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ABSTRACT
In the (deletion-channel) trace reconstruction problem, there is an

unknown n-bit source string x . An algorithm is given access to

independent traces of x , where a trace is formed by deleting each

bit of x independently with probability δ . The goal of the algorithm

is to recover x exactly (with high probability), while minimizing

samples (number of traces) and running time.

Previously, the best known algorithm for the trace reconstruc-

tion problem was due to Holenstein et al. [SODA 2008]; it uses

exp(Õ (n1/2)) samples and running time for any �xed 0 < δ < 1. It

is also what we call a “mean-based algorithm”, meaning that it only

uses the empirical means of the individual bits of the traces. Holen-

stein et al. also gave a lower bound, showing that any mean-based

algorithm must use at least nΩ̃(logn)
samples.

In this paper we improve both of these results, obtaining match-

ing upper and lower bounds for mean-based trace reconstruction.

For any constant deletion rate 0 < δ < 1, we give a mean-based al-

gorithm that uses exp(O (n1/3)) time and traces; we also prove that

any mean-based algorithm must use at least exp(Ω(n1/3)) traces. In

fact, we obtain matching upper and lower bounds even for δ subcon-

stant and ρ B 1 − δ subconstant: when (log3 n)/n � δ ≤ 1/2 the

bound is exp(−Θ(δn)1/3), and when 1/
√
n � ρ ≤ 1/2 the bound is

exp(−Θ(n/ρ)1/3).
Our proofs involve estimates for the maxima of Littlewood poly-

nomials on complex disks. We show that these techniques can also

be used to perform trace reconstruction with random insertions

and bit-�ips in addition to deletions. We also �nd a surprising result:

for deletion probabilities δ > 1/2, the presence of insertions can

actually help with trace reconstruction.
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1 INTRODUCTION
Consider a setting in which a string x of length n over an alphabet

Σ is passed through a deletion channel that independently deletes

each coordinate of x with probability δ . The resulting string, of

length somewhere between 0 and n, is referred to as a trace of x , or

as a received string; the original string x is referred to as the source
string. The trace reconstruction problem is the task of reconstruct-

ing x (with high probability) given access to independent traces

of x . This is a natural and well-studied problem, dating back to

the early 2000’s [Lev01b, Lev01a, BKKM04], with some combina-

torial variants dating even to the early 1970’s [Kal73]. However,

perhaps surprisingly, much remains to be discovered both about the

information-theoretic and algorithmic complexity of this problem.

Indeed, in a 2009 survey [Mit09, Section 7], Mitzenmacher wrote

that “the study of [trace reconstruction] is still in its infancy”.

Before discussing previous work, we brie�y explain why one

can assume a binary alphabet without loss of generality. In case

of a general Σ, drawing O (
logn
1−δ ) traces will with high probability

reveal the entire alphabet Σ′ ⊆ Σ of symbols that are present in

x . For each symbol σ ∈ Σ′ we may consider the binary string x |σ
whose i-th character is 1 i� xi = σ ; a trace of x is easily converted

into a trace of x |σ , so the trace reconstruction problem for x can be

solved by solving the binary trace reconstruction problem for each

x |σ and combining the results in the obvious way. For this reason,

our work (and most previous work) focuses on the case of a binary

alphabet.

1.1 Prior Work
As described in [Mit09], the trace reconstruction problem can arise

in several natural domains, including sensor networks and biology.

However, the apparent di�culty of the problem means that there

is not too much published work, at least on the problem of “worst-

case” trace reconstruction problem (“worst-case” in the sense that

the source string may be any element of {0, 1}n ). Because of this,

several prior authors have considered an “average-case” version of

the problem in which the source string is assumed to be uniformly

random over {0, 1}n and the algorithm is required to succeed with

high probability over the random draw of the traces and over the

uniform random choice of x . This average-case problem seems

to have �rst been studied by Batu et al. [BKKM04], who showed
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that a simple e�cient algorithm which they call Bitwise Majority

Alignment succeeds with high probability for su�ciently small

deletion rates δ = O (1/ logn) using only O (logn) traces. Subse-

quent work of Kannan and McGregor [KM05] gave an algorithm

for random x that can handle both deletions and insertions (both

at rates O (1/ log2 n) as well as bit-�ips (with constant probability

bounded away from 1/2) using O (logn) traces. Viswanathan and

Swaminathan [VS08] sharpened this result by improving the dele-

tion and insertion rates that can be handled to O (1/ logn). Finally,

[HMPW08] gave a poly(n)-time, poly(n)-trace algorithm for ran-

dom x that succeeds with high probability for any deletion rate δ
that is at most some su�ciently small absolute constant.

Several researchers have considered, from an information-theoretic

rather than algorithmic perspective, various reconstruction prob-

lems that are closely related to the (worst-case) trace reconstruction

problem. Kalashnik [Kal73] showed that any n-bit string is uniquely

speci�ed by its k-deck, which is the multiset of all its length-k
subsequences, when k = bn/2c; this result was later reproved by

Manvel et al. [MMS
+

91]. Scott [Sco97] subsequently showed that

k = (1 + o(1))
√
n logn su�ces for reconstruction from the k-deck

for any x , and simultaneously and independently Krasnikov and

Roditty [KR97] showed that k = b 16
7

√
nc + 5 su�ces. (McGregor

et al. observed in [MPV14] that the result of [Sco97] yields an

information-theoretic algorithm using exp(Õ (n1/2)) traces for any

deletion rate δ ≤ 1−O (
√
log(n)/n), but did not discuss the running

time of such an algorithm.) On the other side, successively larger

Ω(logn) lower bounds on the value of k that su�ces for recon-

struction of an arbitrary x ∈ {0, 1}n from its k-deck were given

by Manvel et al. [MMS
+

91] and Cho�rut and Karhumäki [CK97],

culminating in a lower bound of 2
Ω(
√
logn)

due to Dudík and Schul-

man [DS03].

Surprisingly few algorithms have been given for the worst-case

trace reconstruction problem as de�ned in the �rst paragraph of this

paper. Batu et al. [BKKM04] showed that a variation of their Bitwise

Majority Alignment algorithm succeeds e�ciently usingO (n logn)

traces if the deletion rate δ is quite low, at mostO (1/n1/2+ε ). Holen-

stein et al. [HMPW08] gave a “mean-based” algorithm (we explain

precisely what is meant by such an algorithm later) that runs in time

exp(Õ (
√
n)) and uses exp(Õ (

√
n)) traces for any deletion rate δ that

is bounded away from 1 by a constant; this is the prior work that

is most relevant to our main positive result. [HMPW08] also gave

a lower bound showing that for any δ bounded away from 0 by a

constant, at least n
Ω(

logn
log logn )

traces are required for any mean-based

algorithm. Since the result of [HMPW08], several researchers (such

as [Mos13]) have raised the question of �nding (potentially ine�-

cient) algorithms which have a better sample complexity; however,

no progress had been made until this work.

