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ABSTRACT
We give the first non-trivial upper bounds on the average
sensitivity and noise sensitivity of degree-d polynomial thresh-
old functions (PTFs). These bounds hold both for PTFs
over the Boolean hypercube {−1, 1}n and for PTFs over
Rn under the standard n-dimensional Gaussian distribution
N (0, In). Our bound on the Boolean average sensitivity of
PTFs represents progress towards the resolution of a conjec-
ture of Gotsman and Linial [17], which states that the sym-
metric function slicing the middle d layers of the Boolean
hypercube has the highest average sensitivity of all degree-d
PTFs. Via the L1 polynomial regression algorithm of Kalai
et al. [22], our bounds on Gaussian and Boolean noise sensi-
tivity yield polynomial-time agnostic learning algorithms for
the broad class of constant-degree PTFs under these input
distributions.

The main ingredients used to obtain our bounds on both
average and noise sensitivity of PTFs in the Gaussian setting
are tail bounds and anti-concentration bounds on low-degree
polynomials in Gaussian random variables [20, 7]. To obtain
our bound on the Boolean average sensitivity of PTFs, we
generalize the “critical-index” machinery of [37] (which in
that work applies to halfspaces, i.e. degree-1 PTFs) to gen-
eral PTFs. Together with the “invariance principle” of [30],
this lets us extend our techniques from the Gaussian setting
to the Boolean setting. Our bound on Boolean noise sensi-
tivity is achieved via a simple reduction from upper bounds
on average sensitivity of Boolean PTFs to corresponding
bounds on noise sensitivity.
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1. INTRODUCTION
A degree-d polynomial threshold function (PTF) over a

domain X ⊆ Rn is a Boolean-valued function f : X →
{−1, +1},

f(x) = sign(p(x1, . . . , xn))

where p : X → R is a degree-d polynomial with real co-
efficients. When d = 1 polynomial threshold functions are
simply linear threshold functions (also known as halfspaces
or LTFs), which play an important role in complexity the-
ory, learning theory, and other fields such as voting theory.
Low-degree PTFs (where d is greater than 1 but is not too
large) are a natural generalization of LTFs which are also of
significant interest in these fields.

Over more than twenty years much research effort in the
study of Boolean functions has been devoted to different
notions of the “sensitivity” of a Boolean function to small
perturbations of its input, see e.g. [21, 6, 5, 14, 2, 38, 29,
30, 32, 33] and many other works. In this work we focus
on two natural and well-studied measures of this sensitivity,
the “average sensitivity” and the “noise sensitivity.” As our
main results, we give the first non-trivial upper bounds on
average sensitivity and noise sensitivity of low-degree PTFs.
These bounds have several applications in learning theory
and complexity theory as we describe later in this introduc-
tion.



We now define the notions of average and noise sensitivity
in the setting of Boolean functions f : {−1, 1}n → {−1, 1}.
(Our paper also deals with average sensitivity and noise sen-
sitivity of functions f : Rn → {−1, 1} under the Gaussian
distribution, but the precise definitions are more involved
than in the Boolean case so we defer them until later.)

1.1 Average Sensitivity and Noise Sensitivity
The sensitivity of a Boolean function f : {−1, 1}n →

{−1, 1} on an input x ∈ {−1, 1}n, denoted sf (x), is the num-
ber of Hamming neighbors y ∈ {−1, 1}n of x (i.e. strings
which differ from x in precisely one coordinate) for which
f(x) 6= f(y). The average sensitivity of f , denoted AS(f),
is simply E[sf (x)] (where the expectation is with respect to
the uniform distribution over {−1, 1}n). An alternate defini-
tion of average sensitivity can be given in terms of the influ-
ence of individual coordinates on f . For a Boolean function
f : {−1, 1}n → {−1, 1} and a coordinate index i ∈ [n], the
influence of coordinate i on f is the probability that flipping
the i-th bit of a uniform random input x ∈ {−1, 1}n causes
the value of f to change, i.e. Infi(f) = Pr[f(x) 6= f(x⊕i)]
(where the probability is with respect to the uniform dis-
tribution over {−1, 1}n). The sum of all n coordinate in-
fluences,

Pn
i=1 Infi(f), is called the total influence of f ; it

is easily seen to equal AS(f). Bounds on average sensitiv-
ity have been of use in the structural analysis of Boolean
functions (see e.g. [21, 14, 38]) and in developing computa-
tionally efficient learning algorithms (see e.g. [6, 33]).

The average sensitivity is a measure of how f changes
when a single coordinate is perturbed. In contrast, the noise
sensitivity of f measures how f changes when a random
collection of coordinates are all perturbed simultaneously.
More precisely, given a noise parameter 0 ≤ ε ≤ 1 and a
Boolean function f : {−1, 1}n → {−1, 1}, the noise sensi-
tivity of f at noise rate ε is defined to be

NSε(f) = Prx,y[f(x) 6= f(y)]

where x is uniform from {−1, 1}n and y is obtained from x
by flipping each bit independently with probability ε. Noise
sensitivity has been studied in a range of contexts including
Boolean function analysis, percolation theory, and compu-
tational learning theory [2, 25, 29, 36, 26].

1.2 Main Results: Upper Bounds on Average
Sensitivity and Noise Sensitivity

1.2.1 Boolean PTFs
In 1994 Gotsman and Linial [17] conjectured that the sym-

metric function slicing the middle d layers of the Boolean hy-
percube has the highest average sensitivity among all degree-
d PTFs. Since this function has average sensitivity Θ(d

√
n)

for every 1 ≤ d ≤
√

n, this conjecture implies (and is nearly
equivalent to) the conjecture that every degree-d PTF f over
{−1, 1}n has AS(f) ≤ d

√
n.

Our first main result is an upper bound on average sensi-
tivity which makes progress toward this conjecture:

Theorem 1.1. For any degree-d PTF f over {−1, 1}n,

we have AS(f) ≤ 2O(d) · log n · n1−1/(4d+2).

Using a completely different set of techniques, we also prove
a different bound which improves on Theorem 1.1 for d ≤ 4:

Theorem 1.2. For any degree-d PTF f over {−1, 1}n,

we have AS(f) ≤ 2n1−1/2d

.

We give a simple reduction which translates any upper bound
on average sensitivity for degree-d PTFs over Boolean vari-
ables into a corresponding upper bound on their noise sen-
sitivity. Combining this reduction with Theorems 1.1 and
1.2, we establish:

Theorem 1.3. For any degree-d PTF f over {−1, 1}n

and any 0 ≤ ε ≤ 1, we have

NSε(f) ≤ 2O(d) · ε1/(4d+2) log(1/ε)

NSε(f) ≤ O(ε1/2d

).

