Highly Efficient Secrecy-Preserving Proofs
of Correctness of Computations and Applications

Michael O. Rabin Rocco A. Servedib Christopher Thorpe
Harvard University SEAS Columbia University Harvard University SEAS
Cambridge, MA 02138 New York, NY 10025 Cambridge, MA 02138

U.S.A. U.S.A. U.S.A.

rabin@seas.harvard.edu rocco@cs.columbia.edu cat@seas.harvard.edu

Abstract then posts a publicly verifiable Zero Knowledge proof for
the correctness of the results. This can be done in a manner
We present a highly efficient method for proving correct- revealing the identities of the winners and their payments
ness of computations while preserving secrecy of the inputor, if so desired, concealing that information. But in any
values. This is done in an Evaluator-Prover model which case, the bids of all other bidders except for those of the
can also be realized by a secure processor. We describe arwinners remain secret. The only trust assumption made is
application to secure auctions. that the Auctioneer, who knows the bid values, will not re-
veal that information. The protocol of [9] employs Pailiger
homomorphic encryption and proofs of order relations be-
tween bids, and correctness of other operations on bids are
presented by and verified on encrypted values.

It was shown in [9] that the protocols given there are

1 Background and Motivation

Zero Knowledge Proofs come in a number of flavors. ) . )
One is direct ZKPs for membership in a NP language, for pracncal gnd that currentl_y ava|la_1ble computing power suf
. fices to implement auctions with thousands of bidders
example proofs that a graph is 3-colorable. These proofs = ; . . .
are usually phrased in terms of the particular problem theyWlthln reas:onably pr{:\ctlcal “’.“e' Still, that spluuqn_ em-
address, for example talking about graphs and their repre-ploys. spgmal enc_ryptlon functions and.the basic Pailifer e
sentations. Another approach deals with circuits and theCryptlon is a relatively heavy computation.
bit-inputs resulting in certain outputs. This approachfis o In the present paper we present a model of an Evaluator-
course very comprehensive since other problem representaProver ¢F) who receives input values, ..., z, which
tions are directly translatable into problems about ctecui  are elements of a finite fielél, wherep is, say, a 128-bit
There is an extensive literature dealing with ZKPs via Prime. The Evaluator-Prover computes a function value
encryptions, especially homomorphic encryptions. Verifi- ¥ = f(z1,...,2») by a publicly announced and agreed
cation of processes such as electronic elections or awsctionUpon straight line computation (program) SLC. The”
is done via encrypting the relevant numbers such as votethen publishes the valugand supplies a proof of the cor-
counts or bids, and performing operations such as additiondectness of the computation. The proof of correctness can
or Comparisons on these numbers in their encrypted form.be Veriﬁed by anybody and thIS Vel’ification method ensures
In [9] for examp|e (See the literature quoted there)’ a proto that the pI‘Obablllty that an incorrect pub|IShed resultl wil
col is proposed for conducting secure and secrecy preserviot be detected is smaller than”, wherek is a security
ing auctions. Bidders submit bids to an Auctioneer in an Parameter. Furthermore, the proof does not reveal anything
encrypted and committed manner. The Auctioneer posts theabout the input values or any intermediate results of the
encrypted bids on a bulletin board. He then opens the bidscomputation, except for what is implied by the published
and computes, according to the posted auction rules, whoPutcome of the computation. The generality and efficiency
the winner(s) is (are) and their payments. The Auctioneer Of this model allows numerous applications.

. The main idea of the secrecy preserving verification is to
*Supported in part by NSF award CCR-0205423.

tSupported in part by NSF award CCF-0347282, by NSF award CCF- represent every number e Fp m,vowed in the SLC by a
0523664, and by a Sloan Foundation Fellowship. randomly constructed represe-n.tlng_ p&ir= (u1,uz) such
fSupported in part by NSF award CCR-0205423. thatz = ui + us. For the verification of correctness the




EP prepares translations of the SLC where for example where for everyr < m < L, there are two indices j < m

x,y, z+y (an addition step) is translated in = (u1, uz),
Y = (v1,v2), W = (w1,wz) = X + Y. The EP posts
commitments to all numbers in the translations. The Veri-

fier will randomly choose, say, the first coordinate, ask the nomial functionf (x1, . .

EP to reveal (de-commit), v; andw;, and check that
up + v1 wi. A careful arrangement of the translation

process ensures that in the verification only truly indepen-

dently random numbets, y, u, v, - - - € F}, and their sums
or products: + v or u x v are revealed and checked.
The advantages of this method are manifold. Work-

ing with single or double precision integers and their usual

arithmetic operations rather than with bits at the ciraaitl

is considerably more efficient. Also, the translation ofhig
level operations into circuits raises the question of the co
rectness of the translation itself. Finally, expressing th
computation to be verified directly in terms of the numbers

such thatz,,, = z; o z; whereo is one of+, —, or x.

The numberz, is called the output or result of the
straight line computation. Clearly;, is the value of a poly-
., zp) of the input values.

We can also generalize our notion of a SLC to involve ad-
dition and multiplication by publicly known constants from
F,, and to include the inverse operatiop, = x; 1, al-
lowed whenz; # 0. Our results readily extend to this gen-
eral case as well, though we do not treat it here for the sake
of simplicity.

We assumen partiesPy, ..., P,, respectively holding
the input valuesey, ..., z,. The parties wish to perform
the straight line computation (1) on the input values and ob-
tain the resulte;, = f(z1,...,z,). They want to accom-
plish this by a secrecy preserving method, revealing ngthin
about the input values or the intermediate values in the com-

and operations involved is more understandable and con{utation, beyond what is implied by the value of the result

vincing to general users.
When it comes to verification via encrypted values, in

xr.r Atthe same times the parties, and perhaps others, want
to be certain that the revealed valug is the correct result

previous approaches such as [9] there is the need to emplo@f the straight line computation (1). Thus the protocol must

special encryptions such as Paillier's encryption, réggir
special intractability assumptions. Also, the operations
encrypted values involve computations with numbers with

thousands of bits and are quite slow. Experimental compar-
ison between conducting a secure verifiable auction using
the method proposed here, and doing the same using [9]

shows a hundredfold efficiency improvement.

The applications of ZKP methodology to the conduct of
secure secrecy preserving auctions in particular pose stri

gent requirements of efficiency on the one hand and of un-

derstandability and acceptability by the financial and busi

provide a secrecy preserving proof of correctness.
These requirements give rise to the following definitions.

Definition 1 An Evaluator-Prover [ P) for the SLC (1) is

an entity which, upon receiving input values, ..., x,,
outputs the valuer;, = f(z1,...,2,) and engages in

a proof of correctness to certify correctness of the result
value.

Definition 2 An Evaluator-Prover isecrecy preservini
the proof of correctness does not reveal anything about the
input values or the intermediate values in the SLC (1) ex-

ness communities on the other hand. We feel that in thiscept for the information implied by the output valug =

context the present method has clear advantages over othef(z4, ...,

solutions involving homomorphic encryptions, multi-part

computations, or reduction to obfuscated circuit computa-
tions, important as these approaches are on the theoretical

level.

2 Model and Definitions

Our computations are performed with elements of a fi-
nite field F,,, wherep is a moderately large (say 128 bits)
prime. Elements of’, will be denoted by lower case Ro-
man letterse, y, z, u, v, w, etc. and will be referred to as
numbers Computations with nhumbers are, of course, per-
formed modp.

Letxy,...,z, be elements of},, sometimes referred to
asinputs A straight line computation (SLC) on these inputs
is a sequence of numbers
1)

T1y--+3TnsTn41y---5TL

xn). An EP istrustedif it outputs or reveals only
27, and the proof of correctness.

In the real world, an example of a trusted Evaluator-
Prover would be an auctioneefU. The input values to
the computation are the values of bids submitted by parties
participating in the auctiof.