One may also ask (as was done in the “open questions” of [Mit09,

Section 7]) for trace reconstruction for more general channels, such

as those that allow deletions, insertions, and bit-�ips. The only work

we are aware of along these lines is that of Andoni et al. [ADHR12],

which gives results for trace reconstruction for average-case words

in the presence of insertions, deletions, and substitutions on a tree.

1.2 Our Results
Theorem 1.1 (Deletion channel positive result). There is an

algorithm for the trace reconstruction problem which, for any constant
0 < δ < 1, uses exp(O (n1/3)) traces and running time.

Theorem 1.1 signi�cantly improves the running time and sample

complexity of the [HMPW08] algorithm, which is exp(Õ (n1/2)) for

�xed constant δ . Furthermore, we can actually extend Theorem 1.1

to the case of δ = o(1) or δ = 1 − o(1); see Theorem 1.3 below.

The algorithm of Theorem 1.1 is a “mean-based” algorithm, mean-

ing that it uses only the empirical mean of the trace vectors it re-

ceives. We prove an essentially matching lower bound for such

algorithms:

Theorem 1.2 (Deletion channel negative result). For any
constant 0 < δ < 1, every mean-based algorithm must use at least
exp(Ω(n1/3)) traces.

As mentioned, we can also treat δ = o(1) and δ = 1 − o(1):

Theorem 1.3 (Deletion channel general matching bounds).

The matching bounds in Theorems 1.1 and 1.2 extend as follows: For
O (log3 n)/n ≤ δ ≤ 1/2, the matching bound is exp(Θ(δn)1/3) (and
for any smaller δ we have a poly(n) upper bound). Writing ρ = 1− δ

for the “retention” probability, forO (1/n1/2) ≤ ρ ≤ 1/2 the matching
bound is exp(Θ(n/ρ)1/3).

For simplicity in the main portion of the paper we consider only

the deletion channel and prove the above results. In Appendix A

we consider a more general channel that allows for deletions, inser-

tions, and bit-�ips, and prove the following result, which extends

Theorem 1.1 to that more general channel and includes Theorem 1.1

as a special case.

Theorem 1.4 (General channel positive result). Let C be
the general channel described in Section A.1 with deletion probability
δ = 1− ρ, insertion probability σ , and bit-�ip probability γ/2. De�ne

r B
ρ + δσ

1 + σ
.

Then there is an algorithm for C-channel trace reconstruction using
samples and running time bounded by

poly( 1

1−δ ,
1

1−σ ,
1

1−γ )·



exp(O (n/r )1/3) if C
n1/2 ≤ r ≤ 1

2
,

exp(O ((1 − r )n)1/3) if O (log3 n
n ≤ 1 − r ≤ 1

2
.

Since some slight technical and notational unwieldiness is in-

curred by dealing with the more general channel, we defer the

proof of Theorem 1.4 to Appendix A; however, we note here that

the main core of the proof is unchanged from the deletion-only case.

We additionally note that, as discussed in Appendix A, a curious

aspect of the upper bound given by Theorem 1.4 is that having

a constant insertion rate can make it possible to perform trace

reconstruction in time exp(O (n1/3)) even when the deletion rate

is much higher than Theorem 1.3 could handle in the absence of

insertions. A possible intuitive explanation for this is that having

random insertions could serve to “smooth out” worst-case instances

that are problematic for a deletion-only model.
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1.3 Independent and Concurrent Work
Fedor Nazarov and Yuval Peres have independently obtained results

that are substantially similar to Theorems 1.1 and 1.2 (see these

proceedings). Also, Elchanan Mossel has informed us [Mos] that

around 2008, Mark Braverman, Avinatan Hassidim and Elchanan

Mossel had independently proven (unpublished) superpolynomial

lower bounds for mean-based algorithms.

1.4 Our Techniques
For simplicity of discussion, we restrict our focus in this section to

the question of upper bounding the sample complexity of trace re-

construction for the deletion channel, where every bit gets deleted

independently with probability δ . (As discussed above, generalizing

the results to channels which also allow for insertions and �ips is

essentially a technical exercise that does not require substantially

new ideas.) As we discuss in Section 3.2, an e�cient algorithm
follows easily from a sample complexity upper bound via the ob-

servation that the minimization problem whose solution yields a

sample complexity upper bound, extends to a slightly larger convex
set, and thus one can use convex (in fact, linear) programming to

get an algorithmic result. Hence the technical meat of the argument

lies in upper bounding the sample complexity.

The key enabling idea for our work is to take an analytic view

on the combinatorial process de�ned by the deletion channel. More

precisely, consider two distinct strings x ,x ′ ∈ {−1, 1}n . A necessary

(and su�cient) condition to upper bound the sample complexity

of trace reconstruction is to lower bound the statistical distance

between the two distributions of traces of x versus x ′ (let us write

C (x ) and C (x ′) to denote these two distributions). Since analyzing

the statistical distance dTV (C (x ),C (x
′)) between the distributions

C (x ) and C (x ′) turns out to be a di�cult task, we approach it by

considering a limited class of statistical tests.

In [HMPW08] the authors consider “mean-based” algorithms;

such algorithms correspond to statistical tests that only use 1-bit

marginals of the distribution of the received string. More precisely,

for any 1 ≤ j ≤ n, consider the quantities Pry←C (x )[y j = 1]

and Pry′←C (x ′)[y′j = 1]. The di�erence |Pry←C (x )[y j = 1] −

Pry′←C (x ′)[y′j = 1]| is a lower bound on dTV (C (x ),C (x
′)).

Let us de�ne the vector βx,x ′ = (βx,x ′ (1), . . . , βx,x ′ (n)) ∈ [−1, 1]
n

by

βx,x ′ (j ) = Pr
y←C (x )

[y′j = 1] − Pr
y′←C (x ′)

[y j = 1].

In this terminology, giving a sample complexity upper bound on

mean-based algorithms correspond to showing a lower bound on

minx,x ′∈{−1,1}n ‖βx,x ′ ‖1. A central idea in this paper is to analyze

‖βx,x ′ ‖1 by studying the Z -transform of the vector βx,x ′ . More

precisely, for z ∈ C, we consider β̂x,x ′ (z) :=
∑n
j=1 βx,x ′ (j ) · z

j−1
.

Elementary complex analysis can be used to show that

sup

|z |=1
|β̂x,x ′ (z) | ≤ ‖βx,x ′ ‖1 ≤

√
n · sup
|z |=1

|β̂x,x ′ (z) |.

Thus, for our purposes, it su�ces to study sup |z |=1 |β̂x,x ′ (z) |. By

analyzing the deletion channel and observing that β̂x,x ′ (z) is a

polynomial in z, we are able to characterize this supremum as the

supremum of a certain polynomial (induced by x and x ′) on a cer-

tain disk in the complex plane. Thus giving a sample complexity

upper bound amounts to lower bounding sup |z |=1 |β̂x,x ′ (z) | across

all polynomials β̂x,x ′ induced by distinct x ,x ′ ∈ {−1, 1}n (essen-

tially, across a class of polynomials closely related to Littlewood
polynomials: those polynomials with all coe�cients in {−1, 0, 1}). The

technical heart of our sample complexity upper bound is in estab-

lishing such a lower bound. Finally, similar ideas and arguments

are used to lower bound the sample complexity of mean-based

algorithms, by upper bounding sup |z |=1 |β̂x,x ′ (z) | across all poly-

nomials β̂x,x ′ induced by distinct x ,x ′ ∈ {−1, 1}n .