1.2.2 Gaussian PTFs
Looking beyond the Boolean hypercube, there are well-

studied notions of average sensitivity and noise sensitivity
for Boolean-valued functions over Rn, where we view Rn as
endowed with the standard multivariate Gaussian distribu-
tion N (0, In) [4, 30]. Given f : Rn → R that is square-
integrable under the Gaussian measure N (0, 1) and i ∈ [n],
the Gaussian influence of co-ordinate i on f is defined to
be GIi(f) = Ex−i∼Nn−1 [Varxi∼N [f ]]where x−i denotes all

but the ith coordinate of x. The Gaussian average sen-
sitivity of f is defined as GAS(f) =

P
i∈[n] GIi(f). The

Gaussian noise sensitivity of f at noise rate ε ∈ [0, 1] is de-
fined to be GNSε(f) = Prx,z[f(x) 6= f(y)] where x ∼ Nn

and y
def
= (1 − ε) x +

√
2ε− ε2 z for an independent Gaus-

sian noise vector z ∼ Nn. These are natural analogues of
their uniform-distribution Boolean hypercube counterparts
defined above.) We prove upper bounds on Gaussian aver-
age sensitivity and Gaussian noise sensitivity of low-degree
PTFs:

Theorem 1.4. For any degree-d PTF f over Rn, we have
GAS(f) ≤ O(d2 · log n · n1−1/2d).

Theorem 1.5. For any degree-d PTF f over Rn and any
0 ≤ ε ≤ 1, we have GNSε(f) ≤ O(d · log1/2(1/ε) · ε1/2d).

We note that in subsequent work D. Kane [24] has given an
optimal upper bound GNSε(f) ≤ O(d

√
ε) on the Gaussian

noise sensitivity of any degree-d PTF.

1.3 Application: agnostically learning constant-
degree PTFs in polynomial time

Our bounds on noise sensitivity, together with machin-
ery developed in [25, 22, 26], yield the first efficient agnos-
tic learning algorithms for low-degree polynomial threshold
functions. In this section we state our new learning results;
details are given in the full version.

We begin by briefly reviewing the fixed-distribution ag-
nostic learning framework that has been studied in several
recent works, see e.g. [22, 26, 3, 15, 23, 39]. Let DX be a
(fixed, known) distribution over an example space X such
as the uniform distribution over {−1, 1}n or the standard
multivariate Gaussian distribution N (0, In) over Rn. Let C
denote a class of Boolean functions, such as the class of
all degree-d PTFs. An algorithm A is said to be an ag-
nostic learning algorithm for C under distribution DX if it
has the following property: Let D be any distribution over
X×{−1, 1} such that the marginal of D over X is DX . Then
if A is run on a sample of labeled examples drawn indepen-
dently from D, with high probability A outputs a hypothesis
h : X → {−1, 1} such that Pr(x,y)∼D[h(x) 6= y] ≤ opt + ε,



where opt = minf∈C Pr(x,y)∼D[f(x) 6= y]. In words, A’s hy-
pothesis is nearly as accurate as the best hypothesis in the
class C.

Kalai et al. [22] gave an agnostic learning algorithm based
on L1 polynomial regression. More precisely, they showed
that for a class C of functions and a distribution D, if every
function in C has a low-degree polynomial approximator (in
the L2 norm) under the marginal distribution DX , then the
L1 polynomial regression algorithm is an efficient agnostic
learning algorithm for C under DX . Together with the exis-
tence of low-degree polynomial approximators for halfspaces
(under the uniform distribution on {−1, 1}n and the stan-
dard Gaussian distribution N (0, In) on Rn), the L1 poly-

nomial regression algorithm yields a nO(1/ε4)-time agnostic
learning algorithm for halfspaces under these distributions.

Using ingredients from [25], upper bounds on Boolean
noise sensitivity (such as Theorem 1.3) imply the existence
of low-degree L2-norm polynomial approximators under the
uniform distribution on {−1, 1}n. Hence we obtain the fol-
lowing agnostic learning result:

Theorem 1.6. The class of degree-d PTFs is agnostically
learnable under the uniform distribution on {−1, 1}n in time

n2O(d2)(log 1/ε)4d+2/ε8d+4
. For d ≤ 4, this bound can be im-

proved to nO(1/ε2
d+1

).

Similarly, using ingredients from [26], upper bounds on Gaus-
sian noise sensitivity (such as Theorem 1.5) imply the exis-
tence of low-degree L2-norm polynomial approximators un-
der N (0, In). This lets us obtain

Theorem 1.7. The class of degree-d PTFs is agnostically
learnable under any n-dimensional Gaussian distribution in

time n(d/ε)O(d)
.

For ε constant, these results are the first polynomial-time
agnostic learning algorithms for constant-degree PTFs.

1.4 Other applications
The results and approaches of this paper have found other

recent applications beyond the agnostic learning results pre-
sented above; we describe two of these below.

Gopalan and Servedio [16] have combined the average sen-
sitivity bound given by Theorem 1.1 with techniques from
[27] to give the first sub-exponential time algorithms for
learning AC0 circuits augmented with a small (but super-
constant) number of arbitrary threshold gates, i.e. gates
that compute arbitrary LTFs which may have weights of
any magnitude. (Previous work using different techniques
[19] could only handle AC0 circuits augmented with major-
ity gates.)

In other recent work Diakonikolas et al. [10] and Harsha
et al. [18] have refined the approach used to prove Theorem
1.1 to establish a “regularity lemma” for low-degree polyno-
mial threshold functions. Roughly speaking, this lemma says
that any degree-d PTF can be decomposed into a constant
number of subfunctions, almost all of which are “regular”
degree-d PTFs. [10] apply this regularity lemma to extend
the positive results on the existence of low-weight approxi-
mators for LTFs, proved in [37], to low-degree PTFs.

1.5 Techniques
In this section we give a high-level overview of how The-

orems 1.1, 1.4 and 1.5 are proved. (As mentioned earlier,

Theorem 1.2 is proved using completely different techniques;
see Section 5.) The arguments are simpler for the Gaussian
setting so we begin with these.

1.5.1 The Gaussian case
We sketch the argument for the Gaussian average sen-

sitivity bound Theorem 1.4; the Gaussian noise sensitivity
bound Theorem 1.5 follows along similar lines.

Let f = sign(p) where p : Rn → R is a degree-d poly-
nomial. The Gaussian average sensitivity GAS(f) of f is
equal to the sum of individual Gaussian influences GIi(f) =
2Prx,xi [f(x) 6= f(xi)], where x ∼ Nn and xi is obtained

by replacing the ith coordinate of x by an independent ran-
dom sample from N . Central to the proof of Theorem 1.4
is a bound on GIi(f) by GIi(p), the influence of variable i
in the polynomial p. Let i = 1, and express p(x) as a uni-
variate polynomial in x1 as follows: p(x) = p(x1, . . . , xn) =Pd

i=0 pi(x2, . . . , xn) · hi(x1), where hi(x1) is the univariate
degree-i Hermite polynomial. Intuitively, the event f(x) 6=
f(x1) can only take place if either:

• |p0(g2, . . . , gn)| is “small”, or

• |pi(g2, . . . , gn)| is “large” for some i ∈ [d].

We use an anti-concentration result for polynomials in Gaus-
sian random variables, due to Carbery and Wright [7], to
show that |p0(g2, . . . , gn)| is “small” only with low probabil-
ity. For the second bullet, we apply tail bounds for low-
degree polynomials in independent Gaussian random vari-
ables [20] to show, for each i ∈ [d], that |pi(g2, . . . , gn)| is
“large” only with low probability. We can thus argue that
Prx,x1 [f(x) 6= f(x1)] is low, bounding the Gaussian influ-
ence of variable 1 on f in terms of GI1(p). By normalizing
Var[p] = 1 and applying a convexity argument, we see that
GI(f) is maximized when GIi(p) = d/n for each i ∈ [n],
establishing Theorem 1.4.