There are protocols that ensure that the auctioneer cannot
reveal any bid before the closing of the auction or change or
suppress bids after the closing of the auction. The extent
of trust we place il AU is that he will not reveal any infor-
mation about the bids except for the outcome of the auction
and what is implied by announcement of the outcome. For
example, in a Vickrey auction where the item goes to the
highest bidder at the price bid by the second highest bid-
der, the announcement will reveal the identity of the winner

1For example, ifc;, = 7 — x11 and the value ok, is revealed to be
0, then it follows thatry = x17.

2For the application to auctions we also require comparisut as
“z; < x;." We show in Section 9 how our secrecy preserving proofs of
correctness can be extended to deal with comparisons.



Whether the winner’s payment will be revealed depends onTranslations. The secrecy preserving proof of correctness
the announced rules of the auction. Our protocols can alsoof the published result of the SLC is achieved by a process
enforce secrecy of that payment, if so desired. of “translation” of z1, ..., 2y, into a sequenc& R(SLC)
The rationale for this partial trust model is that illegally of at mostO(L) pairs.The firstn pairs in the translation,
and selectively leaking out bid valubsforethe closing of denotedXy, ..., X,,, represent the input values, . . ., z,.
the auction, or announcing a false auction result, can lead t The pairsX,,.1,..., Xr_1 represent intermediate values
collusions greatly benefiting some bidders and the auction-used in the SLC, and play an important role in verifying
eer. Our protocols completely prevent such malfeasancethe correctness of the SLC. The final pair in the translation
On the other hand, leaking out bid valuefter the end of represents the output, of the computation, i.e. the value
an auction helps bidders who received such information in of this final pair isz, = f(x1,...,x,).
strategizing for future similar auctions. The value of this ~ The computations,,, = z; o z;, whereo is one of
information advantage is, however, relatively limited.nco 4, —, x, will be translated in a natural way into operations
sequently the auctioneer, who has his business reputation ton pairsU = (u1,u2), V = (v1,v2), W = (w1, wz) rep-
guard, has a substantial incentive notto leak outinforomati  resentingz,,, «;, z;. For exampler,, = x; + z; is trans-
after the conclusion of auctions. lated intoW = U + V i.e. ordinary vector addition. Sub-
Another model is to implement the trusted Evaluator- traction is entirely similar to addition, but the transtatiof
Prover by a secure co-processor. The secure processor ig,, = z; x z; is slightly more complicated and is described
a closed device for which all outputs are publicly observ- in Section 5.
able. The processor is trusted not to output any information
beyond that specified by the protocols. The published proofAspects. Ultimately, to achieve a probability less than®
of correctness assures the participants that the outpult res Of accepting a false result of the SLC, we shall require
is really the correct result of the SLC. The implementation X = O(k) randomly created translations of the SLC. (We
of this model, dealing with some of the subtleties it entails Shall see below thak” = ~k is sufficient where the con-
will be discussed in Section 10. stanty def 90.) As described in Section 7, in the verification
procedure the Verifier randomly samples some of thi€se
3 Overview of the method: Representations, translations and verifies various “aspects” of fig’s com-
Translations and Aspects putanon in the.selectefl transla,\,tlons. As (_jescnbed in Sec-
tion 6, these different “aspects” capture different eletsen
that are required for the overall computation to be correct:
one aspect deals with consistent representation of ihe
put values, one deals with correctness of the random repre-
sentations of zero mentioned above, one deals with correct-
ness of addition steps, and so on.
We now turn to the detailed description of the creation of
translations and of the proof of correctness.

Representations. In order to enable secrecy preserv-
ing proofs of correctness, the partiés, ..., P, and the
Evaluator-Prover represent the inputs and the intermediat
values in the SLC by pairs of numbers frdfj. In the fol-
lowing we shall use capital letters, Y, Z, U, V, etc. to de-
note elements of, x F),, i.e. pairs of numbers from,.

Definition 3 We say thall' = (u1, u2) represents € F,
if uw = u; + uz. We shall denote,; + us by val(U). A . e
participant in the protocol will create a random réprZesenta 4 Inputting and verifying the values
tion U of a numben: by randomly choosing; from F,, and L1y-eesTn
settingU to (u1,u — uq). Clearly val(U) = u.

We require a commitment functiofOM (-) and digi-
tal signatures for the partie,, ..., P,. (We give details
about the properties we assume for our commitments in

In particular, a random representatignof zero is ob-
tained by randomly choosing from F,, and settingZ to
(z, —z). We note that at the bit level, Kilian in [6] (inspired .
b blished work of Bennett and Rudich) used a similar Section 8.)

y unpu ) .
representation scheme with “pair blobs” to represent lyinar (EaCh party Fon, crea(tle()s K random repres.en.tanons
values (see also [1]). Xn' = (a1, bl?7 oy Xm ' = (ak,br) of his input

The high-level idea of our protocols is that a verification Valuez,. He privately sends:,,, SIGNy, (COM (zy,)),
of an operation in the SLC will be implemented by ran- @nd all K quadruplesa;, b;, SIGNm(COM(ay)),
domly selecting and revealing either the first or the secondS7GNm (COM (b;)) to the Evaluator-Provel P.
coordinates of the pairs representing the numbers in ques- The E P verifies thatz,, = val(X,(ﬂL)) = a; + b; for
tion. The idea is that revealing just one coordinate of a pair1 < j < K, verifies all thedK + 1 commitments, and
reveals nothing about the value of the pair. We give details verifies all digital signatures. If any verification failfien
and proofs in the following sections. according to the protocol, the EP rejeétg’s input value.



After all inputs were accepted by thBP, he posts,
for every party P,,, all the 2K signed commitments
SIGN,,(COM(a;)), SIGN,,(COM(b;)),1 < j < K,
to the representations of the valug.

Every Verifier can check and verify all the digital sig-

chooses a sequence dfk different superscripés(iy , j1),
..+, (iak, jok) uniformly at random from{1,..., K'}. For
each valuel < s < ak, the Verifier obtains from thé&' P
a proof, as detailed above, that the arrdy$) and7Us)
are value-consistent. If all proofs succeed then the Verifie

natures and thereby verify that the respective commitmentsaccepts.

were made by the partid’,, ..., P,. Henceforth we shall
assume that the signature verifications were successful an

that all commitments to pairs representing values are as-

sumed to have originated with the parties.

Next, we present a method of secrecy preserving proofs

for the claim by theF P that for everyP,, all committed-to
pairsX,(,i) represent the same value. As we shall see, the
method will establish a useful approximation to the vajidit
of the claim.

Consider two paird/ = (uy,uz) andV = (v1,v2),
where commitment€OM (uy), COM (uz), COM (v1),
COM (vy) are posted. We haveal(U) = val(V) if and
only if (u; —v1) 4 (u2 — v2) = 0. To prove equality of val-
ues ofU andV, the EP postsd; andds, which are claimed
to be respectively the differencés, — v1) and(ug — v2).
The Verifier randomly chooses an index {1,2} and re-
guests thall P reveal the values committed to by the posted
COM (u.) andCOM (v.). If dy +da # 0 Orue — ve # de,
then the Verifier rejects the claim thetl(U') = val(V). It
is clear that if actuallyal(U) # val(V'), then the probabil-
ity of the Verifier accepting the claim of equality of values
is at mostl /2.

Consider now two arrays of pail§ = Uy,...,U, and
T, = V1,...,V, where all commitments to components of
all pairs are posted, and the claim is being made that

val(Up,) = val(Vy,) forl <m <n.

2)

The Verifier uses the above verification procedure simul-
taneously for all couple#,,, V,, of pairs, employing the
same randomly choserfor all couples. If the claim is not
true, then the probability of acceptance by the Verifier is at
most1/2.

We shall say that arrayg, andT; arevalue-consistent
if (2) holds true.