2 PRELIMINARIES AND TERMINOLOGY
Throughout this paper we will use two slightly nonstandard nota-

tional conventions. Bits will be written as {−1, 1} rather than {0, 1},

and strings will be indexed starting from 0 rather than 1. Thus the

source string will be denoted x = (x0,x1, . . . ,xn−1) ∈ {−1, 1}
n

; this

is the unknown string that the reconstruction algorithm is trying

to recover.

We will write C for the channel through which x is transmitted.

In the main body of the paper our main focus will be on the deletion
channel C = Delδ , in which each bit of x is independently δeleted

with probability δ < 1. We will also often consider ρ = 1 − δ > 0,

the ρetention probability of each coordinate. In Appendix A we

will see that a more general channel that also involves insertions
and bit-�ips can be handled in a similar way.

We will use boldface to denote random variables. We typically

write y ← C (x ) to denote that y = (y
0
,y

1
, . . . ,yn−1) is a random

trace (or received string or sample), obtained by passing x through

the channel C. Notice the slight inconvenience that the length of y
is a random variable (for the deletion channel this length is always

between 0 and n); we denote this length by n.

We de�ne a trace reconstruction algorithm for channel C to be an

algorithm with the following property: for any unknown source

string x ∈ {−1, 1}n , when given access to independent strings

y (1) ,y (2) , . . . each distributed according to C (x ), it outputs x with

probability at least (say) 99%. The sample complexity of the trace

reconstruction algorithm is the number of draws from C (x ) that

it uses (in the worst case across all x ∈ {−1, 1}n and all draws

from C (x )). We are also interested in the algorithm’s (worst-case)

running time.

As mentioned earlier we will use basic complex analysis. The

following notation will be useful:

Notation 2.1. We writeDr (c ) for the closed complex disk of radius

r centered at c; i.e., {z ∈ C : |z − c | ≤ r }. We write ∂Dr (c ) for the

boundary of this disk; thus, e.g., ∂D1 (0) = {z ∈ C : |z | = 1} is the

complex unit circle.

3 MEAN TRACES
We now come to a key de�nition, that of the mean trace. For now

we restrict our focus to C being the deletion channel Delδ (we

consider a more general channel in Appendix A).

Although a random trace y ← Delδ (x ) does not have a �xed

length, we can simply de�ne the mean trace of a source string x ∈
{−1, 1}n to be

µ
Delδ (x ) = E

y←Delδ (x )
[y′] ∈ [−1, 1]n , (1)

1049



STOC’17, June 2017, Montreal, Canada Anindya De, Ryan O’Donnell, and Rocco A. Servedio

wherey′ isy padded with zeros so as to be of length exactly n. Here

“0” has a natural interpretation as a “uniformly random bit” (indeed,

a trace reconstruction algorithm could always pad deletion-channel

traces with random bits by itself, and this would not change the

de�nition of the mean trace µ
Delδ (x )).

The following is immediate:

Proposition 3.1. Viewing the domain of µ
Delδ as the real vec-

tor space Rn , µ
Delδ (x ) is a (real-)linear function of x ; that is, each

µ
Delδ (x )j can be written as

∑
i ai, jxi for some constants ai, j ∈ R.

3.1 The Mean-Based (Deletion-Channel) Trace
Reconstruction Model

One of the most basic things that a trace reconstruction algorithm

can do is calculate an empirical estimate of the mean trace. A sim-

ple Cherno�/union bound shows that, with poly(n/ϵ ) samples and

time, an algorithm can compute an estimator µ̂
Delδ (x ) ∈ [−1, 1]

n

satisfying ‖µ̂
Delδ (x ) − µ

Delδ (x )‖1 ≤ ϵ with very high probability.

The algorithm might then proceed to base its reconstruction solely

on µ̂
Delδ (x ), without relying on further traces. We call such algo-

rithms “mean-based trace reconstruction algorithms” (Holenstein

et al. [HMPW08] called them algorithms based on “summary sta-

tistics”). We give a formal de�nition:

De�nition 3.2. An algorithm in the mean-based (deletion-channel)
trace reconstruction model works as follows. Given an unknown

source string x ∈ {−1, 1}n , the algorithm �rst speci�es a param-

eter T ∈ N. The algorithm is then given an estimate µ̂
Delδ (x ) ∈

[−1,+1]n of the mean trace satisfying

‖µ̂
Delδ (x ) − µ

Delδ (x )‖1 ≤ 1/T . (2)

We de�ne the “cost” of this portion of the algorithm to beT . Having

been given µ̂
Delδ (x ), the algorithm has no further access to x , but

may do further “postprocessing” computation involving µ̂
Delδ (x ).

The algorithm should end by outputting x .

From the above discussion, we see that an algorithm in the mean-

based trace reconstruction model with cost T1 and postprocessing

time T2 may be converted into a normal trace reconstruction algo-

rithm using poly(n,T1) samples and poly(n,T1) +T2 time.

3.2 The Complexity of Mean-Based
(Deletion-Channel) Trace Reconstruction

As discussed in [HMPW08], the sample complexity of mean-based

trace reconstruction is essentially determined by the minimum

distance between the mean traces µ
Delδ (x ) and µ

Delδ (x
′) of two

distinct source strings x ,x ′ ∈ {−1, 1}n . Furthermore, one can get

an upper bound on the time complexity of mean-based trace recon-

struction if a certain “fractional relaxation” of this minimum mean

trace distance is large. We state these observations from [HMPW08]

here, using slightly di�erent notation.

De�nition 3.3. Given n and 0 ≤ δ < 1, we de�ne:

ϵ
Delδ (n) B min

x,x ′∈{−1,1}n
x,x ′

‖µ
Delδ (x ) − µ

Delδ (x
′)‖1

= 2 min

b ∈{−1,0,+1}n
b,0

‖µ
Delδ (b)‖1;

ϵ frac
Delδ

(n) B min

0≤i<n
min

x,x ′∈[−1,+1]n
x j=x ′j ∈{−1,1}∀j<i
xi=−x ′i ∈{−1,1}

‖µ
Delδ (x ) − µ

Delδ (x
′)‖1

= 2 min

d ∈[n]
min

b ∈{0}d−1×{1}×[−1,+1]n−d
‖µ

Delδ (b)‖1.

In both cases, the equality on the right uses Proposition 3.1.