1.5.2 The Boolean case
One advantage of working over the Boolean domain {−1, 1}n

is that without loss of generality we may consider only mul-
tilinear PTFs, where f = sign(p(x)) for p a multilinear poly-
nomial. However, this advantage is offset by the fact that
the uniform distribution on {−1, 1}n is less symmetric than
the Gaussian distribution; for example, every degree-1 PTF
under the Gaussian distribution Nn is equivalent simply to
sign(x1−θ), but this is of course not true for degree-1 PTFs
over {−1, 1}n. Our upper bound on Boolean average sensi-
tivity uses ideas from the Gaussian setting but also requires
significant additional ingredients.

An important notion in the Boolean case is that of a “reg-
ular” PTF; this is a PTF f = sign(p) where every variable
in the polynomial p has low influence. (See Section 2 for a
definition of the influence of a variable on a real-valued func-
tion; note that the definition from Section 1.1 applies only
for Boolean-valued functions.) If f is a regular PTF, then
the “invariance principle” of [30] tells us that p(x) (where x
is uniform from {−1, 1}n) behaves much like p(G) (where G
is drawn from N (0, In)), and essentially the arguments from
the Gaussian case can be used.

It remains to handle the case where f is not a regular
PTF, i.e. some variable has high influence in p. To accom-
plish this, we generalize the notion of the “critical-index”
of a halfspace (see [37, 11]) to apply to PTFs. We show



that a carefully chosen random restriction (one which fixes
only the variables up to the critical index – very roughly
speaking, only the highest-influence variables – and leaves
the other ones free) has non-negligible probability of caus-
ing f to collapse down to a regular PTF. This lets us give a
recursive bound on average sensitivity which ends up being
not much worse than the bound that can be obtained for
the regular case; see Section 4.2 for a detailed explanation
of the recursive argument.

1.6 Organization
Due to space constraints, this proceedings version contains

only a selection of our results with high-level arguments.
Full proofs are provided in [8, 18].

Formal definitions of average sensitivity and noise sensitiv-
ity (especially in the Gaussian case), along with mathemat-
ical tools we use such as tail bounds and anticoncentration
results for low degree polynomials, are presented in Section
2.

In Section 3, we outline the proof of an upper bound on
the Gaussian average sensitivity of PTFs (Theorem 1.4); the
missing details can be found in the full version. The main
result of the paper – a bound on the Boolean average sensi-
tivity (Theorem 1.1) – is outlined in Section 4 (again details
are in the full version). In Section 5, an alternate bound
is established for Boolean average sensitivity that is better
than Theorem 1.1 for degrees d ≤ 4 (Theorem 1.2). This
is followed by a reduction from Boolean average sensitivity
bounds to corresponding noise sensitivity bounds (Theorem
6.1) in Section 6.

2. DEFINITIONS AND BACKGROUND

2.1 Basic Definitions
In this subsection we record the basic notation and defini-

tions used throughout the paper. For n ∈ N, we denote by
[n] the set {1, 2, . . . , n}. We write N to denote the standard
univariate Gaussian distribution N (0, 1).

For a degree-d polynomial p : X → R we denote by ‖p‖2
its l2 norm, ‖p‖2 = Ex[p(x)2]1/2, where the intended dis-
tribution over x ∈ Rn (which will always be either uniform
over {−1, 1}n, or the Nn distribution) will always be clear
from context. We note that for multilinear p the two notions
are always equal (see e.g. Proposition 3.5 of [30]).

We now proceed to define the notion of influence for real-
valued functions in a product probability space. Throughout
this paper we consider either the uniform distribution on the
hypercube {±1}n or the standard n-dimensional Gaussian
distribution in Rn. However, for the sake of generality, we
adopt this more general setting.

Let (Ω1, µ1), . . . , (Ωn, µn) be probability spaces and let
(Ω = ⊗n

i=1Ωi, µ = ⊗n
i=1µi) denote the corresponding prod-

uct space. Let f : Ω → R be any square integrable function
on (Ω, µ), i.e. f ∈ L2(Ω, µ). The influence of the ith coor-
dinate on f [30] is

Infµ
i (f)

def
= Eµ[Varµi [f ]]

and the total influence of f is Infµ(f)
def
=

Pn
i=1 Infµ

i (f).
For a function f : {−1, 1}n → R over the Boolean hyper-

cube endowed with the uniform distribution, the influence
of variable i on f can be expressed in terms of the Fourier

coefficients of f as Infi(f) =
P

S3i
bf(S)2, and as mentioned

in the introduction it is easily seen that AS(f) = Inf(f) for
Boolean-valued functions f : {−1, 1}n → {−1, 1}.

In this paper we are concerned with variable influences for
functions defined over {−1, 1}n under the uniform distribu-
tion, and over Rn underN (0, In); we shall adopt the conven-
tion that Infi(f) denotes the former and GIi(f) the latter.
We also denote by GAS(f) =

P
i∈[n] GIi(f) the Gaussian

average sensitivity.
Note that for a function f : Rn → {−1, 1}, the Gaussian

influence GIi(f) can be equivalently written as: GIi(f) =
2Prx,xi [f(x) 6= f(xi)], where x ∼ Nn and xi is obtained by

replacing the ith coordinate of x by an independent random
sample from N .
Fourier and Hermite Analysis. We assume familiarity
with the basics of Fourier analysis over the Boolean hyper-
cube {−1, 1}n. We will also require similar basics of Her-
mite analysis over the space Rn equipped with the standard
n-dimensional Gaussian distribution Nn; a brief review is
provided in the full version.

2.2 Probabilistic Facts
In this subsection, we record the basic probabilistic tools

we use in our proofs.
We first recall the following well-known consequence of hy-

percontractivity (see e.g. Lecture 16 of [31] for the boolean
setting and [4] for the Gaussian setting):

Theorem 2.1. Let p : X → R be a degree-d polynomial,
where X is either {−1, 1}n under the uniform distribution
or Rn under Nn, and fix q > 2. Then

‖p‖2q ≤ (q − 1)d‖p‖22.

We will need a concentration bound for low-degree polyno-
mials over independent random signs or standard Gaussians.
It can be proved (in both cases) using Markov’s inequality
and hypercontractivity, see e.g. [20, 31, 1].

Theorem 2.2 (“degree-d Chernoff bound”). Let p(x)
be a degree-d polynomial. Let x be drawn either from the uni-
form distribution in {−1, 1}n or from Nn. For any t > ed,
we have

Prx[|p(x)| ≥ t‖p‖2] ≤ exp(−Ω(t2/d)).

The second fact is a powerful anti-concentration bound
for low-degree polynomials over Gaussian random variables.
(We note that this result does not hold in the Boolean set-
ting.)

Theorem 2.3 ([7]). Let 0 6= p : Rn → R be a degree-d
polynomial. Then for all ε > 0, we have

Prx∼Nn [|p(x)| ≤ ε‖p‖2] ≤ O(dε1/d).

