the construction of theK transla-
tions, the values in anyCj are randomly independent from
the values in all otherCi’s.

Any one of the(α + δ)k = 40k translations used in the
verification is involved in the verification of just one of the
Aspects 0–8, i.e. is used only once.

By the detailed analysis given above for the verification
of Aspect 0 and in Lemmas 10–16, all the coordinate values
from presentations of a translationTR(j) revealed during
the verification satisfy the condition onCj . Furthermore,
they are mutually randomly independent values inFp, ex-
cept for relations such asu + z = v, u1 × v2 + z = w1,
etc. dictated by the structure of the translation process. By
the above observation onC1, . . . , CK , the verification of
Aspects 0–8 only reveals some randomly independent ele-
ments ofFp and some sums and products of such elements
(which could be computed by the Verifier on his own).

Finally, in everyTR(j) not used in the verification of
Aspects 0–8, the Verifier asks theEP to de-commit both
coordinates ofX(j)

L = (u
(j)
L , v

(j)
L). The Verifier checks that

all the revealed pairs have the same sumu
(j)
L + v

(j)
L = xL,

wherexL is by definition the result of the SLC (1). The
revealed coordinates of all theX(j)

L involved in this final
step are again randomly independent values inFp, subject
to the condition that the two coordinates of each pair all sum
to the same value.

We are working in the random oracle model for the
COM function. Thus for all valuesx of coordinates of
pairs in all translations, the valuesv = COM(r‖x) are
randomly independent elements of{0, 1}k+128.

9 An Application to Auctions

In this section we sketch an application of our method
to secure auctions. After touching on security and privacy
concerns particular to cryptographic auctions, we augment
the basic approach for straight-line computations described
above to handle comparison stepsx ≤ y and summarize a
cryptographic auction protocol using our methods.

9.1 Background and Motivation

Cryptographic auctions are an ideal example to illustrate
our work in a real-world context. Auction theory has devel-
oped complex pricing algorithms for “strategyproof” auc-
tions (that is, a bidder’s best strategy is to bid her true util-
ity), but information about one bid being revealed to another
bidder could change the outcome of the auction. Moreover,
in many applications, such as wireless spectrum auctions
conducted by the FCC, bidders do not want their bids to be
revealed to other bidders (because it constitutes proprietary
business information) yet the auctions must be transparent
to comply with Federal regulations.

Thus we require an auction protocol with the following
characteristics: 1) it must be practically efficient enoughto
compute functions of the bids; 2) bids must be secret, in
that no bidder can learn anything about any other bid be-
fore the deadline to submit a bid; and 3) the results must be
able to be proven correct without revealing the original bids.
Our method supports all of these requirements: 1) we have
demonstrated our protocol’s efficiency in empirical tests;2)
other cryptography, such as cryptographic commitments or
time-lapse cryptography [11], can enforce bid secrecy until
the auction is closed; and 3) the protocol presented in this
work issues a correctness proof that reveals nothing about
the bids (clearly, it reveals nothing that is not implied by the
results).

The extent of trust we place in an auctioneer is that he
will not reveal any information about the bids except for the
outcome of the auction and what is implied by announce-
ment of the outcome. For example, in a Vickrey auction
where the item goes to the highest bidder at the price bid
by the second highest bidder, the announcement will reveal
the identity of the winner. Whether the winner’s payment
will be revealed depends on the announced rules of the auc-
tion, but if so, then the second highest bidder’s bid is also
revealed. When the rules demand it, our protocols can en-
force the secrecy of auction payments, so that each bidder
receives a private proof of the correctness of any payment
without learning additional information.

The rationale for this partial trust model is that illegally
and selectively leaking out bid valuesbeforethe closing of
the auction, or announcing a false auction result, can benefit
particular bidders, the auctioneer, and/or the seller. Ourpro-
tocols completely prevent such malfeasance. On the other
hand, leaking out bid valuesafter the end of an auction only
helps parties who receive such information in strategizing
for future similar auctions. The value of this information
advantage is, however, relatively limited. Consequently the
auctioneer, who has his business reputation to guard, has
a substantial incentive not to leak out information after the
conclusion of auctions; and as we will see there are other
approaches to building secure systems in which such post-

auction leaks can be prevented.