Let7® = x . x) 1 <i < K, be theK ar-
rays of pairs of elements frorh,, whereX,(,i) is thei-th
pair submitted toF P by P,,. Denote byCOM (T®) all
the 2n commitments to the components of the pairs in the
array 79, According to the procedure of submitting in-
put values, all those commitments were posted byAlie
The E P claims that these are commitmentsiopair-wise
value-consistent arrays. Denoting BY) [m] them-th pair
in the arrayT(9), this means that for eveny, all values
val(T"[m]) are equal.

Fix o %' 5.5. To validate theEP's claim, the Verifier

heorem 4 Ifthe EP’s claim that all pairs of arrays (given
y their posted commitments) are value-consistent is true,
then E'P can obviously pass the verification.

Fix 5 ger 2/3. To see that this is an effective verifi-
cation strategy, let us suppose that for every superscript
1€{1,...,K}, fewerthanBK = vk = 60k of the arrays
are value-consistent with the arrdy”). We may view the
choices of the pairs of superscripts as being done sequen-
tially, i.e. in the(s + 1)-st round the paiis1,js+1) iS
chosen from the remaininj — 2s superscripts.

Now for0 < s < ak, in the(s 4+ 1)-st round, regardless
of the outcomes of previous rounds and of the value cho-
sen foris41, there are at mosiyk = 60k superscripts that
are value-consistent with . ; out of the remaining pool of
vk — 2s > vk — 2ak = 79k possibilities forjs11. So the
(s + 1)-st pair chosen is value-consistent with probability
at most—22E__ — 80 and thus isot value-consistent with

vyk—2ak — 79’
T aok—2ak—pyk _ ~y—2a—By __ 19
probability at least hsah . = Toosa . = 79 If the

(s+1)-st pair chosen is not value-consistent, then the verifi-
cation survives thés + 1)-st round with probability at most
1/2. So in each of thevk rounds, regardless of what has
happened before, the probability that the verification sur-
vives that round is at most — 1522700 — (1 — ).
Consequently, the overall probability that the Verifier ac-
cepts is at mostl — 1529 Br)ek — (1 _ 1955k Gjnce

2y—4a 158
0.4942 ~ (1 — 12%)%5 < 1/2, we have proved:

Theorem 5 Suppose that for the sequence of arrays
7MW, ..., 7)), where each array comprises pairs of
numbers fron¥},, there is no subsef with |S| > SK such
that every two arrays irf are value-consistent. Then the
probability that the Verifier will accept the proof of value-
consistency of all couples of arrays in the sequence is at
most1 /2%,

5 The Translation Process

Once the input values were submitted in pair represen-
tations and accepted by tli&P as above, thé’ P prepares
K translations of the SLC (1) as follows. To avoid cumber-
some superscript/subscript notation, below we consider on
arrayT = X4,...,X, of representations of the submit-
ted input values.

SThat is, ok pairs of superscriptgi, j) used to identify the arrays
T T() to be compared.



In the computation (1), an input or intermediate result  four intermediate steps:
will in general be involved in several subsequent operation

’

x;0%; = T, T0 enable our secrecy preserving proof of cor- X1 = (w1v1,0) + Zipr (6a)
rec_:tness, we prepare in the translation, ali¢éa represen- Xr/;+1 = (u1v,0) + Zyso (6b)
tation of x;) was inputted or computed, as many new ran- o

dom representations ol1(X;) as there are involvements of Xop1 = (u2v1,0) + Zigs (6¢)
x; in subsequent computations in the SLC (1). X0 = (ugv9,0) + Zisa (6d)
Definition 6 Let X be a pair. Anew random representation Xnt1 = X+ X + X0 + X0 (6€)

X' ofx = val(X) is obtained by randomly choosingrom
F, and settingX’ to X + (z, —z),i.e. X' = X + Z, where
Z is arandom representation 6f

It is clear from the distributive law thatal(X,, 1) =
val(U") x val(U") = x; X &j = Tp41.
The first new random representationX,,,; and the
The EP starts by extending the array,, ..., X,, by su_bseque_nt new random r.epresentations,gfl are ob-
Z1, ..., Zs each of which is an independent random repre- tained asn (4) and (3), using new successive random rep-
sentation of), wheres = O(L) is the total number of new resentations, (_)f 0from the given list.
representations that will be created in the translation pro . The_ translatlon_process of the SL.C.(l) now proceeds
cess. Next, if say:; occurs ins; subsequent computations |nduct|vely, operation by Opefa“o”’ similarly to th_e tean
in (1) (where we count a computatien o z; as having two lation of 211 = 2; o z;, USING new representations of

occurrences of,), then theE' P extends the translation ar- operands and of zero at every stage_.
ray by Y Y.. HereY, = X1 + Z;, 1 < j < s Thus the outcome of the translation process for the case
PR B J 79 = = .

Tpt1 = T + T will be:

The other inputsXs, ..., X,, give rise to additional new
representat!onk;ﬁl,...,Yt in a similar way. Each new TR = X1, Xo,Z0reee ZaVere o Yo, Xnin,
representation employs the next unusgd

Consider now the first operation,; = z; o z; of (1), NXni1, Yerts oo Yigsns o X1 (7a)

where on the right hand side we have input values. We first

consider the case that the operatiois the + operation. In (7a), all symbols retain their meaning from the above

To translate this operatiol; P chooses from the sequence @scussmn. ThatisXy, ..., X, are representatlo.ns of the
. . input values; 7y, ..., Z, are random representations @f
Y1,...,Y; the first new representations of andz;. Call ' .
Y1, ...,Y; are new random representations of the input val-

these, to avoid double indice¥; = (uj,v;) andY” =

(us, vs). The translation of, ;1 — a; + z, is ues; X, 1 is a representation af, 1, obtained as in (3);

N X, 11, is a nextrandom representatiorugf, ;, obtained
X1 =Y +Y" = (w1 + us, v1 + v2). 3) asin (4);Yet1,- - ,.Ytﬂwllare further random represe.nta—
tions ofz,, 1, obtained as in (5), and ;, is a representation

Next EP creates a first new representatidiX,,,, of ~ ©f the outputry.

val(X,,11), which of course equals; + z;, by employing _ I.n the caser,+1 = z; x x;, the translation will look
Z,.1, the next unused representatioraf like:
NXn+1:Xn+1+Zt+1 (4) TR = X}a"'aXnaé/l/a"'aZ‘Sayvla---aYVta
Xn+17 DRI Xn+17 Xn-i—la NXn+17
Now, if 2,41 IS useds,_; times in the SLC (1), thé& P Yitts o Yivonins - X1 (7b)
createss,, 1 new random representationsf; by: "
whereX,,1,..., X,.1, X,11 are obtained as in (6a)—(6e).
Yipr = N1+ Zeyas o5 Yigs, o = NXnp1 4+ 2145, Note that our notation is such that in a translatibR,
) ) ) (5) the pairsX;, ..., X,,, Xp,+1, ..., X, correspond to the val-
Note that in creating the new representations (5) we USeuesyy, ..., o, Tnt1, ..., o1 inthe SLC (1). We next show
the first new representatio X, 1, rather than the repre- ¢t the pairsX; actually represent the corresponding val-

sentationX,,;; of x,,41. The reason for that will become

clear in the proof for the secrecy preserving nature of the

proof of correctness. Theorem 7 If val(X;) = x; for 1 < i < n, thenval(X;) =
In the other case, wherg, 11 = z; x z;, the translation zjfor1 <j <L

is more complicated. Let agali’ = (uq,v;) andY” =

(uz2,v2) be the new representationsafandz;, as above. Proof: Considerz,y+; = =z; o x;. The construction of

We obtain the representatiofy,; of z,+1 = x; X z; via X,+1 in the translation by (3) in the case of = +,

uesz;.



and by (6a)—(6e) in the case of= X, together with the
fact thatval(Z;) 0foralll <t < s, implies that
val(X,,+1) = x,+1. The proof now proceeds by induction
onj. O

6 Verifying Aspects of Translations

We recall that each of the partids, ..., P, has cre-
ated and submitted t& P K representations of their input
values. Thely P verifies the digital signatures, the commit-
ments, and the fact that each pafdy, has submitteds
representations of the same valyg.