We also make essential use of a (weak) anti-concentration
property of low-degree polynomials over the hypercube {−1, 1}n:

Theorem 2.4 ([12, 1]). Let p : {−1, 1}n → R be a
degree-d polynomial with Var[p] ≡

P
0<|S|≤d bp(S)2 = 1 and

E[p] = bp(∅) = 0. Then we have

Pr[p(x) > 1/2O(d)] > 1/2O(d)

and hence,

Pr[|p(x)| ≥ 1/2O(d)] > 1/2O(d).



The following is a restatement of the invariance principle,
specifically Theorem 3.19 under hypothesis H4 in [30].

Theorem 2.5 ([30]). Let p(x) =
P

|S|≤d bp(S)xS be a

degree-d multilinear polynomial with
P

0<|S|≤d bp(S)2 = 1.

Suppose each variable i ∈ [n] has low influence Infi(p) ≤
τ , i.e.

P
S3i bp(S)2 ≤ τ . Let x be drawn uniformly from

{−1, 1}n and G ∼ Nn. Then,

sup
t∈R

|Pr[p(x) ≤ t]−Pr[p(G) ≤ t]| ≤ O(dτ1/(4d+1)).

3. GAUSSIAN AVERAGE SENSITIVITY
The following lemma, which relates the influence of a vari-

able on f = sign(p) to its influence on the polynomial p, is
central to the proof of Theorem 1.4.

Lemma 3.1. Let p : Rn → R be a degree-d polynomial
over Gaussian inputs with ‖p‖2 = 1 and let f = sign(p).

Then for each i ∈ [n], we have GIi(f) ≤ O(d2 ·GIi(p)1/(2d) ·
log(1/GIi(p))).

Proof of Lemma 3.1. Let p(x) be a degree-d polyno-
mial with ‖p‖2 = 1. For notational convenience let us fix
i = 1 and let τ = GI1(p). We may assume that τ < 1/4
since otherwise the claimed bound holds trivially. We ex-
press p(x) as a univariate polynomial in x1 as follows,

p(x) = p(x1, . . . , xn) =

dX
i=0

pi(x2, . . . , xn) · hi(x1)

where hi(x1) is the univariate degree-i Hermite polynomial.
Note that for any multi-index S = (S2, . . . , Sn) ∈ Nn−1 and
0 ≤ i ≤ d, we have bpi(S) = bp(S′) where S′ = (i, S2, . . . , Sn) ∈
Nn. As a result, using Parseval’s identity for the Hermite
basis, we have that ‖p‖2 =

Pd
i=0 ‖pi‖2.

We further have

‖pi‖2 =
X

S∈Nn−1

bpi(S)2 and GIi(p) =
X

S:Si>0

bp(S)2.

Consequently the 2-norms of p1, . . . , pd are “small” and the
2-norm of p0 is “large”:

dX
i=1

‖pi‖2 =
X

S:S1>0

bp(S)2 = τ, and ‖p0‖2 = 1− τ > 1/2.

Let t = Cd/2τ1/2 logd/2(1/τ) and γ = d2 · τ1/2d log(1/τ)
where C is an absolute constant. We can assume that γ <
1/10 since otherwise the bound of Lemma 3.1 holds trivially.
For these values of t and γ, the proof strategy is as follows:

• We use the anti-concentration bound Theorem 2.3 to
argue that with high probability p0(g2, . . . , gn) is not
too small: more precisely, PrNn−1 [|p0(g2, . . . , gn)| ≤
td(2ed log(1/γ))d/2] ≤ O(γ).

• We use the “degree-d Chernoff bound” (Theorem 2.2)
to argue that with high probability each pi(g2, . . . , gn),
i ∈ [d], is not too large: more precisely,
PrNn−1 [|pi(g2, . . . , gn)| ≥ t] ≤ O(γ).

• We use elementary properties of the N (0, 1) distri-

bution to argue that if |a| ≥ td(2ed log(1/γ))d/2 and

|bi| ≤ t, then the function sign(a +
Pd

i=1 bihi(g1)) (a
function of one N (0, 1) random variable g1) is O(γ)-
close to the constant function sign(a).

• Thus with probability at least 1−O(γ) over the choice
of g2, . . . , gn, we have Varg1 [sign(p(g1, . . . , gn))] ≤ O(γ(1−
γ)) ≤ O(γ). For the remaining (at most) O(γ) fraction
of outcomes for g2, . . . , gn we always have
Varg1 [sign(p(g1, . . . , gn))] ≤ 1, so overall we get
GI1(sign(p)) ≤ O(γ).

Proofs of the three aforementioned claims are presented in
the full version.

We now sketch the proof of Theorem 1.4 using Lemma
3.1. The idea is simple: by normalizing we may assume that
Var[p] = 1, and consequently the total influence GI(p) =Pn

i=1 GIi(p) of p is at most d since p is a degree-d polyno-
mial. Intuitively, Lemma 3.1 tells us that the largest possible
total value of GI(f) is obtained if each GIi(p) equals d/n;
a convexity argument, presented in the full version, makes
this precise and establishes Theorem 1.4.

We remark that in the case of degree-d multilinear PTFs it
is possible to obtain a slightly stronger bound of GAS(f) ≤
O(d · log n ·n1−1/2d) using our approach; we omit the details.

4. BOOLEAN AVERAGE SENSITIVITY
Let AS(n, d) denote the maximum possible average sen-

sitivity of any degree-d PTF over n Boolean variables. In
this section we outline the proof of the claimed bound in
Theorem 1.1:

AS(n, d) ≤ 2O(d) · log n · n1−1/(4d+2). (1)

For d = 1 (linear threshold functions) it is well known that
AS(n, 1) = 2−n

`
n

n/2

´
= Θ(

√
n). Also, notice that the RHS

of (1) is larger than n for d = ω(
√

log n), yielding a trivial
bound of AS(n, d) ≤ n. Therefore throughout this section
we shall assume d satisfies 2 ≤ d ≤ O(

√
log n).

4.1 Regularity and the critical index of poly-
nomials

The proof of Theorem 1.1 is a combination of a case anal-
ysis and a recursive bound. The case analysis is based on
the notion of critical index for polynomials that we define
below.

In [37] a notion of the “critical index” of a linear form was
defined and subsequently used in [34, 9, 11]. This notion is
generalized below to the case of polynomials.

Definition 1. Let 0 6= p : {−1, 1}n → R and τ > 0. As-
sume the variables are ordered such that Infi(f) ≥ Infi+1(f)
for all i ∈ [n − 1]. The τ -critical index of f is the least i
such that:

Infi+1(p) ≤ τ ·
nX

j=i+1

Infj(p). (2)

If (2) does not hold for any i we say that the τ -critical index
of p is +∞. If p is has τ -critical index 0, we say that p is
τ -regular.

The following simple lemma will be useful for us. It says
that the total influence

Pn
i=j+1 Infi(p) goes down exponen-

tially as a function of j prior to the critical index:

Lemma 4.1. Let p : {−1, 1}n → R and τ > 0. Let
k be the τ -critical index of p. For 0 ≤ j ≤ k we havePn

i=j+1 Infi(p) ≤ (1− τ)j · Inf(p).



Proof. The lemma trivially holds for j = 0. In general,
since j is at most k, we have that Infj(p) ≥ τ ·

Pn
i=j Infi(p),

or equivalently
Pn

i=j+1 Infi(p) ≤ (1−τ) ·
Pn

i=j Infi(p) which
yields the claimed bound.

