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Abstract

We study the average number of well-chosen labeled examples that are required for
a helpful teacher to uniquely specify a target function within a concept class. This “av-
erage teaching dimension” has been studied in learning theory and combinatorics and is
an attractive alternative to the “worst-case” teaching dimension of Goldman and Kearns
(Goldman and Kearns, 1992) which is exponential for many interesting concept classes.
Recently Balbach (Balbach, 2005) showed that the classes of 1-decision lists and 2-term
DNF each have linear average teaching dimension.

As our main result, we extend Balbach’s teaching result for 2-term DNF by showing
that for any 1 ≤ s ≤ 2Θ(n), the well-studied concept classes of at-most-s-term DNF and
at-most-s-term monotone DNF each have average teaching dimension O(ns). The proofs
use detailed analyses of the combinatorial structure of “most” DNF formulas and mono-
tone DNF formulas. We also establish asymptotic separations between the worst-case and
average teaching dimension for various other interesting Boolean concept classes such as
juntas and sparse GF2 polynomials.

1. Introduction

Many results in computational learning theory consider learners that have some form of
access to an oracle that provides labeled examples. Viewed as teachers, these oracles tend
to be unhelpful as they typically either provide random examples selected according to some
distribution, or they put the onus on the learner to select the examples herself. In noisy
learning models, oracles are even allowed to lie from time to time.

In this paper we study a learning model in which the oracle acts as a helpful teacher
(Goldman and Kearns, 1992; Goldman et al., 1993; Shinohara and Miyano, 1990). Given a
target concept c (this is simply a Boolean function over some domain X) that belongs to
a concept class C, the teacher provides the learner with a carefully chosen set of examples
that are labeled according to c. This set of labeled examples is called a teaching set and
must have the property that no other concept c′ 6= c in C is consistent with the teaching set;
thus every learner that outputs a consistent hypothesis will correctly identify c as the target
concept. The minimum number of examples in any teaching set for c is called the teaching
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dimension of c with respect to C, and the maximum value of the teaching dimension over
all concepts in C is the teaching dimension of C.

Some concept classes that are easy to learn can be very difficult to teach in the worst
case in this framework. As one example, let the concept class C over finite domain X contain
|X| + 1 concepts which are the |X| singletons and the empty set. Any teaching set for the
empty set must contain every example in X, since if x ∈ X is missing from the set then
the singleton concept {x} is not ruled out by the set. Thus the teaching dimension for this
concept class is |X|.

Many interesting concept classes include the empty set and all singletons, and thus have
teaching dimension |X|. Consequently for many concept classes the (worst-case) teaching
dimension is not a very interesting measure. With this motivation, researchers have consid-
ered the average teaching dimension, namely the average value of the teaching dimension
of c as c ranges over all of C.

Anthony et al. (Anthony et al., 1995) showed that the average teaching dimension of the
class of linearly separable Boolean functions over {0, 1}n is O(n2). Kuhlmann (Kuhlmann,
1999) showed that concept classes with VC dimension 1 over finite domains have constant
average teaching dimension and also gave a bound on the average teaching dimension of
concept classes Bd(c) (balls of center c and size ≤ d). Kushilevitz et al. (Kushilevitz et al.,
1996) constructed a concept class C that has an average teaching dimension of Ω(

√
|C|)

(this lower bound was also proved in (Cherniavsky and Statman, 1998)) and also showed
that every concept class has average teaching dimension at most O(

√
|C|). More recently,

Balbach (Balbach, 2005) showed that the classes of 2-term DNF and 1-decision lists each
have average teaching dimension linear in n.

Our Results. Our main results are the following theorems, proved in Sections 3 and 4,
which show that the well-studied concept classes of monotone DNF formulas and DNF
formulas are efficiently teachable in the average case:

Theorem 1 Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean functions
over {0, 1}n representable as a monotone DNF with at most s terms. Then the average
teaching dimension of C is O(ns).

Theorem 2 Fix any 1 ≤ s ≤ 2Θ(n) and let C be the concept class of all Boolean functions
over {0, 1}n representable as a DNF with at most s terms. Then the average teaching
dimension of C is O(ns).

Theorem 2 is a broad generalization of Balbach’s result on the average teaching dimension of
the concept class of DNF with at most two terms. It is easy to see that even the class of at-
most-2-term DNFs has exponential worst-case teaching dimension; as we show in Section 3,
the worst-case teaching dimension of at-most-s-term monotone DNFs is exponential as well.
Thus our results show that there is a dramatic difference between the worst-case and average
teaching dimensions for these concept classes.

We also consider some other well-studied concept classes, namely juntas and sparse GF2

polynomials. For the class of k-juntas, we show in Section 5 that while the worst-case
teaching dimension has a logarithmic dependence on n (the number of irrelevant variables),
the average teaching dimension has no dependence on n. For a certain class of sparse
GF2 polynomials (roughly, the class of GF2 polynomials with fewer than log n terms; see
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Section 6), we show that while the worst-case teaching dimension is nΘ(log log n), the average
teaching dimension is O(n log n). Thus in each case we establish an asymptotic separation
between the worst-case teaching dimension and the average teaching dimension. Our results
suggest that rich and interesting concept classes that are difficult to learn in many models
may in fact be easy to teach in the average case.

2. Preliminaries

Our domain is X = {0, 1}n, and we refer to Boolean functions c : {0, 1}n → {0, 1} as
concepts. A collection of concepts C ⊆ 2{0,1}n

is a concept class. For a given instance
x ∈ X, the value of c(x) is referred to as a label, and for y ∈ {0, 1}, the pair (x, y), is
referred to as a labeled example. If y = 0 (y = 1) then the pair is called a negative (positive)
example. A concept class C is consistent with a set of labeled examples if c(x) = y for all
the examples in the set.

A set S of labeled examples is a teaching set for c with respect to C if c is the only concept
in C that is consistent with S; thus every learner that outputs a consistent hypothesis from
C will correctly identify c as the target concept. We will also refer to a teaching set S for c
as TS(c). The minimum number of examples in any teaching set for c is called the teaching
dimension of c with respect to C (sometimes written TD(c) when C is understood), and the
maximum value of the teaching dimension over all concepts in C is the (worst-case) teaching
dimension of C. The average teaching dimension of C is the average value of the teaching
dimension of c with respect to C for all c, i.e., 1

|C|

∑
c∈C TD(c).

We use Boolean variables x1, . . . ,xn and write x̄i to denote the negated literal on variable
xi. We will often refer to a logical assignment of the variables as a string and vice-versa;
thus, a string y ∈ {0, 1}n corresponds to a truth-value assignment to the variables x1, . . . ,xn.
Given a set S of variables, we write 0|S=1 to denote the truth assignment that sets each
variable in S to 1 and sets all other variables to 0. The truth assignment 1|S=0 is defined
similarly.