It’s easy to see that in the mean-based trace reconstruction

model, it is information-theoretically possible for an algorithm

to succeed if and only if its cost T exceeds 2/ϵ
Delδ (n). Thus charac-

terizing the sample complexity of mean-based trace reconstruction

essentially amounts to analyzing ϵ
Delδ (n). For example, to estab-

lish our lower bound Theorem 1.2, it su�ces to prove that the

ϵ
Delδ (n) ≤ exp(−Ω(n1/3)) for constant 0 < δ < 1.

Furthermore, as observed in [HMPW08], given an ϵ frac
Delδ

(n)/4-

accurate estimate of µ
Delδ (x ), as well as the ability to compute

the linear function µ
Delδ (x

′) for any x ′ ∈ [−1,+1]n (or even es-

timate it to ϵ frac
Delδ

(n)/4-accuracy), one can recover x exactly in

poly(n, log(1/ϵ frac
Delδ

(n))) time by solving a sequence of n linear pro-

grams.
1

Thus to establish our Theorem 1.1, it su�ces to prove that

ϵ frac
Delδ

(n) ≥ exp(−O (n1/3)) for constant 0 < δ < 1.

3.3 Reduction to Complex Analysis
Our next important de�nition is of a polynomial that encodes the

components of µC (x ) in its coe�cients — kind of a generating

function for the channel. We think of its parameter z as a complex

number.

De�nition 3.4. Given x ∈ {−1, 1}n and 0 ≤ δ < 1, we de�ne the

deletion-channel polynomial

P
Delδ ,x (z) =

∑
j<n

µ
Delδ (x )j · z

j ,

a polynomial of degree less than n. We extend this de�nition to

x ∈ [−1,+1]n using the linearity of µ
Delδ .

We now make the step to elementary complex analysis, by re-

lating the size of a mean trace di�erence µ
Delδ (b) to the maximum

modulus of P
Delδ ,b (z) on the unit complex circle (or equivalently,

the unit complex disk, by the Maximum Modulus Principle):

Proposition 3.5. For any b ∈ [−1, 1]n , we have

max

z∈∂D1 (0)

���PDelδ ,b (z)
��� ≤ ‖µDelδ (b)‖1 ≤

√
n max

z∈∂D1 (0)

���PDelδ ,b (z)
���.

1
If the algorithm “knows” δ it can e�ciently compute µ

Delδ (x
′) exactly. But even if

it doesn’t “know” δ , it can estimate δ to su�cient accuracy so that µ
Delδ (x

′) can be

estimated to the necessary accuracy, with no signi�cant algorithmic slowdown.

1050



Optimal Mean-Based Algorithms for Trace Reconstruction STOC’17, June 2017, Montreal, Canada

Proof. Recall that µ
Delδ (b) is the length-n vector of coe�cients

for the polynomial P
Delδ ,b (z). The lower bound above is immediate

from the triangle inequality. For the upper bound, we use

‖µ
Delδ (b)‖

2

1
≤ n‖µ

Delδ (b)‖
2

2

= n avg

z∈∂D1 (0)

���PDelδ ,b (z)
���
2

≤ n

(
max

z∈∂D1 (0)

���PDelδ ,b (z)
���

)
2

.

Here the �rst inequality is Cauchy–Schwarz, the equality is an

elementary fact about complex polynomials (or Fourier series), and

the �nal inequality is obvious. �

Let us reconsider De�nition 3.3. As a factor of

√
n is negligible

compared to the bounds we will prove (which are of the shape

exp(−Θ(n1/3)), we may as well analyze maxz∈∂D1 (0)
���PDelδ ,b (z)

���
rather than ‖µ

Delδ (b)‖1 in the de�nition of ϵ
Delδ (n) and ϵ frac

Delδ
(n).

We therefore take a closer look at the deletion-channel polynomial.

4 THE DELETION-CHANNEL POLYNOMIAL
In this section we compute the deletion-channel polynomial. When

the deletion channel is applied to some source string x , each bit

xi is either deleted with probability δ or else is transmitted at

some position j ≤ i in the received string y. Let us introduce

(non-independent) random variables J
0
, . . . , Jn−1, where J i = ⊥

if xi is deleted and otherwise J i is the position in y at which xi is

transmitted. We thus have

P
Delδ ,x (z) =

∑
j<n

E
y←C (x )

[y j ] · z
j

=
∑
j<n

z j ·
∑
i<n

Pr[J i = j]xi

=
∑
i<n

xi ·
∑
j<n

Pr[J i = j]z j

=
∑
i<n

xi · “E ”[z J i ].

Here we put the expectation E in quotation marks because the

expression should count 0whenever J i = ⊥. Observing that Pr[J i ,
⊥] equals the retention probability ρ = 1 − δ , if we de�ne the

conditional random variable

J̃ i = (J i | J i , ⊥)

(so J̃ i is an N-valued random variable), then we have

P
Delδ ,x (z) = ρ

∑
i<n

xi · E[z J̃ i ]. (3)

Observing that J̃ i is distributed as Binomial(i, ρ), and lettingB1, . . . ,

Bi denote independent Bernoulli random variables with “success”

probability ρ, we easily compute

E[z J̃ i ] = E[zB1+· · ·+Bi
] = E[zB1

]
i = ((1 − ρ) + ρz)i .

Denoting

w = 1 − ρ + ρz,

we conclude that

P
Delδ ,x (z) = ρ

∑
i<n

xiw
i .

As z ranges over the unit circle ∂D1 (0),w ranges over the radius-

ρ circle ∂Dρ (1 − ρ). Recalling De�nition 3.3 and Proposition 3.5,

we are led to consider the following two quantities for 0 < ρ < 1

(note that by the Maximum Modulus Principle, these quantities are

unchanged whether the max is over Dρ (1 − ρ) or ∂Dρ (1 − ρ)):

κ
Li�lewood

(ρ,n) = min




max

w ∈Dρ (1−ρ )
|P (w ) | : P (w ) = b0 + b1w+

· · · + bn−1w
n−1, bi ∈ {0,±1} not all 0



,

κfrac
bounded

(ρ,d ) = min




max

w ∈Dρ (1−ρ )
|P (w ) | : P (w ) = wd + bd+1w

d+1

+ · · · + bNw
N , N ≥ d, bi ∈ D1 (0)



.

By the Maximum Modulus Principle, both κ
Li�lewood

(ρ,n) and

κfrac
bounded

(ρ,d ) are nondecreasing functions of 0 < ρ < 1. It’s also

easy to see that both are nonincreasing functions of their second

argument for all 0 < ρ < 1 (for κfrac
bounded

(ρ,d ), consider replac-

ing P (w ) by wP (w )) and observe that |wP (w ) | ≤ |P (w ) | for all

w ∈ Dρ (1 − ρ)). It thus follows that

κfrac
bounded

(ρ,d ) ≤ κ
Li�lewood

(ρ,d ).

Our main technical theorems are the following:

Theorem 4.1. There is a universal constant C ≥ 1 such that:

for 1/d ≤ δ ≤ 1/2, κfrac
bounded

(1 − δ ,d ) ≥ exp(−C (δd )1/3);

for 1/d1/2 ≤ ρ ≤ 1/2, κfrac
bounded

(ρ,d ) ≥ exp(−C (d/ρ)1/3).