4.2 Overview of proof
The high-level approach to proving Theorem 1.1 is a com-

bination of a case analysis and a recursive bound.
By the invariance principle (see Section 2.2), the behaviour

of τ -regular PTFs in the boolean and Gaussian settings is
nearly the same. Therefore, we can argue directly that the
average sensitivity is small using arguments similar to the
Gaussian case (in fact simpler since now the polynomial is
multilinear). In particular, we show the following lemma:

Lemma 4.2. Fix τ = n−Θ(1). Let f be a τ -regular degree-
d PTF. Then, AS(f) ≤ O(d · n · τ1/(4d+1)).

The following claim is a direct consequence of the above
lemma.

Claim 4.3. Suppose f = sign(p) is a τ -regular degree-d

PTF where τ
def
= n−(4d+1)/(4d+2). Then,

AS(f) ≤ O(d · n1−1/(4d+2)).

For PTFs that are not τ -regular, we show that there is a

not-too-large value of k (at most K
def
= 2d log n/τ), and a

collection of k variables (the variables whose influence in p
are largest), such that the following holds: if we consider
all 2k subfunctions of f obtained by fixing the variables in
all possible ways, a “large” (at least 1/2O(d)) fraction of the
restricted functions have low average sensitivity. More pre-
cisely, we show:

Claim 4.4. Let K
def
= 2d log n/τ where τ

def
= n−(4d+1)/(4d+2).

Suppose f = sign(p) is a degree-d PTF that is not τ -regular.
Then for some 1 ≤ k ≤ K, there is a set of k variables with
the following property: for at least a 1/2O(d) fraction of all
2k assignments ρ to those k variables, we have

AS(fρ) ≤ O(d · (log n)1/4 · n1−1/(4d+2)).

The proof of Claim 4.4 is given in Section 4.3.3. We do
this by generalizing the “critical index” case analysis from
[37]. We define a notion of the τ -critical index of a degree-d
polynomial; a τ -regular polynomial p is one for which the
τ -critical index is 0. If the τ -critical index of p is some value
k ≤ 2d log n/τ , we restrict the k largest-influence variables
(see Section 4.3.1). If the τ -critical index is larger than
2d log n/τ , we restrict the k = 2d log n/τ largest-influence
variables in p (see Section 4.3.2).

4.2.1 Proof of main result (Theorem 1.1) assuming
Claim 4.3 and Claim 4.4

Given these two claims it is not difficult to obtain the final
result. In Claim 4.4, we note that the k restricted variables
may each contribute at most 1 to the average sensitivity
of f (recall that average sensitivity is equal to the sum of
influences of each variable), and that the total influence of
the remaining variables on f is equal to the expected average
sensitivity of fρ, where the expectation is taken over all 2k

restrictions ρ. Since each function fρ is itself a degree-d PTF
over at most n variables, we have the following recursive
constraint on AS(n, d):

AS(n, d) ≤ max{O(d · n1−1/(4d+2)),

max
1≤k≤K

1/2O(d)≤α≤1

{k+α·O(d·(log n)1/4·n1−1/(4d+2))+(1−α)AS(n, d)}}.

It is easy to see that the maximum possible value of AS(n, d)
subject to the above constraint is at most the maximum
possible value of AS′(n, d) that satisfies the following weaker
constraint:

AS′(n, d) ≤ K +

„
1− 1

2O(d)

«
AS′(n, d)

which is satisfied by AS′(n, d) ≤ 2O(d) · log n · n1−1/(4d+2).

4.3 Non τ-regular PTFs
The proof of Claim 4.4 is divided into two cases based on

the value of the critical index.

4.3.1 The small critical index case
Let f = sign(p) be such that the τ -critical index of p is

some value k between 1 and K = 2d log n/τ . By definition,
the sequence of influences Infk+1(p), . . . , Infn(p) is τ -regular.
We essentially reduce this case to the regular case for a reg-
ularity parameter τ ′ somewhat larger than τ .

Consider a random restriction ρ of all the variables up to
the critical index. We will show the following:

Lemma 4.5. For a 1/2O(d) fraction of restrictions ρ, the
sequence of influences Infk+1(pρ), . . . , Infn(pρ) is τ ′-regular,

where τ ′
def
= (3 log n)d · τ .

By our choice of τ = n−(4d+1)/(4d+2), we have that τ ′ =
n−Θ(1), and so we may apply Lemma 4.2 to these restric-
tions to conclude that the associated PTFs have average
sensitivity at most O(d · n · (τ ′)1/(4d+1)).

Proof. Since the sequence of influences Infk+1(p), . . . , Infn(p)
is τ -regular, we have

Infi(p) ≤ τ ·
nX

j=k+1

Infj(p)

for all i ∈ [k + 1, n].

We want to prove that for a 1/2O(d) fraction of all 2k

restrictions ρ to x1, . . . , xk we have

Infi(pρ) ≤ τ ′ ·
nX

j=k+1

Infj(pρ) (3)

for all i ∈ [k + 1, n].
To do this we proceed as follows: First we show that for a

low-degree polynomial, a random restriction with very high
probability does not cause any variable’s influence to in-
crease by more than a polylog(n) factor. Formally, we prove
the following lemma in the full version:

Lemma 4.6. Let p(x1, . . . , xn) be a degree-d polynomial.
Let ρ be a randomly chosen assignment to the variables x1, . . . , xk.
Fix any t > e2d and any ` ∈ [k + 1, n]. With probability at

least 1− exp(−Ω(t1/d)) over the choice of ρ, we have

Inf`(pρ) ≤ t · 3dInf`(p).

In particular, for t = logd n, we have that with probability at
least 1− n−ω(1), every variable ` ∈ [k + 1, n] has Inf`(pρ) ≤
(3 log n)d · Inf`(p).



Lemma 4.6 implies that, with very high probability over the
random restrictions, we have Infi(pρ) ≤ (3 log n)d · Infi(p),

for all i ∈ [k + 1, n]. We need to show that for a 1/2O(d)

fraction of all restrictions the sum on the RHS of (3) is at
least

Pn
j=k+1 Infj(p) (its expected value). The lemma then

follows by a union bound.

We consider the degree-2d polynomial A(ρ1, . . . , ρk)
def
=Pn

j=k+1 Infj(pρ) in variables ρ1, . . . , ρk. The expected value

of A is Eρ[A] =
Pn

j=k+1 Infj(p) = bA(∅). We apply Theo-

rem 2.4 to the polynomial B = (A− bA(∅))/ Var[A]. We get

Prρ[B > 0] > 1/2O(d), which implies Prρ[A > Eρ[A]] >

1/2O(d) and we are done.

4.3.2 The large critical index case
Finally we consider PTFs f = sign(p) with τ -critical index

greater than K = 2d log n/τ . Let ρ be a restriction of the
first K variables H = {1, . . . , K}; we call these the “head”
variables. We will show the following:

Lemma 4.7. For a 1/2O(d) fraction of restrictions ρ, the
function sign(pρ(x)) is a constant function.

Proof. By Lemma 4.1, the surviving variables xK+1, . . . , xn

have very small total influence in p:

nX
i=K+1

Infi(p) =

nX
i=K+1

X
S3i

bp(S)2 ≤ (1−τ)K · Inf(p) ≤ d/n2d.