Next EP createsk translations'R\), 1 < j < K, of
the SLC (1):

TRV = x99 .. x9 79 . 70
v,y x B Nx ),
YO, X (8)
The arrayX”, ..., X7, consisting of the-th input pairs

submitted toEP by P,..., P,, is extended byEP to
TRY) in the manner detailed in Section 5.

The E P now posts all the signed commitments to (coor-
dinates of) the input pairs, and commitments to (coordmate
of) all the other pairs in all translations. THh&” claims that
the posted commitments arekbcorrect translations of the

Aspect 2. We say thatl'R is correct in Aspect 2 if every
computation of a new representatidig ; from a represen-
tation X ;, in the manner of (4), is correct.

To verify correctness in Aspect 2, Verifier randomly
chooses: € {1,2} and presents to EP. If ¢ = 1 then
EP reveals (de-commits) the first coordinate in all com-
putations of NX; = X; + Z,(;) within TR. The Verifier
checks that the first coordinates &f and Z ;) sum up to
the first coordinate ofV.X;. He rejects the whole proof if
even one of these checks fails. The case 2 is handled
similarly.

Note that if a translatiofi’ R does not satisfy the condi-
tion X; + Z.;) = NX; for all indicesj, then it will be
accepted by the Verifier with probability at mdst2.

Aspect 3. We say thatl'R is correct in Aspect 3 if all
computations of the new representatidfs. . ., Y; of the
input-representationX’;, ..., X,, and all the further new
representations of ; obtained fromV.X; in the manner of
(5) are correct.

All of these computations are of the form = X; + Z
for the input value representations a¥id= N .X; + Z for
representations of intermediate results of the SLC, where i
each cas¢ is a specific representation of 0 from the list in
T R. So the Verifier has to verify the correctness of all these
addition operations. This is again done as in the verificatio
of Aspect 2, with probability of error at mosy/2.

Aspect 4. We say thafl'R is correct in Aspect 4 if all the

SLC on the same input values. If that is indeed the caseyransiations of addition operations, = x; + z; of the
he will be able to respond correctly to all challenges by the SLC, in the manner of (3), as well as all additions of the

Verifier. Thus the proof method is complete. All true state-
ments are provable.

The Verifier will verify the correctness of nine of what
we shall loosely call “aspects” of the posted translations.

form X,, = X, +---+ X,. arising in translations of

multiplications (see (6e) whera = n + 1), are correct.
Thus the Verifier has to check all equalities of the form

X,, =Y’ +Y" and of the formX,,, = X;n +-4+X"in

m

Aspect 0.As demonstrated in Section 4 above, by randomly the translation. This is again done by checking correctness

choosingak = 5.5k pairs of translations, the Verifier ver-
ifies with probability of error smaller tha?—* that for at
leastB K = 2K /3 translations, for every partk,,, all sub-
mitted pairs represent the same valye (See Theorem5.)
We shall consider that unique,, to be P,;,’s input to the
SLC.

Every translation involved in the above verification is
discarded and is not used in the following verifications of

of additions, with probability of error at mosy2.

Aspects 5-8 deal with correctness of the translations of
product computations,, = x; x z;. Let X,,, be the repre-
sentation ofr,,, andY’ = (u1,v1) andY” = (ug,v2), be
respectively the representationsigfandz; in TR, used in
the translation of the product computation.

Aspect 5. We say thafl'R is correct in Aspect 5 if for all

other aspects of the proof. We now describe how aspectdranslations of product operations in the manner of (6a)—

1,...,8 are verified for a given fixed translation, which we
denotel'R.

Aspect 1. For a posted translatiof R, (7a) or (7b), we
shall say thafl'R is correct with respect to representations
of 0, ifforall 1 < j < swe haveval(Z;) = 0.

To verify thatT' R is correct in Aspect 1, the Verifier re-
guests of E P to reveal (de-commit) all coordinates of all

(6d), the equations

X, = (w1v1,0) + Z, ©)
whereZ is a specific representation@from the list inT R
(a differentZ for everym), are true.

Again the Verifier randomly chooses € {1,2} and

presents: to EP. If ¢ = 1 then EP reveals for all trans-

pairsZ; and checks that for each pair the coordinates sumlations of products the first coordinatesof X,/m z of Z,

up toO0.

and uy,v; of Y, Y”. The verifier accepts only ifv =



up X v1 + z is true for all translations of product compu- As described in Section 6, R is incorrect in Aspect
tations in SLC. Ifc = 2 then E P reveals for all translations  r, it will pass the test with probability at mosf2. Conse-
of products the second coordinate’sof X,’n, z' of Z. The quently, if 7RY) is incorrect in any one of the Aspects 1-8,
verifier accepts only ifv’ = 2’ is true for all translations of it will fail its check with probability at least /16. We will
product computations in SLC. Clearly,fR is not correct  use this observation to prove the following:

in Aspect 5, then the Verifier will accept with probability at

most1/2. Theorem 8 Fix ¢ & 31. Suppose that of th&; = K —

Aspects 6, 7 and 8 of a translatiai® of the SLC deal  20% = (7 = 2a)k = 79k translations inSy, fewer thanck
with the correctness of the translations)ﬁf; X and translations are correct in all Aspects 1-8. Then the prob-
X" respectively, according to (6b), (6¢) an,d (é’a) They ability that all 6k = 29k of the Verifier's checks succeed is

m 1 L] . k
are defined, and are checked by the Verifier, in a way simi- smaller thant /2.
lar to the treatment of Aspect 5. In each case the probability

. Proof: We view thedk choices fromS; as being done se-
of erroneous acceptance is at mb&2.

quentially, i.e. in thgs + 1)-st round the translation is cho-
sen from the remaininé; — s translations. By assumption,
7 Proof of Correctness and Error Probability ~ for 0 < s < 6k, in the (s + 1)-st round, regardless of the
outcomes of previous rounds, there are at mést 31k
Putting together the verification procedures describedtranslations that are correct in all aspects 1-8 among the re
above, we now describe the overall proof of correctness ofmaining(y —2a)k —s > (v —2a—§)k = 50k translations.
the posted result;, of the SLC, and prove an upper bound So the(s + 1)-st translation chosen is correct in all aspects

of 1/2* for the probability of error. with probability at most—-— = j, and is incorrect in
In the first step of verification, th& P postsK trans- some aspect with probab|I|ty at |eagf2aT666 18_ By

lations of the SLC (1) in the form of commitments to all the observation above, this means that regardless of what

coordinates of the pairs in the translations. _ has happened before, for each value s < §k, the verifi-
Aspect0 of the correctness of the translatiofigz(7), cation survives thés + 1)-st round with probability at most

1 <j < K,isthatthe arrayg((” LxP1<j <K, (1-— 16(72”7255) = (1 — 33). Consequently the overall

of representations of the input values to the SLC are pair-probability that allsk = 29k of the Verifier's checks suc-

wise value-consistent. The Verifier checks this by randomly ceed is at mostl — 16(72372(5—56))(% =(1- 810%)2% Since

choosingak = 5.5k pairs of translations and performing 4950 ~ (1— 49929 < 1/2, the theorem is proved

the tests described in Section 4. As described in Theorem 5, 800 ’

if there are fewer thapK = 2K/3 = 60k translations After performing the verifications of pairwise consis-

with pair-wise value-consistent input value arrays, thent  tency of translations of input values and the verifications
Verifier will accept the whole proof with probability less 0f the correctness of Aspects 1-8 of the translations, there
than1/2k. remainks, def K, — 6k = (y — 2a— §)k = 50k untouched

Denote byS; the translations not involved in testing translations. The verifier now asks tf&° to open all the
Aspect 0, and denote b¥; % K _ 2ak the number  commitments to the components of the pa"(ré’) in these
of translations inS;. Recalling thatk' = ~k, we have [, translations. If novaaI(X( )y = 2, for all theseXg),

K1 = (v —2a)k = 79k. then the Verifier accepts;, as the result of the SLC.

