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Abstract

We consider a basic problem in unsupervised learning: learning an unknown Poisson Binomial Distribu-
tion. A Poisson Binomial Distribution (PBD) over {0, 1, . . . , n} is the distribution of a sum of n independent
Bernoulli random variables which may have arbitrary, potentially non-equal, expectations. These distribu-
tions were first studied by S. Poisson in 1837 [Poi37] and are a natural n-parameter generalization of the
familiar Binomial Distribution. Surprisingly, prior to our work this basic learning problem was poorly under-
stood, and known results for it were far from optimal.

We essentially settle the complexity of the learning problem for this basic class of distributions. As
our first main result we give a highly efficient algorithm which learns to ε-accuracy (with respect to the total
variation distance) using Õ(1/ε3) samples independent of n. The running time of the algorithm is quasilinear
in the size of its input data, i.e., Õ(log(n)/ε3) bit-operations.1 (Observe that each draw from the distribution
is a log(n)-bit string.) Our second main result is a proper learning algorithm that learns to ε-accuracy using
Õ(1/ε2) samples, and runs in time (1/ε)poly(log(1/ε)) · log n. This is nearly optimal, since any algorithm for
this problem must use Ω(1/ε2) samples. We also give positive and negative results for some extensions of
this learning problem to weighted sums of independent Bernoulli random variables.

1 Introduction

We begin by considering a somewhat fanciful scenario: You are the manager of an independent weekly news-
paper in a city of n people. Each week the i-th inhabitant of the city independently picks up a copy of your
paper with probability pi. Of course you do not know the values p1, . . . , pn; each week you only see the total
number of papers that have been picked up. For many reasons (advertising, production, revenue analysis, etc.)
you would like to have a detailed “snapshot” of the probability distribution (pdf) describing how many readers
you have each week. Is there an efficient algorithm to construct a high-accuracy approximation of the pdf from
a number of observations that is independent of the population n? We show that the answer is “yes.”

A Poisson Binomial Distribution of order n is the distribution of a sum

X =

n∑
i=1

Xi,

where X1, . . . , Xn are independent Bernoulli (0/1) random variables. The expectations (E[Xi] = pi)i need not
all be the same, and thus these distributions generalize the Binomial distribution Bin(n, p) and, indeed, comprise
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a much richer class of distributions. (See Section 1.2 below.) It is believed that Poisson [Poi37] was the first to
consider this extension of the Binomial distribution2 and the distribution is sometimes referred to as “Poisson’s
Binomial Distribution” in his honor; we shall simply call these distributions PBDs.

PBDs are one of the most basic classes of discrete distributions; indeed, they are arguably the simplest n-
parameter probability distribution that has some nontrivial structure. As such they have been intensely studied
in probability and statistics (see Section 1.2) and arise in many settings; for example, we note here that tail
bounds on PBDs form an important special case of Chernoff/Hoeffding bounds [Che52, Hoe63, DP09]. In
application domains, PBDs have many uses in research areas such as survey sampling, case-control studies, and
survival analysis, see e.g., [CL97] for a survey of the many uses of these distributions in applications. Given
the simplicity and ubiquity of these distributions, it is quite surprising that the problem of density estimation
for PBDs (i.e., learning an unknown PBD from independent samples) is not well understood in the statistics or
learning theory literature. This is the problem we consider, and essentially settle, in this paper.

We work in a natural PAC-style model of learning an unknown discrete probability distribution which is
essentially the model of [KMR+94]. In this learning framework for our problem, the learner is provided with
independent samples drawn from an unknown PBD X . Using these samples, the learner must with probability
at least 1 − δ output a hypothesis distribution X̂ such that the total variation distance dTV (X, X̂) is at most
ε, where ε, δ > 0 are accuracy and confidence parameters that are provided to the learner.3 A proper learning
algorithm in this framework outputs a distribution that is itself a Poisson Binomial Distribution, i.e., a vector
p̂ = (p̂1, . . . , p̂n) which describes the hypothesis PBD X̂ =

∑n
i=1 X̂i where E[X̂i] = p̂i.

