
Addition Is Exponentially Harder Than Counting for Shallow
Monotone Circuits∗

Xi Chen†

Columbia University
New York, NY 10027 U.S.A.
xichen@cs.columbia.edu

Igor C. Oliveira‡

Charles University in Prague
Prague, Czech Republic

igorcarb@karlin.m�.cuni.cz

Rocco A. Servedio§

Columbia University
New York, NY 10027 U.S.A.
rocco@cs.columbia.edu

ABSTRACT

Let Addk,N denote the Boolean function which takes as input k
strings of N bits each, representing k numbers a (1), . . . ,a (k) in
{0, 1, . . . , 2N−1}, and outputs 1 if and only ifa (1) + · · · + a (k) ≥ 2N .
Let MAJt,n denote a monotone unweighted threshold gate, i.e., the
Boolean function which takes as input a single string x ∈ {0, 1}n
and outputs 1 if and only if x1 + · · ·+xn ≥ t . The function Addk,N
may be viewed as amonotone function that performs addition, and
MAJt,n may be viewed as amonotone gate that performs counting.
We refer to circuits that are composed of MAJ gates as monotone

majority circuits.

The main result of this paper is an exponential lower bound on
the size of bounded-depth monotone majority circuits that com-
pute Addk,N . More precisely, we show that for any constant d ≥
2, any depth-d monotone majority circuit that computes Addd,N
must have size 2Ω(N 1/d) . As Addk,N can be computed by a single
monotone weighted threshold gate (that uses exponentially large
weights), our lower bound implies that constant-depth monotone
majority circuits require exponential size to simulate monotone
weighted threshold gates. This answers a question posed by Gold-
mann and Karpinski (STOC’93) and recently restated by Håstad
(2010, 2014). We also show that our lower bound is essentially best
possible, by constructing a depth-d , size-2O (N 1/d) monotone ma-
jority circuit for Addd,N .

As a corollary of our lower bound, we signi�cantly strengthen
a classical theorem in circuit complexity due to Ajtai and Gurevich
(JACM’87). They exhibited a monotone function that is in AC0 but
requires super-polynomial size for any constant-depth monotone
circuit composed of unbounded fan-in AND and OR gates. We de-
scribe a monotone function that is in depth-3 AC0 but requires
exponential size monotone circuits of any constant depth, even if
the circuits are composed ofMAJ gates.

∗The full version of the paper is available at [11].
†Supported in part by NSF grants CCF-1149257 and CCF-1423100.
‡Supported in part by CNPq grant 200252/2015-1.
§Supported in part by NSF grants CCF-1319788 and CCF-1420349.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
STOC’17, Montreal, Canada

© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00
DOI: 10.1145/3055399.3055425

CCS CONCEPTS

•Theory of computation→Circuit complexity;Algorithm de-

sign techniques;

KEYWORDS

Circuit complexity, monotone circuit, unweighted threshold gate,
weighted threshold function.

ACM Reference format:

Xi Chen, Igor C. Oliveira, and Rocco A. Servedio. 2017. Addition Is Exponen-
tially Harder Than Counting for ShallowMonotone Circuits. In Proceedings
of 49th Annual ACM SIGACT Symposium on the Theory of Computing, Mon-

treal, Canada, June 2017 (STOC’17), 14 pages.
DOI: 10.1145/3055399.3055425

1 INTRODUCTION

“And you do Addition?” the White Queen asked.

“What’s one and one and one and one and one and

one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen

interrupted.

— Lewis Carroll, Through the Looking Glass

Threshold functions and threshold circuits. A Boolean func-
tion f : {0, 1}n→ {0, 1} is called a weighted threshold function (also
known as a halfspace, weighted majority, weighted threshold gate
or linear threshold function) if there exist integersw1, . . . ,wn and
t such that f (x) = 1 if and only if we havew1x1 + · · · +wnxn ≥ t .

The parametersw1, . . . ,wn are calledweights. We say that a thresh-
old function f is unweighted if |wi | = 1 for every i ∈ {1, . . . ,n}, and
that it ismonotone if every weight is non-negative. (Thus, a mono-
tone unweighted threshold function is precisely aMAJt,n function
as described in the abstract.) Threshold functions and their gener-
alizations have been investigated for decades (see e.g. [12, 23, 24])
and arise in diverse areas including social choice theory [33], cir-
cuit complexity [6], structural complexity [7], learning theory [14],
neural networks [26], cryptography [25], and many others.

In this work, we consider Boolean circuits that are composed of
gates that compute threshold functions (i.e., threshold gates). (We
refer to [21] as an extensive reference on Boolean functions and cir-
cuit complexity.)While individual threshold gates may appear rela-
tively simple, Boolean circuits composed of these gates (i.e., thresh-
old circuits) remain poorly understood despite intensive study. For
instance, it is a notorious and long-standing open problem in com-
plexity theory to prove the existence of a function in NP that can-
not be computed by a depth-2 circuit with polynomially many

1232

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

weighted threshold gates. This di�culty can be explained in part
by the surprising computational power of bounded-depth thresh-
old circuits, both in theory and practice. On the theory side, such
circuits can e�ciently implement all the basic arithmetic opera-
tions (see e.g., Table 1 in [29]) and can also simulate (in quasi-
polynomial size and depth 3) AND/OR/MODm Boolean circuits
of much larger depth [2, 35]. On a more practical level, constant-
depth networks of (continuous analogues of) threshold gates play
a fundamental role in recent successful deep learning frameworks
(see e.g. [28]).

Despite our inability to establish strong lower bounds against
threshold circuits, there have been some notable successes in un-
derstanding the relative power ofweighted versus unweighted thresh-
old gates and circuits. Siu and Bruck [30] were the �rst to show
that anyweighted threshold gate can be simulated by a polynomial-
size, constant-depth circuit consisting of unweighted threshold gates
(such circuits are also known as majority circuits). This result was
improved byGoldmann, Håstad, and Razborov in [15], who showed
(non-constructively) thatweighted threshold gates can be computed
by polynomial-sizemajority circuits of depth 2; in fact, [15] showed
that any depth-d weighted threshold circuit can be simulated e�-
ciently by a depth-(d + 1) majority circuit. Soon thereafter Gold-
mann and Karpinski [16] gave a constructive proof with better pa-
rameters for the size of the resulting majority circuits. Subsequent
simpli�cations and improvements of these simulations were given
by Hofmeister [20], and Amano and Maruoka [4].

Monotone functions andmonotone circuits. In a di�erent, and
highly successful, strand of research on circuit complexity, a wide
range of lower bounds have been obtained against various types of
monotone Boolean circuits (i.e., circuits that consist of AND /OR
gates only but no negations). A sequence of well-known results [3,
5, 27, 32] culminated in the existence of explicit monotone Boolean
functions that can be computed by polynomial-size Boolean cir-
cuits but require monotone circuits of exponential size. Analogous
results highlighting the limitations of monotone circuits are also
known at the “low-complexity” end of the spectrum: in an im-
portant result, Ajtai and Gurevich [1] exhibited a monotone func-
tion in AC0 (i.e. a constant-depth, polynomial-size AND/OR/NOT
Boolean circuit) that requiresmonotone AC0 circuits (composed of
AND/OR gates) to have super-polynomial size. However, it should
be noted that theAjtai–Gurevich circuit lower bound against mono-
tone AC0 is quantitatively not very strong (at best a quasipolyno-
mial nΩ(logn) lower bound; see discussion following the statement
of the Ajtai–Gurevich theorem below). Other works have given
alternative or simpli�ed expositions of the Ajtai–Gurevich lower
bound and of its consequences in formal logic (see [10] for the for-
mer and [31] for the latter). But prior to the results of this paper,
stronger lower bounds against monotone AC0 circuits for mono-
tone functions in AC0 remained elusive.

This work: Monotone weighted threshold functions versus

constant-depthmonotonemajority circuits.Asmentioned ear-
lier, Goldmann and Karpinski obtained a constructive proof in [16]
that weighted threshold gates can be simulated by polynomial-
size, depth-2 majority circuits. They also observed that even if the
weighted threshold gate is monotone, known simulations produce

majority circuits that are inherently non-monotone (i.e., they con-
tain majority gates with negative weights, or equivalently, nega-
tion gates), which led them to ask the question of whether an e�-
cient monotone simulation is possible in constant depth.

Hofmeister [19] made some early progress on this question by
showing that anymonotone depth-2majority circuit that computes
the function Add2,N from the abstract must have exponential size.
To state the result more precisely, let us �rst clearly specify our
notion of monotone majority circuits. A monotone majority cir-
cuit here is a directed acyclic graph that may have multiple edges
(called wires). There is a single nodewith no outgoing wires, called
the output gate. Nodes that have no incoming wires are called
input nodes and are each labeled either 0, 1 or xi for some i ; ev-
ery other node is labeled a monotone unweighted threshold gate
MAJt,m for some t , withm being its in-degree, which outputs 1 if
and only if there are at least t 1’s from itsm input wires. We say
that the size of a monotone unweighted threshold gate MAJt,m is
m (or its in-degree), and the size of a monotone majority circuit
is the sum of the sizes of its gates (or its number of wires).1 Then
Hofmeister [19] showed that every depth-2 monotonemajority cir-
cuit for Add2,N has size 2Ω(

√
N) .

As mentioned above, in subsequent work [20] and [4], several
improvements were made on the Goldmann–Karpinski simulation,
but neither is monotone, and no further progress was obtained on
the lower bound side after Hofmeister’s result [19] until the cur-
rent work. The question of Goldmann and Karpinski was recently
restated by Håstad [9, 17].

1.1 Our Results

Our main result shows that monotone weighted threshold gates
cannot be simulated by subexponential-size monotone majority
circuits of constant depth. This may be viewed as an extension of
Hofmeister’s depth-2 lower bound [19] to arbitrary constant depth
(in fact we obtain super-polynomial size lower bounds for circuits
of small super-constant depth; see discussions after Theorem 1.1).
We thus answer the question posed by Goldmann and Karpinski
[16] and by Håstad [9, 17].

Before giving a precise statement of our results, we de�ne for-
mally the family Addk,N of Boolean functions as described in the
abstract. Given t ≥ 1, we let [t] denote the set {1, . . . , t }. For k ≥ 2,
Addk,N maps {0, 1}k×N to {0, 1} as follows. Given

x = (xi, j)i ∈[k], j∈[N] ∈ {0, 1}k×N ,
we de�ne

Sumk,N (x)
def
=

N∑

j=1

2N−j · (x1, j + · · · + xk, j) and

Addk,N (x)
def
=


1 if Sumk,N (x) ≥ 2N

0 otherwise.

It is helpful to think of the input x = (xi, j) as a k-row, N -column,
and 0/1-valued matrix, where its ith row (xi,1, . . . ,xi,N) gives the
binary representation of a number x (i) ∈ {0, 1, . . . , 2N − 1} in the
usual way (with xi,1 being the most signi�cant bit). The function

1Observe that by reduplicating inputs, any weighted threshold function f given by
∑n
i=1wixi ≥ t can be computed by an unweighted threshold gate of size |w1 |+ · · ·+
|wn |. We sometimes refer to this as the “weight of f .”

1233

Addition Is Exponentially Harder Than Counting for Shallow Monotone Circuits STOC’17, June 2017, Montreal, Canada

Sumk,N adds up the k numbers x (1) , . . . , x (k) and Addk,N outputs

1 if and only if the sum is at least 2N .
With the de�nition of Addk,N in place, our main result can be

stated as follows:

Theorem 1.1. Let d , n, and N be positive integers that satisfy

d ≥ 2, n ≥ 260d , and N ≥ (213n)d . Then any depth-d monotone

majority circuit computing Addd,N must have size at least

2n/(2
60d) .