9.2 Summary of an Auction Protocol

In [9] (for a more detailed review, see the literature
quoted there), a protocol is proposed for conducting secure
and secrecy preserving auctions. Bidders choose their bids,
encrypt them using a homomorphic encryption scheme, and
send commitments to these encrypted bids to an auctioneer;
they do this by posting them on a public bulletin board. Af-
ter all bids are in, the auctioneer announces that the auc-
tion has closed, and the bidders submit their encrypted bids
to the bulletin board. These can be easily verified against
the previously published commitments. The auctioneer then
privately opens the encrypted bids and computes, according
to the posted auction rules, who the winner(s) is (are) and
their payments. He then posts a publicly verifiable Zero
Knowledge Proof for the correctness of the results, based
on the encrypted bids published on the bulletin board.

This proof can be done in a manner revealing the iden-
tities of the winners and their payments or, if so desired,
concealing that information. But in any case, the bids of all
other bidders except for those of the winners remain secret.
The only trust assumption made is that the auctioneer, who
knows the bid values, will not reveal that information after
the auciton. The protocol described in [9] employs Pail-
lier’s homomorphic encryption scheme [8] for bid secrecy
and proofs of correctness; his scheme allows these proofs to
be verified by using only the encrypted bids.

It was shown in [9] that the protocols given there are
practical and that currently available computing power suf-
fices to implement auctions with thousands of bidders
within reasonably practical time (on the order of one day
for a single computer). Still, that solution employs special
encryption functions and basic Paillier encryption is a rela-
tively heavy computation.

Our theoretical framework for secrecy-preserving, prov-
ably correct computation described above is extendible for
conducting a sealed-bid auction; to complete the necessary
set of primitives we now explain how zero-knowledge com-
parisons of two values can be handled in our protocol. (This
is a general extension of the SLC framework independent
of the specific application to auctions.) In Section 9.4 we
describe some simple optimizations of the basic approach
described in the previous sections that give an improvement
in efficiency. In Section 9.5 we give an example of how our
augmented approach can be used to prove correctness of a
Vickrey auction result.

9.3 Translation of Inequalities 0 ≤ x ≤ B
and x ≤ y.

Let 0 < b < p be values that satisfy32b2 < p.

We proceed in three steps in this subsection. We first
suppose that the Evaluator-Prover has a value0 ≤ x ≤ b,
and we explain how theEP can prove that−b ≤ x ≤ 2b.
Next, using this first step, we explain how if theEP has
0 ≤ x ≤ b2 he can give a secrecy preserving proof that
0 ≤ x ≤ 16b2. Finally we describe how this enables him
to prove that0 ≤ x ≤ y ≤ 16b2 for two valuesx, y that
satisfy0 ≤ x < y ≤ b2.

So let us suppose that theEP has a value0 ≤ x ≤ b,
and wants to prove that−b ≤ x ≤ 2b, i.e. that either0 ≤
x ≤ 2b or p − b ≤ x < p. The following construction is an
adaptation of a method of Brickellet al. [2] to our context.

The EP selects a random value0 ≤ w0 ≤ b and sets
w1 = w0 − b. He sets

r =

{

w0 + x if w0 + x ≤ b;

w1 + x if b < w0 + x.
(10)

It can be seen that thisr is uniformly distributed in the inter-
val [0, b]. If a Verifier checks that the pair(w0, w1) satisfies
the conditionw1 + b = w0 and that for someζ ∈ {0, 1}, it
is the case that0 ≤ wζ +x ≤ b, then the Verifier may infers
that−b ≤ x ≤ 2b is true.

To enable the verification in a secrecy preserving man-
ner, theEP includes in the translationsTR a representa-
tion X for x; two representationsW ′, W ′′, for the values
w0 andw1; and a representationR for the valuer defined
by (10). We stress that the two representationsW ′, W ′′ in
the translations occur consecutively (these can follow the
Z ’s in the overall translation of the entire computation, see
(8)), but in an order that is randomly chosen by the veri-
fier. That is, when the translations are being constructed,
the EP randomly decides whether the first representation
W ′ will representw0 or w1 (and then the second represen-
tation represents the other value).