Theorem 4.2. There is a universal constant C ≥ 1 such that:

for C (log3 n)/n ≤ δ ≤ 1/2,

κ
Li�lewood

(1 − δ ,n) ≤ exp(−Ω(δn)1/3);

for C/n1/2 ≤ ρ ≤ 1/2,

κ
Li�lewood

(ρ,n) ≤ exp(−Ω(n/ρ)1/3).

By De�nition 3.3, Proposition 3.5, and the discussion at the end of

Section 3.2, we have that Theorem 4.2 implies both Theorem 1.2 and

the more general sample complexity lower bound in Theorem 1.3.

Regarding the algorithmic upper bounds in Theorems 1.1 and 1.3,

again from De�nition 3.3 and Proposition 3.5 we get that

ϵ frac
Delδ

(n) ≥ 2ρ · min

0≤d<n




max

w ∈Dρ (1−ρ )
|P (w ) | : P (w ) = wd + bd+1w

d+1

+ · · · + bn−1w
n−1, bi ∈ [−1,+1]




≥ 2ρ · min

0≤d<n
κfrac
bounded

(ρ,d ) ≥ 2ρ · κfrac
bounded

(ρ,n).

Thus the upper bounds Theorems 1.1 and 1.3 likewise follow from

Theorem 4.1 and the discussion at the end of Section 3.2. (Note that
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if δ ≤ O (log3 n)/n, we can always pay the bound for the larger

value δ = Θ(log3 n)/n), which is poly(n).)

5 PROOF OF THEOREM 4.1
We will need the following:

Theorem 5.1. ([BE97], Corollary 3.2, M = 1 case.) Let Q (w ) be
a polynomial with constant coe�cient 1 and all other coe�cients
bounded by 1 in modulus. Fix any 0 < θ ≤ π , and let A be the arc
{eit : −θ ≤ t ≤ θ }. Then supw ∈A |Q (w ) | ≥ exp(−C1/θ ) for some
universal constant C1.

We remark that for any 0 < r < 1, Theorem 5.1 holds for the arc

A = {reit : −θ ≤ t ≤ θ } with no change in the constant C1. This is

immediate by applying the theorem to Q̃ (w ) = Q (rw ).

Proof of Theorem 4.1. Fix d ≥ 2 (else the hypotheses are vac-

uous) and δ + ρ = 1. We call Case I when 1/d ≤ δ < 1/2, and we

call Case II when 1/d1/2 ≤ ρ ≤ 1/2. Select

θ =



1

2(δd )1/3 in Case I,( ρ
d

)
1/3

in Case II.

In Case I we have θ ≤ 1/2, and in Case II we have θ ≤ ρ ≤ 1/2.

Let P (w ) = wd ·Q (w ), whereQ (w ) is a polynomial with constant

coe�cient 1 and all other coe�cients bounded by 1 in modulus. We

need to show

max

w ∈Dρ (δ )
|P (w ) | ≥




exp(−C (δd )1/3) in Case I,

exp(−C (d/ρ)1/3) in Case II.

(4)

In Case I, the ray {reiθ : r > 0} intersects ∂Dρ (δ ) at a unique point,

call it w0. In Case II, the same ray intersects Dρ (δ ) twice (this uses

θ ≤ ρ); call the point of larger modulus w0. In either case, consider

the triangle formed in the complex plane by the points 0, δ , andw0;

it has some acute angle α at w0 and an angle of θ at 0. By the Law

of Sines,

ρ

sinθ
=

δ

sinα

=
|w0 |

sin(π − θ − α )

=
|w0 |

sin(θ + α )

=
|w0 |

sinθ cosα + sinα cosθ
,

which implies that

|w0 | = δ cosθ + ρ cosα

= δ cosθ + ρ
√
1 − ( δρ )

2
sin

2 θ

≥ δ (1 − θ2) + ρ (1 − ( δρ )
2θ2)

= 1 − δ
ρ θ

2.

(The last inequality used θ ≤ ρ in Case II.) Writing r0 = |w0 |,

Theorem 5.1 (and the subsequent remark) implies that

max

w ∈A
|Q (w ) | ≥ exp(−C1/θ ) for A = {r0e

it
: −θ ≤ t ≤ θ } ⊂ Dρ (δ ).

(5)

As a consequence, we have

max

w ∈Dρ (δ )
|P (w ) | ≥ max

w ∈A
|P (w ) |

≥ rd
0
· exp(−C1/θ )

≥ (1 − (δ/ρ)θ2)d · exp(−C1/θ )

≥ exp(−2(δ/ρ)θ2d −C1/θ )

(the last inequality again using θ ≤ ρ in Case II). Substituting in

the value of θ yields (4). �

5.1 An Improved Version
Although we don’t need it for our application, we can actually

provide a stronger version of the results in the previous section

that is also self-contained — i.e., it does not rely on Borwein and

Erdélyi’s Theorem 5.1. We used that theorem to establish (5); but

more strongly than (5), we can show there exists an arc A ⊂ Dρ (δ )
such that

GMw ∈A |Q (w ) | ≥ exp(−O (1/θ )),

where the left-hand side here denotes the geometric mean of |Q |
along A. (Of course, this is at most the max of |Q | along A.) To keep

the parameters simpler, we will assume ρ ≤ 1/3 (this is the more

interesting parameter regime anyway, and it is su�cient to yield

our Theorem 1.1). Our alternate arc A will be

A = {1/3 + reit : −θ ≤ t ≤ θ },

where 0 < r < 2/3 is the larger real radius such that 1/3 + re±iθ ∈
∂Dρ (δ ). We remark that still A ⊂ Dρ (δ ), by virtue of θ ≤ ρ ≤
1/3, and it is not hard to show that the the endpoint of A, call it

w ′ = 1/3 + reiθ ∈ ∂Dρ (δ ), again satis�es |w ′ | ≥ 1 − Ω( δρ θ
2).

Thus instead of using Theorem 5.1 as a black box, we could have

completed our proof of Theorem 4.1 using the following:

Theorem 5.2. Let Q (w ) be a polynomial with constant coe�-
cient 1 and all other coe�cients in D1 (0). Fix any 0 < θ ≤ π ,
0 ≤ r ≤ 2/3, and let A be the arc {1/3 + reit : −θ ≤ t ≤ θ }.
Then GMw ∈A ( |Q (w ) |) ≥ 9/18π /θ .

Our proof will require one standard fact from the theory of

“Mahler measures”:

Fact 5.3. Let Q be a complex polynomial and let O be a circle in
the complex plane with center c . Then GMw ∈O ( |Q (w ) |) ≥ |Q (c ) |.