This lower bound is nearly optimal for any �xed d ≥ 2, as we
prove the following upper bound.

Theorem 1.2. Let k,d,N ≥ 2 be three positive integers. Then
there exists a depth-d monotone majority circuit of size at most

26(N
1/d logk+logN)

that computes Addk,N .

Remark 1. For any �xed constant d ≥ 2, Theorems 1.1 and 1.2

together show that the smallest depth-d monotone majority circuit

that computesAddd,N (note that this function hasdN = Θ(N) input

variables) has size exp(Θ(N 1/d)). Moreover, by setting d = c
√

logN
andn = 261d for some small enough constant c satisfyingN ≥ (213n)d ,
Theorem 1.1 implies that any depth-dmonotonemajority circuit com-

puting Addd,N has superpolynomial size (exponential in 2c
√
logN)).

Remark 2. As an easy consequence of Theorem 1.2, we also ob-

tain a slightly weaker version of the main result of Beimel and Wein-

reb [8]. They showed that the “universal monotone threshold func-

tion” 2 AddO (N),O (N logN) can be computed by a poly(N)-size and

depth-O (logN) monotone circuit composed of fan-in two AND gates

and unbounded fan-inOR gates. While our Theorem 1.2 above is tai-

lored for small values of k , it implies thatAddO (N),O (N logN) can be

computed by a poly(N)-size, depth-O (log2 N)monotone circuit com-

posed of fan-in two AND/OR gates only. (In more detail, it is enough

to set d = logN , and replace each majority gate by aO (logN)-depth

fan-in two AND/OR Boolean circuit.) We sketch a simpler construc-

tion in Appendix A that matches the parameters obtained in [8] in
the case of the universal monotone threshold function.

Another consequence of our lower bound as stated in Theo-
rem 1.1 is a signi�cant strengthening of the Ajtai–Gurevich lower
bound [1] discussed earlier. We recall their result in more detail:

Theorem (Ajtai–Gurevich). There exists an explicit sequence

f = { fn }n∈N of monotone Boolean functions fn : {0, 1}n → {0, 1}
such that: (i) f ∈ AC0, but (ii) f < monAC0: For any �xed constant
d , any monotone depth-d AND/OR circuit computing fn must

have size at least Sd (n), for some function Sd (n) = n
ω (1).

Regarding part (ii) above, it is not immediately clear what is the
best (largest) function Sd (n) that can be extracted from the Ajtai–
Gurevich proof. However, their fn is easily seen to be computed by
a monotone depth-2 circuit (a monotone DNF) of size nlogn . Thus,
we have Sd (n) ≤ nlogn for all d ≥ 2.

As an easy corollary of Theorem 1.1, we strengthen the Ajtai–
Gurevich circuit lower bound (for a di�erent monotone function in

2It is called the universal monotone threshold function because it can simulate any
monotone weighted threshold function over N inputs.

AC0) in two ways: (1) by giving a lower bound against monotone
majority circuits of constant depth (rather than monotone circuits
of AND/OR gates only) and (2) by achieving an exponential size
lower bound for any �xed depth (rather than a bound which is at
most nlogn). Our theorem is the following:

Theorem 1.3. There exists an explicit sequence д = {дn }n∈N of

monotone Boolean functions with дn : {0, 1}n logn→ {0, 1} such
that: (i) д ∈ AC0 (in fact each дn is computed by a poly(n)-size,
depth-3 AND/OR/NOT circuit), but (ii) for any constant d ≥ 2,
every monotone depth-d majority circuit for дn must have size

2Ω(n1/d) .

We establish Theorem 1.3 using Theorem 1.1 and the following
lemma which we prove in Section 4.

Lemma 1.4. For a suitable absolute constant c : 0 < c < 1,
letting k = (logN)c , the function Addk,N can be computed by a

poly(N) size AND/OR/NOT circuit of depth 3.

Proof of Theorem 1.3. We takeдN
def
= Addk,N ,3 withk being

(logN)c , where c : 0 < c < 1 is the constant in Lemma 1.4. Then
Part (i) of the theorem follows from Lemma 1.4. Part (ii) follows
from our main lower bound, Theorem 1.1, by observing that any
circuit for Addk,N yields a circuit for Addd,N (by setting the last
k − d rows of the input to 0) since d is a �xed constant. �

It is interesting to note that our proof of Theorem 1.1 uses very
di�erent arguments from those of Ajtai and Gurevich. The heart
of their proof is a “switching lemma” for monotone functions on
hypergrids (see the excellent exposition of their proof given in [10])
whereas our approach does not use switching lemmas at all.

1.2 Related Work and Our Techniques

In addition to papers discussed above, the works of Yao [34] and
Håstad and Goldmann [18] are relevant in the context of our lower
bound result. Let Sipserd+1 be the read-once monotone n-variable
formula of depth d + 1 that has alternating layers of AND and OR
gates (see [18] for a detailed description of this function). Strength-
ening the earlier result of [34], [18] showed that a depth-d circuit
of weighted monotone threshold gates computing Sipserd+1 must
have size at least 2Ω(n1/2d) . In contrast, our Theorem 1.1 only es-
tablishes a lower bound against constant-depth monotone circuits
of unweighted threshold gates, but — crucially — we establish the
lower bound for a much “simpler” monotone function, i.e., Addd,N ,
which is computed by a single weighted monotone threshold gate.
Indeed, the main challenge of our work is to push through a lower
bound for such a heavily constrained target function.

Sketch of the upper bound construction. We give a brief sketch of
the upper bound construction employed in the proof of Theorem
1.2. Assume for simplicity that N = nd . We view the input string
(xi, j) ∈ {0, 1}k×N as ak-row, N-column, and 0/1-valuedmatrix. Re-
call that Addk,N (x) = 1 i� the addition of the k numbers encoded
in x produces a “carry” bit. Our depth-d circuit is described by a
recursive construction that computes generalized carry-bit func-
tions c

(γ)

α ,β
over distinct blocks of columns Sγ ⊆ [N] of the original

input matrix (xi, j). Intuitively, c
(γ)

α ,β
(x) = 1 if and only if a carry

3One can add dummy input variables to make the number of input bits N logN .

1234

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

of value at least α is generated when adding the numbers in the
submatrix corresponding to Sγ , assuming this block of variables
receives a carry of value β from the block of variables to the right.

We start with a decomposition of the column set [N] into nd−1

blocks of length n, and compute in a single layer (and in parallel)
the values of the corresponding generalized carry-bit functions de-
scribed above. It is not hard to see that each function c

(γ)

α ,β
can be

computed by a threshold gate whose total weight is at most

O (k · 2n) = O (k · 2N 1/d
),

using N = nd and 0 ≤ α , β ≤ k − 1. The base case is particularly
simple, since these gates will directly depend on the input bits xi, j .

In the recursive step of the construction, n adjacent blocks of
columns considered in the previous step are merged, and we com-
pute new generalized carry bit functions under a di�erent parti-
tion of the column set [N]. Observe that after d steps there is only
one block of columns, and the circuit will in particular compute
whether the sum of the original numbers in x produces a carry bit.
Implementing this recursive step is slightly more complicated, as
the new gates added to the circuit will rely on the generalized carry
bit functions associated to the column decomposition employed in
the layer of gates immediately below.

For technical reasons, in order to prove the correctness of the
recursion, we assume a certain lower bound on the size of each ini-
tial block of columns as a function ofN , k , and d . Furthermore, the
upper bound in Theorem 1.2 works for any choice of parameters.
We refer to the proof of Theorem 1.2 for more details.

Sketch of the lower bound proof. Nowwe brie�y discuss some of
the high-level ideas behind the proof of Theorem 1.1. At the heart
of the proof is a sequence of carefully (and inductively) constructed
pairs of distributions denoted by (YESℓ ,NOℓ), for ℓ = 1, . . . ,d ,
both of which are over {0, 1} (ℓ+1)×Nℓ (i.e., over possible inputs to
the function Addℓ+1,Nℓ

, for someNℓ to be speci�ed later). The �rst
distribution YESℓ in the pair is supported on strings x that have
Addℓ+1,Nℓ

(x) = 1, andNOℓ is supported on x with Addℓ+1,Nℓ
(x)

= 0. The key property of these pairs of distributions, which yields
our lower bound, is that considered together, each pair of (YESℓ ,
NOℓ) is “hard” for “small” monotone majority circuits of depth ℓ
in a suitable sense. In a bit more detail, we prove inductively that
for any “small” depth-ℓ circuit F , we have

Prx∼YESℓ

[
F (x) = 1

]
+ Pry∼N Oℓ

[
F (y) = 0

]
≤ 1 + τℓ , (1)

for a suitable 0 < τℓ ≪ 1. As long as (1) holds for some τℓ < 1, F
cannot correctly computes Addℓ+1,Nℓ

on all inputs. One can use
(1) to conclude that no “small” depth-d monotone majority circuit
can computeAddd+1,Nd

. (Note that this is slightly weaker than the
claim of Theorem 1.1 about depth-d circuits against the addition of
d numbers instead of d + 1; see footnote 4.)

Since the goal ofYESℓ andNOℓ is to work against monotone
circuits, a natural design principle is to have the �rst distribution
YESℓ supported on minimal 1-strings x and the second distribu-
tion NOℓ supported on maximal 0-strings y of Addℓ+1,Nℓ

, which
means that the sums of x and y are 2Nℓ and 2Nℓ − 1, respectively.
This will be the case for our construction. While the two distribu-
tions YESℓ and NOℓ will look quite di�erent, we show that no
“small” depth-ℓ monotone majority circuit can distinguish them.

We establish (1) via an inductive argument on ℓ. It is not too
di�cult to show that the base case ℓ = 1 holds; this is presented in
Lemma 2.1. We explain the strategy used in the proof of Lemma 2.1
since similar high-level ideas are also used in the main induction,
though in a more sophisticated fashion. We start with the de�ni-
tion ofYES1 andNO1. We view a string x ∈ {0, 1}2×N1 as a 2×N1
matrix with the ith column containing x1,i and x2,i . To draw an x

from YES1, one �rst draws a random column R uniformly from
[N1]. Then the R-th column of x is set to (1, 1), each j-th column
with j < R is set to (0, 1) or (1, 0) with equal probability 1/2, and
each column with j > R is set to (0, 0). To draw a y from NO1,
one simply sets each column independently to (0, 1) or (1, 0) with
equal probability. (See Section 2.1.) To prove (1) against any “small”
majority gate F , we de�ne a coupling of the two distributions as
follows: (x ,y,z,R) ∼ D, where z is drawn fromNO1,R is uniform
over [N1], x is obtained from z and R by changing the R-th column
of z to (1, 1) and columns after R to (0, 0), and y is obtained from z

and R by �ipping the R-th column of z. (So this way the marginal
distributions of x and y are YES1 and NO1, respectively.)