1.1 Our results.

Our main result is an efficient algorithm for learning PBDs from Õ(1/ε2) many samples independent of [n].
Since PBDs are an n-parameter family of distributions over the domain [n], we view such a tight bound as a
surprising result. We prove:

Theorem 1 (Main Theorem). Let X =
∑n

i=1Xi be an unknown PBD.

1. [Learning PBDs from constantly many samples] There is an algorithm with the following properties:
given n, ε, δ and access to independent draws from X , the algorithm uses

Õ
(
(1/ε3) · log(1/δ)

)
samples from X , performs

Õ

(
(1/ε3) · log n · log2 1

δ

)
bit operations, and with probability at least 1− δ outputs a (succinct description of a) distribution X̂ over
[n] which is such that dTV (X̂,X) ≤ ε.

2. [Properly learning PBDs from constantly many samples] There is an algorithm with the following
properties: given n, ε, δ and access to independent draws from X , the algorithm uses

Õ(1/ε2) · log(1/δ)

samples from X , performs

(1/ε)O(log2(1/ε)) · Õ
(

log n · log
1

δ

)
bit operations, and with probability at least 1 − δ outputs a (succinct description of a) vector p̂ =
(p̂1, . . . , p̂n) defining a PBD X̂ such that dTV (X̂,X) ≤ ε.

2We thank Yuval Peres and Sam Watson for this information [PW11].
3[KMR+94] used the Kullback-Leibler divergence as their distance measure but we find it more natural to use variation distance.
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We note that, since every sample drawn from X is a log(n)-bit string, for constant δ the number of bit-
operations performed by our first algorithm is quasilinear in the length of its input. Moreover, the sample
complexity of both algorithms is close to optimal, since Ω(1/ε2) samples are required even to distinguish the
(simpler) Binomial distributions Bin(n, 1/2) and Bin(n, 1/2+ε/

√
n), which have total variation distance Ω(ε).

Indeed, in view of this observation, our second algorithm is essentially sample-optimal.
Motivated by these strong learning results for PBDs, we also consider learning a more general class of

distributions, namely distributions of the form X =
∑n

i=1wiXi which are weighted sums of independent
Bernoulli random variables. We give an algorithm which uses O(log n) samples and runs in poly(n) time if
there are only constantly many different weights in the sum:

Theorem 2 (Learning sums of weighted independent Bernoulli random variables). Let X =
∑n

i=1 aiXi

be a weighted sum of unknown independent Bernoullis such that there are at most k different values among
a1, . . . , an. Then there is an algorithm with the following properties: given n, ε, δ, a1, . . . , an and access to
independent draws from X , it uses

Õ(k/ε2) · log(n) · log(1/δ)

samples from X , runs in time
poly

(
nk · ε−k log2(1/ε)

)
· log(1/δ),

and with probability at least 1−δ outputs a hypothesis vector p̂ ∈ [0, 1]n defining independent Bernoulli random
variables X̂i with E[X̂i] = p̂i such that dTV (X̂,X) ≤ ε, where X̂ =

∑n
i=1 aiX̂i.

To complement Theorem 2, we also show that if there are many distinct weights in the sum, then even for
weights with a very simple structure any learning algorithm must use many samples:

Theorem 3 (Sample complexity lower bound for learning sums of weighted independent Bernoullis). Let
X =

∑n
i=1 i · Xi be a weighted sum of unknown independent Bernoullis (where the i-th weight is simply i).

Let L be any learning algorithm which, given n and access to independent draws from X , outputs a hypothesis
distribution X̂ such that dTV (X̂,X) ≤ 1/25 with probability at least e−o(n). Then L must use Ω(n) samples.