Two strings y, z ∈ {0, 1}n are neighbors if they differ in exactly one bit position. Given
x, y ∈ {0, 1}n we write x ≤ y if xi ≤ yi for all i = 1, . . . , n, and we write x < y if we have
x ≤ y and x 6= y.

DNF Formulas. A term is a conjunction of Boolean literals. A term over n variables
is represented by a string T ∈ {0, 1, ∗}n, where the k-th character of T is denoted T [k]. The
value of T [k] is 0, 1, or ∗ depending on whether xk occurs negated, unnegated, or not at
all in the term. If x ∈ {0, 1}n is an assignment that satisfies T , we sometimes say that T
covers x. Note that the satisfying assignments of a term T form a subcube of dimension
n − |T | within the n-dimensional hypercube {0, 1}n.

An s-term DNF formula φ is an OR of s terms φ = T1∨· · ·∨Ts. A satisfying assignment
to the DNF is sometimes referred to as a positive point and an unsatisfying assignment as
a negative point.

A term Ti is said to be compatible with a set of labeled examples S if Ti does not cover
any negative example in S. A term Ti is said to imply another term Tj if every positive
point of Ti is also a positive point of Tj . We similarly say that a term T implies a DNF
formula φ, or that a DNF formula φ1 implies another DNF formula φ2. Two different DNF
formulas φ1 and φ2 are said to be logically equivalent if each implies the other, i.e., if they
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are different syntactic representations of the same Boolean function. Throughout the paper
we will use the Greek letter φ to denote formulas (which are syntactic objects) and Roman
letters f, g, . . . to denote Boolean functions (which are abstract mappings from {0, 1}n to
{0, 1}).

We write Ds to denote the class of “exactly-s-term” DNFs; this is the class of all
Boolean functions f : {0, 1}n→{0, 1} that have some s-term DNF representation and have
no s′-term DNF representation for any s′ < s. Similarly, we write D≤s to denote the class
of “at-most-s-term” DNFs, which is D≤s = ∪s′≤sDs′ . Note that the elements of Ds and
D≤s are “semantic” functions, not syntactic formulas. The class D≤s corresponds to the
standard notion of “s-term DNF” which is a well studied concept class in computational
learning theory.

A monotone DNF formula, or mDNF, is a DNF formula that contains no negated literals.
The concept classes of exactly-s-term mDNFs and at-most-s-term mDNFs are denoted Ms

and M≤s and are defined in analogy with Ds and D≤s above. The following fact is well
known:

Fact 3 If f ∈ Ms then there is a unique (up to ordering of the terms) s-term mDNF
representation φ = T1 ∨ · · · ∨ Ts for f.

3. Monotone DNFs

Worst-case teaching dimension of at-most-s-term mDNFs. Here we state upper
and lower bounds on the worst-case teaching dimension of M≤s.

Theorem 4 The teaching dimension of M≤s is at most ns + s.

Proof Let f be an element of Mk for some k ≤ s. We have that f is represented by a
unique mDNF φ = T1∨· · ·∨Tk, where each Tk corresponds to a minterm (minimal satisfying
assignment) of f. For the rest of the proof we will view each term Ti as the set of variables
that it contains; note that these sets are pairwise incomparable, i.e., no Ti is contained in
any other Tj .

We will show that the following set of examples is a teaching set for f :

• For each term Ti in T1, . . . , Tk we give the positive example 0|Ti=1; this is clearly at
most s examples.

• We also give a set of negative examples which consists of precisely those examples
that have exactly one variable of each term set to zero and all other variables set to
one. In other words, for every set S ⊆ ∪k

i=1Ti that satisfies |S ∩ Ti| = 1 for all i,
we give the example 1|S=0. Since there are at most ns ways to choose exactly one
variable from each of the s terms, this is at most ns examples.

We first note that any g ∈ M≤s (in fact any monotone function g) that is consistent
with the negative set must label negative any assignment which does not satisfy at least
one of the terms T1, . . . ,Tk. This is because for any assignment y which satisfies none of
the k terms, there is an example y′ in the negative set such that y ≤ y′ with respect to
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the bitwise partial order on {0, 1}n. Since g(y′) = 0 and g is monotone, this implies that
g(y) = 0.

It follows that for all Ti, for all xj ∈ Ti, the example 0|(Ti\xj)=1 must be negative under
f . Thus for each term Ti, we have that 0|Ti=1 is positive while flipping any positive bit
in 0|Ti=1 makes f negative. Consequently, any g ∈ M≤s which is consistent with both
the positive and negative examples must contain each of the terms T1, . . . ,Tk. If k = s
then since g cannot contain any other terms, we must have that g is equivalent to f. If
k < s, suppose that g contains some other non-redundant term Ts+1. Then there must be
an assignment that is positive under g but which does not satisfy any of T1, . . . ,Tk. The
negative set shows that this is not possible.

Theorem 5 Given s, let s′ ≤ s be any value such that (s′−1) divides n. Then the teaching
dimension of M≤s is at least ( n

s′−1)s
′−1.

Proof We exhibit a concept f ∈ M≤s−1 whose teaching set must contain all the negative
examples in the teaching set for the proof of Theorem 4 in order to disambiguate it from
various concepts in Ms. Let d = n/(s′ − 1) and consider the concept

f = (x1 · · · xd) ∨ (xd+1 · · · x2d) ∨ · · · (x(s′−2)d+1 · · · x(s′−1)d)

which is known as the tribes function. Suppose not all of the negative examples from the
proof of Theorem 4 are part of a teaching set for f , i.e., that there is some S ⊆ ∪s′−1

i=1 Ti

with |S∩Ti| = 1 such that 1|S=0 /∈ TS(f). Let TS be the term exactly satisfied by 1|S=0 so
that TS includes variable xi if and only if the i’th bit of 1|S=0 is set to 1. Then the concept
f ′ = f ∨ TS will label TS(f) consistently with f . Clearly any positive example in TS(f)
will also be positive under f ′. Take any negative example y ∈ TS(f). Unless y satisfies TS ,
it is negative under f ′. But to satisfy TS , y ≥ 1|S=0. This is impossible, since if y > 1|S=0

it would be a positive example, and y = 1|S=0 is not in the teaching set by assumption.
Thus TS(f) must contain a negative example for every S ⊆ ∪s′−1

i=1 Ti satisfying |S∩Ti| = 1
for all i. For f there are ds′−1 = ( n

s′−1)s
′−1 such sets.

Average-case teaching dimension of at-most-s-term mDNFs. We now prove
Theorem 1. The idea is to show that almost every at-most-s-term monotone DNF in fact
has exactly s terms; as we will see, these exactly-s-term monotone DNFs can be taught
very efficiently with O(ns) examples. The remaining concepts are so few that they can be
handled with a brute-force approach and the overall average teaching dimension will still
be O(ns).