Consider the case in which at leask’ of the original Now we can upper bound the probability that the Verifier
K translations have pair-wise value-consistent input value wj|| accept a wrong value for the outpaf, of the SLC (1):
arrays. Sincél = vk, atleastSK — 2ak = (8y—2a)k =
49k of the K1 = (v — 2a)k = 60k translations inS; have ~ Theorem 9 [Main Theorem.] Assume that the Verifier ac-
pair-wise value-consistent arrays of inputs. The common cepted all components of the proof of correctness, i.e. the
valuesz, ..., x, represented by the pairs in those consis- proof of pair-wise value-consistency of the arrays of isput
tent arrays are, by definition, the input values of the SLC. values of théX translations, the proofs of correctness of the

Fix 5 %" 29 The verifications of the correctness of As- translations in respect to Aspects 1-8, and the agreement of
pects 1-8 of the translations i proceed as follows. The all revealed values of the pau:K( . Then the common re-
Verifier chooses a set afk t_ranslations uniformly from  vealedr; = val(Xéj)) is the output value of the SLC with
S,. For each translatiof R¥) of thesedk, he randomly probability of error smaller tharg /2",
chooses an integer € {1,...,8} and a challenge <
{1,2} and performs a check for the correctness/at(?) Proof: It was shown above that the successful verification
in Aspectr. If any of thedk checks fail, then the Verifier  of Aspect 0 — the pair-wise value-consistency of the repre-
rejects. sentations of the input values — assures with probability of



error at mostl /2* that at least & = 2/3 fraction of the

K = vk = 90k translations are pair-wise value-consistent
with respect to the arrays of theinput values. Thus at least
Ki1—(1-B)K = (y—2a)k—(1—f)vk = (By—2a) = 49k

of the remainingk’y; = (y — 2a)k = 79k translations are

pair-wise input-value consistent. This defines a unique se-

guence of common values,, ..., z, represented by the
pairs in these consistent arrays (which form a majority of
the K; remaining arrays); these values are, by definition,
the input values of the SLC.

By Theorem 8, if the translations ifl; passed the tests
on the randomly chosef% = 29k translations, then with
probability of error smaller thah/2%, more tharek = 31k
of the translations are correct in all Aspects 1-8. This im-
plies that among the at leagty — 2a)k = 49k pair-wise
input-value consistent translations #, at least(8y —
2a)k+ ek — (v —2a)k = (e— (1 —B))k = k translations
are also correct in all aspects, this with probability oberr
at mostl/2*. Let S5 denote any fixed set df translations
that are correct in all aspects.

Now we observe that the probability that thie = 29k
translations randomly chosen frosh include allk transla-
tions inSs is

59 Sk(ok —1)---(6k — k +1)
(?];) Ki(K;-1)--- (K1 —k+1)

< (%)k = (7 fza)k = (29/79)F.

Since0.3671 =~ 29/79 < 1/2, we have that with probabil-
ity of error smaller thanl /2%, after thesk = 29k transla-
tions are removed frorfi;, there remains at least one trans-
lation that is correct, has the correct representationthfor
inputsvalues, ..., x,, and was not used in any of the ver-
ifications. Since the revealex:il(Xg)) is the same for all
the translationd’RU) not used in any of the verifications,
that value is the correct output valug of the SLC (1). The
total probability of error is less thagy2*. O

8 The Verification of Correctness is Secrecy
Preserving

We shall conduct our proof of the secrecy preserv-
ing property in the random oracle model for the com-
mitment functionCOM. Thus we assume thaiOM :
{0,1}F+128 10 1}F+128 js a random permutation.
Whenever theE' P or the Verifier has an argument value
w € {0,1}*+128 he can call onCOM and get the value
v = COM (w). To commit to a numbet € F,, the com-
mitter randomly chooses a help values {0,1}* and ob-
tainsv = COM (r||z). To de-commitv, the committer re-
vealsr andz, and then the commitment tois verified by

calling the functionCOM. (See [4] for a related but more
sophisticated approach to commitments.)

The EP prepares the( translations of the SLC (1) as
detailed in Sections 4 and 5, and posts commitments to all
the coordinates of all the pairs appearing in the transiatio
keeping to himself the help values, r3,... employed in
the commitments.

The main idea of the proof is that in the verification pro-
cess all that is being revealed are randomly independent ele
ments ofF},, and relations of the form; +us+- - -+us = v
oru; x up = v, forrandomly independent , us, . .. in F,.

The properties of the commitment scheme ensure that noth-
ing can be learned about a value F,, from a commitment
to it.

To simplify the proof of the secrecy preserving nature
of the verification process, we assume that every pBjty
is proper and submits to theP K randomly independent
representationxj(.l), . .,XJ(K) of his input valuex;. Al-
lowing improper parties does not change the essence of the
proof and the result.

We shall consider the verifications of Aspects 0—8 of the
translationsTRY), 1 < j < K, posted by theEP via
commitments.

Aspect O relates to the pair-wise value-consistency of the
arrays of inputs. In the basic step the Verifier requestseof th
EP to reveal for two representatiodé,(,? ande,i) of in-
putx,,, submitted by partyP,,, the values of, say, their first
coordinates.'? andw'?). The Verifier then verifies that
u,(f;) — u%) equalsdy, a value that was posted #yP. Since,
according to the protocol, par§,, used random represen-
tations ofz,,, (see the beginning of Section 4), all these first
coordinates are independent random elements, of

We recall that every translatiof R\7) (see (8)) con-
tains representationgfj), .. .,Zﬁj) of 0; new representa-

tionsYl(J)7 . .,Yt(”7 ... so that everye,, in the SLC has
as many new representations as the number of times it is
involved in computations of the SLC; and representations
NX,(,{) for everyz,, resulting from a computation in the
SLC. Aspects 1, 2 and 3 respectively deal with the correct-
ness of thes, Y and N X representations.

The first lemma addresses thés:

Lemma 10 In the set of translation§T RV, ..., TR},

any collection of coordinates of representations of O which
does not contain both coordinates of the same representa-
tion, consists of independently randomly chosen numbers
from F,.

Proof: This follows from the construction of the random
representations of @

The next lemma addresses ftis and thelNV X's:



Lemma 11 Inthe set of translation§TR™"), ..., TRF)}, Proof: The equations to be simultaneously verified are of
any collection of coordinates of the representatians’ the formX; + Z,(;) = NX; whereZ,; is a new random

and Nanj) which does not contain both coordinates of the '€Presentation of 0 for every equation. The verification is

same representation, consists of independently randomiydone by checking equations of the formt- = = v where
chosen numbers fro,. in each case, z, v are simultaneously the first or simulta-

neously the second coordinatesf, Z. ;) andN X ;. The

N - random independence claim for thev now follows from
Proof: Every such representano}‘@(” or NX{ is the Lemma 12Dp e

result of an operation of the forrﬁ;(” = X+ Zor
NX{) = X + Z, whereX is some previous pair it R
and Z is a random representation 6ffrom TRU), and
where 7 is used only once. The result now follows from
the previous Lemmadl

Lemma 14 Verifying Aspect 3 of a translatidfi R involves
checking equations of the formt z = v where all the num-
bersu, = revealed (de-commited) are randomly independent
elements irF,.