Proof. By a linear transformation we may assume O is the unit

circle ∂D1 (0). ExpressQ (w ) = a0
∏

i (w−αi ), where the αi ’s are the

roots ofQ . Then GMw ∈O ( |Q (w ) |) — known asQ ’s Mahler measure,
see e.g. [Smy08] — is exactly equal to |a0 |

∏
i ∈I |αi |, where I = {i :

|αi | ≥ 1}. (Since GMw ∈O ( | · |) is multiplicative, this statement fol-

lows immediately from the elementary fact that GMw ∈O ( |w−α |) =
max{|α |, 1}.) But clearly we have |a0 |

∏
i ∈I |αi | ≥ |a0 |

∏
i |αi | =

|Q (0) |. �

We can now establish Theorem 5.2:
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Proof of Theorem 5.2. Using the bounds on Q’s coe�cients

we have:

|Q (w ) | ≤ 1 + |w | + |w |2 + · · · =
1

1 − |w |
for w ∈ D1 (0); (6)

|Q (1/3) | ≥ 1 − |1/3| − |1/3|2 − · · · = 1/2. (7)

Let us apply Fact 5.3 with O = ∂Dr (1/3) ⊃ A, writing A′ for the

complementary arc to A in O. We get

1/2 ≤ GMw ∈O ( |Q (w ) |)

= GMw ∈A ( |Q (w ) |)θ /π · GMw ∈A′ ( |Q (w ) |)1−θ /π . (8)

And by (6) we have

GM

w ∈A′
( |Q (w ) |) ≤ GM

w ∈A′
( 1

1−|w | )

≤ GM

w ∈O
( 1

1−|w | )

≤ GM

w ∈∂D2/3 (1/3)
( 1

1−|w | ), (9)

where the second inequality is because the points w ∈ A only

have larger
1

1−|w | than the points in A′, and the third inequality

is because increasing the radius of O from r to 2/3 only increases

the value of
1

1−|w | for points on O. But now for −π < t ≤ π , the

point w = 1/3 + (2/3)eit ∈ D
2/3 (1/3) has |w |2 = 1 − 4

9
(1 − cos t )

and hence

1

1 − |w |
=

1

1 −

√
1 − 4

9
(1 − cos t )

≤
9

2(1 − cos t )
.

Thus

GM

w ∈∂D2/3 (1/3)
( 1

1−|w | ) ≤ exp

(
1

2π

∫ π

−π
ln

(
9

2(1−cos t )

)
dt

)
=

9

2

exp

(
− 1

2π

∫ π

−π
ln(1 − cos t ) dt

)
= 9, (10)

the last integral being known. (One can get a much easier integral,

with a slightly worse constant, by lower-bounding 1 − cos t ≥
(2/π 2)t2.) Combining (8), (9), (10) yields the theorem. �

6 PROOF OF THEOREM 4.2
The key ingredient is the following theorem from [BEK99]. (Recall

that a Littlewood polynomial has all nonzero coe�cients either −1

or 1.)

Theorem 6.1 ([BEK99], Theorem 3.3). For all k ≥ 2 there is a
nonzero Littlewood polynomial Qk of degree at most k satisfying
|Qk (t ) | ≤ exp(−c0

√
k ) for all real 0 ≤ t ≤ 1. Here c0 > 0 is a

universal constant.

By a simple use of the Hadamard Three-Circle Theorem and Max-

imum Modulus Principle, Borwein and Erdélyi proved in [BE97]

that the polynomials in Theorem 6.1 establish tightness of their

Theorem 5.1 (up to the constantC1). We quote a result that appears

within their proof:

Theorem 6.2 ([BE97], in the first proof of Theorem 3.3 in the

“special case”, p. 11). There are universal constants c1, c2, c3 > 0

such that the following holds: For all 0 < a ≤ c1 there exists an integer

2 ≤ k ≤ c2/a
2 such thatmaxw ∈D6a (1) |Qk (w ) | ≤ exp(−c3/a), where

Qk is the nonzero Littlewood polynomial from Theorem 6.1.

Remark 6.3. Actually, Borwein and Erdélyi proved this with an

elliptical disk Ea in place of D6a (1), where Ea has foci at 1 − 8a
and 1 and major axis [1−14a, 1+6a]. It is easy to see that D6a (1) ⊂
Ea ⊂ D14a (1), so we wrote D6a (1) in Theorem 6.2 for simplicity

and because it loses almost nothing.

We can now prove Theorem 4.2. We state here a slightly more

precise version:

Theorem 6.4. Using the notation δ = 1 − ρ, and the notation
Exp(t ) = exp(c · t ) for an unspeci�ed universal constant c > 0, we
have

κ
Li�lewood

(ρ,n) ≤




Exp(−(δn)1/3) in Case I:
C (log3 n)/n ≤ δ ≤ 1/2,

Exp(−(n/ρ)1/3) in Case II:
C/n1/2 ≤ ρ ≤ 1/2,

provided n ≥ n0. Here n0,C ≥ 1 are universal constants.

Proof of Theorem 4.2. With C ≥ 1 to be speci�ed later, select

a =



C1/(δn)
1/3

in Case I: C (log3 n)/n < δ ≤ 1/2,

C1 (ρ/n)
1/3

in Case II: 1/n1/2 < ρ < 1/2,

whereC1 ≥ 1 is a universal constant to be speci�ed later. Assuming

n0 = n0 (C1) is su�ciently large we get that a ≤ c1, where c1 is as

in Theorem 6.2. Applying that theorem, we obtain

max

w ∈A
|Qk (w ) | ≤ Exp(−1/a), (11)

where

A B D6a (1), k ≤ c2/a
2 < n/2.

Here the inequality c2/a
2 < n/2 holds in Case I by assuming n0 =

n0 (C1, c2) large enough, and in Case II by taking C1 = C1 (c2) large

enough. Now de�ne

P (w ) = w bn/2c ·Qk (w ),

a nonzero Littlewood polynomial of degree less than n. We wish to

bound

max

w ∈R
|P (w ) |, R B Dρ (δ )

by the expression in the theorem statement. For the pointsw ∈ R∩A,

we are done by (11) (and the fact that |w bn/2c | ≤ 1). For the points

in w ∈ R \A, we claim that

|w |2 ≤ 1 − 36 δρ a
2 ≤ exp(−36 δρ a

2) ∀w ∈ R \A. (12)

Assuming (12), we get

max

w ∈R\A
|P (w ) | ≤ max

w ∈R\A
|w | bn/2c · max

w ∈R\A
|Qk (w ) |

≤ exp(−18 δρ a
2) bn/2c · (n/2 + 1)

≤ Exp(−n δρ a
2) · (n/2 + 1),

where the factor n/2 + 1 is an upper bound on |Qk (w ) | over all of

D1 (0) (recall thatQk is a Littlewood polynomial of degree less than

n/2). By inspection, this is su�cient to complete the proof in both

Case I and Case II (in Case I we need to assume C large enough to

absorb the factor of (n/2 + 1)).
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It remains to establish (12). For this we �rst note that ρ > 3a in

both Case I and Case II (Case I is easier to check; for Case II we need

to use thatC = C (C1) is su�ciently large). This in particular means

that R \ A , ∅. Writing w0 for either of the intersection points

of ∂R and ∂A, we have maxw ∈R\A |w | ≤ |w0 |. Thus it su�ces to

upper-bound |w0 |
2
.