From the above description, we have that the translation
of the statement−b ≤ x ≤ 2b requires commitments to
eight values inFp (the two components of each of the four
pairsX , W ′, W ′′, andR). For the actual verification we
modify three of the previously described Aspects (Aspects
1, 2 and 3) as we now describe.

In Aspect 1, we shall now also say that a translationTR
is correct with respect to representations of thew’s if for
each couple of pairsW ′, W ′′ arising in a comparison step
as described above, we haveval(W ′) = val(W ′′) − b or
val(W ′′) = val(W ′) − b. To verify thatTR is correct in
Aspect 1, in addition to checking all zeros as described ear-
lier, the Verifier also requests ofEP to reveal (de-commit)
all coordinates of all pairsW ′, W ′′ and checks that for the
values corresponding to each pair, it is indeed the case that
one of the two equalities holds.

In Aspect 3, we shall now also say that a translationTR
is correct with respect to representations of ther’s if for
each comparison step as described above, it is indeed the

case that for someW ⋆ ∈ {W ′, W ′′} we haveval(R) =
val(W ⋆) + val(X). To verify thatTR is correct in As-
pect 2, in addition to checking all computations ofY1, . . .
as described earlier by choosing a randomc ∈ {1, 2}, the
following moreover takes place. TheEP selects the ele-
ment of{W ′, W ′′} that corresponds to the correct value of
ζ such thatr = wζ + x; we refer to the element he selects
asW ⋆. If c = 1 thenEP reveals (de-commits) the first co-
ordinate in all computations ofR = W ⋆ + X . The Verifier
checks that the first coordinates ofW ⋆ andX sum up to the
first coordinate ofR. He rejects if even one of these checks
fails. The casec = 2 is handled similarly.

In Aspect 2, we shall now also say that a translationTR
is correct with respect to the range of ther’s if the new rep-
resentationR satisfies0 ≤ val(R) ≤ b. To verify correct-
ness in Aspect 2, in addition to checking all computations
of NXj as described earlier, theEP de-commitsboth co-
ordinatesin all computations ofR, the new representation
of r. The Verifier sums the two coordinates to obtainval(R)
and checks that the two coordinates add up to a value that
lies in the interval[0, b]. (Note that by following the proto-
col, theEP ensures that this valueval(R) is r, which is a
“fresh” random value from[0, b] independent of everything
else seen by the Verifier; thus secrecy is preserved.)

Now let us suppose that0 ≤ x ≤ b2. TheEP wants to
enable a secrecy preserving proof that0 ≤ x ≤ 16b2. We
describe an approach by which he can do this; the approach
is similar to one given in [3].

By Lagrange’s theorem, there exist nonnegative integers
x1, x2, x3, x4 such that

x = x2
1+x2

2+x2
3+x2

4 with 0 ≤ x1, x2, x3, x4 ≤ b. (11)

There is an efficient randomized algorithm known that,
givenx as input, finds a sum of four squares representation
(11) for x [10]. Using this algorithm, theEP computes
the Lagrange representation (11) and for each of the val-
uesx1, x2, x3, x4, prepares a translation enabling a proof
that−b ≤ xj ≤ 2b as described above. He creates repre-
sentationsX for x andX1, . . . , X4 for x1, x2, x3, x4. He
prepares translations for the computationsx2

j = xj ×xj for
1 ≤ j ≤ 4, and for the equality (11). If a Verifier checks the
above relations using the representations, then the Verifier
knows that0 ≤ x ≤ 4 · 4b2 = 16b2.

Finally, let us suppose that0 ≤ x ≤ y ≤ b2. TheEP
wants to give a secrecy preserving proof that0 ≤ x ≤ y ≤
16b2. He does this simply by giving a secrecy preserving
proof that0 ≤ x ≤ 16b2 (which he can do since0 ≤ x ≤
b2), a secrecy preserving proof that0 ≤ y ≤ 16b2 (which
he can do since0 ≤ y ≤ b2), and a secrecy preserving
proof that0 ≤ y − x ≤ 16b2 (which he can do since0 ≤
y − x ≤ b2). It is clear that these bounds establish that
0 ≤ x ≤ y ≤ 16b2.