Checking Aspect 1 of a translation involves the revela-
tion by the £ P of all coordinates of all representationsiof
in a number of translations. By construction of the transla-
tions, all representations, —z) of 0 were constructed by
the E P using independently random choiceszgfand no : i
other value in those translations is revealed. Thus the re_r_epresenta_mon of 0 from the lisf,, ..., Z, of representa-
vealed values are randomly independent and randomly in-tions of 0 inT'R. The result follows from Lemma 12, the

dependent from any other values revealed in the total verifi- CONstruction oiZy, ... Z,, and the fact that verifying such
an addition of representations (pairs) involves revetatib

Proof: Verifying Aspect 3 involves verifying all equations
of the formY = X; + Z for the input value representa-

tions andY = N.X; + Z for representations of intermedi-
ate results of the SLC, where in each cases a different

cation.
We recall that in a translatiorTR, the symbols either all first coordinates or all second coordinates of the
X1, Xo, ..., X, ..., X denote representations of the val- pairs in questiorl
uesryi,xa,...,Tm,...,xr of the SLC (1).
Lemma 15 Verifying Aspect 4 of a translatidAi R involves
Lemma 12 Let U — {X((j)ﬂ)’ . ,Xéj) |1 < j < checking equations of the form + v, = v andw; +-- -+

K} be the set of all representations of non-input values W+ = @ Where all the numbers,, uz, wi, . ..., wy revealed
Znsis ... ap in all translationsTRY), 1 < j < K, of the (de-commited) are randomly independent elements,in
SLC (1). Then any collection of coordinates of the repre-
sentations i/ which does not contain both coordinates of
the same representation consists of independently randoml
chosen numbers frot,. We move directly to the statement that the verification of
Aspect 6 is secrecy preserving. The proof for the secrecy
Proof: By the construction of a paik'?’ in the translation ~ Preserving nature of Aspects 5 and 7-8 is similar.
TR, if z,,, = x;+x, inthe SLC (1) then ) = Y'+v”
whereY”’, Y" are new random representationsagfand
z; (see (3)). Thus the claim follows from Lemma 11. If
T = Ti X X5 thean,{) is constructed from new random
representations’, Y of z; andz; according to (6a)—(6€).
The use of random representations of 0 in (6a)—(6e) estabproof: Verifying Aspect 6 involves checking i R simul-
lishes the claiml] taneously all equations of the form (6b) arising in trans-
lations of multiplicationsr,,, = x; x z; of the SLC (1).
Such a translation employs unique random representations

Proof: This follows from the definition of Aspect 4 in a
manner similar to the proof of Lemma 14.

Lemma 16 Verifying Aspect 6 of a translatidiiR involves
checking equations of the form x vy + 2z = w; where
the numbers, vo, 2 revealed (de-commited) are randomly
independent elements k).

Remark.  Under the assumption that all parties

Py,..., P, are proper, Lemma 12 extends to the coordi- _,, "
. Néj) 9 of all the num- Y = (_ul,vl) andY” = (usg, vq) Of z; .a.nda:j. and a repre-
nates of the representatioy™, ..., Xy sentationZ = (z, —z) of 0. To be verified simultaneously

berszy, ...,z of the SLC (1). are all additionsY, = (u; x v2,0) + Z in T'R. If the chal-

o ) _ lenge isc andX,',; = (w1, ws) then all theu;, v, z andw;
Lemma 13 Verifying Aspect 2 of a translatidlR involves  gre revealed by th& P and all equations; x vs + z = w;

checking equations of the form+ > = v where all the  are checked by the Verifier. By Lemma 11, all the revealed
numbers., z that are revealed (de-commited) are randomly 4, - are randomly independent elementsf O

independent elements k),.



Theorem 17 The verification of correctness of tiétrans- 9.1 Background and Motivation
lationsTRY), 1 < j < K, of the SLC (1) is secrecy pre-

Serving. Cryptographic auctions are an ideal example to illustrate

our work in a real-world context. Auction theory has devel-
Proof: The verification process involves randomly choos- oped complex pricing algorithms for “strategyproof” auc-
ing 2ak = 11k translations for verifying Aspect 0 (the tions (that is, a bidder’s best strategy is to bid her truk uti
value-consistency of the input arrays) and randomly choos-ity), but information about one bid being revealed to anothe

ing 6k = 29k arrays for verifying Aspects 1-8. bidder could change the outcome of the auction. Moreover,
LetCy,...,Ck be a collection of coordinates of repre- in many applications, such as wireless spectrum auctions

sentations of values from the translatich® ("), 1 < j < conducted by the FCC, bidders do not want their bids to be

K, such that na’; contains both coordinates of the same revealed to other bidders (because it constitutes prapyiet

representation (pair). By the construction of thieransla- business information) yet the auctions must be transparent

tions, the values in angZ; are randomly independent from  to comply with Federal regulations.

the values in all othef’;’s. Thus we require an auction protocol with the following

Any one of the(a + 8)k = 40k translations used in the ~ characteristics: 1) it must be practically efficient enotgh
verification is involved in the verification of just one of the compute functions of the bids; 2) bids must be secret, in
Aspects 0-8, i.e. is used only once. that no bidder can learn anything about any other bid be-

By the detailed analysis given above for the verification fOre the deadline to submit a bid; and 3) the results must be
of Aspect 0 and in Lemmas 10-16, all the coordinate valuesable to be proven correct without revea!lng the originasbid
from presentations of a translatidnR?/) revealed during Our method supports all of the§g requirements: 1) we have
the verification satisfy the condition ofi;. Furthermore, demonstrated our protocol’s efficiency in gmpmca} teg)s;
they are mutually randomly independent valuegjn ex- ‘?thef cryptography, such as cryptographic cpmmﬂments or
cept for relations such as—+ z — v, uy X vs + 2 — wy, time-lapse cryptography [11], can enforce bid secrecyl unti

etc. dictated by the structure of the translation procegs. B the auction is closed; and 3) the protocol presented in this
the above observation off;. ....Cx. the verification of work issues a correctness proof that reveals nothing about

Aspects 0-8 only reveals some randomly independent elethe bids (clearly, it reveals nothing that is notimplied bg t

ments off}, and some sums and products of such elementsresu“s)' . . .

(which could be computed by the Verifier on his own). The extent of trust we place in an auctioneer is that he
Finally, in everyT R not used in the verification of will not reveal any information about the bids except for the

Aspects 6—8 the Verifier asks tHeP to de-commit both  °utcome of the auction and what is implied by announce-

. G G ) e ment of the outcome. For example, in a Vickrey auction
coordinates o ;7 = (uj", vj,"). The Verifier checks that where the item goes to the highest bidder at the price bid

all the revealed pairs have the same st + o) = 7, by the second highest bidder, the announcement will reveal
wherezy, is by definition the result of the SLC (1). The e identity of the winner. Whether the winner’s payment
revealed coordinates of all th&” involved in this final  will be revealed depends on the announced rules of the auc-
step are again randomly independent valuegjnsubject  tion, but if so, then the second highest bidder’s bid is also
to the condition that the two coordinates of each pair all sum revealed. When the rules demand it, our protocols can en-
to the same value. force the secrecy of auction payments, so that each bidder
We are working in the random oracle model for the receives a private proof of the correctness of any payment
COM function. Thus for all values: of coordinates of  without learning additional information.
pairs in all translations, the values= COM (r||x) are The rationale for this partial trust model is that illegally
randomly independent elements{of, 1}*+128. 0 and selectively leaking out bid valubsforethe closing of
the auction, or announcing a false auction result, can kenefi
particular bidders, the auctioneer, and/or the seller. oy
ot : tocols completely prevent such malfeasance. On the other
9 An Application to Auctions hand, leaking out bid valuedterthe end of an auction only
helps parties who receive such information in strategizing
In this section we sketch an application of our method for future similar auctions. The value of this information
to secure auctions. After touching on security and privacy advantage is, however, relatively limited. Consequeihity t
concerns particular to cryptographic auctions, we augmentauctioneer, who has his business reputation to guard, has
the basic approach for straight-line computations desdrib a substantial incentive not to leak out information after th
above to handle comparison steps< y and summarize a  conclusion of auctions; and as we will see there are other
cryptographic auction protocol using our methods. approaches to building secure systems in which such post-



auction leaks can be prevented. We proceed in three steps in this subsection. We first
suppose that the Evaluator-Prover has a valye = < b,