In the complex plane, consider the triangle formed by δ , 1, and

w0. Note that w0 has distance ρ from δ and distance 6a from 1.

Let θ denote the triangle’s angle at δ . By the Cosine Law, (6a)2 =
ρ2 + ρ2 − 2ρ2 cosθ and hence cosθ = 1 − 18a2/ρ2. Now consider

the triangle formed by δ , 0, and w0. Its angle at δ is π − θ and the

adjacent sides have length δ , ρ. Thus by the Cosine Law,

|w0 |
2 = δ2 + ρ2 − 2δρ cos(π − θ )

= δ2 + ρ2 + 2δρ cosθ

= (δ + ρ)2 − 36δρa2/ρ2

= 1 − 36 δρ a
2,

as needed for (12). �

7 CONCLUSIONS
A natural direction for future work is to go beyond mean-based

algorithms. For example, an e�cient algorithm can estimate the

covariances of all pairs of trace bits. If di�erent sources strings lead

to su�ciently di�erent trace-covariances, one could potentially

get a more e�cient trace reconstruction algorithm. Analyzing this

strategy is equivalent to analyzing a certain problem concerning the

maxima of Littlewood-like polynomials on C2; however we could

not make any progress on this problem. It would also be interesting

to develop lower bound techniques that apply to a broader class of

algorithms than just mean-based algorithms.

Finally, we mention that the authors have applied the techniques

in this paper (speci�cally, the technique used in Section 5.1) to

several aspects of the population recovery problem. Details will

appear in a forthcoming work.

A RESULTS ON CHANNELS THAT ALLOW
INSERTIONS, DELETIONS AND FLIPS

A.1 De�ning the General Channel
We now describe the most general channel C that we analyze,

which we subsequently refer to as “the general channel”. As stated

earlier, this channel allows for three di�erent types of corruptions:

deletions with probability δ , insertions with probability σ , and

bit-�ips with probability γ/2. We comment that for mean-based

algorithms, the presence of bit-�ips makes hardly any di�erence;

thus the reader may focus just on the combination of deletions and

insertions.

Our de�nition of this general channel is essentially the same as

that of Kannan and McGregor [KM05]. More precisely, for param-

eters δ ,σ ,γ ∈ [0, 1), we de�ne how the channel acts on a single

source bit b ∈ {−1, 1}:

(1) First, the channel performs “insertions”; i.e., it repeatedly

does the operation “with probability σ , transmit a uni-

formly random bit; with probability 1 − σ , stop”.

(2) Having stopped, the channel “deletes” (completes trans-

mission without sending b or −b) with probability δ .

(3) Otherwise (with probability 1 − δ ), the channel transmits

one more bit: namely, b with probability 1 − γ/2, or −b
with probability γ/2.

As usual, the channel operates on an entire source string x ∈
{−1, 1}n by operating on its individual bits independently, con-

catenating the results. That is,

C (x ) = C (x0)C (x1) · · · C (xn−1) ∈ {−1, 1}
∗.

Of course, if we set σ = γ = 0, we get the deletion channel Delδ
that was analyzed in the main body of the paper.

An alternative description of the channel’s operation on a single

bit xi is as follows:

C (xi ) =




w with probability δ ,

(w,a) with probability (1 − δ ) · γ ,

(w,xi ) with probability (1 − δ ) · (1 − γ ),

(13)

where a ∈ {−1, 1} is a uniformly random bit, and where w ∈

{−1, 1}G is a uniformly random string of G bits, with G in turn

being a Geometric random variable of parameter 1 − σ .
2

From

this description one can see that in a received word y ← C (x ),
each received bit either “comes from a properly transmitted source

bit xi ”, or else is uniformly random. (The probability each xi comes

through is (1 − δ ) (1 − γ ).) As a consequence, we have that Proposi-

tion 3.1 continues to hold for C: for every j ∈ N, the mean value

Ey←C (x )[y j ] is a (real-)linear function of x .

Note that when the insertion probability σ is positive, the re-

ceived word y ← C (x ) does not have an a priori bounded length.

This is a minor annoyance can be handled in several di�erent ways;

we choose one way in the next section.

A.2 Mean Traces for the General Channel
We revisit some of our de�nitions and observations about mean

traces from Section 3, in our new context of the general channel.

We begin with (1), the de�nition of the mean trace. Since the length

of a received word may now be arbitrarily large, the mean trace is

now an in�nite vector. We deal with this by truncating it at what

we call the “e�ective trace length bound N ”.

De�nition A.1. For the general channel C with insertion probabil-

ity 0 ≤ σ < 1, we de�ne the e�ective trace length bound N = N (σ )

to be N =
⌈
10 ·

n+ln(1/(1−σ ))
1−σ

⌉
≤ poly(n, 1

1−σ ).

De�nition A.2. For the general channel C and a source string

x ∈ {−1, 1}n , we de�ne the idealized mean trace to be the in�nite

sequence

µideal
C

(x ) = E
y←C (x )

[(y, 0, 0, 0, . . . )] ∈ [−1,+1]N.

We de�ne just the mean trace to be its truncation to length N :

µC (x ) = (µideal
C

(x )0, µ
ideal

C
(x )1, . . . , µ

ideal

C
(x )N−1) ∈ [−1,+1]

N .

2
Here we use the convention that Geometric random variables take values 0, 1, 2, . . .

(equal to the number of “failures”); i.e., Pr[G = t ] = σ t (1 − σ ) for each t ≥ 0.
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Recalling (13), we see that the length n of a received word is

stochastically dominated by (G1 + 1) + · · · + (Gn + 1), where the

Gi ’s are i.i.d. random variables distributed as Geometric(1−σ ). We

upper bound this using Janson’s bound on the sum of independent

Geometric random variables (Theorem 2.1 of [Jan14]), noting that

his Geometric random variables count the number of “trials”, which

aligns precisely with our (Gi + 1)’s. His bound gives that Pr[n ≥
N + j] ≤ exp(−(N + j ) (1 − σ )/2) for any j ≥ 0, and hence we have

the following: for any x ∈ [−1, 1]n ,

‖µC (x ) − µideal
C

(x )‖1 =
∞∑

`=N

|µideal
C

(x ) |`

≤

∞∑
`=N

Pr[n ≥ `]

=

∞∑
j=0

Pr[n ≥ N + j]

= exp(−N (1 − σ )/2) ·
1

1 − exp(−(1 − σ )/2)

<
4 exp(−N (1 − σ )/2)

1 − σ
≤ 4 exp(−n), by our choice of N . (14)

The mean-based trace reconstruction model for the general channel.
De�nition 3.2 has a natural analogue for the general channel: an

algorithm in the mean-based general-channel model speci�es a cost

parameter T ∈ N and is given an estimate µ̂C (x ) ∈ [−1, 1]
N

of the

mean trace satisfying ‖µ̂C (x ) − µC (x )‖1 ≤ 1/T . It is clear that an

algorithm in the mean-based general-channel trace reconstruction

model with cost T1 and postprocessing time T2 may be converted

into a normal trace reconstruction algorithm using poly(N ,T1) =
poly(n, 1

1−σ ,T1) samples and poly(n, 1

1−σ ,T1) +T2 time. Note that

since we will be studying algorithms with cost T � 2
n

, by (14)

there is no real di�erence between getting an estimate of µC (x ) or

of µideal
C

(x ).