We start with a simple lemma from (Goldman and Kearns, 1992):

Lemma 6 ((Goldman and Kearns, 1992)) Let c be any concept in Ms. Then the
teaching dimension of c with respect to M≤s is at most (n + 1)s.

Proof sketch: Let φ = T1 ∨ · · · ∨ Ts be the unique s-term mDNF for c. For each i =
1, . . . , s the teaching set contains the positive example 0|Ti=1 and contains |Ti| many negative
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examples which are the neighbors of 0|Ti=1 that are obtained by setting one of the 1s to 0.
Each of the s terms thus contributes at most n + 1 examples; an easy argument based on
Fact 3 given in (Goldman and Kearns, 1992) shows that this is indeed a teaching set.

Lemma 7 For 1 ≤ i < 1
4e

n
72 , we have 2ni−1

i! ≤ |Mi| ≤
2ni

i! .

Proof The upper bound is easy: the number of i-term mDNFs is at most the number of
ways to choose i terms from the set of all 2n many monotone terms over variables x1, . . . ,xn.
The latter quantity is

(2n

i

)
≤ 2ni

i! .
For the lower bound we consider all 2ni ways to select a sequence of i terms (with

replacement) from the set of all 2n possible monotone terms. We show that at least half
of these 2ni ways result in a sequence T1, . . . , Ti of terms which are pairwise incomparable,
i.e., no Ti implies any other Tj . Each such sequence yields an i-term mDNF, and each such
mDNF occurs i! times because of different orderings of the terms in a sequence. This gives
the lower bound.

Note that a collection of i monotone terms T1, . . . , Ti will be pairwise incomparable if
the following two conditions hold: (1) Each of the i terms contains between 5n/12 and
7n/12 many variables, and (2) Viewing each term Ti as a set of variables, for any j 6= k
the symmetric difference |Tj∆Tk| is of size at least n/4. (This is because if |Tj |, |Tk| ∈
[5n/12, 7n/12] and Tj ⊆ Tk, then the symmetric difference must be of size at most n/6.)

For condition (1), Hoeffding’s bound implies that a uniformly selected monotone term T
will contain fewer than 5n/12 or more than 7n/12 many variables with probability at most
2e−n/72, so a union bound gives that condition (1) fails with probability at most 2ie−n/72.
For condition 2, observe that given two uniform random terms Tj , Tk, each variable x` is
independently in their symmetric difference with probability 1/2. Thus Hoeffding’s bound
implies that |Tj∆Tk| < n/4 with probability at most e−n/8. By a union bound, the proba-
bility that condition (2) fails is at most

(i
2

)
e−n/8. Thus for i < 1

4e
n
72 , the probability that

conditions (1) and (2) both hold is at least 1/2.

Fix 1 ≤ s ≤ 1
4e

n
72 . It is easy to check that by Lemma 7, for any k < s we have |Mk| <

1
2 |Mk+1|. Thus (again by Lemma 7) we have |M≤s−1| ≤

2ns−n+1

(s−1)! while |Ms| ≥
2ns−1

s! .

Combining these bounds gives that |Ms|
|M≤s−1|

≥ 2n

4s . By Lemma 6, each concept c ∈ M≤s

which is in Ms can be taught using n(s + 1) examples. Each of the remaining concepts
can surely be taught using at most 2n examples. We thus have that the average teaching
dimension of M≤s is at most

(n + 1)s|Ms| + 2n|M≤s−1|

|Ms| + |M≤s−1|
≤ (n + 1)s +

2n

1 + 2n/4s
≤ (n + 1)s + 4s,

giving us the following result which is a slightly sharper version of Theorem 1:

Theorem 8 Let s be any value 1 ≤ s ≤ 1
4e

n
72 . The class M≤s of at-most-s-term monotone

DNF has average teaching dimension at most s(n + 5).

Note that if s > 1
4e

n
72 , then 2n is bounded by some fixed polynomial in s, and thus the

worst-case teaching dimension 2n is actually poly(n, s) for such a large s. This gives the
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following corollary which says that the class of at-most-s-term monotone DNF is efficiently
teachable on average for all possible values of s:

Corollary 9 Let s be any value 1 ≤ s ≤ 2n. The class M≤s of at-most-s-term monotone
DNF has average teaching dimension poly(n, s).

4. DNFs

Now we will tackle the teaching dimension of the unrestricted class of size-at-most-s DNFs.
The high-level approach is similar to the monotone case, but the details are more compli-
cated. The idea is to identify a subset S of D≤s and show that (i) any function f ∈ S can

be uniquely specified within all of D≤s using only O(ns) examples; and (ii) at most a O(s)
2n

fraction of all functions in D≤s do not belong to S. Given (i) and (ii) it is easy to conclude
that the average teaching dimension of D≤s is O(ns).

The challenge is to devise a set S that satisfies both conditions (i) and (ii). In the
monotone case using Fact 3 it was easy to show that Ms is an easy-to-teach subset, but
non-monotone DNF are much more complicated (no analogue of Fact 3 holds for non-
monotone DNF) and it is not at all clear that all functions in Ds are easy to teach. Thus we
must use a more complicated set S of easy-to-teach functions; we define this set and prove
that it is indeed easy to teach in Section 4.2. (This argument uses Balbach’s results for
exactly-2-term DNFs.) The argument that (ii) holds for S is correspondingly more complex
than the counting argument for mDNFs because of S’s more involved structure; we give
this in Section 4.3.

4.1 Preliminaries

We will borrow some terminology from Balbach (Balbach, 2005). Two terms Ti and Tj

have a strong difference at k if Ti[k], Tj [k] ∈ {0, 1} and Ti[k] 6= Tj [k] (e.g., x1x̄5x6 and
x̄5x̄6x12x23 have a strong difference at position 6). Two terms have a weak difference at k
if Ti[k] ∈ {0, 1} and Tj[k] = ∗ or vice-versa. Two weak differences at positions k and ` are
of the same kind if Ti[k], Ti[`] ∈ {0, 1} and Tj [k] = Tj [`] = ∗ or vice-versa, that is both ∗’s
occur in the same term (e.g., x̄5x6 and x̄5x̄6x12x23 have two weak differences of the same
kind at positions 12 and 23). Two weak differences at positions k and ` are of different
kinds if Ti[k], Tj [`] ∈ {0, 1} and Tj [k] = Ti[`] = ∗ or vice-versa (e.g., x̄5x6 and x̄5x12 have
two weak differences of different kinds at positions 6 and 12).