9.2 Summary of an Auction Protocol and we explain how thé&' P can prove that-b < z < 2b.
Next, using this first step, we explain how if theP has

In [9] (for a more detailed review, see the literature 0 < = < b* he can give a secrecy preserving proof that

quoted there), a protocol is proposed for conducting secure? < @ < 16b°. Finally we describe how this enables him

and secrecy preserving auctions. Bidders choose their bidst® Prove thath < = <y < 16b* for two valuesz, y that

encrypt them using a homomorphic encryption scheme, andSatisfy0 <z <y < b.

send commitments to these encrypted bids to an auctioneer; SO let us suppose that el has a valué) < z < b,

they do this by posting them on a public bulletin board. Af- @nd wants to prove thath < z < 2b, i.e. that eithe0 <

ter all bids are in, the auctioneer announces that the auc® < 2b0rp —b <z < p. The following construction is an

tion has closed, and the bidders submit their encrypted bids2daptation of a method of Brickedt al. [2] to our context.

to the bulletin board. These can be easily verified against 1he EP selects a random value < wo < b and sets

the previously published commitments. The auctioneer then®1 = wo — b. He sets

privately opens the encrypted bids and computes, according {wo o ifwgt+z<b

to the posted auction rules, who the winner(s) is (are) and r= )
wy +x  ifb<wy+ x.

their payments. He then posts a publicly verifiable Zero
Knowledge Proof for the correctness of the results, based; . he seen that thisis uniformly distributed in the inter-

on th? encrypted bids publifshed on the buIIetin_ board._ val [0, b]. If a Verifier checks that the pajiwg, w; ) satisfies
This proof can be done in a manner revealing the iden- 4 conditionw; + b = wo and that for some € {0, 1}, it

tities of the winners and their payments or, if so desired, i the case that < we +x < b, then the Verifier may infers
concealing that information. But in any case, the bids of all {hat_p < + < 2 is true. ’

other bidders except for those of the winners remain secret. 14 enable the verification in a secrecy preserving man-
The only trust assumption made is that the auctioneer, Whoner, the P includes in the translatioriER a representa-
knows the bid values, will not reveal that information after 4oy x for &7 two representation®”’, W, for the values
the auciton. The protocol described in [9] employs Pail- wo andw;; and a representatiaf for the valuer defined
lier's homomorphic encryptipn scheme [8] for bid secrecy by (10). We stress that the two representatitifs W in

and proofs of correctness; his scheme allows these proofs tqne transiations occur consecutively (these can follow the

be verified by using only the encrypted bids. Z’s in the overall translation of the entire computation, see
It was shown in [9] that the protocols given there are (g)) pyt in an order that is randomly chosen by the veri-
practical and that currently available computing power suf fie; That is, when the translations are being constructed,

fices to implement auctions with thousands of bidders {he £ p randomly decides whether the first representation

within reasonably practical time (on the order of one day ;7 will representu, or w; (and then the second represen-

for a single computer). Still, that solution employs specia i4tion represents the other value).

encryption functions and basic Paillier encryption is asel From the above description, we have that the translation

tively heavy computation. . of the statement-b < z < 2b requires commitments to
Our theoretical framework for secrecy-preserving, prov- eight values in,, (the two components of each of the four

ably correct computation described above is extendible forpairsX W', W”, and R). For the actual verification we

conducting a sealed-bid auction; to complete the necessaryyqgify three of the previously described Aspects (Aspects
set of primitives we now explain how zero-knowledge com- 1 2 5nd 3) as we now describe.

parisons of two values can be handled in our protocol. (This |, Aspect 1, we shall now also say that a translafiti

is a general extension of the SLC framework independentis correct with respect to representations of ths if for

of the specific application to auctions.) In Section 9.4 we g5 couple of pairs”’, W arising in a comparison step
describe some simple optimizations of the basic approach,s described above. we have (W) = val(W") — b or
described in the previous sections that give an improvementval(Wu) — val(W') — b. To verify thatT'R is correct in

in efficiency. In Section 9.5 we give an example of how our agpect 1, in addition to checking all zeros as described ear-
augmented approach can be used to prove correctness of gy the Verifier also requests @ P to reveal (de-commit)

(10)

Vickrey auction result. all coordinates of all pairsl”’, W and checks that for the
values corresponding to each pair, it is indeed the case that
9.3 Translation of Inequalities 0 < z < B one of the two equalities holds.
and z <y. In Aspect 3, we shall now also say that a translafioR

is correct with respect to representations of the if for
Let0 < b < p be values that satisf§2b? < p. each comparison step as described above, it is indeed the



case that for som&™* e {W’', W"} we haveval(R) = In the next section we shall describe an optimization that
val(W*) + val(X). To verify thatT'R is correct in As- let us reduce the number of commitments required for a
pect 2, in addition to checking all computationsiaf . . . naive instantiation of the above approach.

as described earlier by choosing a random {1, 2}, the

following moreover takes place. THeP selects the ele- 9.4 An optimization: more efficient sum

ment of {WW’ "} that corresponds to the correct value of of four squares and other sequences of

¢ such that- = w¢ + x; we refer to the element he selects additions.

asW*. If ¢ = 1 thenEP reveals (de-commits) the first co-

ordinate in all computations dt = W + X. The Verifier Here we briefly note an optimization that can be per-

checks that the first coordinatesléf* andX sumuptothe  formed to reduce the number of commitments required to
first coordinate ofk. He rejects if even one of these checks perform the sums of four squares in (11) and certain other

fails. The case = 2 is handled similarly. sequences of operations.
~InAspect 2, we shall now also say that a translafiai The optimization is to perform a sequence of additions
is correct with respect to the range of thi if the new rep- “in one step”, similar to our implementation of a multipli-

resentation?? satisfies) < val(R) < b. To verify correct-  cation step. Recall thata multiplication step = x; x 2 is

ness in Aspect 2, in addition to checking all computations jymplemented as follows: after constructing representatio
of NX; as described earlier, théP de-commitsboth co- X, . X! X" andX", the EP constructs the finak,,

ordinatesin all computations of, the new representation 55y’ X’m+ X" 4+ X" in one step, rather than per-
™ . . m m m m '
of . The Verifier sums the two coordinates to obtaif( 1?) forming three pairwise additions (which would necessitate

and checks that the two coordinates add up to a value thafepresentations for the intermediate sums, new representa
lies in the interval0, b]. (Note that by following the proto-  tjons for their subsequent use in the overall sum, etc.)e (Se
fOL tthP ensures that this valued(R) is r, whichisa  the verification of Aspect 3 described in Section 6.)

fresh” random value fronf0, b] independent of everything A similar approach can be taken when constructing the
else seen by the Verifier; thus secrecy is preserved.) sum of four squares? + 22 + 22 +22. Since the intermedi-

Now let us suppose that< z < b2. The EP wants to ate pairwise sums are not used we may simply perform all
enable a secrecy preserving proof that = < 16b%. We three additions at once and save on the intermediate repre-

describe an approach by which he can do this; the approacﬁientaﬁons that would otherwise be constructed. A similar
is similar to one given in [3]. approach can be taken for any sequence of consecutive ad-