1.2 Related work.

At a high level, there has been a recent surge of interest in the theoretical computer science community on
fundamental algorithmic problems involving basic types of probability distributions, see e.g., [KMV10, MV10,
BS10, VV11] and other recent papers; our work may be considered as an extension of this theme. More specif-
ically, there is a broad literature in probability theory studying various properties of PBDs; see [Wan93] for an
accessible introduction to some of this work. In particular, many results study approximations to the Poisson
Binomial distribution via simpler distributions. In a well-known result, Le Cam [Cam60] shows that for any
PBD X =

∑n
i=1Xi with E[Xi] = pi, it holds that

dTV

(
X,Poi

( n∑
i=1

pi
))
≤ 2

n∑
i=1

p2
i ,

where Poi(λ) is the Poisson distribution with parameter λ. Subsequently many other proofs of this result and
similar ones were given using a range of different techniques; [HC60, Che74, DP86, BHJ92] is a sampling of
work along these lines, and Steele [Ste94] gives an extensive list of relevant references. Much work has also been
done on approximating PBDs by normal distributions (see e.g., [Ber41, Ess42, Mik93, Vol95]) and by Binomial
distributions (see e.g., [Ehm91, Soo96, Roo00]). These results provide structural information about PBDs that
can be well-approximated via simpler distributions, but fall short of our goal of obtaining approximations of an
unknown PBD up to arbitrary accuracy. Indeed, the approximations obtained in the probability literature (such
as the Poisson, Normal and Binomial approximations) typically depend only on the first few moments of the
target PBD, while higher moments are crucial for arbitrary approximation [Roo00].
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Taking a different perspective, it is easy to show (see Section 2 of [KG71]) that every PBD is a unimodal
distribution over [n]. The learnability of general unimodal distributions over [n] is well understood: Birgé
[Bir87a, Bir97] has given a computationally efficient algorithm that can learn any unimodal distribution over [n]
to variation distance ε from O(log(n)/ε3) samples, and has shown that any algorithm must use Ω(log(n)/ε3)
samples. (The [Bir87a, Bir97] upper and lower bounds are stated for continuous unimodal distributions, but
the arguments are easily adapted to the discrete case.) Our main result, Theorem 1, shows that the additional
PBD assumption can be leveraged to obtain sample complexity independent of n with a computationally highly
efficient algorithm.

So, how might one leverage the structure of PBDs to remove n from the sample complexity? A first obser-
vation is that a PBD assigns 1− ε of its mass to Oε(

√
n) points. So one could draw samples to (approximately)

identify these points and then try to estimate the probability assigned to each such point, but clearly such an
approach, if followed naı̈vely, would give poly(n) sample complexity. Alternatively, one could run Birgé’s al-
gorithm on the restricted support of size Oε(

√
n), but that will not improve the asymptotic sample complexity.

A different approach would be to construct a small ε-cover (under the total variation distance) of the space of
all PBDs on n variables. Indeed, if such a cover has size N , it can be shown (see Lemma 10 in Section 3.1, or
Chapter 7 of [DL01])) that a target PBD can be learned fromO(log(N)/ε2) samples. Still it is easy to argue that
any cover needs to have size Ω(n), so this approach too gives a log(n) dependence in the sample complexity.

Our approach, which removes n completely from the sample complexity, requires a refined understanding
of the structure of the set of all PBDs on n variables, in fact one that is more refined than the understanding
provided by the aforementioned results (approximating a PBD by a Poisson, Normal, or Binomial distribution).
We give an outline of the approach in the next section.