Now we introduce some new terminology. Given y ∈ {0, 1}n which satisfies a term T ,
we denote by NT (y) the set consisting of y and all its neighbors that do not satisfy T. A
satisfying assignment y ∈ {0, 1}n of a term T in φ is called a cogent corner point of T if all
the neighbors of y that satisfy φ satisfy T , and all the neighbors that do not satisfy T do
not satisfy φ. Note that if y is a cogent corner point of T , then each of the neighbors of y
in NT (y) does not satisfy φ. A pair of points y, z ∈ {0, 1}n that satisfy a term T are said to
be antipodal around T if yk = zk for all k such that T [k] = ∗. A pair of points are cogent
antipodal points around T if they are both cogent corner points of T and antipodal around
T . This leads us to our first preliminary lemma:

Lemma 10 Let φ = T1 ∨ · · · ∨ Ts be any DNF. Let y be a cogent corner point of Ti. Any
T̂ that covers y and is compatible with NTi

(y) must imply Ti.
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Proof Let T̂ be any term that covers y. Observe that for each literal ` in Ti, if T̂ did not
contain ` then T̂ would not be compatible with NTi

(y) since the corresponding negative
neighbor of y is contained in NTi

(y) but would be covered by T̂ . It follows that every literal
in Ti is also present in T̂ , and consequently T̂ implies Ti.

Two terms are said to be close if they have at most one strong difference. Note that
there is no strong difference between two terms if and only if they have some satisfying
assignment in common, and there is one strong difference between two terms if and only if
they have neighboring satisfying assignments.

Given a Boolean function f : {0, 1}n→{0, 1}, we let Gf denote the undirected graph
whose vertices are the satisfying assignments of f and whose edges are pairs of neighboring
satisfying assignments. A cluster C of f is a set of satisfying assignments that form a
connected component in Gf . We sometimes abuse notation and write C to refer to the
Boolean function whose satisfying assignments are precisely the points in C. We say that
a DNF φ computes cluster C if the set of satisfying assignments for φ is precisely C. The
DNF-size of a cluster C is the minimum number of terms in any DNF that computes C.
For intuition, we can view a cluster as being a connected set of positive points that have
a “buffer” of negative points separating them from all other positive points. The following
lemma is immediate:

Lemma 11 Let f be an element of Ds, i.e. f is an exactly-s-term DNF. Let C1, . . . , Cr be
the clusters of f . Then DNF-size(C1) + · · · + DNF-size(Cr) = s.

4.2 Teaching S

We are now ready to define our “nice” (easy to teach) subset S ⊆ D≤s of size-at-most-s
DNFs. (We emphasize that S is a set of functions, not of DNF expressions.) S consists
of those exactly-s-term DNFs (so in fact S ⊆ Ds) all of whose clusters either: (1) have
DNF-size 1; (2) have DNF-size 2; or (3) have DNF-size k, for some k, and are computed by
a DNF φ = T1 ∨ · · · ∨ Tk in which each Ti has a pair of cogent antipodal points around it.

Note that if a cluster has DNF-size 1, then it clearly satisfies condition (3) above (in fact
every pair of antipodal points for the term is cogent). Thus we can simplify the description
of S: it is the set of all exactly s-term DNFs all of whose clusters either: (i) have DNF-size
k and are computed by a DNF φ = T1 ∨ · · · ∨ Tk in which each Ti has a pair of cogent
antipodal points around it, or (ii) have DNF-size exactly 2. (Note that there do in fact
exist Boolean functions of DNF-size 2 for which any two-term representation T1 ∨ T2 has
some term Ti with no pair of cogent antipodal points around it, e.g., x1x3 ∨ x2x3, and thus
condition (ii) is non-redundant.)

The teaching set for functions in S. We will use the following theorem due to
Balbach (Balbach, 2005):

Theorem 12 Let c be any element of D2 (i.e., an exactly-2-term DNF). The teaching
dimension of c with respect to D≤2 is at most 2n + 4.

The teaching set specified in (Balbach, 2005) to prove Theorem 12 consists of at most 5
positive points along with some negative points. Given f ∈ D2, we define BTS(f) to be the
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union of the teaching set specified in (Balbach, 2005) together with all negative neighbors
of the (at most five) positive points described above (the set specified in (Balbach, 2005)
already contains some of these points). With this definition a straightforward consequence
of the analysis of (Balbach, 2005) is the following:

Lemma 13 Let φ = T1 ∨ · · · ∨ Ts be a DNF that has a cluster C with DNF-size 2. Let
BTS(C) be as described above. Let y be a satisfying assignment for φ that is contained in
C. Then any term T̂ that covers y and is consistent with BTS(C) must imply C.

Given any function f ∈ S, our teaching set TS(f) for f will be as follows. For each
cluster C of f , if C:

• satisfies condition (i): then for each term Ti described in condition (i), the set
TS(f) contains a pair y, z of cogent antipodal points for Ti (these are positive exam-
ples) and contains all negative neighbors of these two positive examples (i.e., TS(f)
contains NTi

(y) and NTi
(z)). Thus TS(f) includes at most k(2 + 2n) many points

from such a cluster, where k = DNF-size(C).

• does not satisfy condition (i) but satisfies (ii): then we will give the set BTS(C)
described above. By Theorem 12 and the definition of BTS(C), we have that BTS(C)
contains at most 7n + 4 points.

Lemma 11 now implies that TS(f) contains at most O(ns) points.

Correctness of the teaching set construction. We now prove that the set TS(f)
is indeed a teaching set that uniquely specifies f within all of D≤s.

We first observe that any term compatible with TS(f) can only cover positive examples
from one cluster of φ.

Lemma 14 Let y be any positive example in TS(f) and let T be any term that covers y
and is compatible with TS(f). Let C be the cluster of φ that covers y. Then if z is any
positive example in TS(f) that is not covered by C, T does not cover z.

Proof If C satisfies condition (i) then y must be a cogent corner point and Lemma 10
gives the desired conclusion. If C does not satisfy (i) but satisfies (ii), then the conclusion
follows from Lemma 13.

The next two lemmas show that any set of terms that covers the positive examples of a
given cluster must precisely compute the entire cluster and only the cluster of the original
function:

Lemma 15 Let C be any case (i) cluster of DNF-size k. Let PC be the intersection of the
positive examples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ k terms such that the

DNF T̂1 ∨ · · · ∨ T̂j both: (a) is compatible with TS(f), and (b) covers every point in PC .

Then it must be the case that j = k and T̂1 ∨ · · · ∨ T̂j exactly computes C (in fact each term

T̂i is equivalent to Ti up to reordering).

9
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Proof By Lemma 10, a term T̂ that covers a cogent antipodal point from term Ti cannot
cover any of the other 2k − 2 cogent antipodal points from other terms, and thus we must
have j = k since fewer than k terms cannot cover all of PC . Moreover, any term T̂i must
cover a pair of antipodal points corresponding to a single term (which wlog we call Ti). For
each antipodal pair corresponding to a term Ti, the covering term T̂i must be of size at least
|Ti|, and since they are cogent antipodal points, the covering term cannot be any longer
than |Ti|, so in fact we have that T̂i and Ti are identical. This proves the lemma.

