
New algorithms and lower bounds for monotonicity testing

Xi Chen
Department of Computer Science

Columbia University
New York, NY

xichen@cs.columbia.edu

Rocco A. Servedio
Department of Computer Science

Columbia University
New York, NY

rocco@cs.columbia.edu

Li-Yang Tan
Department of Computer Science

Columbia University
New York, NY

liyang@cs.columbia.edu

Abstract—We consider the problem of testing whether
an unknown Boolean function f : {−1, 1}n → {−1, 1} is
monotone versus ε-far from every monotone function. The
two main results of this paper are a new lower bound and
a new algorithm for this well-studied problem.

Lower bound: We prove an Ω̃(n1/5) lower bound on
the query complexity of any non-adaptive two-sided error
algorithm for testing whether an unknown Boolean func-
tion f is monotone versus constant-far from monotone.
This gives an exponential improvement on the previous
lower bound of Ω(logn) due to Fischer et al. [1]. We show
that the same lower bound holds for monotonicity test-
ing of Boolean-valued functions over hypergrid domains
{1, . . . ,m}n for all m ≥ 2.

Upper bound: We present an Õ(n5/6)poly(1/ε)-query
algorithm that tests whether an unknown Boolean function
f is monotone versus ε-far from monotone. Our algorithm,
which is non-adaptive and makes one-sided error, is a
modified version of the algorithm of Chakrabarty and
Seshadhri [2], which makes Õ(n7/8)poly(1/ε) queries.

Keywords-Boolean functions; Property testing; Mono-
tonicity testing.

I. INTRODUCTION

Monotonicity is a basic and natural property of func-
tions. In the field of property testing, the problem of
efficiently testing whether an unknown function f is
monotone has been the focus of a long and fruitful line
of research, with many works (see e.g. [1]–[17]) study-
ing this problem for functions with various domains and
ranges.

In this work we will be concerned with the classical
problem of testing monotonicity of Boolean functions
f : {−1, 1}n → {−1, 1}, which was first posed and
considered explicitly by Goldreich et al. [3]. Recall a
Boolean function f is monotone if f(x) ≤ f(y) for all
x ≺ y, where ≺ denotes the bitwise partial order on the
hypercube. Let

dist(f, g) := Prx∈{−1,1}n [f(x) 6= g(x)];

we say that f is ε-close to monotone if dist(f, g) ≤ ε
for some monotone Boolean function g, and that f is
ε-far from monotone otherwise. We will be interested

in query-efficient randomized testing algorithms for the
following task: Given as input a distance parameter ε >
0 and oracle access to an unknown Boolean function
f : {−1, 1}n → {−1, 1}, output Yes with probability
at least 2/3 if f is monotone, and No with probability
at least 2/3 if f is ε-far from monotone.

The work of Goldreich et al. [3] proposed a simple
“edge tester” which queries uniform random edges of
{−1, 1}n hoping to find an edge whose two endpoints
violate monotonicity. [3] proved an O(n2 log(1/ε)/ε)
upper bound on the query complexity of the edge tester,
which was subsequently improved to O(n/ε) in the
journal version [5]. Fischer et al. [1] established the first
lower bounds shortly after, showing that there exists a
constant distance parameter ε0 > 0 such that Ω(log n)
queries are necessary for any non-adaptive tester (one
whose queries do not depend on the oracle’s responses
to prior queries). This directly implies an Ω(log log n)
lower bound for adaptive testers, since any q-query
adaptive tester can be simulated by a non-adaptive one
that simply carries out all 2q possible executions. These
upper and lower bounds were the best known for more
than a decade, until the recent work of Chakrabarty and
Seshadhri [2] improved on the linear upper bound of
Goldreich et al. with an Õ(n7/8ε−3/2)-query tester.

Our main contributions in this work are (i) a new
lower bound that improves on the lower bound of [1]
by an exponential factor, and (ii) a new algorithm that
improves on the upper bound of [2] (in terms of the
dependence on n) by a polynomial factor. We now
describe these contributions in more detail.

Our lower bound. We give an exponential improve-
ment on the lower bounds of Fischer et al. [1]:

Theorem 1. There exists a universal constant ε0 > 0
such that any non-adaptive algorithm for testing whe-
ther an unknown Boolean function is monotone versus
ε0-far from monotone must make Ω(n1/5(log n)−2/5)
queries. Consequently, any adaptive algorithm must
make Ω(log n) queries.

While the aforementioned results of Fischer et al. [1]
represent the previous best lower bounds on the gen-
eral testing problem as defined above, additional lower
bounds are known for several restricted versions of the
problem. In the same paper [1], Fischer et al. gave
an Ω(

√
n) lower bound on the query complexity of

any non-adaptive one-sided tester, i.e. one that always
outputs Yes when f is monotone (again, this directly
implies an Ω(log n) lower bound for adaptive one-
sided testers). Restricting further, a pair tester is a non-
adaptive one-sided tester that independently draws pairs
of comparable points x ≺ y from some distribution and
rejects if and only if some pair that is drawn violates
monotonicity. Briët et al. [13] proved an Ω(n/(ε log n))
lower bound on the query complexity of pair testers
whose query complexity can be written as q(n)/ε for
some function q.

In addition to Theorem 1, we show that essentially
the same lower bound holds for monotonicity testing
of Boolean-valued functions over hypergrid domains
{1, . . . ,m}n for m ≥ 2. (Below and throughout this
paper we write [m] to denote {1, 2, . . . ,m}.) Our most
general lower bound is the following:

Theorem 2. There exists a universal constant ε0 > 0
such that for all m ≥ 2, any non-adaptive algorithm
for testing whether an unknown function f : [m]n →
{−1, 1} is monotone versus ε0-far from monotone must
make Ω̃(n1/5) queries.

To the best of our knowledge, Theorem 2 is the first
lower bound for testing monotonicity of Boolean val-
ued functions over hypergrid domains. Recent papers
of Chakrabarty and Seshadhri [15], [16] and Blais
et al. [17] essentially closed the problem of testing
monotonicity of functions f : [m]n → N, showing
that Θ(n logm) queries are both necessary and suffi-
cient; however, their lower bounds crucially depend on
the functions considered having range N rather than
{−1, 1}.