1.3 Our approach.

The starting point of our algorithm for learning PBDs is a theorem of [DP11, Das08] that gives detailed infor-
mation about the structure of a small ε-cover (under the total variation distance) of the space of all PBDs on n
variables (see Theorem 4). Roughly speaking, this result says that every PBD is either close to a PBD whose
support is sparse, or is close to a translated “heavy” Binomial distribution. Our learning algorithm exploits this
structure of the cover; it has two subroutines corresponding to these two different types of distributions that the
cover contains. First, assuming that the target PBD is close to a sparsely supported distribution, it runs Birgé’s
unimodal distribution learner over a carefully selected subinterval of [n] to construct a hypothesis HS ; the (pur-
ported) sparsity of the distribution makes it possible for this algorithm to use Õ(1/ε3) samples independent of
n. Then, assuming that the target PBD is close to a translated “heavy” Binomial distribution, the algorithm con-
structs a hypothesis Translated Poisson Distribution HP [R0̈7] whose mean and variance match the estimated
mean and variance of the target PBD; we show that HP is close to the target PBD if the target PBD is not close
to any sparse distribution in the cover. At this point the algorithm has two hypothesis distributions, HS and HP ,
one of which should be good; it remains to select one as the final output hypothesis. This is achieved using a
form of “hypothesis testing” for probability distributions.

The above sketch captures the main ingredients of Part (1) of Theorem 1, but additional work needs to be
done to get the proper learning algorithm of Part (2). For the non-sparse case, first note that the Translated
Poisson hypothesis HP is not a PBD. Via a sequence of transformations we are able to show that the Translated
Poisson hypothesis HP can be converted to a Binomial distribution Bin(n′, p) for some n′ ≤ n. To handle the
sparse case, we use an alternate learning approach: instead of using Birgé’s unimodal algorithm (which would
incur a sample complexity of Ω(1/ε3)), we first show that, in this case, there exists an efficiently constructible
O(ε)-cover of size (1/ε)O(log2(1/ε)), and then apply a general learning result that we now describe.

The general learning result that we use (Lemma 10) is the following: We show that for any class S of
target distributions, if S has an ε-cover of size N then there is a generic algorithm for learning an unknown
distribution from S to accuracy O(ε) that uses O((logN)/ε2) samples. Our approach is rather similar to the
algorithm of [DL01] for choosing a density estimate (but different in some details); it works by carrying out a
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tournament that matches every pair of distributions in the cover against each other. Our analysis shows that with
high probability some ε-accurate distribution in the cover will survive the tournament undefeated, and that any
undefeated distribution will with high probability be O(ε)-accurate.

Applying this general result to the O(ε)-cover of size (1/ε)O(log2(1/ε)) described above, we obtain a PBD
that is O(ε)-close to the target (this accounts for the increased running time in Part (2) versus Part (1)). We
stress that for both the non-proper and proper learning algorithms sketched above, many technical subtleties and
challenges arise in implementing the high-level plan given above, requiring a careful and detailed analysis.

We prove Theorem 2 using the general approach of Lemma 10 specialized to weighted sums of independent
Bernoullis with constantly many distinct weights. We show how the tournament can be implemented efficiently
for the class S of weighted sums of independent Bernoullis with constantly many distinct weights, and thus
obtain Theorem 2. Finally, the lower bound of Theorem 3 is proved by a direct information-theoretic argument.

1.4 Preliminaries.

Distributions. For a distribution X supported on [n] = {0, 1, . . . , n} we write X(i) to denote the value
Pr[X = i] of the probability density function (pdf) at point i, and X(≤ i) to denote the value Pr[X ≤ i]
of the cumulative density function (cdf) at point i. For S ⊆ [n], we write X(S) to denote

∑
i∈S X(i) and

XS to denote the conditional distribution of X restricted to S. Sometimes we write X(I) and XI for a subset
I ⊆ [0, n], meaning X(I ∩ [n]) and XI∩[n] respectively.

Total Variation Distance. Recall that the total variation distance between two distributions X and Y over a
finite domain D is

dTV (X,Y ) := (1/2) ·
∑
α∈D
|X(α)− Y (α)| = max

S⊆D
[X(S)− Y (S)].

Similarly, ifX and Y are two random variables ranging over a finite set, their total variation distance dTV (X,Y )
is defined as the total variation distance between their distributions. For convenience, we will often blur the
distinction between a random variable and its distribution.

Covers. Fix a finite domain D, and let P denote some set of distributions over D. Given δ > 0, a subset
Q ⊆ P is said to be a δ-cover of P (w.r.t. the total variation distance) if for every distribution P in P there exists
some distribution Q in Q such that dTV (P,Q) ≤ δ. We sometimes say that distributions P,Q are δ-neighbors
if dTV (P,Q) ≤ δ. If this holds, we also say that P is δ-close to Q and vice versa.