In the next section we shall describe an optimization that
let us reduce the number of commitments required for a
naı̈ve instantiation of the above approach.

9.4 An optimization: more efficient sum
of four squares and other sequences of
additions.

Here we briefly note an optimization that can be per-
formed to reduce the number of commitments required to
perform the sums of four squares in (11) and certain other
sequences of operations.

The optimization is to perform a sequence of additions
“in one step”, similar to our implementation of a multipli-
cation step. Recall that a multiplication stepxm = xi×xj is
implemented as follows: after constructing representations
X

′

m, X
′′

m, X
′′′

m andX
′′′′

m , theEP constructs the finalXm

asX
′

m + X
′′

m + X
′′′

m + X
′′′′

m in one step, rather than per-
forming three pairwise additions (which would necessitate
representations for the intermediate sums, new representa-
tions for their subsequent use in the overall sum, etc.). (See
the verification of Aspect 3 described in Section 6.)

A similar approach can be taken when constructing the
sum of four squaresx2

1 +x2
2 +x2

3 +x2
4. Since the intermedi-

ate pairwise sums are not used we may simply perform all
three additions at once and save on the intermediate repre-
sentations that would otherwise be constructed. A similar
approach can be taken for any sequence of consecutive ad-
ditions that occurs anywhere in the SLC.

9.5 Proving Correctness of a Vickrey Auc-
tion Result.

In a Vickrey auction participantsP1, . . . , Pn submit bids
x1, . . . , xn. The winner is the highest bidder and the price
he pays is the second highest price. In this setting the Auc-
tioneer acts as theEP. Without loss of generality, and ex-
cluding the case of equal winning bids, we assume that

p/32 > b2 > x1 > x2; x2 ≥ x3, . . . , x2 ≥ xn. (12)

Thus theEP has to prepare translations enabling a secrecy
preserving proof of the inequalities (12). TheEP first pre-
pares translations for proving that0 ≤ xi ≤ 16b2 for each
i = 1, . . . , n. He then proves thatx2 < x1 (by proving that
0 < x1 − x2 ≤ 16b2), thatx3 ≤ x2, thatx4 ≤ x2, and so
on as described in Section 9.3. Thus there are a total of2n
proofs that various valuesv satisfy0 ≤ v ≤ 16b2.

9.6 Efficiency of the Protocol

We now analyze the number of commitments that this
protocol requires. A careful analysis of the translation of

then-participant Vickrey auction computation reveals that
101n pairs are constructed within each translation. As
described earlier, the secrecy preserving proof involves90k
different translations, and thus all in all the posted proof
consists of90k · 101n · 2 commitments to values inFp.
(The final factor of two is because there is one commitment
for each of the two elements of each pair.)

For security parameterk = 40 and number of bids
n = 100, this means around72.7 million commitments.
For pragmatic reasons, to commitCOM(x) we employed
the SHA-1 cryptographic hash function onx with a random
128-bit help valuer: COM(x) = SHA1(x||r). The more
sophisticated theoretical approach of [4] could also be used
without a significant effect on efficiency. This yields 160
bits of output for each commitment, for a total proof size of
approximately1.45GB with the above parameters. While
constructing the proof requires committing to all values, and
the entire proof is downloaded by the verifier, examination
of the verification process above shows that no more 5% of
the committed values need to be verified by decommitment
at the end of the protocol. (To check a commitment, the ver-
ifier requests indices of the elements to decommit; theEP
sends the random seeds and actual elements; then the veri-
fier rehashes their concatenation and checks for equality.)