Our algorithm. We present a new algorithm for
monotonicity testing, and prove the following result
about its performance:

Theorem 3. There is a Õ(n5/6ε−4)-query one-sided
non-adaptive algorithm for testing whether an unknown
n-variable Boolean function is monotone versus ε-far
from monotone.

Recall that the one-sided, non-adaptive tester of
Chakrabarty and Seshadhri [2] makes Õ(n7/8ε−3/2)
queries. Thus, while the query complexity of our tester
is worse as a function of 1/ε (though still polynomial),

its query complexity is polynomially better as a function
of n.1 Like the [2] algorithm, our algorithm is a pair
tester, but it evades the Ω(n/(ε log n)) lower bound of
[13] because its query complexity is not of the form
q(n)/ε. Our algorithm builds on the tools developed
in [2]; its high-level structure is similar to that of the
[2] algorithm, but with an important difference that
enables an improved analysis. See Section I-B for more
discussion on this point.

A. The lower bound approach

Our lower bound for testing monotonicity builds on
previous lower bounds for testing restricted classes
of linear threshold functions (LTFs). Recall that f :
{−1, 1}n → {−1, 1} is a linear threshold function if
there exist w = (w1, . . . , wn) ∈ Rn and θ ∈ R such
that f(x) = sign(w · x− θ) for all x ∈ {−1, 1}n.

Background. A signed majority function is a linear
threshold function of the special form f(x) = sign(w ·
x) where w ∈ {−1, 1}n. While [18] showed that the
class of all LTFs is ε-testable using poly(1/ε) queries
(independent of n), in [19] Matulef et al. gave an
Ω(log n) lower bound for non-adaptive algorithms that
ε0-test whether f : {−1, 1}n → {−1, 1} is a signed
majority function, where ε0 > 0 is a universal constant.
Like many lower bound arguments in property testing,
the proof of [19] employs Yao’s minimax principle [20],
and works by exhibiting two distributions Dyes and
Dno over LTFs — more precisely, Dyes is the uniform
distribution over all 2n signed majority functions, and
Dno is the uniform distribution over a set of LTFs
almost all of which are constant-far from every signed
majority function — and arguing that for q = o(log n),
any deterministic q-query algorithm cannot distinguish
between the two distributions with non-negligible suc-
cess probability. (We note that a typical function from
Dyes is far from being monotone, and that the same
holds for a typical LTF drawn from the Dno distribution
of [19].) A key tool in the [19] proof is the Berry–
Esséen “central limit theorem (CLT) with error bounds”
for sums of independent real-valued random variables.

An embedded majority function of size k is an LTF
f : {−1, 1}n → {−1, 1} of the form f(x) = sign(w ·x)
where w ∈ {0, 1}n is a vector with exactly k ones. In
[21] Blais and O’Donnell showed that for k = n/2,
any non-adaptive testing algorithm for the class of all

1Recall that in property testing the dependence on the size parame-
ter “n” is typically viewed as more important than the dependence on
the “closeness” parameter ε. Indeed, ε is often viewed as a constant,
so testers with query complexities that are exponential (or worse) as
a function of 1/ε but independent of n are commonly referred to as
“constant-query testers.”

2

embedded majority functions of size exactly n/2 must
make Ω(n1/12) queries. Their proof employed a Dyes
distribution which is the uniform distribution over all
embedded majority functions of size n/2, and a Dno
distribution which is supported on certain monotone
LTFs (which are far from embedded majority functions
of size n/2). A key technical ingredient in the proofs
of [21] is a multidimensional extension of the Berry–
Esséen theorem (to independent sums of Rq-valued ran-
dom variables) which was essentially established in the
work of [22], building on ingredients from [23]. Subse-
quently Ron and Servedio [24] adapted the arguments of
[21] to give an improved analysis of the same Dyes and
Dno distributions from [19] and establish an Ω(n1/12)-
query lower bound for non-adaptive algorithms that ε0-
test whether f : {−1, 1}n → {−1, 1} is a signed
majority function, thus exponentially improving over the
[19] lower bounds for this problem.

This work. Neither the [21] construction nor the
[19], [24] construction can be used directly to establish
a lower bound for monotonicity testing of functions
f : {−1, 1}n → {−1, 1}; as described above, in the
[21] construction both the Dyes and Dno functions
are monotone, and in the [19], [24] construction a
typical function from either distribution is far from
monotone. Nevertheless, in this work we show that
ingredients from [21], [24] can be leveraged to obtain
a polynomial lower bound for testing monotonicity of
functions f : {−1, 1}n → {−1, 1}. Like these earlier
works we employ Yao’s principle: we define a Dyes
distribution that is supported on monotone LTFs, and
a Dno distribution over LTFs that is almost entirely
supported on LTFs that are constant-far from every
monotone function, and use an analysis which is fairly
similar to that of [21], [24], to prove Theorem 1. Using
the multidimensional Berry–Esséen theorem of [22] to
analyze our Dyes and Dno distributions would result
in an Ω(n1/12) lower bound. To obtain our improved
Ω(n1/5 log−2/5 n) lower bound, we instead adapt a
multidimensional CLT of Valiant and Valiant [25] (for
Wasserstein distance) to our context.

B. The approach of our algorithm

Our algorithm builds on ingredients from [2], so
to explain our approach we first recall the necessary
ingredients from that work. Fix a Boolean function2f :
{0, 1}n → {0, 1}, and let us say that a pair of inputs
(x, y) with x ≺ y is a violated edge if f(x) = 1, f(y) =
0 and (x, y) is an edge in {0, 1}n (i.e. the Hamming

2For our algorithmic result it will be more convenient to view
Boolean functions as mapping {0, 1}n to {0, 1}.

distance between them is 1). [2] establishes a very
useful “dichotomy theorem” about Boolean functions
f : {0, 1}n → {0, 1} that are ε-far from monotone: for
any s > 0, any such function either must have Ω(εs2n)
violated edges, or must have a matching (i.e. a vertex-
disjoint set) of Ω(ε2n/s) violated edges.