Let F be a majority gate with a non-negative integer weightwi, j

over each of the 2N1 inputs. The high-level strategy is to show
that if F (x) = 1 and F (y) = 0 with high probability conditioning
on R = r , then a certain event about z must occur at r with high
probability. On the other hand, using the size bound on F , we show
that such events aboutz can only occur at a small number of values
of r ∈ [N1]. As a result, F cannot be correct on bothx ∼ YES1 and
y ∼ NO1 with high probability. More speci�cally, conditioning on
R = r , a necessary condition on z for F to be correct on both x and
y (obtained from z and r in the coupling) is that the weight of the
variables in the r -th column of z (i.e., w1,r z1,r + w2,rz2,r) must
be strictly larger than the total weight of z from columns to the
right of r . This follows by comparing the total weights of x and
y. Intuitively this can only happen at a small number of r ’s since
every time this happens, the total weight of z from columns j ≥ r

gets doubled compared to that from columns j ≥ r +1; on the other
hand, since F has small weight, the total weight of z must be small.
This �nishes our sketch of the proof of Lemma 2.1.

Compared to Lemma 2.1 for the base case of ℓ = 1, signi�cant
care is required to carry out the inductive step. In fact, in order for
the inductive hypothesis to be “strong enough to prove itself,” we
require an analogue of (1) both for the pair (YESℓ ,NOℓ) and for
a second pair of distributions (YES′

ℓ
,NO′

ℓ
), where each of the

two distributions YES ′
ℓ
and NO′

ℓ
, like YESℓ and NOℓ , is sup-

ported on {0, 1} (ℓ+1)×Nℓ . All these distributions are highly struc-
tured; without going into too much detail for now, we mention
that every x in the support of YESℓ , NOℓ , YES ′ℓ , NO

′
ℓ
has

Sumℓ+1,Nℓ
(x) = 2Nℓ , 2Nℓ − 1, 2Nℓ − 1, and 2Nℓ − (ℓ + 1),

respectively. (This tight structure is essential in enabling the induc-
tion to go through.) We further mention that the inductive argu-
ment that establishes the case ℓ from the case ℓ−1 requires careful
analysis of yet a third carefully constructed pair (YES∗

ℓ
,NO∗

ℓ
)

of distributions. Roughly speaking, the YES∗
ℓ
distribution is an

amalgamation of n copies of the YES ′
ℓ−1, NOℓ−1, and YESℓ−1

distributions, and the NO∗
ℓ
distribution is an amalgamation of n

copies of the YES ′
ℓ−1, NOℓ−1, and NO ′ℓ−1 distributions; see the

1235

Addition Is Exponentially Harder Than Counting for Shallow Monotone Circuits STOC’17, June 2017, Montreal, Canada

discussion below and Figure 1 for a visual depiction of the con-
struction. The YES ′

ℓ
, NO′

ℓ
, YESℓ and NOℓ distributions may

in turn (for each ℓ > 1) be viewed as relatively simple augmenta-
tions ofYES∗

ℓ
andNO∗

ℓ
; see Figure 2. See Section 2 for full details.

4

We give some intuition behind the inductive step. Using the in-
ductive hypothesis, we have that both pairs (YESℓ−1,NOℓ−1)
and (YES ′

ℓ−1,NO
′
ℓ−1) are hard for small depth-(ℓ − 1) circuits in

the sense given in (1), for some small τℓ−1. Now we de�ne YES∗
ℓ

and NO∗
ℓ
over {0, 1}ℓ×Nℓ , with Nℓ = nNℓ−1. To this end, we view

an input as comprised of n sections, each section being an input
string from {0, 1}ℓ×Nℓ−1 (see Figure 1). A draw of x ∼ YES∗

ℓ
is

obtained by �rst uniformly sampling a section T ∈ [n], and for
each section j < T sample a string from NOℓ−1 with probability
1/2 and a string from YES ′

ℓ−1 with probability 1/2; for the T-th
section sample a string from YESℓ−1; and for each section j > T

set every bit to be 0. To draw a y ∼ NO∗
ℓ
, everything is the same

except that for the T-th section we sample a string from NO′
ℓ−1,

and for each section j > T we set every bit to be 1.
Let F be a depth-ℓ circuit. Let H1, . . . ,Hm be the inputs of the

output gate of F (with multiplicities) and h be the threshold (so F

outputs 1 when at least h ofH1, . . . ,Hm output 1). As F is a “small”
depth-ℓ circuit,m is small and each Hi is also computed by a small
depth-(ℓ − 1) circuit. We now use the same high-level strategy as
the base case (Lemma 2.1) to show that such an F cannot be correct
on both YES∗

ℓ
and NO∗

ℓ
with high probability, by showing (a) if

F is correct on both distributions (F (x) = 1 when x ∼ YES∗
ℓ
and

F (y) = 0 when y ∼ NO∗
ℓ
) with high probability, conditioning on

T = t for some speci�c t ∈ [n], then some event must occur at t
with a decent probability; (b) such events cannot occur too many
times asm is small.

For (a) we take the simplest case of T = 1 as an example, and
assume for now that h < m/2. If F is correct on y ∼ NO∗

ℓ
(condi-

tioning on T = 1) with high probability, one can use an averaging
argument to show that a large fraction ofHi output 0 with a decent
probability ony, which can be written as y1 ◦ 1with y1 ∼ NO ′ℓ−1
and 1 being the all-1 string in the remaining n − 1 sections. How-
ever, this means that the probability of such anHi being correct (i.e.
outputting 1) on x1 ◦1 with x1 ∼ YES ′ℓ−1 cannot be very close to
1; otherwise we can hardwire the last n − 1 sections of Hi to 1 and
obtain a small depth-(ℓ−1) circuit that performswell on the pair of
distributions (YES ′

ℓ−1,NO
′
ℓ−1), contradicting with the inductive

hypothesis. As a result, when a string x1 is drawn from YES′
ℓ−1,

we expect to see a large fraction ofHi output 0 on x1 ◦1. However,
this means that by applying a restriction that �xes the �rst section
to be x1, suchHi would always output 0 and become trivial (so we
can remove them): if Hi (x1 ◦ 1) = 0, then after the restriction Hi

always outputs 0 because it is a monotone circuit.
Note that in the sketch above we did not assume that F works

well on YES∗
ℓ
; this is used only in the other case when h ≥ m/2.

Combining these two cases, we conclude that (a) if F works well
for both YES∗

ℓ
and NO∗

ℓ
when T = t for some speci�c t , then

one can apply a random restriction on the t-th section to remove

4Notice that the argument we just sketched implies that Addd+1,N is hard against
depth-d circuits. A more careful analysis at the end of the argument using the distri-
butions (YES∗d , NO

∗
d) instead of (YESd , NOd) would allow us to obtain the

same lower bound for adding d numbers instead, as stated in Theorem 1.1.

a decent fraction of Hi ’s. Since m is small, we have (b) the latter
can only happen for a small number of times. The inductive step
follows by combining (a) and (b).

Notation and Organization. Recall that a restriction ρ of a func-
tion f is an assignment �xing some of the input variables of f . We
write “f ↾ ρ” to denote f restricted by ρ, a new function over the
rest of variables. We use boldface, lower-case letters such as x and
y to denote string-valued random variables, and use boldface, capi-
tal letters such as X and Y to denote real-valued random variables.

The rest of the paper is organized as follows. We prove Theo-
rem 1.1 in Section 2 and Theorem 1.2 in Section 3, respectively.
The proof of Lemma 1.4, which completes the proof of Theorem
1.3, can be found in Section 4. We sketch a construction of mono-
tone circuits for the universal monotone threshold function that
matches the parameters obtained by Beimel and Weinreb [8] in
the appendix.

2 THE LOWER BOUND

We prove Theorem 1.1 in this section. Throughout the section we
used,n andN to denote the three positive integers in the statement
of Theorem 1.1 with d ≥ 2, n ≥ 260d and N ≥ (213n)d .

This section is organized as follows. In Sections 2.1 and 2.2 we
de�ne inductively two pairs (YESℓ ,NOℓ) and (YES′

ℓ
,NO′

ℓ
) of

distributions over strings {0, 1} (ℓ+1)×Nℓ for ℓ from 1 tod , whereNℓ

is speci�ed later and satis�es N1 < · · · < Nd ≤ N . An important
property of these distributions is that every x drawn from YESℓ ,
NOℓ , YES ′ℓ , NO

′
ℓ
has Sumℓ+1,Nℓ

(x) equal to

2Nℓ , 2Nℓ − 1, 2Nℓ − 1 and 2Nℓ − (ℓ + 1),

respectively. From the de�nition of (YES1,NO1), (YES ′1,NO′1)
it is not too di�cult to show that both pairs of distributions are very
hard for monotone depth-1 majority circuits (Lemma 2.1), i.e. no
majority gate with small weights can output 1 on strings drawn
from YES1 with probability p1 and at the same time output 0 on
strings drawn from NO1 with probability p2 such that p1 + p2 is
slightly larger than 1 (and the same holds forYES ′1 andNO′1). As
we mentioned in the proof sketch, the proof of Lemma 2.1 serves
as a warm-up since it is simple but shares some ideas that will be
used later in the more challenging proof of the induction step.

Thenwe prove ourmain technical lemma in Section 2.3 (Lemma
2.4), which shows by induction that both pairs (YESℓ ,NOℓ) and
(YES ′

ℓ
,NO ′

ℓ
) are hard in the same sense for small depth-ℓ major-

ity circuits over {0, 1} (ℓ+1)×Nℓ for each ℓ ∈ [d],with (YES1,NO1)
and (YES ′1,NO′1) serving as the base case (a bit more formally, in
order to conclude this we also need Lemmas 2.2 and 2.3). Theorem
1.1 for Addd+1,N (instead of Addd,N as stated) follow directly from
Nd ≤ N and the property that strings x drawn from YESd and
NOd have Sumd+1,Nd

(x) equal to 2Nd and 2Nd − 1, respectively.
(Note that, although the second pair (YES ′

d
,NO ′

d
) is not needed

in the proof of Theorem 1.1 once Lemma 2.4 has been established,
the intermediate pairs (YES ′

ℓ
,NO′

ℓ
) do play a crucial role in the

inductive de�nition of these distributions and the proof.)
In order to extend the result to Addd,N (as stated in Theorem

1.1) we rely on another auxiliary pair of distributions (YES∗
d
,NO∗

d
)

constructed during the proof, which is described in Section 2.2. We
�nally use Lemma 2.4 to prove Theorem 1.1 in Section 2.4.

1236

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

2.1 The Initial Two Pairs of Distributions

Let d,n,N be positive integers in the statement of Theorem 1.1. Let

ε = 2−12d and N1 = n · (1/ε).
Given z ∈ {0, 1}2×N1 , the j-th column of z corresponds to a pair of
positions (1, j) and (2, j), j ∈ [N1].

We de�ne two pairs of probability distributions (YES1,NO1)
and (YES ′1,NO′1) over {0, 1}2×N1 , and show that they are hard
for monotone depth-1 majority circuits of not-too-large size. We
de�ne the distributions via the following sampling processes.

• A string x ∼ YES1 is generated as follows. Let R ∼ [N1]
be uniformly random. We set both bits in the R-th
column of x to 1. For every j > R, we set both bits in the
j-th column of x to 0. For every j < R, we set the j-th
column of x to (1, 0) or (0, 1) independently and with
equal probability. For example, writing an
x ∈ supp(YES1) as a matrix, it would look like

x =
1 0 0 1 · · · 0 1 0 0 · · · 0 0
0 1 1 0 · · · 1 1 0 0 · · · 0 0

and we have Sum2,N1 (x) = 2N1 .