Lemma 16 Let C be any case (ii) cluster. Let PC be the intersection of the positive ex-
amples in TS(f) with C. Let T̂1, . . . , T̂j be any set of j ≤ 2 terms such that the DNF

T̂1 ∨ · · · ∨ T̂j both: (a) is compatible with TS(f), and (b) covers every point in PC . Then it

must be the case that j = 2 and T̂1 ∨ T̂2 exactly computes C.

Proof The fact that BTS(C) is a teaching set (for the exactly-2-term DNF corresponding
to C, relative to D≤2) implies the desired result, since no single term or 2-term DNF not

equivalent to C can be consistent with BTS(C), and any DNF T̂1 ∨ · · · ∨ T̂j as specified in
the lemma must be consistent with BTS(C).

The pieces are in place for us to prove our theorem:

Theorem 17 For any f ∈ S, the set TS(f) uniquely specifies f within D≤s.

Proof By Lemma 14, positive points from each cluster can only be covered by terms that
do not include any positive points from other clusters. By Lemmas 15 and 16, for each
cluster C, the minimum number of terms required to cover all positive points in the cluster
(and still be compatible with TS(f)) is precisely the DNF-size of C. Since f is an exactly-
s-term DNF, Lemma 11 implies that using more than DNF-size(C) many terms to cover all
the positive points in any cluster C will “short-change” some other cluster and cause some
positive point to be uncovered. Thus any at-most-s-term DNF φ that is consistent with
TS(f) must have the property that for each cluster C, at most DNF-size(C) of its terms
cover the points in PC ; so by Lemmas 15 and 16, these terms exactly compute C, and thus
φ must exactly compute f.

4.3 Average-case teaching dimension of DNFs

In this section we will show that all but at most a O(s)
2n fraction of functions in D≤s are in

fact in S. We do this by showing that at least a 1 − O(s)
2n fraction of functions in D≤s are

in the easy-to-teach set S, i.e. they belong to Ds and are such that each cluster satisfies
either condition (i) or (ii) from Section 4.2. Since we have shown that each f ∈ S can be
uniquely specified within D≤s using O(ns) examples, this will easily yield that the average
teaching dimension over all of D≤s is O(ns).

First we show that most functions in D≤s are in fact in Ds. We can bound |Di| using
the same approach as we did for monotone DNFs.

10
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Lemma 18 For i < (9/7)n/3, we have 1
2 · 3ni

i! ≤ |Di| ≤
3ni

i! .

Proof As in Lemma 7, the upper bound is easy; we may bound the number of functions
in Di by the number of ways to choose i terms from the set of all 3n possible terms over
variables x1, . . . ,xn. This is

(
3n

i

)
≤ 3ni

i! .
For the lower bound, we first note that a DNF formula consisting of i terms that are

all pairwise far from each other cannot be logically equivalent to any other DNF over a
different set of i terms. We will show that at least half of all 3ni possible sequences of i
terms have the property that all i terms in the sequence are pairwise far from each other;
this gives the lower bound (since each such set of i terms can be ordered in i! different
ways).

So consider a uniform random draw of i terms T1, . . . , Ti from the set of all 3n possi-
ble terms. The probability that T1 and T2 are close is the probability that they have no
strong differences plus the probability that they have exactly one strong difference. This is
(7/9)n + n(7/9)n−1(2/9) < (n + 1)(7/9)n. By a union bound over all pairs of terms, the
probability that any pair of terms is close at most

(
i
2

)
(n + 1)(7/9)n which is less than 1/2

for i < (9/7)n/3.

As in Section 3, as a corollary we have that |Ds|
|D≤s−1|

≥ 3n

4s for s ≤ (9/7)n/3.

We now bound the number of DNFs in Ds that are not in S. To do this, we consider
choosing s terms at random with replacement from all 3n terms:

Lemma 19 Fix any s ≤ (9/8)n/25. Let f = T1, . . . , Ts be a sequence of exactly s terms
selected by independently choosing each Ti uniformly from the set of all 3n possible terms.
Let A(Ti) denote the event that term Ti in f has no cogent antipodal pairs, and B(Ti)
denote the event that there is more than one other term close to Ti in f . Then Pr[∃Ti ∈ f :

A(Ti)&B(Ti)] ≤
O(s)
2n , where the probability is taken over the choice of f .

Using Lemma 19 we can bound the number of functions f ∈ Ds that are not in S. If
f ∈ Ds \S, then f must have a DNF formula representation φ = T1∨· · · ∨Ts in which some
term Ti:

1. has no cogent antipodal pairs, and

2. has at least two other terms Tj, Tk that are close to it.

(If there were no such term, then for any representation φ = T1 ∨ · · · ∨ Ts for the function
f , every Ti is contained in either a cluster of DNF-size 1 or 2, or a cluster of DNF-size k
with a pair of good antipodal points around it. But then φ would be in S.)

We will call such a syntactic DNF formula “bad.” Lemma 19 tells us that the number
of bad syntactic formulas is at most 3nsO(s)

2n , since there are 3ns syntactic formulas. Notice
that any bad formula φ must have s distinct terms (since the function it computes belongs
to Ds), and since these terms can be ordered in s! different ways, there are at least s! bad
formulas that compute the same function as φ. Consequently the number of bad functions
in Ds, |Ds \ S|, is at most O(s)

2n
3ns

s! . By Lemma 18, |Ds| is at at least 3ns

2s! . This gives the
following:

11
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Corollary 20 |Ds\S|
|Ds|

≤ O(s)
2n .

We now proceed to prove Lemma 19.
Proof The bulk of the argument is in showing that Pr[A(T1) & B(T1)] is at most O(1)·2−n;
once this is shown a union bound gives the final result.

We condition on the outcome of T1. Using the fact that each variable occurs indepen-
dently in T1 (either positive or negated) with probability 2/3, a Chernoff bound gives that
Pr[|T1| < .08n] ≤ 2−n, so we have that

Pr[A(T1) & B(T1)] ≤ 2−n +
∑

T :|T |≥.08n

Pr[A(T1) & B(T1) | (T1 = T )] · Pr[T1 = T ].