We have conducted empirical experiments comparing
the performance of our protocol on sealed-bid auctions to
that of a previously published auction protocol based on ho-
momorphic encryption [9]. Our results bear out our claim
that our solution is significantly faster than solutions based
on homomorphic cryptography. There is, however, an im-
portant time/space tradeoff: the correctness proofs in our
solution are very large, because of the large number of
commitments necessary to guarantee correctness with high
probability. We have therefore included not only calcu-
lations of the cost of computing all of the cryptographic
hashes (by far the dominant computation) but also estimated
the transfer time for the verifier to download the very large
proof of correctness. Although we tested the running time
of the other operations necessary to construct and verify
a proof for a cryptographic auction, these take at most a
few seconds and we omitted them from our discussion here.
These operations include generating random data, decom-
posing the sum-of-four-squares representations, and multi-
plication and addition of values modulop.

To yield fair comparisons, we executed our tests using
the same 2.8 GHz 32-bit Pentium 4 processor used on the
homomorphic cryptographic auction protocol in [9] with
which we compare our new approach; obviously use of
faster 64-bit processors would significantly improve the ef-
ficiency in all cases. We estimate that the timing presented
here would be improved by a factor of 2 or 3 if run on 2007
state-of-the-art hardware. We also assume a 2.5 megabyte
per second transfer rate for the proof download. Times

given in Table 1 reflect a security parameterk = 40 for
our proposed protocol and a 2048-bit public Paillier key in
the homomorphic cryptographic setting.

Table 1. Single-Item Auctions of 100 Bids

Operation Proposed Homomorphic

Preparing the proof 4.11 minutes 804 minutes
Downloading the proof 9.67 minutes < 1 minute
Verifying the proof < 1 minute 162 minutes

10 The Secure Co-Processor Model and Im-
plementation

Instead of theEP entity, which may be a person or
some organizational entity, in this section we propose a
Secure Processor Evaluator-Prover (SPEP) for the imple-
mentation of verifiable secrecy preserving straight line com-
putations. We emphasize that this is a preliminary pro-
posal; instead of giving detailed formal definitions we shall
informally specify the properties and assumptions for the
SPEP .

The secure processor is programmed to perform the
functions of the Evaluator-Prover, as previously described,
for accepting input valuesx1, . . . , xn, executing the SLC
(1) on these values, preparing a proof of the correctness of
the computation and outputting (posting) that proof.

We trust the secure processor to only post the proof and
not any other information. We do not trust the processor to
correctly execute the SLC. Hence the need for a verifiable
proof of correctness.

The secure processor may leak out information in a num-
ber of ways. For one thing, the format of the posted proof
may leak out information on input and intermediate values
of the computation through use of spaces, fonts used, for-
mat, etc. How to counter such steganographic leaks lies
outside the present authors’ expertise. (See e.g. [7] for some
background on covert channels.)

Second, and more pernicious, theEP requires a consid-
erable stream of random bits for implementing the transla-
tions TR(j), 1 ≤ j ≤ K. The secure processor can leak
out information on input and other values through appro-
priate choices of random values that will be revealed in the
verification process.

Our proposal for dealing with this covert channel is to
have an independent secure co-processor RANDOM with a
physical random number generator which acts as a universal
source of randomness. Upon request from theEP secure
processor, RANDOM sends to the SPEP a list of sequen-
tially numbered and digitally signed random values to be

used as help values for the COM operation and as values in
Fp to be used in the translations. The SPEP must use these
random strings in the order of their numbering according to
a publicly known protocol. Whenever a random value from
the translations is posted as part of the proof of correctness,
the SPEP also posts the signed message from RANDOM as
proof of origin. The protocol enables the Verifier to check
that the posted messages from RANDOM are used in the
posted proof in the mandatory order.

The processor is trusted not to output any information
beyond that specified by the protocols, and its communica-
tions interfaces can be monitored to verify this. The pub-
lished proof of correctness assures the participants that the
output result is really the correct result of the SLC; this
means that the validation of the program run by the se-
cure coprocessor need only address information leakage,
not program correctness: the program proves itself correct
during its normal operation.

The above is only a rough outline of the secure processor
and the RANDOM secure co-processor model. Details will
be presented in a subsequent publication.

11 Practical Implementation of the
Evaluator-Prover Method

For a practical implementation of theEP method,
say for use in secure auctions, we make some pragmatic
choices.