• A string y ∼ NO1 is generated by setting its j-th column
to (1, 0) or (0, 1) independently and with equal
probability for each j ∈ [N1]. So a y ∈ supp(NO1) would
look like

y =
0 1 0 0 · · · 1 1 0 1 · · · 1 0
1 0 1 1 · · · 0 0 1 0 · · · 0 1

and we have Sum2,N1 (y) = 2N1 − 1. YES′1 is the same as
NO1. So each string x ∈ supp(YES ′1) has sum 2N1 − 1.

• Finally, a y ∼ NO′1 is obtained as follows. First, sample a
random x ∼ YES1. Then let y be the string obtained by
negating each bit of x . So a y ∈ supp(NO′1) looks like

y =
1 1 0 1 · · · 0 0 1 1 · · · 1 1
0 0 1 0 · · · 1 0 1 1 · · · 1 1

and we have Sum2,N1 (y) = 2N1 − 2.
Recall that a monotone depth-1 majority circuit of size s is just a

monotone weighted majority gate with total weight s . We show in
the following lemma that bothpairs of distributions (YES1,NO1)
and (YES ′1,NO′1) de�ned above are hard for a monotone depth-1
circuit (to be correct on both YES1 and NO1, or on both YES ′1
and NO′1, with nontrivial probability) unless the weight s is large.

Lemma 2.1. For any depth-1monotone majority circuit F over

{0, 1}2×N1 of size at most 2n−1, we have

Prx∼YES1

[
F (x) = 1

]
+ Pry∼N O1

[
F (y) = 0

]
≤ 1 + ε, (2)

Prx∼YES′1
[
F (x) = 1

]
+ Pry∼N O′1

[
F (y) = 0

]
≤ 1 + ε . (3)

Proof. We present the proof of the �rst inequality for the pair
(YES1,NO1). A similar argument works for (YES ′1,NO ′1).

Consider an auxiliary distribution D (essentially a coupling of
YES1 and NO1) supported over

{0, 1}2×N1 × {0, 1}2×N1 × {0, 1}2×N1 × [N1]

and de�ned in the following way. A draw (x ,y,z,R) ∼ D is ob-
tained by selecting a uniformly random R ∼ [N1], a string z ∼

NO1, letting x = x (z,R) ∈ {0, 1}2×N1 be the string obtained by
replacing the R-th column of z by (1, 1) and setting the j-th column
of z to (0, 0) for every j > R, and letting y = y(z,R) be the string
obtained from z by �ipping the two bits of z in the R-th column.
Observe that the marginal distributions Dx and Dy are identical
toYES1 and NO1, respectively. Thus, the LHS of Equation (2) is
equal to

Pr(x ,y,z,R)∼D
[
F (x) = 1

]
+ Pr(x ,y,z,R)∼D

[
F (y) = 0

]
= Pr

[
F (x) = 1 or F (y) = 0

]
+ Pr

[
F (x) = 1 and F (y) = 0

]
≤ 1 + Pr

[
F (x) = 1 and F (y) = 0

]
.

Hence to prove the lemma, it is enough to show that

q
def
= Pr(x ,y,z,R)∼D

[
F (x) = 1 and F (y) = 0

]
≤ ε . (4)

For each r ∈ [N1], let Zr denote an indicator random variable
de�ned onD that is 1 whenever

wr (z) >
∑

ℓ > r

wℓ (z),

where we have

wj (z)
def
= w1, j · z1, j +w2, j · z2, j ,

and wi, j is the weight corresponding to the input variable of F at
position (i, j). Equivalently, Zr = 1 if and only if the weight of z
with respect to F at the r -th column is strictly larger than the sum
of the weights collected from all succeeding columns.

We will employ the following claim to establish Equation (4).

Claim 1. For every j ∈ [N1], we have

q j
def
= Pr(x ,y,z,R)∼D

[
F (x) = 1 and F (y) = 0 ���R = j

]
≤ PrD

[
Zj = 1

]
.

Proof. We consider �rst the case where j = 1. The conditions
of F (x) = 1 and R = 1 imply thatw1,1 +w2,1 ≥ t , where t denotes
the threshold of F . Furthermore, because F (y) = 0, it must be the
case that

∑N1
r=1wr (y) < t . These inequalities give us

w1,1 +w2,1 −w1 (y) >
∑

r > 1

wr (y). (5)

The LHS is exactlyw1 (z) and the RHS is the same as
∑

r > 1wr (z)

since y is obtained by �ipping the �rst column of z. Therefore,

q1 ≤ Pr(x ,y,z,R)∼D
[
w1 (z) >

∑

r>1

wr (z)
���� R = 1

]
= PrD

[
Z1 = 1

]
,

where the last equation used the independence of z and R.
For the general case of j > 1 the claim can be proved similarly

by adapting the argument in the natural way. �

Claim 1 and the de�nitions of probabilities q and q j imply that

N1 · q =
N1∑

j=1

q j ≤
N1∑

j=1

PrD
[
Zj = 1

]
= ED


N1∑

j=1

Zj

 .
In particular, there is a string z∗ ∈ supp(NO1) and a set S ⊆ [N1]
with |S | ≥ N1 · q such that

wr (z
∗) >

∑

ℓ > r

wℓ (z
∗), (6)

1237

Addition Is Exponentially Harder Than Counting for Shallow Monotone Circuits STOC’17, June 2017, Montreal, Canada

︸ ︷︷ ︸
x ∼ YES∗

ℓ

section
1

YES′
ℓ−1

or

NOℓ−1

· ·

section
T − 1

YES′
ℓ−1

or

N Oℓ−1

section
T

YESℓ−1

section
T + 1

0 · · · · · · · · · 0
.
.
.
·
0 · · · · · · · · · 0

·
.
.
. ·

section
n

0 · · · · · · · · · 0
.
.
.
·
0 · · · · · · · · · 0

·
.
.
.

︸ ︷︷ ︸
x ∼ N O∗

ℓ

section
1

YES′
ℓ−1

or

NOℓ−1

· ·

section
T − 1

YES′
ℓ−1

or

N Oℓ−1

section
T

N O′
ℓ−1

section
T + 1

1 · · · · · · · · · 1
.
.
.
·
1 · · · · · · · · · 1

·
.
.
. ·

section
n

1 · · · · · · · · · 1
.
.
.
·
1 · · · · · · · · · 1

·
.
.
.

Figure 1: Illustrations of how the YES∗
ℓ
andNO∗

ℓ
distributions

are de�ned from the YES′
ℓ−1,NO

′
ℓ−1,YESℓ−1 andNOℓ−1 distributions.

for each r ∈ S . Recall that the weight associated with each variable
in F is a non-negative integer (this is the place where we use the
assumption that F is monotone), and note that the total weight of
F is at least

∑

r ≥1wr (z
∗). It follows from (6) that F has total weight

at least 2 |S |−1. However, by our assumption, the total weight of F
is at most 2n−1 (this is the place where we use the assumption that
F has low weight) . Altogether, we get from these inequalities and
N1 = n · (1/ε) that q ≤ ε , which completes the proof. �

2.2 A Sequence of Pairs of Pairs of

Distributions

Suppose that we have de�ned two pairs of distributions (YESℓ−1,
NOℓ−1) and (YES′ℓ−1,NO

′
ℓ−1) over {0, 1}

ℓ×Nℓ−1 for some ℓ : 2 ≤
ℓ ≤ d , where a string x drawn from YESℓ−1, NOℓ−1, YES ′ℓ−1
and NO ′

ℓ−1 has Sumℓ,Nℓ−1 (x) equal to

2Nℓ−1 , 2Nℓ−1 − 1, 2Nℓ−1 − 1, and 2Nℓ−1 − ((ℓ − 1) + 1), (7)

respectively. Note that the pairs (YES1,NO1) and (YES ′1,NO′1)
have this property. Our aim is to inductively de�ne (YESℓ ,NOℓ)

and (YES ′
ℓ
,NO′

ℓ
) over {0, 1} (ℓ+1)×Nℓ , where

Nℓ
def
= n · Nℓ−1 + 1 ≤ 2ℓnℓ−1N1 = (2n)ℓ212d ≤ (213n)d ≤ N ,

for ℓ ∈ {2, . . . ,d }, and an x drawn from YESℓ , NOℓ , YES ′ℓ and
NO′

ℓ
has Sumℓ+1,Nℓ

(x) equal to

2Nℓ , 2Nℓ − 1, 2Nℓ − 1, and 2Nℓ − (ℓ + 1). (8)

For this, we start by de�ning a pair of distributions (YES∗
ℓ
,NO∗

ℓ
)

over {0, 1}ℓ×N ∗ℓ (note that the number of rows for these distribu-
tions, ℓ, is exactly the same as that ofYESℓ−1,NOℓ−1,YES′ℓ−1,
and NO ′

ℓ−1), with N ∗
ℓ
de�ned as

N ∗
ℓ
= n · Nℓ−1 = Nℓ − 1.

To obtain (YES∗
ℓ
,NO∗

ℓ
), we partition the N ∗

ℓ
columns into n

sections, each with Nℓ−1 columns (and ℓ rows). (So the �rst section
consists of xi, j with j ∈ [Nℓ−1], the second section consists of xi, j
with j ∈ [Nℓ−1 + 1, 2Nℓ−1], and so forth.) A draw of a string from
YES∗

ℓ
is obtained as follows: �rst we draw an integerT uniformly

at random from [n], and then

(a) For each i < T , we independently set the i-th section to
be a string drawn from NOℓ−1 with probability 1/2 or a
string drawn from YES′

ℓ−1 with probability 1/2.
(b) For each i > T , we set the i-th section to be all 0.
(c) Set theT -th section to be a string drawn from YESℓ−1.

See Figure 1 for an illustration.
A draw of a string from NO∗

ℓ
is obtained in a similar fashion.

First we drawT from [n] uniformly at random, and then

(a′) For each i < T , we independently set the i-th section to
be a string drawn from NOℓ−1 with probability 1/2 or a
string drawn from YES′

ℓ−1 with probability 1/2. (This is
the same as step (a) in the de�nition ofYES∗

ℓ
.)

(b ′) For each i > T , we set the i-th section to be all 1.
(c ′) Set theT -th section to be a string drawn from NO′

ℓ−1.

Again see Figure 1 for an illustration. Given (7), we see that an x

drawn from YES∗
ℓ
(orNO∗

ℓ
) has sum equal to 2N

∗
ℓ or (2N

∗
ℓ − ℓ).

With the de�nitions of YES∗
ℓ
and NO∗

ℓ
in hand, we now use

them to de�ne (YESℓ ,NOℓ) and (YES ′
ℓ
,NO′

ℓ
) so that each x

drawn from these distributions should have Sumℓ+1,Nℓ
(x) equal

to the values given in (8). Recall that Nℓ = N ∗
ℓ
+ 1.

A string x = (xi, j) ∈ {0, 1} (ℓ+1)×Nℓ drawn from YES ′
ℓ
is ob-

tained as follows. First we draw a string z from YES∗
ℓ
and put

it in columns {2, . . . ,Nℓ } and rows {1, . . . , ℓ} of x , i.e., xi, j = zi, j−1
for all i ∈ [ℓ] and j ∈ {2, . . . ,Nℓ }. For the remaining positions (in

1238

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

x ∼ YES′
ℓ

︷ ︸︸ ︷
0
.
.
.

0

z ∼ YES∗
ℓ

0 1 · 1

x ∼ N O′
ℓ

︷ ︸︸ ︷
0
.
.
.