Next we show that Pr[A(T1) & B(T1) | (T1 = T )] ≤ O(1) · 2−n for every T satisfying
|T | ≥ .08n; this implies an O(1) · 2−n bound on Pr[A(T1) & B(T1)]. To do this we consider
a third event which we denote by C(T1); this is the event that T1 is close to at most 25 of
the terms T2, . . . , Ts. Clearly we have that

Pr[A(T1) & B(T1) | (T1 = T )] = Pr[A(T1) & B(T1) & ¬C(T1) | (T1 = T )]

+Pr[A(T1) & B(T1) & C(T1) | (T1 = T )] (1)

and we proceed by bounding each of the terms in (1).
The first term is at most Pr[¬C(T1) | (T1 = T )]. Fix any α ∈ [.08, 1] and any term T

of length αn, and fix T1 = T . Then the probability (over a random draw of T2 as in the
statement of the lemma) that T2 is close to T1 is the probability that T1 and T2 have one
strong difference plus the probability that T1 and T2 have no strong difference, which is
exactly αn 1

3

(
2
3

)αn−1
+

(
2
3

)αn
≤ 2αn

(
2
3

)αn
. Using the independence of the terms T2, . . . , Ts

and a union bound, it follows that the probability that there exists any set of K terms in

f which are all close to T1 is at most
( s
K

)
(2αn)K

(
2
3

)Kαn
. It is not hard to verify that for

any 1 ≤ s ≤ (9/8)n/25, any K ≥ 26, and any α ∈ [.08, 1], this quantity is asymptotically
less than 2−n.

It remains to bound the second term of (1) by O(1) ·2−n. We do this using the following
observation:

Proposition 21 Let f = T1, . . . , Ts be any sequence of s terms. If T1 has no cogent antipo-
dal pairs with respect to f and is close to at most K of the terms T2, . . . , Ts, then there must
be some term among T2, . . . , Ts that is close to T1 and contains at most k = dlog Ke + 1
variables not already in T1.

Proof We show that if every term in f close to T1 contains more than k variables not
already in T1, there must remain some cogent antipodal pair for T1. Let r be the number
of variables in T1 and let ` = n − r. For any z ∈ {0, 1}` let QT1

(z) denote the set of points
in {0, 1}n consisting of the antipodal pair induced by z on T1 (these two points each satisfy
T1) and the 2r neighbors of these points that do not satisfy T1. Thus QT1

(z) = QT1
(z), and

there are 2`−1 distinct QT1
(z), each representing a possible cogent antipodal pair.

Consider a term Ti that is close to T1, and partition its satisfying assignments according
to the 2` assignments on the ` variables not contained in T1. Since Ti will only eliminate

12



DNF are Teachable in the Average Case

the cogent antipodal pair represented by the neighborhood QT1
(z) if it covers some point

in QT1
(z), Ti can only eliminate as many cogent antipodal pairs as it has partitions. But if

Ti contains more than k of the ` variables not already in T1, then there are fewer than 2`−k

different ways to set the ` bits outside of T1 to construct a satisfying assignment for Ti, and
Ti has fewer than 2`−k different partitions. Since by assumption there are at most K ≤ 2k−1

terms close to T1, there are fewer than 2k−1 · 2`−k = 2`−1 different QT (z) eliminated, and
T must have a cogent antipodal pair left.

By Proposition 21, we know that if A(T1) occurs (T1 has no cogent antipodal pairs)
and C(T1) occurs (T1 is close to no more than K = 25 other terms), then there must be
some term close to T1 that has at most k = 6 variables not in T1. Thus we have that
Pr[A(T1) & B(T1) & C(T1) | (T1 = T )] is at most the probability there exist two terms
close to T1, one of which contains at most k = 6 variables not in T1. We saw earlier
that the probability that a randomly chosen term is close to T1 is at most 2αn(2/3)αn.
However, the probability that a randomly chosen term is close to T1 and contains at most
6 variables not in T1 is much lower (because almost all of the (1 − α)n variables not in
T1 are constrained to be absent from the term); more precisely this probability is at most

2αn
((1−α)n

6

) (
2
3

)αn (
1
3

)(1−α)n−6
. A union bound over all possible pairs of terms gives us that

the second term of (1) is at most 2αn
(s
2

)((1−α)n
6

)
36

(
2
3

)2αn (
1
3

)(1−α)n
. It is straightforward

to check that this is at most O(1) · 2−n for all 1 ≤ s ≤ (9/8)n/25 and all α ∈ [0, 1].
Thus, we have bounded Pr[A(T1) & B(T1)] by O(1) · 2−n. A union bound over the s

terms gives that Pr[∃Ti ∈ f : A(Ti) & B(Ti)] is at most O(s)2−n, and the lemma is proved.

Theorem 22 Let s ≤ (9/8)n/25. The average teaching dimension of D≤s, the class of
DNFs over n variables with at most s terms, is O(ns).

Proof Theorem 17 gives us that the teaching dimension of any concept in S ⊂ Ds is O(ns).
By Lemma 18, we have that |D≤s−1| ≤

4s
3n |Ds|. This leaves us with Ds \ S, whose size we

bounded by O(s)
2n |Ds| in Corollary 20. Combining these bounds, we are ready to bound the

average teaching number of |D≤s|. Since we can teach any bad concept with at most 2n

examples, the average teaching dimension is at most

O(ns)|S| + 2n(|D≤s−1| + |Ds \ S|)

|Ds| + |D≤s−1|
≤

O(ns)|Ds| + 2n( 4s
3n |Ds| +

O(s)
2n |Ds|)

|Ds| + |D≤s−1|

≤ O(ns) + (2/3)n · 4s + O(s) = O(ns)

and the theorem is proved.

As in Corollary 9, we have 2n ≤ poly(s) if s > (9/8)n/25, and thus the worst-case teaching
dimension 2n is actually poly(n, s) for such large s. This gives the following corollary:

Corollary 23 Let s be any value 1 ≤ s ≤ 2n. The class D≤s of at-most-s-term DNF has
average teaching dimension poly(n, s).
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5. Teaching Dimension of k-juntas

A Boolean function f over n variables depends on its i-th variable if there are two inputs
x, x′ ∈ {0, 1}n that differ only in the i-th coordinate and that have f(x) 6= f(x′). A k-junta
is a Boolean function which depends on at most k of its n input variables. The class of
k-juntas (or equivalently NC0

k functions) is well studied in computational learning theory,
see e.g., (Blum, 2003; Mossel et al., 2004; Alekhnovich et al., 2004). We write Jk to
denote the class of Boolean functions f : {0, 1}n→{0, 1} that depend on exactly k variables,
and we write J≤k to denote the class J≤k = ∪k′≤kJk′ of Boolean functions over {0, 1}n that
depend on at most k variables, i.e., J≤k is the class of all k-juntas.

We analyze the worst-case and average-case teaching dimensions of the class of k-juntas,
and show that while the worst-case teaching dimension has a logarithmic dependence on
n, the average-case dimension has no dependence on n. Thus k-juntas are another natural
concept class where there is a substantial asymptotic difference between the worst-case and
average teaching dimensions.

Worst-Case teaching dimension of k-juntas. We recall the following:

Definition 24 Let k ≤ n. A set S ⊆ {0, 1}n is said to be an (n, k)-universal set if for
any 1 ≤ i1 < i2 . . . < ik ≤ n, it holds that ∀y ∈ {0, 1}k,∃x ∈ S satisfying (xi1 , . . . , xik) =
(y1, . . . , yk)

Nearly matching upper and lower bounds are known for the size of (n, k)-universal sets:

Theorem 25 ((Seroussi and Bshouty, 1988)) Let k ≤ n. Any (n, k)-universal set has
size Ω(2k log n), and there exists an (n, k)-universal set of size O(k2k log n).