To use this dichotomy theorem, Chakrabarty and
Seshadhri [2] define a “path tester” which works es-
sentially as follows: it selects a random directed path
p of n edges from 0n up to 1n, draws two uniform
random points x ≺ y from the “middle layers” of
p, and rejects if x and y violate monotonicity, i.e.
f(x) = 1 and f(y) = 0.3 They prove that if f
has a matching of Ω(σ2n) violated edges, then their
path tester will uncover a violation and reject with
probability Ω̃(σ3/

√
n). (Roughly speaking, they show

that about an Ω(σ) fraction of possible outcomes of
y, corresponding to the σ2n upper endpoints of the
edges in the matching, are such that with probability
Ω̃(σ2/

√
n) over the random draw of x, the pair y

and x together constitute a violation.) On the other
hand, if f does not have a matching of this size then
(by the dichotomy theorem) it must have Ω((ε2/σ)2n)
violated edges, so the edge tester of [3] (querying
the endpoints of a uniform random edge) will hit a
violated edge with probability Ω(ε2/(σn)). Their final
algorithm runs their path tester with probability 1/2 and
queries a random edge with probability 1/2. Choosing σ
suitably to equalize the two rejection probabilities, this
is a two-query algorithm which succeeds in uncovering
a violation for any ε-far-from-monotone function f
with probability Ω̃(ε3/2/n7/8), giving them a one-sided
non-adaptive tester which makes Õ(n7/8/ε3/2) queries
overall.

Our algorithm follows the same high-level framework
described above, but differs from [2] by employing
a different path tester. After selecting a random path
p, instead of (essentially) drawing two independent
uniform points from the middle layers of the path as
is done in [2], our path tester draws a correlated pair
of points from p. More precisely, it selects the first
point y uniformly from the middle layers of p, and
preferentially selects the second point x from p in a
way which favors points which are closer to y. Via
a careful analysis we are able to show that if f has a
matching of Ω(σ2n) violated edges, then our path tester

3Here the “middle layers” of p are the points on the path that
have n/2 ± Oε(

√
n) many coordinates which are 1; intuitively, at

most an ε-fraction of all points in {0, 1}n lie outside these “middle
layers” of the hypercube. We note that the above description is a slight
simplification of the actual [2] path tester, omitting some details which
are not necessary at this stage of our description.

3

will uncover a violation and reject with probability
Ω̃(σ2/

√
n)·poly(ε). Roughly speaking, we show that if

y is a uniform random upper endpoint of the σ2n edges
in the matching (which occurs with probability about
σ), then the probability that our tester selects a point x
which gives a violation with y is Ω̃(σ/

√
n) · poly(ε).

Trading this off against the success probability of the
edge tester using the dichotomy theorem, we obtain our
improved query bound.

Organization of this paper. Our lower bound for
the hypercube domain (i.e. Theorem 1) is established
in Sections II and III. In Section II we define the
two distributions Dyes and Dno and show that unless
q = Ω(n1/5(log n)−2/5), any deterministic q-query
algorithm cannot distinguish between the two distribu-
tions with non-negligible success probability. The key
technical ingredient in our proof of the latter is a lemma
that adapts the Valiant–Valiant multidimensional CLT
for Wasserstein distance to our context; we prove this
lemma in Section III. Theorem 2, showing that the
same lower bound of Ω̃(n1/5) also applies to the query
complexity of testers for monotonicity of functions
f : [m]n → {0, 1} over general hypergrid domains,
is established via a reduction to the m = 2 case
(Theorem 1); we defer its proof to the full version of
the paper.

Our algorithmic result is established in Section IV.
In Section IV-A we describe two useful distributions
over comparable pairs (x,y) from the middle layers
of {0, 1}n and bound the probability of having both
points landing in a fixed set A of size σ2n. Then in
Section IV-B we define the score of a point x with
respect to a set A of points, and use the result of
Section IV-A to lower bound the sum of score(x,A)
over all points x ∈ A. Finally in Section IV-C we
present our modified path tester as well as the analysis
of its success probability, and we combine this tester and
the dichotomy theorem of [2] to obtain our improved
upper bound.

C. Preliminaries

All probabilities and expectations are with respect to
the uniform distribution unless otherwise stated; we will
use boldface letters (e.g. x and X) to denote random
variables. For a q × n matrix Q ∈ Rq×n, we write
Qi∗ ∈ Rn to denote its i-th row, Q∗j ∈ Rq its j-th
column, and Qi,j ∈ R its entry in the i-th column and
j-th row. We use ≺ to denote the coordinate-wise partial
order on {−1, 1}n, where x ≺ y iff xi ≤ yi for all
i ∈ [n] and x 6= y. We also say that x, y ∈ {−1, 1}n
are comparable if x ≺ y, y ≺ x, or x = y. Given

two functions f, g : {−1, 1}n → {−1, 1} we will use
dist(f, g) to denote the (normalized Hamming) distance
Prx∈{−1,1}n [f(x) 6= g(x)] between f and g.

Recall that f : {−1, 1}n → {−1, 1} is monotone if
f(x) ≤ f(y) for all x, y ∈ {−1, 1}n such that x ≺ y.
We say that f is ε-close to monotone if dist(f, g) ≤ ε
for some monotone g : {−1, 1}n → {−1, 1}, and ε-far
from monotone otherwise. A linear threshold function
(LTF) over {−1, 1}n is a function f : {−1, 1}n →
{−1, 1} that can be expressed as f(x) = sign(w ·x−θ)
for some w1, . . . , wn, θ ∈ R. Here sign : R→ {−1, 1}
is the sign function sign(t) = 1 if t ≥ 0 and sign(t) =
−1 if t < 0. For f(x) = sign(w · x− θ), an LTF over
{−1, 1}n, it is straightforward to verify that if wi ≥ 0
for all i ∈ [n] then f is monotone.

We need a few standard facts from probability theory:

Fact I.1 (Gaussian anti-concentration). Let G be a
Gaussian with variance σ2. Then for all ε > 0 it holds
that supθ∈R

{
Pr
[
|G − θ| ≤ εσ

]}
≤ ε.