Poisson Binomial Distribution. A Poisson binomial distribution of order n ∈ N is the discrete probability
distribution of the sum

∑n
i=1Xi of nmutually independent Bernoulli random variablesX1, . . . , Xn. We denote

the set of all Poisson binomial distributions of order n by Sn and, if n is clear from context, just S .
A Poisson binomial distribution D ∈ Sn can be represented uniquely as a vector (pi)

n
i=1 satisfying 0 ≤

p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. To go from D ∈ Sn to its corresponding vector, we find a collection X1, . . . , Xn of
mutually independent Bernoullis such that

∑n
i=1Xi is distributed according to D and E[X1] ≤ . . . ≤ E[Xn].

(Such a collection exists by the definition of a Poisson binomial distribution.) Then we set pi = E[Xi] for all i.
Lemma 1 of [DP13] shows that the resulting vector (p1, . . . , pn) is unique.

We denote by PBD(p1, . . . , pn) the distribution of the sum
∑n

i=1Xi of mutually independent indicators
X1, . . . , Xn with expectations pi = E[Xi], for all i. Given the above discussion PBD(p1, . . . , pn) is unique
up to permutation of the pi’s. We also sometimes write {Xi} to denote the distribution of

∑n
i=1Xi. Note the

difference between {Xi}, which refers to the distribution of
∑

iXi, and {Xi}i, which refers to the underlying
collection of mutually independent Bernoulli random variables.
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Translated Poisson Distribution. We will make use of the translated Poisson distribution for approximating
the Poisson Binomial distribution. We define the translated Poisson distribution, and state a known result on
how well it approximates the Poisson Binomial distribution.

Definition 1 ([R0̈7]). We say that an integer random variable Y is distributed according to the translated Poisson
distribution with parameters µ and σ2 iff Y can be written as

Y = bµ− σ2c+ Z,

where {µ − σ2} represents the fractional part of µ − σ2, and Z is a random variable distributed according to
Poisson(σ2 + {µ− σ2}).

Lemma 1 (see (3.4) of [R0̈7]). Let J1, . . . , Jn be independent random indicators with E[Ji] = pi. Then

dTV

(
n∑
i=1

Ji, TP (µ, σ2)

)
≤

√∑n
i=1 p

3
i (1− pi) + 2∑n

i=1 pi(1− pi)
,

where µ =
∑n

i=1 pi and σ2 =
∑n

i=1 pi(1− pi).

The following bound on the total variation distance between translated Poisson distributions will be useful.

Lemma 2 (Lemma 2.1 of [BL06]). For µ1, µ2 ∈ R and σ2
1, σ

2
2 ∈ R+ with bµ1 − σ2

1c ≤ bµ2 − σ2
2c, we have

dTV (TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤ |µ1 − µ2|

σ1
+
|σ2

1 − σ2
2|+ 1

σ2
1

.

Running Times, and Bit Complexity. Throughout this paper, we measure the running times of our algorithms
in numbers of bit operations. For a positive integer n, we denote by 〈n〉 its description complexity in binary,
namely 〈n〉 = dlog2 ne. Moreover, we represent a positive rational number q as q1

q2
, where q1 and q2 are relatively

prime positive integers. The description complexity of q is defined to be 〈q〉 = 〈q1〉+ 〈q2〉. We will assume that
all ε’s and δ’s input to our algorithms are rational numbers.

2 Learning an unknown sum of Bernoulli random variables from poly(1/ε)
samples

In this section, we prove Theorem 1 by providing a sample- and time-efficient algorithm for learning an unknown
PBD X =

∑n
i=1Xi. We start with an important ingredient in our analysis.

A cover for PBDs. We make use of the following theorem, which provides a cover of the set S = Sn of all
PBDs of order-n. The theorem was given implicitly in [DP11] and explicitly as Theorem 1 in [DP13].