(4)
Therefore, if we let p′ be the truncation of p comprising only
the monomials with all variables in H,

p′(x1, . . . , xk) =
X
S⊂H

bp(S)xS ,

we know that almost all of the original Fourier weight of p
is on the coefficients of p′:

1 ≥
X
S⊂H
|S|>0

bp(S)2 ≥ 1−
nX

i=K+1

Infi(p) ≥ 1− d/n2d.

Applying Theorem 2.4 to p′ 1 we get Prx∈{−1,1}K [|p′(x)| ≥
1/2O(d)] ≥ 1/2O(d). In words, for a 1/2O(d) fraction of all
restrictions ρ to x1, . . . , xK , the value p′(ρ) has magnitude

at least 1/2O(d).
For any such restriction, if the function fρ(x) is not a

constant function it must necessarily be the case that:X
∅6=S⊆{K+1,...,n}

| bpρ(S)| ≥ 1/2O(d).

As noted in (4), each tail variable ` > K has very small
influence in p: Inf`(p) ≤

Pn
i=K+1 Infi(p) = d/n2d.

Applying Lemma 4.6, we get that for the overwhelming
majority of the 1/2O(d) fraction of restrictions mentioned
above, the influence of ` in pρ is not much larger than the
influence of ` in p:

Inf`(pρ) ≤ (3 log n)d · Inf`(p) ≤ d · (3 log n)d/n2d (5)

1after a very slight rescaling so the non-constant Fourier
coefficients of p′ have sum of squares equal to 1; this does
not affect the bound we get because of the big-O.

Using Cauchy-Schwarz, we haveX
S3`,S⊆{xK+1,...,xn}

| bpρ(S)|

≤ nd/2 ·
s X

S3`,S⊆{xK+1,...,xn}

bpρ(S)2

= nd/2
p

Inf`(pρ) ≤ n−Ω(1)

where we have used (5) (and our upper bound on d). From
this we easily get thatX

0<|S|⊆{xK+1,...,xn}

| bpρ(S)| ≤ n−Ω(1) � 1/2O(d).

We have established that for a 1/2O(d) fraction of all restric-
tions to x1, . . . , xK , the function fρ = sign(pρ) is a constant
function, and the lemma is proved.

4.3.3 Proof of Claim 4.4
If f is a degree-d PTF that is not τ -regular, then its τ -

critical index is either in the range {1, . . . , K} or it is greater
than K.

In the first case (small critical index case), as shown in Sec-

tion 4.3.1, we have that for a 1/2O(d) fraction of restrictions
ρ to variables x1, . . . , xk, the total influence of fρ = sign(pρ)
is at most

O(d · n · (τ ′)1/(4d+1)) = O(d · (log n)1/4 · n1−1/(4d+2)),

so the conclusion of Claim 4.4 holds in this case.
In the second case (large critical index case), as shown

in Section 4.3.2, for a 1/2O(d) fraction of restrictions ρ to
x1, . . . , xK the function fρ is constant and hence has zero
influence, so the conclusion of Claim 4.4 certainly holds in
this case as well.

5. BOOLEAN AVERAGE SENSITIVITY: A
FOURIER-ANALYTIC BOUND

In this section, we present a simple proof of the following
upper bound on the average sensitivity of a degree-d PTF

(Theorem 1.2): AS(n, d) ≤ 2n1−1/2d

.
We recall here the definition of the formal derivative of a

function f : {−1, 1}n → R.

Dif(x) =
X
S3i

bfSxS−{i}.

It is easy to see that,

Dif(x) =
1

2
xi[f(x)− f(x⊕i)] =

1

2

„
f(x)− f(x⊕i)

xi

«
(6)

where “x⊕i” means “x with the i-th bit flipped.”
For a Boolean function f , we have Dif(x) = ±1 iff flipping

the ith bit flips f ; otherwise Dif(x) = 0. So we have

Infi(f) = E[|Dif(x)|].

Lemma 5.1. Fix i 6= j ∈ [n]. Let f, g : {−1, 1}n → R be
functions such that f is independent of the ith bit xi and g
is independent of the jth bit xj . Then

Ex[xixjf(x)g(x)] ≤ Infi(g) + Infj(f)

2
.



Proof. First, note that the influence of ith coordinate on
a function f can be written as Infi(f) =

Ex−i [Varxi [f(x)]] = Ex

"„
|f(x⊕i)− f(x)|

2

«2
#

= Ex−i

ˆ
|Exi [xif(x)]|2

˜
(7)

As f is independent of xi and g is independent of xj , we
can write,

Ex[xixjf(x)g(x)] = Ex−{i,j} Exi,xj [xixjf(x)g(x)]

= Ex−{i,j}

ˆ
Exi [xig(x)]Exj [xjf(x)]

˜
≤ Ex−{i,j}

»
1

2
|Exi [xig(x)]|2 +

1

2
|Exj [xjf(x)]|2

–
≤ Infj(f) + Infi(g)

2
.

where the first inequality uses ab ≤ 1
2
(a2+b2) and the second

uses Equation 7.

Theorem 1.2 is shown using an inductive argument over
the degree d. Central to this inductive argument is the
following lemma relating the influences of a degree-d PTF
sign(p(x)) to the degree-(d − 1) PTFs obtained by taking
formal derivatives of p.

Lemma 5.2. For a PTF f = sign(p(x)) on n variables
and i ∈ [n], Infi(f) = E[f(x)xisign(Dip(x))].

The following simple claim will be useful in the proof of the
above lemma.

Claim 5.3. For two real numbers a, b, if sign(a) 6= sign(b)
then sign(sign(a)− sign(b)) = sign(a− b).

Proof of Lemma 5.2. The influence of the ith coordi-
nate is given by,

Infi(f) = E

»
1

2
|f(x)− f(x⊕i)|

–
= E

»
1

2

“
f(x)− f(x⊕i)

”
sign

“
f(x)− f(x⊕i)

”–
(8)

Consider an x for which f(x) 6= f(x⊕i). In this case, we can
use Claim 5.3 to conclude:

sign
“
f(x)− f(x⊕i)

”
= sign

“
p(x)− p(x⊕i)

”
= sign(2xiDip(x)) = xisign(Dip(x)),

using (6). Hence for an x with f(x) 6= f(x⊕i),“
f(x)− f(x⊕i)

”
sign

“
f(x)− f(x⊕i)

”
=

“
f(x)− f(x⊕i)

”
xisign(Dip(x)) .

On the other hand, if f(x) = f(x⊕i) then the above equation
continues holds since both the sides evaluate to 0. Substi-
tuting this equality into Equation 8 yields,

Infi(f) =
1

2
E [f(x)xisign(Dip(x))]

− 1

2
E

h
f(x⊕i)xisign(Dip(x))

i
.

Notice that the ith coordinate (x⊕i)i of x⊕i is given by −xi.
Since Dip is independent of the ith coordinate xi, we have
Dip(x) = Dip(x⊕i). Rewriting the above equation, we get

Infi(f) =
1

2
E [f(x)xisign(Dip(x))]

+
1

2
E

h
f(x⊕i)(x⊕i)isign(Dip(x⊕i))

i
= E [f(x)xisign(Dip(x))]

Theorem 5.4. Let AS(n, d) denote the max possible av-
erage sensitivity of any degree-d PTF on n variables. Then
we have

AS(n, d) ≤
p

n + n ·AS(n, d− 1).