Theorem 4 (Berry–Esséen). Let S = X1 + · · · + Xn

where X1, . . . ,Xn are independent real-valued random
variables with E[Xj] = µj and Var[Xj] = σ2

j , and
suppose that |Xj − E[Xj]| ≤ τ with probability 1 for
all j ∈ [n]. Let G be a Gaussian with mean

∑n
j=1 µj

and variance
∑n
j=1 σ

2
j , matching those of S. Then for

all θ ∈ R, we have∣∣Pr[S ≤ θ]−Pr[G ≤ θ]
∣∣ ≤ O(τ)(∑n

j=1 σ
2
j

)1/2 .
II. THE LOWER BOUND: PROOF OF THEOREM 2

Let Dyes be the following distribution over monotone
LTFs on {−1, 1}n: a draw fyes ∼ Dyes is fyes(x)
= sign(σ1x1 + · · ·+σnxn), where each σi is indepen-
dently and uniformly chosen from {1, 3}. Let Dno be a
similar distribution over LTFs: fno(x) = sign(ν1x1 +
· · · + νnxn), but each νi is independently chosen to
be −1 with probability 1/10, and 7/3 with probability
9/10. The following two propositions along with a
standard application of Yao’s minimax principle [20]
yield Theorem 2:

Proposition II.1. There exists a universal positive con-
stant ε0 > 0 such that with probability 1−on(1), a ran-
dom LTF fno ∼ Dno satisfies dist(fno, g) > ε0 for all
monotone Boolean functions g : {−1, 1}n → {−1, 1}.

Proposition II.2. Let T be any deterministic non-adap-
tive two-sided q-query algorithm for testing whether a
black-box Boolean function f : {−1, 1}n → {−1, 1} is

4

monotone. Then∣∣∣∣ Pr
fyes∼Dyes

[
T accepts fyes

]
− Pr

fno∼Dno

[
T accepts fno

]∣∣∣∣ = O

(
q5/4(log n)1/2

n1/4

)
.

We defer the proof of Proposition II.1 to the full
version of the paper; the remainder of this section will
be devoted to proving Proposition II.2.

A. Proof of Proposition II.2

Let T be a deterministic non-adaptive q-query tester.
We view its q queries as a q×n matrix Q ∈ {−1, 1}q×n.
Following the terminology of [21], we define a “Re-
sponse Vector” random variable Ryes ∈ {−1, 1}q ,
obtained by drawing fyes = sign(σ1x1 + · · ·+σnxn)
from Dyes and setting the i-th coordinate of Ryes to be

fyes(Qi∗) = sign(σ1Qi,1 + · · ·+ σnQi,n),

and similarly Rno ∈ {−1, 1}q which is obtained by
drawing fno ∼ Dno and setting the i-th coordinate of
Rno to be fno(Qi∗). By the definition of total variation
distance, we can prove Proposition II.2 by showing that

dTV(Ryes,Rno) = O

(
q5/4(log n)1/2

n1/4

)
.

Let S ∈ Rq be the random column vector Qσ where
σ is uniform over {1, 3}n, and T ∈ Rq be the random
column vector Qν where ν is drawn from the product
distribution over {−1, 7/3}n where Pr[νi = −1] =
1/10 for all i ∈ [n]. The Response Vector Ryes is
determined by the orthant ofRq in which S lies (as each
coordinate of Ryes is simply the sign of the respective
coordinate of S), and likewise Rno by the orthant of Rq

in which T lies. Therefore it suffices for us to prove the
following lemma:

Lemma II.3. Let S,T ∈ Rq be defined as above. Then
for any union O of orthants in Rq , we have

∣∣Pr[S ∈ O]−Pr[T ∈ O]
∣∣ = O

(
q5/4(log n)1/2

n1/4

)
.

We will need the following multidimensional Berry–
Esséen theorem. We defer its proof to Section III.

Theorem 5. Let S = X(1) + · · · + X(n), where X(1),
. . . ,X(n) are independent Rq-valued random variables
such that |X(j)

i −E[X
(j)
i]| ≤ τ with probability 1 for all

i ∈ [q], j ∈ [n]. Let G be the q-dimensional Gaussian
with the same mean and covariance matrix as S. Let O

be a union of orthants in Rq . Then for all r > 0, the
difference |Pr[S ∈ O]−Pr[G ∈ O]| is at most

O

(
τq3/2 log n

r
+

q∑
i=1

r + τ(∑n
j=1 Var[X

(j)
i]
)1/2

)
.

Proof of Lemma II.3 assuming Theorem 5: We
begin by writing S = X(1) + · · ·+X(n), where X(j) =
σj ·Q∗j and σj is uniform over {1, 3}; i.e. each X(j)

is independently Q∗j with probability 1/2 and 3 · Q∗j
with probability 1/2. Likewise we may express T =
Y(1) + · · ·+Y(n), where Y(j) = νj ·Q∗j and νj is −1
with probability 1/10 and 7/3 with probability 9/10.

We claim that the X(j)’s and Y(j)’s have matching
means and covariance matrices. It suffices to check this
for X(1) and Y(1), and we omit the routine calculation
due to space considerations. As the X(j)’s and Y(j)’s
have matching means and covariance matrices, so do
their sums S and T, and so Theorem 5 gives us a bound
on the two differences |Pr[S ∈ O] − Pr[G ∈ O]| and
|Pr[T ∈ O]−Pr[G ∈ O]| for the same q-dimensional
Gaussian G.

Recalling that X(j)
i = σj ·Qi,j and Qi,j ∈ {−1, 1},

we have that Var[X
(j)
i] = 1 and likewise Var[Y

(j)
i] =

1. Therefore, two applications of Theorem 5 with τ :=
O(1) along with the triangle inequality yields the bound∣∣Pr[S ∈ O]−Pr[T ∈ O]

∣∣ = O

(
q3/2 log n

r
+
q(r + τ)√

n

)
for all r > 0. Choosing r to be (qn)1/4(log n)1/2 then
completes the proof.

III. MULTIDIMENSIONAL BERRY–ESSÉEN VIA THE
VALIANT–VALIANT CLT

In this section, we prove Theorem 5 by adapting a
recent multidimensional CLT of Valiant and Valiant [25]
which bounds the Wasserstein distance between a sum
of independent vector-valued random variables and a
multidimensional Gaussian.