Theorem 4 (Cover for PBDs). For all ε > 0, there exists an ε-cover Sε ⊆ S of S such that

1. |Sε| ≤ n2 + n ·
(

1
ε

)O(log2 1/ε); and

2. Sε can be constructed in time linear in its representation size, i.e.,O(n2 log n)+O(n log n)·
(

1
ε

)O(log2 1/ε).

Moreover, if {Yi} ∈ Sε, then the collection of random variables {Yi}i has one of the following forms, where
k = k(ε) ≤ C/ε is a positive integer, for some absolute constant C > 0:

(i) (k-Sparse Form) There is some ` ≤ k3 = O(1/ε3) such that, for all i ≤ `, E[Yi] ∈
{

1
k2
, 2
k2
, . . . , k

2−1
k2

}
and, for all i > `, E[Yi] ∈ {0, 1}.
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(ii) (k-heavy Binomial Form) There is some ` ∈ {1, . . . , n} and q ∈
{

1
n ,

2
n , . . . ,

n
n

}
such that, for all i ≤ `,

E[Yi] = q and, for all i > `, E[Yi] = 0; moreover, `, q satisfy `q ≥ k2 and `q(1− q) ≥ k2 − k − 1.

Finally, for every {Xi} ∈ S for which there is no ε-neighbor in Sε that is in sparse form, there exists some
{Yi} ∈ Sε in k-heavy Binomial form such that

(iii) dTV (
∑

iXi,
∑

i Yi) ≤ ε; and

(iv) if µ = E[
∑

iXi], µ′ = E[
∑

i Yi], σ
2 = Var[

∑
iXi] and σ′2 = Var[

∑
i Yi], then |µ − µ′| = O(1) and

|σ2 − σ′2| = O(1 + ε · (1 + σ2)).

We remark that the cover theorem as stated in [DP13] does not include the part of the above statement following
“finally.” We provide a proof of this extension in Appendix A.

The Basic Learning Algorithm. Theorem 1 is established by making use of algorithm Learn-PBD of Fig-
ure 1, with appropriate modifications. These modifications are of technical nature, and are postponed to Sec-
tion 2.4.

Learn-PBD

1. Run Learn-SparseX(n, ε, δ/3) to get hypothesis distribution HS .
2. Run Learn-PoissonX(n, ε, δ/3) to get hypothesis distribution HP .
3. Return the distribution which is the output of Choose-HypothesisX(HS , HP , ε, δ/3).

Figure 1: Learn-PBD

At a high level, the subroutine Learn-Sparse is given sample access to X and is designed to find an
ε-accurate hypothesis HS with probability at least 1 − δ/3, if the unknown PBD X is ε-close to some sparse
form PBD inside the cover Sε. Similarly, Learn-Poisson is designed to find an ε-accurate hypothesis HP ,
if X is not ε-close to a sparse form PBD (in this case, Theorem 4 implies that X must be ε-close to some k(ε)-
heavy Binomial form PBD). Finally, Choose-Hypothesis is designed to choose one of the two hypotheses
HS , HP as being ε-close toX. The following subsections specify these subroutines, as well as how the algorithm
can be used to establish Theorem 1. We note that Learn-Sparse and Learn-Poisson do not return
the distributions HS and HP as a list of probabilities for every point in [n]. They return instead a succinct
description of these distributions in order to keep the running time of the algorithm logarithmic in n. Similarly,
Choose-Hypothesis operates with succinct descriptions of these distributions.

2.1 Learning when X is close to a sparse form PBD.

Our starting point here is the simple observation that any PBD is a unimodal distribution over the domain
{0, 1, . . . , n}. (There is a simple inductive proof of this, or see Section 2 of [KG71].) This enables us to use the
algorithm of Birgé [Bir97] for learning unimodal distributions. We recall Birgé’s result, and refer the reader to
Appendix B for an explanation of how Theorem 5 as stated below follows from [Bir97].