This straightforwardly yields:

Theorem 26 The teaching dimension of J≤k is at least Ω(2k log n) and at most O(k2k log n).

Proof For the lower bound, we show that any teaching set for the identically-0 concept
c ≡ 0 (which is a k-junta for any k ≥ 0) must be an (n, k)-universal set. Suppose
S ⊆ {0, 1}n is not an (n, k)-universal set, i.e., there is some i1 < · · · < ik and some
y ∈ {0, 1}k such that for every x ∈ S we have (xi1 , . . . , xik) 6= (y1 . . . yk). Then the k-junta
defined as

c′(x) =

{
1 if (xi1 . . . xik) = (y1 . . . yk)

0 otherwise

labels S the same way as c.
Now we prove the upper bound. Let c be any k-junta that has R = {i1, . . . , ir} as its

set of relevant variables (so r ≤ k). We describe a teaching set for c. For each relevant
variable ij ∈ R, there is a pair of examples x, x′ ∈ {0, 1}n that disagree only in their ij-th
bit and have c(x) 6= c(x′). Let the set S consist of these 2r examples together with an
(n, k)-universal set; we will argue that S is a teaching set for c and thus prove the theorem.

Suppose that c′ is some k-junta that is consistent with S. Clearly c′ must depend on
every variable in R or else it would label one of the first 2r examples differently from c.
We claim that c′ cannot depend on any additional variables. Suppose to the contrary that
c′ depends on exactly q additional variables j1, . . . , jq. Given a ∈ {0, 1}r and b ∈ {0, 1}q,
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let V (a, b) = {x ∈ {0, 1}n : (xi1 . . . xir) = a and (xj1 . . . xjq) = b}. Since c′ depends on
j1, . . . , jq , there must be some a ∈ {0, 1}r and b 6= b′ ∈ {0, 1}q such that all the examples
in V (a, b) take one value under c′ while all the examples in V (a, b′) take the other value
under c′. Furthermore, since S is an (n, k)-universal set and |a| + |b| ≤ k, S must contain
some example x1 from V (a, b) and some example x2 from V (a, b′). But c only depends
on variables i1, . . . , ir, so c assigns x1 and x2 the same label while c′ does not. Thus c
and c′ must have the exact same set of r ≤ k relevant variables. Since they agree on an
(n, k)-universal set, they agree for every setting of those r variables, and thus they agree on
all of {0, 1}n.

Average-case teaching dimension of k-juntas. The idea is similar to the case of
monotone DNF: we show that k-juntas with exactly k relevant variables can be taught with
2k examples (independent of n), and then use the fact that the overwhelming majority of
k-juntas have exactly k relevant variables.

Lemma 27 Let c be any concept in Jk. Then the teaching dimension of c with respect to
J≤k is at most 2k.

Proof Given any k-junta c with exactly k relevant variables, let S be the set of 2k examples
in which all irrelevant variables are always set to 0 and the relevant variables range over all
2k possible settings. It is straightforward to see that S is a teaching set for c.

We now claim that 1
2

(
n
k

)
22k

≤ |Jk| ≤
(
n
k

)
22k

. The upper bound is clear since any k-junta
can be specified by presenting k variables (

(n
k

)
possibilities) and a Boolean function on

those k variables (22k

possibilities). The lower bound (which is very crude but sufficient for

our purposes) follows from the easily verified fact that at least half of all 22k

functions on
{0, 1}k in fact depend on all k variables. It is easy to see from these bounds that |Jk| strictly

increases with k for all k, and thus we have |J≤k−1| ≤ (k − 1)|Jk−1| ≤ (k − 1)
(

n
k−1

)
22k−1

.

By Lemma 27 we can specify any function in Jk with at most 2k examples, and by
Theorem 25 we can specify any of the other functions in J≤k (i.e., any function in J≤k−1)
with at most O(k2k log n) many examples. It follows that the average teaching dimension
of J≤k is at most

2k|Jk| + O(k2k log n) · |J≤k−1|

|Jk| + |J≤k−1|
≤ 2k +

O(k2k log n) · (k − 1)
( n
k−1

)
22k−1

1
2

(n
k

)
22k

.

The second term on the right simplifies to

O(k2k log n) · k(k − 1)

22k−1(n − k + 1)

which is easily seen to be o(1) for any k. We have thus proved:

Theorem 28 The average teaching dimension of the class J≤k of k-juntas is at most 2k +
o(1).
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6. Sparse GF2 Polynomials

A GF2 polynomial is a multilinear polynomial with 0/1 coefficients that maps {0, 1}n to
{0, 1} where all arithmetic is done modulo 2. Since addition mod 2 corresponds to parity
and multiplication corresponds to AND, a GF2 polynomial can be viewed as a parity of
monotone conjunctions. It is well known, and not hard to show, that every Boolean function
f : {0, 1}n→{0, 1} has a unique GF2 polynomial representation. (For example, the parity
function has x1 ⊕ · · · ⊕ xn as its GF2 polynomial, and x1 ∨ x2 has x1 ⊕ x2 ⊕ x1x2.)

A natural measure of the size of a GF2 polynomial is the number of monomials that it
contains. In keeping with our usual notation, let Gs denote the class of all Boolean functions
f : {0, 1}n→{0, 1} that have GF2 polynomial representations with exactly s monomials and
let G≤s denote ∪s′≤sGs′ . We sometimes refer to functions in G≤s as being s-sparse GF2

polynomials. The class of s-sparse GF2 polynomials has been studied by several researchers
in learning theory and complexity theory, see e.g., (Roth and Benedek, 1991; Bshouty and
Mansour, 2002; Schapire and Sellie, 1996).

Roth and Benedek (Roth and Benedek, 1991) showed that any f ∈ G≤s is uniquely
determined by the values it assumes on those x ∈ {0, 1}n that contain at least n − (1 +
blog2 sc) many 1s. They also showed that it is in fact necessary to specify the value of f on
every such point even in order to uniquely determine the parity (even or odd) of |f −1(1)|
where f ranges over all of G≤s. We thus have:

Theorem 29 ((Roth and Benedek, 1991)) Fix any 1 ≤ s ≤ 2n. The (worst-case)

teaching dimension of G≤s is
∑1+blog2 sc

i=0

(n
i

)
(which is nΘ(log s) for s subexponential in n).

In contrast, we show that if s is sufficiently small, the average-case teaching dimension
of G≤s is O(ns):

Theorem 30 Fix 1 ≤ s ≤ (1−ε) log2 n, where ε > 0 is any constant. Then the average-case
teaching dimension of G≤s is at most ns + 2s.