Definition 6 (Wasserstein distance). The Wasserstein
distance between two Rq-valued random variables S
and T, denoted dW (S,T), is defined to be:

dW (S,T) = inf
D

{
E
D

[
‖U−V‖2

]}
,

where the infimum is taken over all couplings D of S
and T, i.e. all joint distributions D of pairs ofRq-valued
random variables (U,V) with marginals distributed ac-
cording to S and T respectively.

Valiant and Valiant [25] recently used Stein’s method
to prove the following CLT for Wasserstein distance:

5

Theorem 7 (Valiant-Valiant CLT). Let S = X(1)+· · ·+
X(n), where X(1), . . . ,X(n) are independentRq-valued
random variables, and suppose ‖X(j)−E[X(j)]‖2 ≤ β
with probability 1 for any j ∈ [n]. Then

dW (S,G) ≤ O(βq log n),

where G is the q-dimensional Gaussian with the same
mean and covariance matrix as S.

Proof of Theorem 5: We define

Wr :=
{
x ∈ Rq : |xi| ≤ r for some i ∈ [q]

}
to be the radius-r region around the orthant boundaries,
and partition O into Obd := O ∩Wr (the points in O
that lie close to the orthant boundaries) and Oin :=
O \Wr (the points that lie far away from the orthant
boundaries). We have∣∣Pr[S ∈ O]−Pr[G ∈ O]

∣∣
=
∣∣(Pr[S ∈ Oin] + Pr[S ∈ Obd])

− (Pr[G ∈ Oin] + Pr[G ∈ Obd])
∣∣

≤
∣∣Pr[S ∈ Oin]−Pr[G ∈ Oin]

∣∣︸ ︷︷ ︸
∆

+ Pr[S ∈ Obd] + Pr[G ∈ Obd]︸ ︷︷ ︸
Γ

.

We next bound the quantities ∆ and Γ separately.
For Γ, we have that

Γ ≤
∑
i∈[q]

Pr
[
Si ∈ [−r, r]

]
+ Pr

[
Gi ∈ [−r, r]

]
≤
∑
i∈[q]

2Pr
[
Gi ∈ [−r, r]

]
+
∣∣Pr

[
Si ∈ [−r, r]

]
−Pr

[
Gi ∈ [−r, r]

]∣∣
≤
∑
i∈[q]

O(r)(∑n
j=1 Var[X

(j)
i]
)1/2 +

O(τ)(∑n
j=1 Var[X

(j)
i]
)1/2

=
∑
i∈[q]

O(r + τ)(∑n
j=1 Var[X

(j)
i]
)1/2 ,

where the first inequality is a union bound over all q
dimensions, and the third uses Fact I.1 (Gaussian anti-
concentration), the fact that Gi is a Gaussian of variance∑n
j=1 Var[X

(j)
i], and Theorem 4 (Berry–Esséen).

For ∆, assume without loss of generality (a symmet-
rical argument works in the other case) that Pr[S ∈
Oin] ≥ Pr[G ∈ Oin], so ∆ = Pr[S ∈ Oin] −Pr[G ∈
Oin]. Let D be the coupling of S and G that achieves the
infimum in Definition 6, so D is the joint distribution
of a pair (U,V) of Rq-valued random variables with

marginals distributed according to S and G respectively.
Since ∫

Oin

∫
Rq

D(u, v) dv du = Pr[S ∈ Oin]

and ∫
Oin

∫
Oin

D(u, v) dv du

≤
∫
Rq

∫
Oin

D(u, v) dv du = Pr[G ∈ Oin],

it follows that∫
Oin

∫
Rq\Oin

D(u, v) dv du (1)

=

∫
Oin

∫
Rq

D(u, v) dv du−
∫
Oin

∫
Oin

D(u, v) dv du ≥ ∆

Next we define the quantities

∆near(D) :=

∫
Oin

∫
Obd

D(u, v) dv du and

∆far(D) :=

∫
Oin

∫
Rq\O

D(u, v) dv du.

Note that ∆near(D) and ∆far(D) sum to the quantity in
(1), and so ∆near(D) + ∆far(D) ≥ ∆. (In words, since
S places ∆ more mass on Oin than G does, any scheme
D of moving the mass of S to obtain G must move at
least ∆ amount from within Oin to outside it. ∆near(D)
is the amount moved from within Oin to O’s boundary
Obd, and ∆far(D) is the rest, moved from within Oin
to locations entirely out of O.) Since ‖u− v‖2 ≥ r for
any pair of points u ∈ Oin and v /∈ O, it follows that

dW (S,G) ≥ r ·∆far(D).

We consider two cases, depending on the relative magni-
tudes of ∆near(D) and ∆far(D). If ∆far(D) ≥ ∆near(D),
we first observe that for all j ∈ [n] we have ‖X(j) −
E[X(j)]‖2 ≤ τ

√
q with probability 1, as each of its q

coordinates i ∈ [q] satisfies |X(j)
i − E[X

(j)
i]| ≤ τ with

probability 1 by the assumption of the theorem. There-
fore, we may apply Theorem 7 (Valiant–Valiant CLT),
with β := τ

√
q, to get

r · ∆

2
≤ r ·∆far(D) ≤ dW (S,G) = O(τq3/2 log n)

and hence ∆ = O((τq3/2 log n)/r), which along with
our upper bound on Γ completes the proof. If on the
other hand ∆near(D) > ∆far(D), then

∆

2
≤∆near(D)≤

∫
Rq

∫
Obd

D(u, v) dv du=Pr[G ∈ Obd]≤ Γ

and again our bound on Γ completes the proof.

6

IV. THE ALGORITHM

Throughout the proof of our upper bound, we will
assume that 1/n ≤ ε ≤ 1/2. Note that this is without
loss of generality, since if ε < 1/n then the edge tester
alone succeeds with probability Ω(ε/n) = Ω(ε2), and
if ε > 1/2 then every f is ε-close to one of the two
constant functions, both of which are monotone.