Proof.

Inf(f) =
X

i

Infi(f)

=
X

i

E[f(x)xisign(Dip(x))] (by Lemma 5.2)

= E[f(x)
X

i

xisign(Dip(x))]

≤
p

E[f(x)2] ·
s

E[(
X

i

xisign(Dip(x)))2] (9)

= 1 ·
s

E[
X
i,j

xixjsign(Dip(x))sign(Djp(x))] (10)

≤
s

E[
X

i

x2
i sign(Dip(x))2] +

X
i6=j

Infi(sign(Djp(x)))

=

s
n +

X
i6=j

Infi(sign(Djp(x))).

Here (9) is the Cauchy-Schwarz inequality, (10) is expanding
the square. The last inequality uses Lemma 5.1 which we
may apply since Dip(x) does not depend on xi.

Observe that for any fixed j′, we have Dj′p(x) is a degree-
(d−1) polynomial and sign(Dj′p(x)) is a degree-(d−1) PTF.
Hence, by definition we have,X

i6=j′

Inf(sign(Dj′p(x))) ≤ AS(n, d− 1) ,

for all j′ ∈ [n]. Therefore the quantity
P

i6=j Inf(sign(Djp(x))) ≤
n ·AS(n, d− 1), finishing the proof.

The bound on average sensitivity (Theorem 1.2) follows
immediately from the above recursive relation.

Proof of Theorem 1.2. Clearly, we have AS(n, 0) = 0.
For d = 1, Theorem 5.4 yields AS(n, 1) ≤

√
n. Now suppose

AS(n, d) = 2n1−1/2d

for d ≥ 1, then by Theorem 5.4,

AS(n, d+1) ≤
p

n + n ·AS(n, d) ≤
p

4n2−1/2d = 2n1−1/2d+1
,

finishing the proof.

6. BOOLEAN AVERAGE SENSITIVITY VS
NOISE SENSITIVITY

Our results on Boolean noise sensitivity are obtained via
the following simple reduction which translates any upper



bound on average sensitivity for degree-d PTFs over Boolean
variables into a corresponding upper bound on noise sensitiv-
ity. This theorem is inspired by the proof of noise sensitivity
of halfspaces by Peres [35].

Theorem 6.1. Let NS(ε, d) denote the maximum noise
sensitivity of a degree d-PTF at a noise rate of ε. For all
0 ≤ ε ≤ 1 if m = b 1

ε
c then NS(ε, d) ≤ 1

m
AS(m, d).

Theorem 1.3 follows immediately from this reduction along
with our bounds on Boolean average sensitivity (Theorems
1.1 and 1.2), so it remains for us to prove Theorem 6.1.

6.1 Proof of Theorem 6.1
Let f(x) = sign(p(x)) be a degee d-PTF. Let us denote

δ = 1
m

. As δ ≥ ε, by the monotonicity of noise sensitivity
we have NSε(f) ≤ NSδ(f). In the following, we will show
that NSδ(f) ≤ 1

m
AS(m, d) which implies the intended re-

sult. Recall that NSδ(f) is defined as

NSδ(f) = Prx∼δy [f(x) 6= f(y)] ,

where x ∼δ y denotes that y is generated by flipping each
bit of x independently with probability δ. An alternate way
to generate y from x is as follows:

– Sample r ∈ {1, . . . , m} uniformly at random.

– Partition the bits of x into m = 1
δ

sets S1, S2, . . . , Sm

by independently assigning each bit to a uniformly ran-
dom set. Formally, a partition α is specified by a func-
tion α : {1, . . . , n} → {1, . . . , m}mapping bit locations
to their partition numbers, i.e., i ∈ Sα(i). A uniformly
random partition is picked by sampling α(i) for each
i ∈ {1, . . . , n} uniformly at random from {1, . . . , m}.

– Flip the bits of x contained in the set Sr to obtain y.

Each bit of x belongs to the set Sr independently with prob-
ability 1

m
= δ. Therefore, the vector y generated by the

above procedure can equivalently be generated by flipping
each bit of x with probability δ.

Inspired by the above procedure, we now define an alter-
nate equivalent procedure to generate the pair x ∼δ y.

– Sample a ∈ {−1, 1}n uniformly at random.

– Sample a uniformly random partition α : {1, . . . , n} →
{1, . . . , m} of the bits of a.

– Sample z ∈ {−1, 1}m uniformly at random.

– Sample r ∈ {1, . . . , m} uniformly at random. Let z̃ =
z⊕r and let xi = aizα(i), yi = aiz̃α(i)

Notice that x is uniformly distributed in {−1, 1}n, since both
a and z are uniformly distributed in {−1, 1}n and {−1, 1}m

respectively. Furthermore, z̃i = zi for all i 6= r and z̃r =
−zr. Therefore, y is obtained by flipping the bits of x in the
coordinates belonging to the rth partition. As the partition
α is generated uniformly at random, this amounts to flipping
each bit of x with probability exactly 1

m
= δ.

The noise sensitivity of f can be rewritten as,

NSδ(f) = Pra,α,z,r [f(x) 6= f(y)]

For a fixed choice of a and α, f(x) is a function of z. In this
light, let us define the function fa,α : {−1, 1}m → {−1, 1}

for each a, α as fa,α(z) = f(x). Returning to the expression
for noise sensitivity we get:

NSδ(f) = Pra,α,z,r [fa,α(z) 6= fa,α(z̃)]

= Ea,α,z,r

ˆ
1[fa,α(z) 6= fa,α(z⊕r)]

˜
= Ea,α,z

"
1

m

mX
r=1

1
ˆ
fa,α(z) 6= fa,α(z⊕r)

˜#

= Ea,α

"
1

m

mX
r=1

Ez

ˆ
1

ˆ
fa,α(z) 6= fa,α(z⊕r)

˜˜#
.

In the above calculation, the notation 1[E] refers to the in-
dicator function of the event E. Recall that, by definition
of influences,

Infr(fa,α) = Ez

ˆ
1

ˆ
fa,α(z) 6= fa,α(z⊕r)

˜˜
,

for all r. Thus, we can rewrite the noise sensitivity of f as

NSδ(f) = Ea,α

"
1

m

mX
r=1

Infr(fa,α)

#
=

1

m
Ea,α [Inf(fa,α)] .

(11)
We claim that fa,α is a degree d-PTF in m variables. To see
this observe that

fa,α(z) = sign(p(x1, . . . , xn)) = sign
`
p(a1zα(1), . . . , anzα(n))

´
,

which for a fixed choice of a, α is a degree d-PTF in z. Con-
sequently, by definition of AS(m, d) we have Inf(fa,α) ≤
AS(m, d) for all a and α. Using this in (11), the result fol-
lows.