0

z ∼ N O∗
ℓ

0 1 · 1

x ∼ YESℓ
︷ ︸︸ ︷
0
.
.
.

0

z ∼ YES∗
ℓ

1 0 · 0

x ∼ N Oℓ
︷ ︸︸ ︷
0
.
.
.

0

z ∼ N O∗
ℓ

1 (binary representation of ℓ − 1)

Figure 2: Illustrations of how the YES′
ℓ
,NO′

ℓ
,YESℓ andNOℓ distributions

are de�ned from the YES∗
ℓ
andNO∗

ℓ
distributions.

the �rst column and the last row), we set xi,1 = 0 for all i ∈ [ℓ + 1]
and xℓ+1, j = 1 for all j > 1. The other distributionNO′

ℓ
is de�ned

similarly, except that we draw the string z from NO∗
ℓ
instead of

from YES∗
ℓ
. This is illustrated in Figure 2.

For the other pair (YESℓ ,NOℓ), a string x drawn fromYESℓ
is obtained as follows. As before, we �rst draw a string z from
YES∗

ℓ
and put it in columns {2, . . . ,Nℓ } and rows {1, . . . , ℓ} of x .

Then we set xℓ+1,1 = 1 and all other variables on the �rst row
and last column of x to be 0. For the other distribution NOℓ , we
similarly draw z fromNO∗

ℓ
and put it in columns {2, . . . ,Nℓ } and

rows {1, . . . , ℓ} of x . We set xℓ+1,1 = 1 and all other variables on
the �rst column to be 0. We set the last row, i.e., xℓ+1, j with j ∈
{2, . . . ,Nℓ }, to be the binary representation of ℓ − 1. (This is well
de�ned since N ∗

ℓ
≥ n ≥ 260d ≫ logd ≥ log ℓ.) See Figure 2.

We recall that Nd ≤ N , and record the following simple fact:

Fact 1. A string x from YESℓ ,NOℓ ,YES ′ℓ ,NO
′
ℓ
has

Sumℓ+1,Nℓ
(x) = 2Nℓ , 2Nℓ − 1, 2Nℓ − 1 and 2Nℓ − (ℓ + 1).

A very important property of the (YESℓ ,NOℓ) pair and the
(YES ′

ℓ
,NO′

ℓ
) pair — which in fact motivated the de�nitions of

these pairs of distributions in terms of YES∗
ℓ
and NO∗

ℓ
— is that

they are at least as hard to distinguish as (YES∗
ℓ
,NO∗

ℓ
) for mono-

tone majority circuits. This is made more formal in the following
two lemmas. The �rst lemma is trivial since YES ′

ℓ
and NO ′

ℓ
are

obtained from YES∗
ℓ
and NO∗

ℓ
by adding bits of the same value.

Lemma 2.2. Given any monotone majority circuit F over

{0, 1} (ℓ+1)×Nℓ , there is a monotone majority circuit F ∗ over
{0, 1}ℓ×N ∗ℓ of the same size and depth as F such that

Prx ∈YES′ℓ

[
F (x) = 1

]
+ Pry ∈N O′

ℓ

[
F (y) = 0

]
= Prx ∈YES∗ℓ

[
F ∗ (x) = 1

]
+ Pry ∈N O∗

ℓ

[
F ∗ (y) = 0

]
.

Proof. Given F , we hard-wire the variables in the �rst column
to be 0 and the rest of the variables in the last row to be 1. Let F ∗

denote the new monotone majority circuit obtained from F of the
same size and depth. The de�nition of YES ′

ℓ
, NO′

ℓ
from YES∗

ℓ
,

NO∗
ℓ
implies that

Prx ∈YES′ℓ

[
F (x) = 1

]
= Prx ∈YES∗ℓ

[
F ∗(x) = 1

]
and

Pry∈N O′ℓ
[
F (y) = 0

]
= Pry∈N O∗ℓ

[
F ∗(y) = 0

]
.

The lemma then follows. �

The second lemma relies on the monotonicity of circuits.

Lemma 2.3. Given any monotone majority circuit F over

{0, 1} (ℓ+1)×Nℓ , there is a monotone majority circuit F ∗ over
{0, 1}ℓ×N ∗ℓ of the same size and depth as F such that

Prx ∈YESℓ

[
F (x) = 1

]
+ Pry ∈N Oℓ

[
F (y) = 0

]
≤ Prx ∈YES∗ℓ

[
F ∗ (x) = 1

]
+ Pry∈N O∗

ℓ

[
F ∗ (y) = 0

]
.

Proof. Given F , we hard-wire xℓ+1,1 to be 1 and the rest of
the variables in the �rst column and the last row to be 0. Let F ∗

denote the resulting monotone majority circuit obtained from F

of the same size and depth. The de�nition of YESℓ , NOℓ from
YES∗

ℓ
, NO∗

ℓ
implies that

Prx ∈YESℓ

[
F (x) = 1

]
= Prx ∈YES∗ℓ

[
F ∗(x) = 1

]
and

Pry∈N Oℓ

[
F (y) = 0

]
≤ Pry ∈N O∗

ℓ

[
F ∗ (y) = 0

]
,

where the inequality follows from the monotonicity of F .
The lemma then follows. �

2.3 The Key Induction Lemma

Given distributions de�ned in Sections 2.1 and 2.2, we prove the
following key technical lemma. Recall ε = 2−12d . Let M = 2ε

5n .

1239

Addition Is Exponentially Harder Than Counting for Shallow Monotone Circuits STOC’17, June 2017, Montreal, Canada

Lemma 2.4. Let ℓ ∈ {2, . . . ,d }. Suppose that any depth-(ℓ − 1)
monotone majority circuit F over {0, 1}ℓ×Nℓ−1 of size at most M has

Prx∼YESℓ−1

[
F (x) = 1

]
+ Pry∼N Oℓ−1

[
F (y) = 0

]
≤ 1 + 7ℓ−2ε,

Prx∼YES′ℓ−1
[
F (x) = 1

]
+ Pry∼N O′ℓ−1

[
F (y) = 0

]
≤ 1 + 7ℓ−2ε . (9)

Then any depth-ℓ monotone majority circuit F ∗ over {0, 1}ℓ×N ∗ℓ of

size at most M satis�es

Prx∼YES∗ℓ
[
F ∗ (x) = 1

]
+ Pry∼N O∗

ℓ

[
F ∗(y) = 0

]
≤ 1 + 7ℓ−1ε .

Proof. Recall that strings drawn from YES∗
ℓ
and NO∗

ℓ
have

n sections. We refer to strings in {0, 1}ℓ×Nℓ−1 as section strings.
We begin by de�ning someuseful distributionsD1, . . . ,Dn over

concatenations of section strings where Dt is supported on con-
catenations of t − 1 section strings. First, let D denote the follow-
ing distribution over section strings: x ∼ D is drawn fromNOℓ−1
with probability 1/2 and is drawn from YES ′

ℓ−1 with probability
1/2. For each t ∈ [n], we use Dt to denote the distribution of the
concatenation of t − 1 section strings, each drawn fromD indepen-
dently. (SoDt is a distribution over {0, 1}ℓ×(t−1)Nℓ−1 .) Note that in
the special case when t = 1, D1 is supported on the empty string
only. Also note that for t ∈ [n], Dt is generated according to (a)

or (a′) from Section 2.2 (recall that (a) and (a′) are the same).
As in the statement of Lemma 2.4, let F ∗ be a depth-ℓ monotone

majority circuit over {0, 1}ℓ×N ∗ℓ of size at mostM . We say a string
z ∈ supp(Dt) for some t ∈ [n] is good with respect to F ∗ if

Prx∼YESℓ−1

[
F ∗ (z ◦ x ◦ 0) = 1

]
+ Pry∼N O′

ℓ−1

[
F ∗ (z ◦ y ◦ 1) = 0

]
is at least 1 + 6δ , where we write 0 and 1 to denote the all-0 and
all-1 strings in {0, 1}ℓ×(n−t)Nℓ , and δ is set to be 7ℓ−2ε .

Now we �x a t ∈ [n] and �x a good string z ∈ supp(Dt). Let ρz
be the restriction that �xes the �rst t − 1 sections of variables of
F ∗ to be z and leaves the remaining n − (t − 1) sections un�xed. As
z is good, we have that F ∗ ↾ ρz is nontrivial (i.e., F ∗ ↾ ρz . 0 or 1).
We write H1, . . . ,Hm (with multiplicities) to denote the set of all
depth-(ℓ−1) sub-circuits rooted at children of the output gate of F ∗
such that Hi ↾ ρz is nontrivial. In other words, we assume that the
same sub-circuit may appearmultiple times in this list if the output
majority gate in F ∗ contains multiple wires to it. Since the size of
(F ∗) is at mostM , the fan-in of the output majority gate of F ∗ is at
mostM , and consequentlym ≤ M . Since F ∗ ↾ ρ is nontrivial there
is a positive integer h ∈ [M] such that F ∗ ↾ ρz outputs 1 if and only
if at least h many of H1 ↾ ρz , . . . ,Hm ↾ ρz output 1. The following
claim shows that with non-negligible probability, a random x ∼ D
is such that “many” Hi ’s become trivial (i.e., compute a constant
function) after a restriction by ρz◦x .

The proof of Claim 2 crucially relies on the monotonicity of Hi .
In particular, it used the property that if Hi (z ◦ x ◦ 1) = 0 for some
x , then Hi must become trivial after the restriction ρz◦x .

Claim 2. Suppose that z ∈ supp(Dt) is a good string. Then

Prx∼D
[���{i ∈ [m] : Hi ↾ ρz◦x is trivial }��� ≥ δ2m/2

]
≥ δ/4.

Proof. We consider two cases: h ≥ m/2 or h < m/2. We focus
on the latter below and the former case is symmetric. Assume that
h <m/2. Since z is good, we have

Pry∼NO′ℓ−1
[
F ∗ (z ◦ y ◦ 1) = 0

]
≥ 1 + 6δ − 1 = 6δ .

If y ∈ supp(NO′
ℓ−1) satis�es F

∗ (z ◦ y ◦ 1) = 0, then by h <m/2 it
must be the case that at leastm/2 of Hi ’s have Hi (z ◦y ◦ 1) = 0, so

Ey∼N O′
ℓ−1

[
number of Hi ’s with Hi (z ◦ y ◦ 1) = 0

]
≥ 3δm. (10)

Let I denote the set of i ∈ [m] such that

Pry∼N O′
ℓ−1

[
Hi (z ◦ y ◦ 1) = 0

]
≥ 2δ . (11)

Then we have from (10) that

|I | · 1 + (m − |I |) · 2δ ≥ 3δm,

which implies that |I | ≥ δm.

We write ρ to denote the restriction over {0, 1}ℓ×N ∗ℓ that �xes
the �rst t − 1 sections of input variables to be z and the last (n − t)
sections of input variables to be all 1, and leaves only the variables
in the t-th section un�xed. So each Hi ↾ ρ is a depth-(ℓ − 1) mono-
tonemajority circuit over {0, 1}ℓ×Nℓ−1 of size at mostM . Then com-
bining (11) and the assumption (9) of the lemma, applied to Hi ↾ ρ,
we have that each i ∈ I satis�es

Prx∼YES′ℓ−1
[
Hi (z ◦ x ◦ 1) = 1

]
≤ 1 + δ − 2δ = 1 − δ ,

and thus,

Prx∼YES′ℓ−1
[
Hi (z ◦ x ◦ 1) = 0

]
≥ δ . (12)

Observe that, if an x ∈ supp(YES′
ℓ−1) satis�es Hi (z ◦ x ◦ 1) = 0,

then we have Hi ↾ ρz◦x ≡ 0 by the monotonicity of Hi . Let X be
a random variable that denotes the number of Hi ’s that become
trivial after ρz◦x , where x ∼ YES ′ℓ−1. So by (12) the expectation
of X is at least δ |I |. Let q denote the probability of X ≥ δ |I |/2. The
lower bound E[X] ≥ δ |I | implies that

q · |I | + (1 − q) · δ |I |/2 ≥ δ |I |,
and thus q ≥ δ/2. Plugging in |I | ≥ δm, we have that X ≥ δ2m/2
with probability at least δ/2.