For our upper bound it will be more convenient to
view Boolean functions as mapping {0, 1}n to {0, 1}.
Given x, y ∈ {0, 1}n we write ‖x‖1 to denote

∑n
i=1 xi,

the number of 1s in x, and ‖x − y‖1 to denote |{i ∈
[n] : xi 6= yi}|, the `1-distance between x and y. Given
1/n ≤ ε ≤ 1/2, we fix

d(n, ε) := 2
⌈√

2n ln(100/ε)
⌉

= O
(√

n ln(1/ε)
)
,

and will denote d(n, ε) simply by d when the distance
parameter ε is clear from the context. For each i ∈
{0, 1, . . . , n} we use Li := {x ∈ {0, 1}n : ‖x‖1 = i} to
denote the i-th layer, and refer to

Lmid :=
{
x ∈ Li : i ∈ [(n− d)/2, (n+ d)/2]

}
as the middle layers of the hypercube {0, 1}n. A stan-
dard Chernoff bound gives

|{0, 1}n \ Lmid | ≤ (ε/50) · 2n.

Finally, by a “path” we always mean a directed path of
n+ 1 adjacent vertices from 0n up to 1n.

A. Two useful distributions over comparable pairs

Let D = Dn,ε denote the following distribution over
comparable pairs (x,y) ∈ Lmid × Lmid:

1) First pick a path p uniformly from the collection
of all paths going from 0n to 1n.

2) Pick x and y independently and uniformly from

pmid := {z ∈ p : z ∈ Lmid}. (2)

This distribution is a slight variant of the one induced by
the [2] path tester, which takes a parameter σ as input
and disallows pairs (x, y) for which ‖x−y‖1 is too small
relative to σ. Our new tester will not sample from D
(see Section IV-C), but we will use D in our analysis.
(Note that x = y with positive probability under D.)

If x and y were chosen independently and uniformly
from {0, 1}n, then the probability that they both land in
a fixed set A of σ2n points, for some σ ∈ (0, 1), would
be σ2. The following lemma states that the probability
is not much lower for a pair drawn from D (its proof
is essentially identical to that of Claim 2.2.1 of [2], and
we omit it in this version):

Lemma IV.1. Let A ⊆ Lmid with |A| = σ2n. Then

Pr
(x,y)←D

[x,y ∈ A] = Ω
(
σ2 ln−1(1/ε)

)
.

For our analysis the following distribution D′ = D′n,ε
over comparable pairs (x,y) ∈ Lmid × Lmid in the
middle layers comes in handy:

1) Pick a point x uniformly at random from Lmid.
2) Then pick a path p uniformly from the collection

of all paths going through 0n, x, and 1n.
3) Pick y uniformly from pmid as defined in (2).

Note that D′ is not exactly the same as D, as picking
a uniformly random x from the middle layers pmid of
a uniformly random path p does not induce a uniform
distribution over Lmid. However, the following corollary
allows us to switch between these essentially-equivalent
distributions at the cost of a O(1/ε4) factor; we defer
its proof to the full version of the paper.

Corollary IV.2. Let A ⊆ Lmid with |A| = σ2n. Then

Pr
(x,y)←D′

[x,y ∈ A] = Ω
(
σ2ε4 ln−1(1/ε)

)
.

B. Density and score

We will need the following definition to give a more
detailed analysis on the consequence of Corollary IV.2,
which is key to the analysis of our monotonicity tester
described in Section IV-C.

Definition 8 (density and score). Let A ⊆ {0, 1}n be a
set of points. For all x ∈ {0, 1}n and k ∈ {0, 1, . . . , n},
we define the following quantities:

dens↓k(x,A) :=

Pr
y�x

‖y−x‖1=k

[y ∈ A] if k ≤ ‖x‖1

0 otherwise

and similarly

dens↑k(x,A) :=

Pr
y�x

‖y−x‖1=k

[y ∈ A] if k ≤ n− ‖x‖1

0 otherwise.

We also define

score↓(x,A) :=

n∑
k=0

dens↓k(x,A)

score↑(x,A) :=

n∑
k=1

dens↑k(x,A)

and refer to score↓(x,A) as the downward A-score of
x and score↑(x,A) as its upward A-score.

We point out the asymmetry between the definitions
of score↓(x,A) and score↑(x,A): the first is summed

7

over k starting at 0, whereas the second is summed over
k starting at 1. (Note that dens↓0(x,A) = dens↑0(x,A) =
1[x ∈ A].) We will need the fact that both the upward
and downward A-scores of any x ∈ {0, 1}n are at most
d = d(n, ε) when A ⊆ Lmid.

We defer the proofs of the next two lemmas to the
full version. The first relates the distribution D′ (more
precisely, the distribution over y that is induced by
conditioning on a particular outcome of x) to the notion
of score:

Lemma IV.3. Let A ⊆ Lmid be a set of σ2n points and
fix a point x∗ ∈ Lmid. Then

Pr
(x,y)←D′

[
y ∈ A | x = x∗

]
=

1

Θ(
√
n ln(1/ε))

(
score↓(x∗, A) + score↑(x∗, A)

)
.

The second lower bounds the expected downward A-
score of an x drawn uniformly at random from A:

Lemma IV.4. Let ε ≥ 1/n and A ⊆ Lmid be a set of
σ2n points. Then

E
x∈A

[
score↓(x, A)

]
= Ω

(
ε8σ
√
n√

ln(1/ε)

)
.

The conclusion of Lemma IV.4 can be equivalently
rewritten as the following sum:∑

x∈A
score↓(x,A) = Ω

(
ε8σ2
√
n2n√

ln(1/ε)

)
. (3)

We may express the downward A-score score↓(x,A)
as a sum over m+1 “buckets” of exponentially increas-
ing size as follows:

score↓(x,A) =

m∑
i=0

∑
k∈Bi

dens↓k(x,A) (4)

where B0 = {0} and Bi = {2i−1, . . . , 2i − 1} for each
i ∈ [m] and m = dlog(n+ 1)e. It will be useful for us
to focus on a particular bucket ` ∈ {0, 1, . . . ,m} such
that the overall sum of score↓(x,A) in (3) has a “large”
contribution from the `-th bucket. A straightforward
argument, exploiting the fact that there are only log-
arithmically many buckets, lets us achieve this without
losing too much in the sum:

Corollary IV.5. Let ε ≥ 1/n and A ⊆ Lmid be a set
of σ2n points. There exists ` ≤ m such that∑
x∈A

∑
k∈B`

dens↓k(x,A) = Ω

(
ε8σ2
√
n2n

(log n)
√

ln(1/ε)

)
. (5)

Proof: This follows from (3), (4), and the fact that
there are only m+ 1 many buckets.