7. ACKNOWLEDGMENT
Ilias Diakonikolas is supported by NSF grant CCF-0728736,
and by an Alexander S. Onassis Foundation Fellowship. Part
of this work was done while visiting IBM Almaden. Prahladh
Harsha is supported by THECB ARP grant 003658-0161-
2007. Research done while the author was at the Univer-
sity of Texas at Austin. Adam Klivans is supported by NSF
grants CCF-0643829, CCF-0728536 and THECB ARP grant
003658-0161-2007. Raghu Meka is partially supported by
NSF grants CCF-0634811 and CCF-0916160 and THECB
ARP grant 003658-0113-2007. Prasad Raghavendra is sup-
ported by NSF CCF-0343672. Part of this research was done
while at the University of Washington and visiting Carnegie
Mellon University. Rocco A. Servedio is supported by NSF
grants CCF-0347282, CCF-0523664 and CNS-0716245, and
by DARPA award HR0011-08-1-0069. Li-Yang Tan is sup-
ported by DARPA award no. HR0011-08-1-0069 and NSF
Cybertrust grant no. CNS-0716245.

8. REFERENCES
[1] P. Austrin and J. H̊astad. Randomly supported

independence and resistance. In Proc. 41st Annual
ACM Symposium on Theory of Computing (STOC),
pages 483–492. ACM, 2009.

[2] I. Benjamini, G. Kalai, and O. Schramm. Noise
sensitivity of Boolean functions and applications to
percolation. Inst. Hautes Études Sci. Publ. Math.,
90:5–43, 1999.

[3] E. Blais, R. O’Donnell, and K. Wimmer. Polynomial
regression under arbitrary product distributions. In
Proc. 21st Annual Conference on Learning Theory
(COLT), pages 193–204, 2008.



[4] V. Bogachev. Gaussian measures. Mathematical
surveys and monographs, vol. 62, 1998.

[5] J. Bourgain and G. Kalai. Influences of variables and
threshold intervals under group symmetries. GAFA,
7:438–461, 1997.

[6] N. Bshouty and C. Tamon. On the Fourier spectrum
of monotone functions. Journal of the ACM,
43(4):747–770, 1996.

[7] A. Carbery and J. Wright. Distributional and Lq norm
inequalities for polynomials over convex bodies in Rn.
Mathematical Research Letters, 8(3):233–248, 2001.

[8] I. Diakonikolas, P. Raghavendra, R. Servedio, and
L.-Y. Tan. Average sensitivity and noise sensitivity of
polynomial threshold functions, 2009. Available at
http://arxiv.org/abs/0909.5011.

[9] I. Diakonikolas and R. Servedio. Improved
approximation of linear threshold functions. In Proc.
24th Annual IEEE Conference on Computational
Complexity (CCC), pages 161–172, 2009.

[10] I. Diakonikolas, R. Servedio, L.-Y. Tan, and A. Wan.
A regularity lemma, and low-weight approximators,
for low-degree polynomial threshold functions.
manuscript, 2009.

[11] I. Diakoniokolas, P. Gopalan, R. Jaiswal, R. Servedio,
and E. Viola. Bounded independence fools halfspaces.
In Proc. 50th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 171–180, 2009.

[12] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell.
On the Fourier tails of bounded functions over the
discrete cube. In Proc. 38th ACM Symp. on Theory of
Computing, pages 437–446, 2006.

[13] W. Feller. An introduction to probability theory and its
applications. John Wiley & Sons, 1968.

[14] E. Friedgut. Boolean functions with low average
sensitivity depend on few coordinates. Combinatorica,
18(1):474–483, 1998.

[15] P. Gopalan, A. Kalai, and A. Klivans. Agnostically
learning decision trees. In Proc. 40th Annual ACM
Symposium on Theory of Computing (STOC), pages
527–536, 2008.

[16] P. Gopalan and R. Servedio. Learning
threshold-of-AC0 circuits. Manuscript, 2009.

[17] C. Gotsman and N. Linial. Spectral properties of
threshold functions. Combinatorica, 14(1):35–50, 1994.

[18] P. Harsha, A. Klivans, and R. Meka. Bounding the
sensitivity of polynomial threshold functions.
Available at http://arxiv.org/abs/0909.5175, 2009.

[19] J. Jackson, A. Klivans, and R. Servedio. Learnability
beyond AC0. In Proc. 34th Annual ACM Symposium
on Theory of Computing (STOC), pages 776–784,
2002.

[20] S. Janson. Gaussian Hilbert Spaces. Cambridge
University Press, Cambridge, UK, 1997.

[21] J. Kahn, G. Kalai, and N. Linial. The influence of
variables on boolean functions. In Proc. 29th Annual
Symposium on Foundations of Computer Science
(FOCS), pages 68–80, 1988.

[22] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio.
Agnostically learning halfspaces. SIAM Journal on
Computing, 37(6):1777–1805, 2008.

[23] A. Kalai, Y. Mansour, and E. Verbin. On agnostic

boosting and parity learning. In Proc. 40th Annual
ACM Symposium on Theory of Computing (STOC),
pages 629–638, 2008.

[24] D. Kane. The Gaussian surface area and noise
sensitivity of degree-d polynomial threshold functions.
CCC 2010, to appear, 2010.

[25] A. Klivans, R. O’Donnell, and R. Servedio. Learning
intersections and thresholds of halfspaces. Journal of
Computer & System Sciences, 68(4):808–840, 2004.

[26] A. Klivans, R. O’Donnell, and R. Servedio. Learning
geometric concepts via Gaussian surface area. In Proc.
49th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 541–550, 2008.

[27] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, Fourier transform and learnability. Journal of
the ACM, 40(3):607–620, 1993.

[28] E. Mossel. Lecture 4. Available at
http://www.stat.berkeley.edu/˜mossel/teach/206af05/
scribes/sep8.pdf, 2005.

[29] E. Mossel and R. O’Donnell. On the noise sensitivity
of monotone functions. Random Structures and
Algorithms, 23(3):333–350, 2003.

[30] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise
stability of functions with low influences: invariance
and optimality. In Proc. 46th Symposium on
Foundations of Computer Science (FOCS), pages
21–30, 2005.

[31] R. O’Donnell. Lecture 16: The hypercontractivity
theorem. Available at
http://www.cs.cmu.edu/˜odonnell/boolean-analysis/
lecture16.pdf, 2007.

[32] R. O’Donnell, M. Saks, O. Schramm, and R. Servedio.
Every decision tree has an influential variable. In Proc.
46th Symposium on Foundations of Computer Science
(FOCS), pages 31–39, 2005.

[33] R. O’Donnell and R. Servedio. Learning monotone
decision trees in polynomial time. SIAM J. Comput.,
37(3):827–844, 2007.

[34] R. O’Donnell and R. Servedio. The Chow Parameters
Problem. In Proc. 40th Annual ACM Symposium on
Theory of Computing (STOC), pages 517–526, 2008.

[35] Y. Peres. Noise stability of weighted majority, 2004.

[36] O. Schramm and J. Steif. Quantitative noise
sensitivity and exceptional times for percolation. Ann.
Math., to appear.

[37] R. Servedio. Every linear threshold function has a
low-weight approximator. Computational Complexity,
16(2):180–209, 2007.

[38] Y. Shi. Lower bounds of quantum black-box
complexity and degree of approximating polynomials
by influence of boolean variables. Inform. Process.
Lett., 75(1-2):79–83, 2000.

[39] S. S. Shwartz, O. Shamir, and K. Sridharan.
Agnostically learning halfspaces with margin errors.
TTI Technical Report, 2009.