For s = ω(1), s < (1− ε) log2 n, this gives a superpolynomial separation between worst-
case and average-case teaching dimension of s-sparse GF2 polynomials.

Proof of Theorem 30. We now define the “nice” (easy-to-teach) subset of G≤s, in
analogy with S in Section 4. We say that a function f = M1 ⊕· · ·⊕Ms ∈ Gs is individuated
if for each i = 1, . . . , s there is some j ∈ {1, . . . , n} such that the variable xj occurs in
monomial Mi and does not occur in any of the other s − 1 monomials. Let I ⊆ Gs denote
the set of all functions in Gs that are individuated.

We first show that any function in I can be specified using few examples:

Lemma 31 For any f ∈ I, the teaching dimension of f with respect to G≤s is at most
ns + 2s − 1.

Proof We introduce some useful terminology. Given x1, . . . , xr ∈ {0, 1}n, we write
join(x1, . . . , xr) to denote the string z ∈ {0, 1}n that has for all i = 1, . . . , n, zi = max{x1

i , . . . , x
r
i }.

Let f = M1 ⊕ · · · ⊕Ms ∈ I be any individuated GF2 polynomial. For i = 1, . . . , s let yi

denote the minimal (with respect to bitwise ≤ ordering described above) assignment that
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satisfies Mi, i.e., yi has 1s in precisely the variables contained in Mi. Note that since f is
individuated the points y1, . . . , ys are all pairwise incomparable w.r.t. the bitwise partial
ordering. Thus we have f(yi) = 1 but f(x) = 0 for any x such that x < yi for some i. We
sometimes say that y is above x if x ≤ y.

Let S ⊂ {0, 1}n be the set which contains: (a) each yi (which is a positive example) and
all of its neighbors that can be obtained by flipping a single 1 to 0 (all of these are negative
examples); and (b) the (s − 1) additional points z2 = join(y1, y2), z3 = join(y1, y2, y3), . . . ,
zs = join(y1, y2, . . . , ys) (it is not hard to see that zi is a positive example for i odd and
a negative example for i even, since zi satisfies precisely the monomials M1, . . . ,Mi and
M1 ⊕· · ·⊕Ms is individuated). There are at most (n+1)s points from (a) and s− 1 points
from (b) so we have |S| ≤ ns + 2s − 1.

We will show that S is a teaching set for f and thus prove the lemma. So suppose that
f̂ = M̂1 ⊕ · · · ⊕ M̂r is some GF2 polynomial that is consistent with S where r ≤ s. Let us
write ŷj for the minimal assignment that satisfies M̂j .

We first observe that since y1 is a positive example, there must be at least one ŷj such
that ŷj ≤ y1. Since y1 < z2 and z2 is a negative example, there must be at least two ŷj

such that ŷj ≤ z2. Since the labels of z2, z3, . . . always alternate, proceeding in this fashion
there must be at least s many ŷj such that ŷj ≤ zs. It follows that r = s, that y1 is
above precisely one ŷ1, and that in fact each zi is above precisely i of the ŷj’s (call them
ŷ1, . . . , ŷi).

Now the negative examples below y1 show that in fact we must have ŷ1 = y1. Since z2

is above exactly one other ŷj besides ŷ1 (namely ŷ2), and it is above y2 which is labeled
positive, we must have ŷ2 ≤ y2; but since all of y2’s downward neighbors are labeled nega-
tive, it must be the case that ŷ2 = y2. Similar logic applied successively to z3, . . . , zs shows
that each of ŷ3, . . . , ŷs must equal the corresponding y3, . . . , ys. Thus we have M̂i = Mi for
i = 1, . . . , s, so f̂ = f and the lemma is proved.

Now observe that |Gs| =
(2n

s

)
< 2ns

s! , and thus ( 2n

s )s ≤ |G≤s| = |Gs| + |G≤s−1| < 2ns

s! +

(s − 1) 2ns−n

(s−1)! = 2ns

s! + 2ns−n

(s−2)! . Our next lemma shows that almost every function in Gs (and

thus almost every function in G≤s) is in fact individuated:

Lemma 32 Recall that 1 ≤ s ≤ (1 − ε) log2 n, where ε > 0 is any constant. We have

|I| ≥ 2ns

s! (1 − s · e−nε

), and thus there are at most s · e−nε

· 2ns

s! + 2ns−n

(s−2)! many functions in

G≤s \ I.

Proof Let (M1, . . . ,Ms) be a sequence of s monomials obtained by drawing each one
uniformly from all 2n possible monomials. We will show that of the 2ns possible outcomes
for (M1, . . . ,Ms), at most an s ·e−nε

fraction have the property that the corresponding GF2

polynomial M1⊕· · ·⊕Ms is not individuated, and consequently the number of sequences for
which the corresponding GF2 polynomial is individuated is at least 2ns(1 − s · e−nε

). Each
such sequence clearly consists of s distinct monomials (since no sequence in which some
monomial occurs more than once can be individuated), so accounting for the s! different
orderings of s distinct elements, we have that there are at least 2ns(1 − s · e−nε

)/s! many
individuated GF2 polynomials.
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We say that a variable individuates a monomial Mi if it occurs in Mi but in no other
Mj . For any fixed variable xj, and fixed index 1 ≤ i ≤ s, the probability (over the random
choice of (M1, . . . ,Ms)) that xj individuates Mi is precisely 1/2s, since xj must occur in
Mi (probability 1/2) and must be absent from each of the other s − 1 terms (probability
1/2s−1). By independence, the probability that none of the n variables individuates Mi is(
1 − 1

2s

)n
≤ e−n/2s

≤ e−nε

, where we have used the fact that s ≤ (1 − ε) log2 n. A union
bound now gives that the probability that any of the s monomials M1, . . . ,Ms is not indi-
viduated by any variable is at most s · e−nε

.

By Lemma 31 we can specify any function in I with at most N := ns+2s−1 examples,
and by Theorem 29 we can specify any of the other functions in G≤s with at most nO(log s)

many examples. It follows from Lemma 32 that the average teaching dimension of G≤s is
at most

N |I| + nO(log s) · |G≤s \ I|

|G≤s|
≤ N +

nO(log s) · (s · e−nε

· 2ns

s! + 2ns−n

(s−2)! )

(2n

s )s
.

The second term on the right simplifies to ss ·nO(log s) · (s · e−nε

/s! + 2−n/(s− 2)!), which is
easily seen to be o(1) since ε is a constant greater than 0 and s ≤ (1 − ε) log n. This proves
Theorem 30.

While our proof technique does not extend to s that are larger than log n, it is possible
that different methods could establish a poly(n, s) upper bound on average teaching dimen-
sion for the class G≤s of s-sparse GF2 polynomials for a much larger range of values of s.
This is an interesting goal for future work.
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