Corollary IV.5 gives a lower bound on the sum of
downward A-scores of points x ∈ A coming from a
certain bucket B`. Our next corollary uses this to give
a lower bound on the sum of downward A-scores of
points y ∈ Au from (essentially) the same bucket B`,
where Au is an “upper vertex boundary” of A in the
following sense: there exists an |A|-sized matching M
of edges (x, y) where x ≺ y, x ∈ A and y ∈ Au.

Corollary IV.6. Let ε ≥ 1/n and M be a matching of
σ2n edges in the middle layers. Let

A :=
{
x ∈ {0, 1}n : x ≺ y and (x, y) ∈M

}
and

Au :=
{
y ∈ {0, 1}n : y � x and (x, y) ∈M

}
denote the lower and upper endpoints of edges in M ,
respectively. For each bucket Bi, i ∈ {0, 1, . . . ,m}, we
let B′i := {j+ 1 : j ∈ Bi}. Then there exists an integer
` ≤ m such that∑

y∈Au

∑
k∈B′`

dens↓k(y,A) = Ω

(
2`+nε8σ2

(log n)
√
n ln(1/ε)

)
. (6)

Proof: By Corollary IV.5, there exists an ` ≤ m
such that A satisfies (5). Next for each edge (x, y) ∈M
we have that

dens↓k+1(y,A) = Pr
z≺y

‖z−y‖1=k+1

[z ∈ A]

≥
(‖x‖1

k

)(‖y‖1
k+1

) · Pr
z≺x

‖z−x‖1=k

[z ∈ A]

=
(k + 1) · dens↓k(x,A)

‖x‖1 + 1
.

Therefore, by (5) we have∑
y∈Au

∑
k∈B′`

dens↓k(y,A) =
∑
y∈Au

∑
k∈B`

dens↓k+1(y,A)

≥
∑
x∈Au

∑
k∈B`

(k + 1) dens↓k(x,A)

‖x‖1 + 1

= Ω

(
ε8σ2
√
n2n

(log n)
√

ln(1/ε)
· 2`

n

)
.

This completes the proof.

C. The weighted path tester and its analysis

Given a Boolean function f : {0, 1}n → {0, 1}, we
recall that a pair (x, y) of points is a violated pair with
respect to f if x ≺ y and f(x) > f(y). Our algorithm

8

weighted-path-tester for monotonicity testing
proceeds as follows:

weighted-path-tester:

1) Pick a point y uniformly from Lmid.
2) Pick ` ∈ {0, 1, . . . ,m = dlog(n+ 1)e}

uniformly, and pick k ∈ B′` uniformly.
3) Pick a path p uniformly from the collection

of all paths going through 0n,y and 1n, and
set x to be the (unique) point on p that has
x ≺ y and ‖x− y‖1 = k.

4) Reject iff (x,y) is a violated pair.

Note that an equivalent formulation of step 3) above
is that x is drawn uniformly from{

z ∈ {0, 1}n : z ≺ y and ‖y − z‖1 = k
}
.

Below we show that if there is a (σ2n)-sized matching
M of violated edges of f in the middle layers of the
hypercube, then the tester above succeeds in finding a
violated pair with probability roughly Ω(σ2/

√
n).

Proposition IV.7. Let f : {0, 1}n → {0, 1} and ε ≥
1/n. Suppose there exists a (σ2n)-sized matching M of
violated edges of f all lying in the middle layers of the
hypercube. Then weighted-path-tester above
succeeds (i.e., samples x and y that form a violated
pair with respect to f) with probability

Ω

(
ε8σ2

(log2 n)
√
n ln(1/ε)

)
. (7)

Proof: Let A be the set of 1-endpoints of edges in
the matching M , and Au be the 0-endpoints in M , re-
spectively. Let Dw denote the distribution over com-
parable pairs (x,y) ∈ Lmid × Lmid as induced by our
algorithm weighted-path-tester above.

We note that every pair (x, y) ∈ A×Au that satisfies
x ≺ y is a violated pair with respect to f . Therefore,
weighted-path-tester succeeds with probability
at least

Pr
(x,y)←Dw

[
y ∈ Au,x ∈ A

]
.

Applying Corollary IV.6, we know there exists an `∗ ∈
{0, 1, . . . ,m} such that∑

y∈Au

∑
k∈B′

`∗

dens↓k(y,A) = Ω

(
2`
∗+nε8σ2

(log n)
√
n ln(1/ε)

)
. (8)

Conditioning on the event of y = y and k = k, the
probability of x ∈ A is dens↓k(y,A). As y, `,k are all

sampled uniformly, weighted-path-tester suc-
ceeds with probability at least

Pr
(x,y)←Dw

[
y ∈ Au,x ∈ A

]
= Pr

(x,y)←Dw
[y ∈ Au] · Pr

(x,y)←Dw

[
x ∈ A | y ∈ Au

]
=
|Au|
|Lmid|

· 1

|Au|
∑
y∈Au

1

m+ 1

m∑
`=0

1

|B′`|
∑
k∈B′`

dens↓k(y,A)

≥ 1

(m+ 1) |Lmid| |B′`∗ |
·
∑
y∈Au

∑
k∈B′

`∗

dens↓k(y,A)

= Ω

(
2`
∗+nε8σ2

(log n)
√
n ln(1/ε)

· 1

(log n)2`∗+n

)

= Ω

(
ε8σ2

(log2 n)
√
n ln(1/ε)

)
.

This finishes the proof.
Finally we combine Proposition IV.7 with the dicho-

tomy theorem of [2] to prove Theorem 3. To state the
latter, we use v2n to denote the total number of violated
edges in f , and use σ2n to denote the size of the largest
matching of violated edges in the middle layers. Then

Theorem 9 (Theorem 2.4 of [2]). For any Boolean f
that is ε-far from monotone, v · σ = Ω(ε2).