The complexity of mean-based trace reconstruction for the general
channel. Regarding the complexity of mean-based trace reconstruc-

tion, for the general channel we de�ne ϵC (n) and ϵ frac
C

(n) in the

obvious way, replacing each occurrence of the length-n vector

µ
Delδ (·) in De�nition 3.3 with the length-N vector µC (·). As in

Section 3.2, to show that trace reconstruction can be performed

under the general channel in time poly(N ,M ) = poly(n, 1

1−σ ,M )

it su�ces to show that ϵ frac
C

(n) ≥ 1/M .
3

Reduction to complex analysis for the general channel. For x ∈
{−1, 1}n the general-channel polynomial is de�ned entirely analo-

gously to De�nition 3.4:

PC,x (z) =
∑
j<N

µC (x )j · z
j
;

3
Again, to carry out the linear-programming algorithm, we can either assume that the

channel parameters δ , σ , γ are known to the algorithm, or else they should estimated;

we omit the details here.

note that this is a polynomial of degree less than N . This de�nition

extends to x ∈ [−1,+1]n using the linearity of µC . Similarly, we

may de�ne the idealized general-channel “polynomial” by

P ideal
C,x (z) =

∑
j ∈N

µideal
C

(x )j · z
j
;

this will actually be a rational function of z.

Entirely analogous to Proposition 3.5, we get that for every b ∈
[−1, 1]n ,

max

z∈∂D1 (0)

���PC,b (z)
��� ≤ ‖µC (b)‖1 ≤

√
N max

z∈∂D1 (0)

���PC,b (z)
���.

Similar to Section 3.3, a factor of

√
N = poly(n, 1

1−σ ) is negligible

compared to the bounds we will prove, so it su�ces to analyze

maxz∈∂D1 (0)
���PC,b (z)

��� rather than ‖µC (b)‖1 in the de�nitions of

ϵC (n) and ϵ frac
C

(n). Moreover, since by (14) we have that |P ideal
C,b (z)−

PC,b (z) | ≤ 2
−n

for all b ∈ [−1, 1]n and all z ∈ ∂D1 (0), it su�ces to

analyze maxz∈∂D1 (0)
����P
ideal

C,b (z)
����; we do this in the next subsection.

A.3 Channel Polynomial for General Channels
We now compute the ideal channel polynomial for the general chan-

nel de�ned in Section A.1, using the same technique as in Section 4

and recalling the discussion around the alternative channel descrip-

tion (13). As usual, let ρ = 1 − δ . Let J i be the random variable

whose value is ⊥ if xi is either deleted (probability δ ) or is replaced

by a random bit (probability (1−δ ) ·γ ), or else is the position j such

that coordinate xi of the source string ends up in coordinate j in the

received string y. As before we let J̃ i denote the random variable

J i conditioned on not being ⊥. Since Pr[J i , ⊥] = (1 − δ ) · (1 −γ ),
a derivation identical to that of (3) yields

P ideal
C,x (z) = (1 − δ ) (1 − γ )

∑
i<n

xi · E[z J̃ i ]. (15)

To compute E[z J̃ i ], it is straightforward to see that each coordi-

nate xi′ with i ′ < i independently generates a random number of

received positions distributed asG+B, whereG ∼ Geometric(1−σ )
and independently B ∼ Bernoulli(ρ). Further, conditioned on xi
not being deleted, xi generates a number of received positions dis-

tributed as G + 1, where the �nal “+1” is for xi (or −xi ) itself. Thus

J̃ i is distributed as

G0 + · · · +Gi + B0 + · · · + Bi−1,

where the Gk ’s are independent copies of G and the Bk ’s are inde-

pendent copies of B. We therefore obtain

E[z J̃ i ] = E[zG ]
i+1 · E[zB ]i =

(
E[zG ] · E[zB ]

)i
· E[zG ].

Let FG (z) denote E[zG ] and let FB (z) denote E[zB ]. It is easy to

calculate that FG (z) = 1−σ
1−σz , and we saw earlier that FB (z) =

(1 − ρ) + ρz = δ + ρz. For brevity, let us write

w = FG (z)FB (z) =
(1 − σ ) · (δ + ρz)

1 − σz
,

which is a Möbius transformation of z. Thus w ranges over a com-

plex circle as z ranges over ∂D1 (0). More speci�cally, as z ranges

over ∂D1 (0) we have that w ranges over ∂Dr (1 − r ), where

r =
ρ + δσ

1 + σ
.
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Plugging this back into (15) using E[z ˜J i ] = FG (z) ·wi , we obtain

P ideal
C,x (z) = (1 − δ ) · (1 − γ ) · FG (z) ·

∑
i<n

xi ·w
i

= (1 − γ ) · (1 − δ ) ·
1 − σ

1 − σz
·
∑
i<n

xi ·w
i .

We use the bound
���
1−σ
1−σz

��� ≥
1−σ
2

for z ∈ ∂D1 (0). Now by the

analysis of κfrac
bounded

(r ,d ) given in Section 4 we get the following

algorithmic result for general-channel trace reconstruction, which

is our most general positive result:

Theorem 1.4, restated. Let C be the general channel described in
Section A.1 with deletion probability δ = 1 − ρ, insertion probability
σ , and bit-�ip probability γ/2. De�ne

r B
ρ + δσ

1 + σ
.

Then there is an algorithm for C-channel trace reconstruction using
samples and running time bounded by

poly( 1

1−δ ,
1

1−σ ,
1

1−γ ) ·




exp(O (n/r )1/3)

if C/n1/2 ≤ r ≤ 1/2,
exp(O ((1 − r )n)1/3)

if O (log3 n)/n ≤ 1 − r ≤ 1/2.

Let us make some observations about this result. First, our The-

orem 1.1 for the deletion channel is the special case of Theorem 1.4

obtained by setting σ = γ = 0. Next, for �xed δ ,

if δ ≤ 1/2, r ranges from 1 − δ down to 1/2 as

σ ranges from 0 up to 1;

if δ ≥ 1/2, r ranges from 1 − δ up to 1/2 as

σ ranges from 0 up to 1.

The second statement is rather peculiar: it implies that when the

deletion rate is high, the ability to perform trace reconstruction

actually improves, the more insertions there are. Indeed, when we

have deletions only, our ability to do trace reconstruction in time

exp(O (n1/3)) is limited to retention probability ρ ≥ Ω(1). But as

soon as the insertion rate σ satis�es σ ≥ Ω(1), we can do trace

reconstruction in time exp(O (n1/3)) as long as the retention rate

ρ = 1 − δ satis�es ρ ≥ exp(−O (n1/3)).
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