Theorem 5 ([Bir97]). For all n, ε, δ > 0, there is an algorithm that draws

O

(
log n

ε3
log

1

δ
+

1

ε2
log

1

δ
log log

1

δ

)
samples from an unknown unimodal distribution X over [n], does

Õ

(
log2 n

ε3
log2 1

δ

)
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bit-operations, and outputs a (succinct description of a) hypothesis distributionH over [n] that has the following
form: H is uniform over subintervals [a1, b1], [a2, b2], . . . , [ak, bk], whose union ∪ki=1[ai, bi] = [n], where k =

O
(

logn
ε

)
. In particular, the algorithm outputs the lists a1 through ak and b1 through bk, as well as the total

probability mass thatH assigns to each subinterval [ai, bi], i = 1, . . . , k. Finally, with probability at least 1−δ,
dTV (X,H) ≤ ε.

The main result of this subsection is the following:

Lemma 3. For all n, ε′, δ′ > 0, there is an algorithm Learn-SparseX(n, ε′, δ′) that draws

O

(
1

ε′3
log

1

ε′
log

1

δ′
+

1

ε′2
log

1

δ′
log log

1

δ′

)
samples from a target PBD X over [n], does

log n · Õ
(

1

ε′3
log2 1

δ′

)
bit operations, and outputs a (succinct description of a) hypothesis distribution HS over [n] that has the fol-
lowing form: its support is contained in an explicitly specified interval [a, b] ⊂ [n], where |b − a| = O(1/ε′3),
and for every point in [a, b] the algorithm explicitly specifies the probability assigned to that point by HS . 4

The algorithm has the following guarantee: if X is ε′-close to some sparse form PBD Y in the cover Sε′ of
Theorem 4, then with probability at least 1 − δ′, dTV (X,HS) ≤ c1ε

′, for some absolute constant c1 ≥ 1, and
the support of HS lies in the support of Y .

The high-level idea of Lemma 3 is quite simple. We truncate O(ε′) of the probability mass from each end
of X to obtain a conditional distribution X[â,b̂]; since X is unimodal so is X[â,b̂]. If b̂− â is larger than O(1/ε′3)
then the algorithm outputs “fail” (and X could not have been close to a sparse-form distribution in the cover).
Otherwise, we use Birgé’s algorithm to learn the unimodal distribution X[â,b̂].

Proof of Lemma 3: The Algorithm Learn-SparseX(n, ε′, δ′) works as follows: It first drawsM = 32 log(8/δ′)/ε′2

samples from X and sorts them to obtain a list of values 0 ≤ s1 ≤ · · · ≤ sM ≤ n. In terms of these samples, let
us define â := sd2ε′Me and b̂ := sb(1−2ε′)Mc. We claim the following:

Claim 4. With probability at least 1 − δ′/2, we have X(≤ â) ∈ [3ε′/2, 5ε′/2] and X(≤ b̂) ∈ [1 − 5ε′/2, 1 −
3ε′/2].

Proof. We only show that X(≤ â) ≥ 3ε′/2 with probability at least 1 − δ′/8, since the arguments for X(≤
â) ≤ 5ε′/2, X(≤ b̂) ≤ 1− 3ε′/2 and X(≤ b̂) ≥ 1− 5ε′/2 are identical. Given that each of these conditions is
met with probability at least 1− δ′/8, the union bound establishes our claim.

To show that X(≤ â) ≥ 3ε′/2 is satisfied with probability at least 1 − δ′/8 we argue as follows: Let α′ =
max{i | X(≤ i) < 3ε′/2}. Clearly, X(≤ α′) < 3ε′/2 while X(≤ α′ + 1) ≥ 3ε′/2. Given this, if M samples
are drawn from X then the expected number of them that are ≤ α′ is at most 3ε′M/2. It follows then from
the Chernoff bound that the probability that more than 7

4ε
′M samples are ≤ α′ is at most e−(ε′/4)2M/2 ≤ δ′/8.