Finally, taking into account that a draw of x ∼ D is drawn from
YES′

ℓ−1 with probability 1/2, we see that with probability at least
δ/4 over a draw of x ∼ D, we have that at least δ2m/2 many Hi ’s
become trivial after ρz◦x . This �nishes the proof of the claim. �

Claim 2 implies that when z ∼ Dt is good (with respect to F ∗),
then with probability at least δ/4 over a random draw of x ∼ D,
the restriction ρz◦x trivializes at least (δ2/2)-fraction of the depth-
(ℓ − 1) sub-circuits of F that are not trivialized by ρz . Intuitively,
this is useful because it means that we have a good chance of get-
ting a signi�cant simpli�cation of F (shrinking the fan-in of the top
gate by a lot), and since F is of size at most M this cannot happen
too many times. (This is the place where we use the assumption
on the size of F .) On the other hand, if z is not good, then

Prx∼YESℓ−1

[
F ∗ (z ◦ x ◦ 0) = 1

]
+ Pry∼N O′

ℓ−1

[
F ∗ (z ◦ y ◦ 1) = 0

]
is at most 1+ 6δ , which is also useful for our purpose of bounding

Prx∼YES∗ℓ
[
F ∗ (x) = 1

]
+ Pry∼NO∗ℓ

[
F ∗ (y) = 0

]
(13)

from above by 1 + 7δ .
To �nish the proof of the lemma, we take the following alter-

native but equivalent view of (13). Let z1, . . . , zn be a sequence of

1240

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

random section strings, each drawn fromD independently. By the
de�nition ofYES∗

ℓ
,NO∗

ℓ
(recall Figure 1), (13) × n is equal to

Ez 1, ...,zn


n∑

t=1

Prx∼YESℓ−1

[
F ∗ (z1 ◦ · · · ◦ zt−1 ◦ x ◦ 0) = 1

]

+

n∑

t=1

Pry∼NO′
ℓ−1

[
F ∗ (z1 ◦ · · · ◦ zt−1 ◦ y ◦ 1) = 0

]  .
This can be viewed as the expectation of a random variable Γ gen-
erated as follows: (1) start with Γ = 0; (2) for each “round” t =
1, . . . ,n, independently draw zt from D and add the following to
Γ:

Prx∼YESℓ−1

[
F ∗(z1 ◦ · · · ◦ zt−1 ◦ x ◦ 0) = 1

]
+ Pry∼N O′ℓ−1

[
F ∗ (z1 ◦ · · · ◦ zt−1 ◦ y ◦ 1) = 0

]
.

So it su�ces to show that E[Γ] ≤ (1 + 7δ)n.
For each of the n rounds t = 1, . . . ,n, exactly one of the follow-

ing two possibilities must hold:

(1) The current string z1 ◦ · · · ◦ zt−1 is not good. In this case
Γ goes up by at most 1 + 6δ in the t-th round. Otherwise,

(2) The current string z1 ◦ · · · ◦ zt−1 is good. In this case Γ
can go up by at most 2 in the t-th round, but by our
previous analysis (i.e., Claim 2), the number of nontrivial
depth-(ℓ − 1) subcircuits of F ∗ (with multiplicities)
rooted at children of the output gate of F ∗ drops by a
factor of (1 − δ2/2) with probability at least δ/4 when the
draw of zt in the t-th round extends the restriction to
ρz 1◦···◦z t . Note that F

∗ has size at most

M ≤ 2ε
5n

so it can survive at most 2δ3n many such drops before F ∗

becomes trivial; to see this, observe that

(1 − δ2/2)2δ 3n ≤ exp
(

−(δ2/2) · (2δ3n)
)

= exp
(

−δ5n
)

< 2−ε
5n .

(14)
Note further that once F ∗ becomes trivial, Γ goes up by 1
in every subsequent round.

We let S, a random variable, denote the total number of rounds
t ∈ [n] such that the current string z1 ◦ · · · ◦ zt−1 is good. (Note
that once F ∗ becomes trivial the current string cannot be good.)
We claim that S ≤ 32δ2n with high probability.

Claim 3. S ≤ 32δ2n with probability at least 1 − exp(−nδ4/2).

Proof. We say that round t is good if the current string z1◦· · ·◦
zt−1 is good.We say that F ∗ is hit in the t-th round, if z1 ◦· · ·◦zt−1
is good and the number of depth-(ℓ−1) subcircuitscuits of F ∗ (with
multiplicities) that are trivial under the restriction ρz 1◦···◦z t−1 drops
by a factor of at least (1−δ2/2) under the restriction ρz 1◦···◦z t−1◦z t .
Then we can write Pr[S ≥ 32δ2n] as the sum of the following two
probabilities (and bound them separately):

Pr

[
S ≥ 32δ2n & F ∗ is hit > 2δ3n many times

during the �rst 32δ2n of the good rounds
]

and

Pr

[
S ≥ 32δ2n & F ∗ is hit ≤ 2δ3n many times

during the �rst 32δ2n of the good rounds
]
.

The �rst of these probabilities is zero because of (14), i.e. if F ∗ is
hit 2δ3n times then it is trivialized so no subsequent rounds can be
good and thus F ∗ cannot be hit again.

We focus on upper bounding the second probability. For each i

from 1 to 32δ2n we de�ne the following random variable Yi where

Yi =



1 if F ∗ is hit in the i-th good round
or there are fewer than i good rounds

0 otherwise (there are at least i good rounds
and F ∗ is not hit in the ith good round).

The second probability we are interested in is at most Pr[
∑

i Yi ≤
2δ3n]. By Claim 2, we have

E

[
Yi | Y1 = b1, . . . ,Yi−1 = bi−1

]
≥ δ/4 (15)

for all i and all b1, . . . ,bi−1 ∈ {0, 1}. Let X0 ≡ 0 and

Xi = Xi−1 + Yi − E
[
Yi | Y1, · · · ,Yi−1

]
.

Then X0,X1, . . . is a martingale that satis�es |Xi −Xi−1 | ≤ 1 with
probability 1, and we have that

X32δ 2n =

32δ 2n∑

i=1

(

Yi − E
[
Yi | Y1, · · · ,Yi−1

])
≤

32δ 2n∑

i=1

Yi − 8δ3n,

using (15) for the inequality. Applying the Azuma-Hoe�ding in-
equality (see, e.g., Theorem 5.1 of [13]) to the martingale sequence
X0,X1, . . ., we get that

Pr


∑

i

Yi ≤ 2δ3n
 ≤ Pr

[
X32δ 2n ≤ 2δ3n − 8δ3n

]

≤ exp

(

− (6δ3n)2

2 · 32δ2n

)

< exp(−nδ4/2).

This �nishes the proof of the claim. �

We are almost done with the proof of Lemma 2.4. By δ = 7ℓ−2ε ,

exp
(

−nδ4/2
)

≤ δ/4 and δ ≤ 2−8 (16)

since d ≥ 2, n ≥ 260d , ε = 2−12d and ℓ ∈ {2, . . . ,d }. By Claim 3,

E

[
Γ

]
≤ exp(−nδ4/2) · 2n + (1 − exp(−nδ4/2))·

(

2 · 32δ2n + (1 + 6δ) · (n − 32δ2n)
)

< δn/2 + 64δ2n + (1 + 6δ)n ≤ (1 + 7δ)n,

where we also used the two inequalities in (16).
This �nishes the proof of Lemma 2.4. �

2.4 Proof of Theorem 1.1

Finally we combine all the ingredients to prove Theorem 1.1.
Recall that d , n, and N are positive integers that satisfy

d ≥ 2, n ≥ 260d , and N ≥ (213n)d ≥ Nd .

We also have ε = 2−12d andM = 2ε
5n . We �rst prove by induction

on ℓ that, for each ℓ = 1, . . . ,d , any monotone majority circuit F
over {0, 1} (ℓ+1)×Nℓ of depth ℓ and size at mostM satis�es

1241

Addition Is Exponentially Harder Than Counting for Shallow Monotone Circuits STOC’17, June 2017, Montreal, Canada

Prx∼YESℓ

[
F (x) = 1

]
+ Pry∼N Oℓ

[
F (y) = 0

]
≤ 1 + 7ℓ−1ε,

Prx∼YES′ℓ
[
F (x) = 1

]
+ Pry∼N O′ℓ

[
F (y) = 0

]
≤ 1 + 7ℓ−1ε . (17)

The ℓ = 1 base case follows from Lemma 2.1. Now assume that
(??) holds for ℓ − 1. By Lemma 2.4, any monotone majority circuit
F ∗ over {0, 1}ℓ×N ∗ℓ of depth ℓ and size at mostM satis�es

Prx∼YES∗ℓ
[
F ∗ (x) = 1

]
+ Pry∼N O∗

ℓ

[
F ∗ (y) = 0

]
≤ 1 + 7ℓ−1ε .

(18)
It follows from Lemmas 2.2 and 2.3 that every monotone majority
circuit F over {0, 1} (ℓ+1)×Nℓ of depth ℓ and size at mostM satis�es
(??). This �nishes the induction.

We �nish the proof using (YES∗
d
,NO∗

d
) over {0, 1}d×N

∗
d , with

N ∗
d
= Nd − 1 < N . Given (18) and the fact of 7d−1ε < 1, no depth-d

monotone majority circuit over {0, 1}d×N
∗
d of size at most M can

compute Addd,N ∗
d
correctly on all inputs. This is because every x

fromYES∗
d
has sum 2N

∗
d and hence Addd,N ∗

d
(x) = 1, while every

y fromNO∗
d
has sum 2N

∗
d − d and hence we have Addd,N ∗

d
(y) = 0.

Since N > N ∗
d
, this establishes Theorem 1.1.

3 THE UPPER BOUND

We prove Theorem 1.2 in this section. We focus on the case when
N 1/d > 1 is a positive integer, and give a depth-d monotone ma-
jority circuit that computes Addk,N and has size at most

23(N
1/d · log k+logN) . (19)

For the general case, we let n = ⌈N 1/d ⌉ > 1, and let s denote the
smallest integer such that ns ≥ N (so s ≤ d). Then we �rst con-
struct a depth-s monotone majority circuit that computes Addk,ns ,
and then hard-wire the variables in the last ns − N columns to be
0 to get a circuit for Addk,N . The size bound given in the state-
ment of Theorem 1.2 follows from (19) and the simple facts that
n ≤ 2N 1/d and ns ≤ nN ≤ N 2. For the rest of the section, we
assume that n = N 1/d > 1 is an integer.

First we note that the theorem (with the size bound as given in
(19); the same below) is trivial if N < logk since implementing
Addk,N directly using a single MAJ gate takes a total weight of

k · 2N < 23 logk .