By Lagrange’s theorem, there exist nonnegative integersditions that occurs anywhere in the SLC.
X1,22,T3,T4 such that
9.5 Proving Correctness of a Vickrey Auc-

xTr = I%‘FIS‘FI%‘FIZ with 0 < x1,x2,T3,%4 < b. (11) tion Result.
9 x put, q P x1,...,T,. The winner is the highest bidder and the price

(112) for = [10]. Using this algorithm, theZP computes
the Lagrange representation (11) and for each of the val-
uesxy, ro, 3, Ty, Prepares a translation enabling a proof
that—b < z; < 2b as described above. He creates repre-
sentationsX for x and X4, ..., X, for x1, x2, 23, 24. He
prepares translations for the computatimﬁls: xj X x; for

1 < j <4, and for the equality (11). If a Verifier checks the  Thys theE P has to prepare translations enabling a secrecy
above relations using the representations, then the Merifie preserving proof of the inequalities (12). THeP first pre-

he pays is the second highest price. In this setting the Auc-
tioneer acts as th& P. Without loss of generality, and ex-
cluding the case of equal winning bids, we assume that

p/32> V% >y > w520 > 23,..., 70 > 2. (12)

knows that) < o < 4 - 46” = 16b”. pares translations for proving that< z; < 16b* for each

Finally, let us suppose that< z < y < b2. The EP it =1,...,n. He then proves that, < x; (by proving that
wants to give a secrecy preserving proof that = <y < 0 < 21 — 22 < 16%), thatzs < x5, thatzy < x5, and so
16b2. He does this simply by giving a secrecy preserving N s descnbe_d in Section 9._3. Thus there are a totah of
proof thatd < = < 1652 (which he can do since < = < proofs that various valuassatisfy0 < v < 16b2.

b?), a secrecy preserving proof that< y < 1652 (which

he can do sinc® < y < b?), and a secrecy preserving 9.6 Efficiency of the Protocol

proof that0 < y — < 16b? (which he can do since <

y —x < b3). Itis clear that these bounds establish that We now analyze the number of commitments that this
0<z<y<16b% protocol requires. A careful analysis of the translation of



the n-participant Vickrey auction computation reveals that given in Table 1 reflect a security parameter= 40 for
101n pairs are constructed within each translation. As our proposed protocol and a 2048-bit public Paillier key in
described earlier, the secrecy preserving proof invadoés the homomorphic cryptographic setting.

different translations, and thus all in all the posted proof

consists 0fd0k - 101n - 2 commitments to values itf,. Table 1. Single-ltem Auctions of 100 Bids

(The final factor of two is because there is one commitment

for each of the two elements of each pair.) Operation Proposed Homomorphic
For security parametet = 40 and number of bids

n = 100, this means aroun@2.7 million commitments. Preparing the proof 4.11 minutes 804 minutes

For pragmatic reasons, to commiOM (z) we employed Downloading the proof 9.67 minutes < 1 minute

the SHA-1 cryptographic hash function ewith a random Verifying the proof < 1minute 162 minutes

128-bit help value: COM (x) = SHAL(«x||r). The more
sophisticated theoretical approach of [4] could also bé use
without a significant effect on efficiency. This yields 160
bits of output for each commitment, for a total proof size of 10 The Secure Co-Processor Model and Im-
approximatelyl .45GB with the above parameters. While plementation

constructing the proof requires committing to all values a

the entire_proc_)f is downloaded by the verifier, examination  |nstead of theEP entity, which may be a person or
of the verification process above shows that no more 5% ofg e organizational entity, in this section we propose a

the committed values need to be verified by plecommltmentSecure Processor Evaluator-Prov&P(E P) for the imple-
atthe end of the protocol. (To check a commitment, the ver- e ntation of verifiable secrecy preserving straight lin@co
ifier requests indices of the elements to decommit;Atie putations. We emphasize that this is a preliminary pro-
sends the random seeds and actual elements; then the vers,qa). instead of giving detailed formal definitions we shal
fier rehashes their concatenation and checks for equality.) informally specify the properties and assumptions for the
We have conducted empirical experiments comparing SPEP.
the performance of our protocol on sealed-bid auctionsto  The secure processor is programmed to perform the
that of a previously published auction protocol based on ho-functions of the Evaluator-Prover, as previously desctibe
momorphic encryption [9]. Our results bear out our claim for accepting input values, ..., z,, executing the SLC
that our solution is significantly faster than solutionsdzhs (1) on these values, preparing a proof of the correctness of
on homomorphic cryptography. There is, however, an im- the computation and outputting (posting) that proof.
portant time/space tradeoff: the correctness proofs in our e trust the secure processor to only post the proof and
solution are very large, because of the large number ofnot any other information. We do not trust the processor to
commitments necessary to guarantee correctness with higlgorrectly execute the SLC. Hence the need for a verifiable
probability. We have therefore included not only calcu- proof of correctness.
lations of the cost of computing all of the cryptographic  The secure processor may leak out information in a num-
hashes (by far the dominant Computation) but also estimatedoer of ways. For one thing, the format of the posted proof
the transfer time for the verifier to download the very Iarge may leak out information on input and intermediate values
proof of correctness. Although we tested the running time of the computation through use of spaces, fonts used, for-
of the other operations necessary to construct and verifymat, etc. How to counter such steganographic leaks lies
a proof for a cryptographic auction, these take at most aogutside the present authors’ expertise. (See e.g. [7] faeso
few seconds and we omitted them from our discussion here packground on covert channels.)
These operations include generating random data, decom- Second, and more pernicious, thé requires a consid-
posing the sum-of-four-squares representations, and-mult eraple stream of random bits for implementing the transla-
plication and addition of values moduyto tionsT R, 1 < j < K. The secure processor can leak
To yield fair comparisons, we executed our tests using out information on input and other values through appro-
the same 2.8 GHz 32-bit Pentium 4 processor used on thepriate choices of random values that will be revealed in the
homomorphic cryptographic auction protocol in [9] with verification process.
which we compare our new approach; obviously use of  Our proposal for dealing with this covert channel is to
faster 64-bit processors would significantly improve the ef have an independent secure co-processor RANDOM with a
ficiency in all cases. We estimate that the timing presentedphysical random number generator which acts as a universal
here would be improved by a factor of 2 or 3 if run on 2007 source of randomness. Upon request from e secure
state-of-the-art hardware. We also assume a 2.5 megabytprocessor, RANDOM sends to the SPEP a list of sequen-
per second transfer rate for the proof download. Times tially numbered and digitally signed random values to be




used as help values for the COM operation and as values in Another approach to the creation of the challenges
F, to be used in the translations. The SPEP must use thesaill be for the EP first to post the committed-to
random strings in the order of their numbering according to translations.  After the posting, each of the bidders
a publicly known protocol. Whenever a random value from P, ..., P, sends to theZ P an encrypted random string
the translations is posted as part of the proof of correstnes EN(S1),..., EN(S,). These encryptions are posted by
the SPEP also posts the signed message from RANDOM ashe EP. After that posting the string$,...,S, are re-
proof of origin. The protocol enables the Verifier to check vealed andS = S; XOR ... XOR S,, will define the
that the posted messages from RANDOM are used in therandom challenges used in the verification. From here on
posted proof in the mandatory order. the process proceeds as above. The method of Time Lapse

The processor is trusted not to output any information Cryptography [11] is used to force opening of all the en-
beyond that specified by the protocols, and its communica-crypted stringsS;. A detailed protocol deals with the possi-
tions interfaces can be monitored to verify this. The pub- bility that not all biddersP; will submit encrypted strings.
lished proof of correctness assures the participantstieat t Alternatively, P, ..., P, must submit the encrypted strings
output result is really the correct result of the SLC; this EN(S)),..., EN(S,) together with their bids. The reve-
means that the validation of the program run by the se- lation of the strings is then timed by the protocol to occur af
cure coprocessor need only address information leakageter the posting of the committed-to translations by i
not program correctness: the program proves itself correct
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