We choosek = 40, giving a total probability of error
smaller than3 · 10−12. The COM function for a value
in Fp, wherep has128 bits, will be implemented by ran-
domly choosing a help valuer ∈ {0, 1}40 and setting
COM(x) = SHA(r‖x) ∈ {0, 1}120. Note thatCOM is
randomly many-to-one. This practically precludes feasible
searches even if some partial information aboutx is avail-
able.

The verification of correctness process will not be inter-
active. The proof of correctness of the translations of the
SLC (1) will be posted. Namely, theEP will prepare the
translationsTR(j), 1 ≤ j ≤ K, and post commitments
to all the numbers involved in the translations. Along the
lines of the computation of Fiat-Shamir signatures [5], a
hash functionH will be applied to the concatenation string
of all those commitment values.

The EP extracts from the hash value
H(COM(TR(1))‖ . . . ‖COM(TR(K))) the random
challenges used in the verification of the correctness of
Aspects 0–8. He then de-commits all the values requested
in the challenges and posts the values. Anyone can then
verify the correctness of the computation by re-committing
the exposed values and by performing additions and
multiplications modp on the exposed values and checking
equalities.

Another approach to the creation of the challenges
will be for the EP first to post the committed-to
translations. After the posting, each of the bidders
P1, . . . , Pn sends to theEP an encrypted random string
EN(S1), . . . , EN(Sn). These encryptions are posted by
the EP. After that posting the stringsS1, . . . , Sn are re-
vealed andS = S1 XOR . . . XOR Sn will define the
random challenges used in the verification. From here on
the process proceeds as above. The method of Time Lapse
Cryptography [11] is used to force opening of all the en-
crypted stringsSi. A detailed protocol deals with the possi-
bility that not all biddersPi will submit encrypted strings.
Alternatively,P1, . . . , Pn must submit the encrypted strings
EN(S1), . . . , EN(Sn) together with their bids. The reve-
lation of the strings is then timed by the protocol to occur af-
ter the posting of the committed-to translations by theEP.

References

[1] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclo-
sure proofs of knowledge.Journal of Computer and System
Sciences, 37:156–189, 1988.

[2] E. Brickell, D. Chaum, I. Damgård, and J. V. de Graaf. Grad-
ual and verifiable release of a secret. InProceedings of
CRYPTO’87, volume LNCS 293, pages 156–166, 1988.

[3] J. Camenisch and V. Shoup. Practical verifiable encryp-
tion and decryption of discrete logarithms. Full length ver-
sion of extended abstract inProc. Crypto 2003, available at
http://eprint.iacr.org/2002/161.pdf, 2003.

[4] I. Damgård, T. Pedersen, and B. Pfitzmann. Statistical se-
crecy and multibit commitments.IEEE Transactions on In-
formation Theory, 44(3):1143–1151, 1998.

[5] A. Fiat and A. Shamir. How to prove youself: practical so-
lutions to identification and signature problems. InProceed-
ings of CRYPTO’86, pages 186–194, 1987.

[6] J. Kilian. A note on efficient zero-knowledge proofs and ar-
guments. InProceedings of STOC’92, pages 723–732, 1992.

[7] J. McHugh. Covert channel analysis. Chapter 8 of
Handbook for the Computer Security Certification of
Trusted Systems, NRL Technical Memorandum, available at
http://chacs.nrl.navy.mil/publications/handbook/COVCHAN.pdf,
1996.

[8] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In J. Stern, editor,Advances in
Cryptology — (EUROCRYPT 1999), volume 1592 ofLec-
ture Notes in Computer Science, pages 107–122. Springer-
Verlag, 1999.

[9] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. A. Thorpe.
Practical secrecy-preserving, verifiably correct and trustwor-
thy auctions. InProceedings of the 8th International Confer-
ence on Electronic Commerce (ICEC), pages 70–81, 2006.

[10] M. O. Rabin and J. O. Shallit. Randomized algorithms in
number theory.Communications in Pure and Applied Math-
ematics, 39:239–256, 1986.

[11] M. O. Rabin and C. Thorpe. Time-lapse cryptography. Tech-
nical Report TR-22-06, Harvard University School of Engi-
neering and Computer Science, 2006.