Assuming that N ≥ logk below, we let t ∈ {1, . . . ,d } denote the
smallest integer such that nt = N t/d ≥ logk . We also write M =
nt . It is clear by the choice of t that we have

M ≤ n logk . (20)

With the same reasoning the theorem is trivial if M = N . Below
we assume that t ≤ d − 1.

We need some notation for our construction. We say that S =
(S1, . . . , Sℓ) is an ℓ-decomposition of [N] if there exist indices

1 = a−1 ≤ a+1 < a−2 ≤ a+2 < . . . < a−
ℓ
≤ a+

ℓ
= N

such that
⋃

γ ∈[ℓ] Sγ = [N] and Sγ = {a−γ , a−γ + 1, . . . ,a+γ }. In other
words, S partitions [N] into ℓ sequential intervals.

Let (xi, j)i ∈[k], j∈[N] denote the set of input variables of Addk,N .
Given an ℓ-decompositionS, we de�ne a sequence of “conditional”
carry-bit functions c

(γ)

α ,β
(x) with α , β : 0 ≤ α , β ≤ k − 1 and γ ∈ [ℓ].

Each function depends only on xi, j ’s with j ∈ Sγ . For convenience,
let Bγ = [k] × Sγ be the set of indices of these variables. Intuitively,

for an assignment x ∈ {0, 1}k×N , we have c
(γ)

α ,β
(x) = 1 if and only

if a carry of value at least α is generated/propagated by the input
bits corresponding to Bγ , assuming this block of variables receives
a carry of value β from the block to the right. Formally,

c
(γ)

α ,β
(x)

def
= 1 ⇐⇒

∑

(i, j)∈Bγ
2 |Sγ |−(j+1−a

−
γ) ·xi, j+β ≥ α ·2 |Sγ | . (21)

For each i ∈ {0, . . . ,d−t }, we use the notationS (i) to denote theni -
decomposition in which each set has size nd−i . Note that, for the
1-decomposition S (0)

= (S
(0)
1), where S (0)1 = {1, . . . ,N }, we have

Addk,N (x) = 1 ⇐⇒ c
(1)
1,0 (x) = 1, (22)

for the function c (1)1,0 of S
(0) .

Our construction is based on a recursive computation of func-
tions c

(γ)

α ,β
(·) associated to di�erent decompositionsS (r) , for r from

d − t back to 0, where each decomposition S (r+1) is obtained via a
re�nement of the previous decompositionS (r) . More precisely we
construct our monotone majority circuit for Addk,N with the fol-
lowing intended behavior. The top gate of the circuit computes the
bit c (1)1,0(x) associated to the decompositionS (0) . However, this gate
does not have access to x : it receives as input the output of carry-
bit functions c

(γ)

α ,β
(x) corresponding to the �ner n-decomposition

S (1) in which each block has nd−1 columns. This then leads to a
recursive procedure, which unfolds as a depth-(d − t + 1) circuit
described in more detail below (recall that t ≥ 1).

In general our circuit hasd−t+1 layers of majority gates, where
gates at the ith layer compute carry-bit functions c (ℓ)

α ,β
correspond-

ing to the nd−t−i+1-decomposition S (d−t−i+1). The base case, i.e.
the �rst layer of majority gates that are supposed to compute c (ℓ)

α ,β
of Sd−t , is done by a majority gate that follows directly the de�-
nition given in (21). It is clear that the size of each gate in the �rst
layer is bounded from above by k2M .

Due to the recursive nature of our construction, it is su�cient to
describe how to compute the carry-bit functions corresponding to
a decomposition S (r) from the carry-bit functions corresponding
to S (r+1) for each r ∈ {0, 1, . . . ,d − t − 1}. For convenience we �x
an r below and write S′ for S (r) and S for S (r+1) . We also �x a
set S ′ ∈ S′ with S ′ = S1∪ . . .∪Sn , where S1, . . . , Sn are sets in the
ordered tuple S listed from left to right. We write cu,v to denote a
carry-bit function of the block S that we need to compute, for some
u,v ∈ {0, . . . ,k − 1}, and assume that we have already computed
c
(γ)

α ,β
for each block Sγ , γ ∈ [n], and for all α , β ∈ {0, . . . ,k − 1}.

The goal is to compute cu,v (x) given the bits c
(γ)

α ,β
(x) .

We start with a general observation about carry-bit functions of
a block. We say that (α , β) ≺ (α ′, β ′) if either α < α ′, or α = α ′

and β ≥ β ′. Given a block Sγ , note that c
(γ)

α ,β
has the following

monotonicity property. (Note that the assumption of |Sγ | ≥ logk
always holds given our choice of t and trivial cases ruled out at the
beginning of the section.)

Claim 4. Assume that |Sγ | ≥ logk . If (α , β) ≺ (α ′, β ′), then

c
(γ)

α ,β
(x) ≥ c

(γ)

α ′,β ′
(x)

on every input string x for Addk,N .

1242

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

Proof. We consider the two cases of (α , β) ≺ (α ′, β ′). If α = α ′

and β ≥ β ′, the claim follows immediately from (21).
Assume that α < α ′, where β , β ′ ∈ {0, . . . ,k − 1} are arbitrary.

Clearly it su�ces to argue that

c
(γ)

α ′,k−1(x) = 1 =⇒ c
(γ)
α ′−1,0(x) = 1.

Using (21), this assumption is equivalent to
∑

(i, j)∈Bγ
2 |Sγ |−(j+1−a

−
γ) · xi, j + (k − 1) ≥ α ′ · 2 |Sγ | . (23)

In order to show c
(γ)
α ′−1,0 (x) = 1, we need to verify that

∑

(i, j)∈Bγ
2 |Sγ |−(j+1−a

−
γ) · xi, j ≥ (α ′ − 1) · 2 |Sγ | .

Using (23) it is su�cient to have k − 1 ≤ 2 |Sγ | . This follows from
the assumption of the claim, which completes the proof. �

The description of the majority gate that computes cu,v (x) for
the block S ′ in S′ using c (γ)

α ,β
(x) for blocks S1, . . . , Sn in S is based

on the following lemma.

Lemma 3.1. Assume that |Sγ | ≥ logk for every γ ∈ [n]. Then we

have cu,v (x) = 1 if and only if

v +

n∑

γ=1

*.,
*.,

k−1∑

α=1,β=0

c
(γ)

α ,β
(x)

+/- · k
n−γ +/- ≥ u · kn . (24)

Proof. We consider (24) as a sum in base k over k (k − 1) rows
and n columns of variables, with v extra 1’s on column n (which
corresponds to the least signi�cant position). Let pγ denote the
(base k) carry from column γ to column γ − 1 in (24), and let qγ
denote the (base 2) carry from block γ to block γ − 1 in our decom-
position of x after addingv to blockn (without taking into account
the remaining columns of x not covered by S1 ∪ . . . ∪ Sn).

We prove by induction that pγ = qγ , for all γ from n to 1. Notice
that this establishes the lemma. For the base case when γ = n, we
consider the following two cases:

(1) If c (n)
α ,β
= 0 for all α ≥ 1 and β ≥ 0, then qn = 0 (since

we have c (n)
1,k−1 = 0 and v ≤ k − 1). This implies that

pn = qn = 0.
(2) Otherwise, let (αn , βn) denote the largest pair (under ≺)

with c (n)
αn,βn

= 1. It follows from Claim 4 that qn = αn if
βn ≤ v , and qn = αn − 1 if βn > v . We also have

v +

k−1∑

α=1,β=0

c
(n)

α ,β
= (αn − 1) · k + (k − βn +v).

It follows from this equation and the characterization of
qn that the (base k) carry pn = qn .

The induction step is similar. We assume that pγ+1 = qγ+1, and
prove that pγ = qγ . We focus on the γ -th column from (24) and
block γ , and consider the following two cases:

(1) If c (n)
α ,β
= 0 for all α ≥ 1 and β ≥ 0, then qγ = 0 (since

we have c
(γ)

1,k−1 = 0 and qγ+1 ≤ k − 1). This implies that
pγ = qγ = 0.

(2) Otherwise, let (αγ , βγ) denote the largest pair with
c
(γ)

αγ ,βγ
= 1. Using Claim 4, qγ is αγ if βγ ≤ qγ+1, and qγ

is αγ − 1 if βγ > qγ+1. By the inductive hypothesis,

pγ+1 +

k−1∑

α=1,β=0

c
(n)
α ,β
= (αγ − 1) · k + (k − βγ + qγ+1).

It follows from this equation and the characterization of
qγ that pγ = qγ .

This �nishes the induction, and the proof of the lemma. �

Lemma 3.1, (21), and our previous discussions complete the de-
scription of the circuit for Addk,N . Moreover, its correctness fol-
lows easily from (22) and Lemma 3.1. It remains to analyze the size
of the resulting depth-(d − t + 1) majority circuit.

We upper bound its size layer by layer as follows. As discussed
earlier, the size of each majority gate in the �rst layer is at most
k2M , and there are nd−t many of them. Furthermore, for the i-th
layer of the circuit, where i > 1, there are n (d−t−i+1) gates each of
which has size at most

k (k − 1) · k
n − 1
k − 1 < kn+1,

as given in Lemma 3.1. Using (20), the majority circuit for Addk,N
has overall size at most

nd−t · k2M +
d−t+1∑

i=2

nd−t+1−i · kn+1 ≤ Nk2M + 2Nkn+1

≤ 23(N
1/d logk+logN) .

The construction presented here uses MAJ gates and majority
circuits. We sketch in Appendix A an alternative constructionwith
respect to semi-unbounded fan-in AND/OR circuits.

4 COMPLETING THE PROOF OF THEOREM

1.3: PROOF OF LEMMA 1.4

Recall thewell-known technique of carry-save addition, also known
as the “3-to-2 trick,” for addition of binary numbers (see e.g., Sec-
tion 1.2.3 of [22]). This “trick” states that there is a (multi-output)
circuit that takes as input three n-bit binary numbers X ,Y ,Z and
outputs two (n + 1)-bit binary numbers A,B such that (i) A + B =
X + Y + Z , and (ii) each output bit Ai or Bi depends on at most
3 of the input bits. By applying this trick in parallel to the N -bit
integers x (1) , . . . ,x (k) that are the rows of the input to Addk,N , we
obtain ⌈2k/3⌉ many (N + 1)-bit integers whose sum equals

x (1) + · · · + x (k) .
RecursingO (logk) times, we see that there are two (N +O (logk))-
bit integers (call them y and z) such that

y + z = x (1) + · · · + x (k) .
A naive composition of “3-to-2 trick” circuits in a tree of depth
O (logk) to computey,zwould yield a circuit of depthΘ(log logN).
To avoid this blowup in circuit depth, we proceed di�erently, by
observing that each each bit yi ,zi depends on at most

3O (logk) ≤ logN

of the original input bits of the x (i)’s, and exploiting this locality
to get a depth-3 circuit overall.

1243

Addition Is Exponentially Harder Than Counting for Shallow Monotone Circuits STOC’17, June 2017, Montreal, Canada

In more detail, let yi denote the bit in the “2i -position” of the
binary representation of y, so

y =

N+O (logk)
∑

i=0

yi · 2i and similarly z =

N+O (logk)
∑

i=0

zi · 2i .

We de�ne “generate” and “propagate” bits for each bit position of
y+z in the standard way, дi

def
= yi ∧ zi and pi

def
= yi ∨ zi , so дi = 1

if the bits in the 2i -position generate a carry into the 2i+1-position;
pi = 1 i� the bits in the 2i -position propagate an incoming carry
into the 2i -position onward to the 2i+1-position. Observe that each
pi ,дi depends on at most 2 logN of the original input bits.