Proof of Theorem 3: As mentioned at the begin-
ning of Section IV, we may assume without loss of
generality that ε ≥ 1/n since otherwise the edge tester
alone succeeds with probability Ω(ε/n) = Ω(ε2). When
ε ≥ 1/n, our tester flips a coin, runs the edge tester with
probability 1/2, and runs weighted-path-tester
with probability 1/2. Given v and σ as defined above,
the success probability of the edge tester is Ω(v/n); the
success probability of weighted-path-tester is
given in (7). It follows from Theorem 9 that the average
of these two is at least

Ω

(
ε4

n5/6(log2/3 n)(ln(1/ε))1/6

)
.

This finishes the proof of Theorem 3.

ACKNOWLEDGMENT

We thank Eric Blais for a helpful discussion that
led to an improvement of our lower bound for general
hypergrid domains.

Xi Chen is supported by NSF CCF-1149257 and a
Sloan fellowship. Rocco Servedio and Li-Yang Tan are
supported by NSF CCF-1115703 and CCF-1319788.

9

REFERENCES

[1] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova,
R. Rubinfeld, and A. Samorodnitsky, “Monotonicity test-
ing over general poset domains,” in Proceedings of the
34th Annual ACM Symposium on Theory of Computing,
2002, pp. 474–483.

[2] D. Chakrabarty and C. Seshadhri, “A o(n) monotonicity
tester for boolean functions over the hypercube,” in
Proceedings of the 45th ACM Symposium on Theory of
Computing, 2013, pp. 411–418.

[3] O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron,
“Testing monotonicity,” in Proceedings of the 39th IEEE
Symposium on Foundations of Computer Science, 1998,
pp. 426–435.

[4] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova,
D. Ron, and A. Samorodnitsky, “Improved testing al-
gorithms for monotonocity,” in Proceedings of the 3rd
Workshop on Randomization and Approximation Tech-
niques in Computer Science, 1999, pp. 97–108.

[5] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and
A. Samordinsky, “Testing monotonicity,” Combinator-
ica, vol. 20, no. 3, pp. 301–337, 2000.

[6] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and
M. Vishwanthan, “Spot-checkers,” Journal of Computer
and System Sciences, vol. 60, no. 3, pp. 717–751, 2000,
earlier version in STOC’96.

[7] E. Fischer, “On the strength of comparisons in property
testing,” Information and Computation, vol. 189, no. 1,
pp. 107–116, 2004.

[8] T. Batu, R. Kumar, and R. Rubinfeld, “Sublinear algo-
rithms for testing monotone and unimodal distributions,”
in Proceedings of the 36th ACM Symposium on Theory
of Computing, 2004, pp. 381–390.

[9] N. Ailon, B. Chazelle, S. Comandur, and D. Liu, “Es-
timating the distance to a monotone function,” Random
Structures and Algorithms, vol. 31, no. 3, pp. 371–383,
2007.

[10] S. Halevy and E. Kushilevitz, “Testing monotonicity over
graph products,” Random Structures and Algorithms,
vol. 33, no. 1, pp. 44–67, 2008.

[11] R. Rubinfeld and R. A. Servedio, “Testing monotone
high-dimensional distributions,” Random Structures and
Algorithms, vol. 34, no. 1, pp. 24–44, 2009.

[12] E. Blais, J. Brody, and K. Matulef, “Property testing
lower bounds via communication complexity,” Compu-
tational Complexity, vol. 21, no. 2, pp. 311–358, 2012.

[13] J. Briët, S. Chakraborty, D. Garcı́a-Soriano, and A. Mat-
sliah, “Monotonicity testing and shortest-path routing on
the cube,” Combinatorica, vol. 32, no. 1, pp. 35–53,
2012.

[14] D. Ron, R. Rubinfeld, M. Safra, A. Samorodnitsky, and
O. Weinstein, “Approximating the influence of monotone
Boolean functions in O(

√
n) query complexity,” ACM

Transactions on Computation Theory, vol. 4, no. 4, p. 11,
2012.

[15] D. Chakrabarty and C. Seshadhri, “Optimal bounds for
monotonicity and lipschitz testing over hypercubes and
hypergrids,” in Proceedings of the 45th ACM Symposium
on Theory of Computing, 2013, pp. 419–428.

[16] ——, “An optimal lower bound for monotonicity testing
over hypergrids,” in Proceedings of APPROX-RANDOM,
2013, pp. 425–435.

[17] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev, “Lower
bounds for testing properties of functions on hyper-
grid domains,” Electronic Colloquium on Computational
Complexity, vol. 20, p. 36, 2013.

[18] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Serve-
dio, “Testing halfspaces,” SIAM Journal on Computing,
vol. 39, no. 5, pp. 2004–2047, 2010.

[19] ——, “Testing ±1-weight halfspaces,” in Proceedings of
APPROX-RANDOM, 2009, pp. 646–657.

[20] A. Yao, “Probabilistic computations: Towards a unified
measure of complexity,” in Proceedings of the 9th An-
nual ACM Symposium on Theory of Computing, 1977,
pp. 222–227.

[21] E. Blais and R. O’Donnell, “Lower bounds for testing
function isomorphism,” in Proceedings of the 25th An-
nual IEEE Conference on Computational Complexity,
2010, pp. 235–246.

[22] P. Gopalan, R. O’Donnell, Y. Wu, and D. Zuckerman,
“Fooling functions of halfspaces under product distribu-
tions,” in Proceedings of the 25th Annual IEEE Confer-
ence on Computational Complexity, 2010, pp. 223–234.

[23] E. Mossel, “Gaussian bounds for noise correlation of
functions and tight analysis of Long Codes,” in Proceed-
ings of the 49th Annual IEEE Symposium on Foundations
of Computer Science, 2008, pp. 156–165.

[24] D. Ron and R. A. Servedio, “Exponentially improved
algorithms and lower bounds for testing signed majori-
ties,” in Proceedings of the 24th ACM-SIAM Symposium
on Discrete Algorithms, 2013, pp. 1319–1336.

[25] G. Valiant and P. Valiant, “Estimating the unseen: an
n/ log(n)-sample estimator for entropy and support size,
shown optimal via new CLTs,” in Proceedings of the
43rd ACM Symposium on Theory of Computing, 2011,
pp. 685–694.

10