The sum y +z is at least 2N i� one of the following events hold:

• Event A: at least one of the bits yN ,yN+1, . . . , or
zN , zN+1, . . . is 1. This can be expressed as

A =
∨

j≥N
(yj ∨ z j).

Since yj , z j each depend on at most logN of the original
input variables, each of them can be expressed as a
poly(N)-size DNF over the original input variables, and
thus A can be expressed as a poly(N)-size DNF.

• Event B: a carry bit is propagated into the 2N -position.
Event B can be expressed as

B =

N−1∨

j=1

*.,дj ∧
*.,

∧

j<i<N

pi
+/-

+/- .
As each pi depends on at most 2 logN of the original
input variables, it can be expressed as a poly(N)-size
CNF; the same holds for дj , so

*.,дj ∧
*.,

∧

j<i<N

pi
+/-

+/-
can be expressed as a poly(N)-size CNF, and thus Event
B can be expressed as a poly(N)-size, depth-3
OR-AND-OR circuit.

As a result, A ∨ B can be expressed as a poly(N)-size, depth-3
OR-AND-OR circuit over the input variables. The lemma is proved.

APPENDIX

A UPPER BOUND FOR THE UNIVERSAL

MONOTONE THRESHOLD GATE

We sketch in this section a construction of monotone circuits for
the universal monotone threshold function that matches the pa-
rameters obtained by Beimel and Weinreb [8]. More precisely, we
describe a polynomial sizeO (logN)-depth AND/OR circuit for the
functionAddO (N),O (N logN) , whereOR gates have unbounded fan-
in, while AND gates have fan-in two.

Our construction relies on amore general reduction fromAddk,N
to a certain graph connectivity problem. To begin, we start with an
ℓ-decompositionS of Addk,N (see Section 3 for more details), and
assume (for now) thatwe are given the corresponding (conditional)
carry-bit functions c

(γ)

α ,β
(x), where α , β ∈ {0, . . . ,k−1} and γ ∈ [ℓ].

Given these bits, we can view them as a layered directed graph
GS,x = (V ,E) which depends on x and S as follows. The vertices

ofG are partitioned into ℓ + 1 layers, which we number for conve-
nience from ℓ to 0. The �rst and last layers are special, and contain
a single vertex only. The remaining layers each contain k vertices.
The (directed) edges of this graph leave the γ -th layer and reach
the (γ − 1)-th layer. We use the output bit of each c

(γ)

α ,β
to decide

whether an edge is present in this graph. The idea is that there
will be a path from the ℓ-th layer to the 0-th layer if and only if
Addk,N (x) = 1.

More precisely, we view

V = Lℓ ∪ Lℓ−1 ∪ . . . ∪ L0,
where Lℓ = {s }, L0 = {t }, and Lγ = {vγ ,0, . . . ,vγ ,k−1}, for ℓ > γ >
0. The edge set E ⊆ V ×V is de�ned as follows.

• (s,vℓ−1, j) ∈ E i� c
(ℓ)
1, j = 1, where j ∈ {0, . . . ,k − 1};

• (v1, j , t) ∈ E i� c
(1)
j,0 = 1, where j ∈ {0, . . . ,k − 1};

• For ℓ− 1 ≥ γ ≥ 2 and 0 ≤ α , β ≤ k − 1, (vγ ,α ,vγ−1,β) ∈ E
i� we have c

(γ)

α ,β
= 1.

There is no other edge in E.
Given vertices u,v in a graphG, we write u { v if there exists

a directed path from u to v in G. Our construction is based on the
following observation.

Lemma A.1. Given an ℓ-decomposition S for Addk,N and an x ,

Addk,N (x) = 1 ⇐⇒ s { t inGS,x .

Proof. We provide a sketch of the argument. If Addk,N (x) = 1,
consider the sequence of carries generated during the actual com-
putation of

∑

i ∈[k] x (i) by the standard binary addition algorithm.
At least one �nal carry is generated in this process, since the sum
is at least 2N . The correct carry values computed during intermedi-
ate steps of the addition algorithm correspond to a path from s to t
inGS,x . On the other hand, if there exists a path from s to t in this
graph, then an inductive argument starting from t and proceeding
backwards to s shows that, during each step of the addition algo-
rithm, at least some number of carries must be produced when we
add the integers x (1) , . . . ,x (k) . In particular, there must be at least
one �nal carry bit, which implies that Addk,N (x) = 1. �

To sum up, in order to compute Addk,N from the carry-bit func-
tions it is enough to solve a directed s-t-connectivity problem on a
graph withO (N) layers, where each layer contains O (k) vertices.

The computation of the carry-bit functions can be done e�-
ciently in the case of the universal monotone threshold function if
we start with an Ω(N logN)-decomposition. More precisely, each
such function can be written as a monotone majority gate over a
polynomial number of input bits, which is known to admit e�cient
monotone circuits as needed in our construction.

Finally, the upper bound follows from the well-known construc-
tion of monotone circuits for s-t-connectivity on layered graphs
via divide-and-conquer.

REFERENCES
[1] Miklós Ajtai and Yuri Gurevich. 1987. Monotone versus positive. J. ACM 34, 4

(1987), 1004–1015.
[2] Eric Allender. 1989. A Note on the Power of Threshold Circuits. In Proceedings

of the 30th Annual Symposium on Foundations of Computer Science. 580–584.

1244

STOC’17, June 2017, Montreal, Canada Xi Chen, Igor C. Oliveira, and Rocco A. Servedio

[3] Noga Alon and Ravi B. Boppana. 1987. The monotone circuit complexity of
Boolean functions. Combinatorica 7, 1 (1987), 1–22.

[4] Kazuyuki Amano and Akira Maruoka. 2005. On the Complexity of Depth-2 Cir-
cuits with Threshold Gates. In Proceedings of the 30th International Symposium
on Mathematical Foundations of Computer Science. 107–118.

[5] Alexander E. Andreev. 1985. On a method for obtaining lower bounds for the
complexity of individual monotone functions. Soviet Math. Dokl 31, 3 (1985),
530–534.

[6] James Aspnes, Richard Beigel, Merrick L. Furst, and Steven Rudich. 1994. The
Expressive Power of Voting Polynomials. Combinatorica 14, 2 (1994), 135–148.

[7] Richard Beigel, Nick Reingold, and Daniel A. Spielman. 1995. PP Is Closed under
Intersection. J. Comput. Syst. Sci. 50, 2 (1995), 191–202.

[8] Amos Beimel and EnavWeinreb. 2005. Monotone Circuits for Weighted Thresh-
old Functions. In Proceedings of the 20th Annual IEEE Conference on Computa-
tional Complexity. 67–75.

[9] Olaf Beyersdor�, Edward A. Hirsch, Jan Krajícek, and Rahul Santhanam. 2014.
Optimal algorithms and proofs. Dagstuhl Reports 4, 10 (2014), 51–68.

[10] Eric Blais, Dominik Scheder, and Li-Yang Tan. 2013. Ajtai-Gurevich Redux.
(2013). Manuscript.

[11] Xi Chen, Igor Oliveira, and Rocco Servedio. 2015. Addition is exponentially
harder than counting for shallow monotone circuits. arXiv: 1508.03061 (2015).

[12] Michael Dertouzos. 1965. Threshold Logic: A Synthesis Approach. MIT Press.
[13] Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of measure

for the analysis of randomized algorithms. Cambridge University Press.
[14] Yoav Freund and Robert E. Schapire. 1997. A Decision-Theoretic Generalization

of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55, 1
(1997), 119–139.

[15] Mikael Goldmann, Johan Håstad, and Alexander A. Razborov. 1992. Major-
ity Gates vs. General Weighted Threshold Gates. Computational Complexity
2 (1992), 277–300.

[16] Mikael Goldmann and Marek Karpinski. 1993. Simulating threshold circuits by
majority circuits. In Proceedings of the 25th annual ACM Symposium on Theory
of Computing. 551–560.

[17] Johan Håstad. 2010. Some Results in Circuit Complexity. (2010). Presentation
at China Theory Week (CTW). Slides available at
http://conference.itcs.tsinghua.edu.cn/CTW2010/content/Slides/1.pdf .

[18] Johan Håstad and Mikael Goldmann. 1991. On the Power of Small-Depth
Threshold Circuits. Computational Complexity 1 (1991), 113–129.

[19] Thomas Hofmeister. 1992. The Power of Negative Thinking in Constructing
Threshold Circuits for Addition. In Proceedings of the 7th Annual Structure in
Complexity Theory Conference. 20–26.

[20] Thomas Hofmeister. 1996. A Note on the Simulation of Exponential Threshold
Weights. In Proceedings of the 2nd Annual International Conference on Computing
and Combinatorics. 136–141.

[21] Stasys Jukna. 2012. Boolean Function Complexity - Advances and Frontiers.
Springer.

[22] Thomson Leighton. 1992. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann.

[23] MarvinMinsky and Seymour Papert. 1968. Perceptrons - An Introduction to Com-
putational Geometry. MIT Press.

[24] Saburo Muroga. 1971. Threshold Logic and its Applications. Wiley.
[25] Moni Naor and Omer Reingold. 2004. Number-theoretic constructions of e�-

cient pseudo-random functions. J. ACM 51, 2 (2004), 231–262.
[26] Ian Parberry. 1994. Circuit Complexity and Neural Networks. MIT Press.
[27] Alexander A. Razborov. 1985. Lower bounds for the monotone complexity of

some Boolean functions. Soviet Mathematics Doklady 31, 6 (1985), 354–357.
[28] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.

Neural Networks 61 (2015), 85–117.
[29] Alexander A. Sherstov. 2007. Powering requires threshold depth 3. Inf. Process.

Lett. 102, 2-3 (2007), 104–107.
[30] Kai-Yeung Siu and Jehoshua Bruck. 1991. On the Power of Threshold Circuits

with Small Weights. SIAM J. Discrete Math. 4, 3 (1991), 423–435.
[31] Alexei P. Stolboushkin. 1995. Finitely Monotone Properties. In Proceedings of

the 10th Annual IEEE Symposium on Logic in Computer Science. 324–330.
[32] Éva Tardos. 1988. The gap between monotone and non-monotone circuit com-

plexity is exponential. Combinatorica 8, 1 (1988), 141–142.
[33] Alan Taylor and William Zwicker. 1992. A characterization of weighted voting.

Proc. Amer. Math. Soc. 115, 4 (1992), 1089–1094.
[34] Andrew Chi-Chih Yao. 1989. Circuits and Local Computation. In Proceedings of

the 21st Annual ACM Symposium on Theory of Computing. 186–196.
[35] Andrew Chi-Chih Yao. 1990. On ACC and Threshold Circuits. In Proceedings of

the 31st Annual Symposium on Foundations of Computer Science. 619–627.

1245

http://conference.itcs.tsinghua.edu.cn/CTW2010/content/Slides/1.pdf

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work and Our Techniques

	2 The Lower Bound
	2.1 The Initial Two Pairs of Distributions
	2.2 A Sequence of Pairs of Pairs of Distributions
	2.3 The Key Induction Lemma
	2.4 Proof of Theorem 1.1

	3 The Upper Bound
	4 Completing the Proof of Theorem 1.3: Proof of Lemma 1.4
	A Upper Bound for the Universal Monotone Threshold Gate
	References