Hence except with this failure probability, we have â ≥ α′ + 1, which implies that X(≤ â) ≥ 3ε′/2.

If b̂ − â > (C/ε′)3, where C is the constant in the statement of Theorem 4, the algorithm outputs “fail”,
returning the trivial hypothesis which puts probability mass 1 on the point 0. Otherwise, the algorithm runs
Birgé’s unimodal distribution learner (Theorem 5) on the conditional distribution X[â,b̂], and outputs the result
of Birgé’s algorithm. Since X is unimodal, it follows that X[â,b̂] is also unimodal, hence Birgé’s algorithm is

4In particular, our algorithm will output a list of pointers, mapping every point in [a, b] to some memory location where the probability
assigned to that point by HS is written.
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appropriate for learning it. The way we apply Birgé’s algorithm to learn X[â,b̂] given samples from the original

distribution X is the obvious one: we draw samples from X , ignoring all samples that fall outside of [â, b̂], until
the right O(log(1/δ′) log(1/ε′)/ε′3) number of samples fall inside [â, b̂], as required by Birgé’s algorithm for
learning a distribution of support of size (C/ε′)3 with probability at least 1−δ′/4. Once we have the right number
of samples in [â, b̂], we run Birgé’s algorithm to learn the conditional distribution X[â,b̂]. Note that the number
of samples we need to draw from X until the right O(log(1/δ′) log(1/ε′)/ε′3) number of samples fall inside
[â, b̂] is still O(log(1/δ′) log(1/ε′)/ε′3), with probability at least 1− δ′/4. Indeed, since X([â, b̂]) = 1−O(ε′),
it follows from the Chernoff bound that with probability at least 1 − δ′/4, if K = Θ(log(1/δ′) log(1/ε′)/ε′3)
samples are drawn from X , at least K(1−O(ε′)) fall inside [â, b̂].

Analysis: It is easy to see that the sample complexity of our algorithm is as promised. For the running time,
notice that, if Birgé’s algorithm is invoked, it will return two lists of numbers a1 through ak and b1 through
bk, as well as a list of probability masses q1, . . . , qk assigned to each subinterval [ai, bi], i = 1, . . . , k, by the
hypothesis distribution HS , where k = O(log(1/ε′)/ε′). In linear time, we can compute a list of probabilities
q̂1, . . . , q̂k, representing the probability assigned by HS to every point of subinterval [ai, bi], for i = 1, . . . , k.
So we can represent our output hypothesis HS via a data structure that maintains O(1/ε′3) pointers, having
one pointer per point inside [a, b]. The pointers map points to probabilities assigned by HS to these points.
Thus turning the output of Birgé’s algorithm into an explicit distribution over [a, b] incurs linear overhead in our
running time, and hence the running time of our algorithm is also as promised. Moreover, we also note that the
output distribution has the promised structure, since in one case it has a single atom at 0 and in the other case it
is the output of Birgé’s algorithm on a distribution of support of size (C/ε′)3.

It only remains to justify the last part of the lemma. Let Y be the sparse-form PBD that X is close to;
say that Y is supported on {a′, . . . , b′} where b′ − a′ ≤ (C/ε′)3. Since X is ε′-close to Y in total variation
distance it must be the case that X(≤ a′ − 1) ≤ ε′. Since X(≤ â) ≥ 3ε′/2 by Claim 4, it must be the
case that â ≥ a′. Similar arguments give that b̂ ≤ b′. So the interval [â, b̂] is contained in [a′, b′] and has
length at most (C/ε′)3. This means that Birgé’s algorithm is indeed used correctly by our algorithm to learn
X[â,b̂], with probability at least 1 − δ′/2 (that is, unless Claim 4 fails). Now it follows from the correctness of
Birgé’s algorithm (Theorem 5) and the discussion above, that the hypothesis HS output when Birgé’s algorithm
is invoked satisfies dTV (HS , X[â,b̂]) ≤ ε

′, with probability at least 1− δ′/2, i.e., unless either Birgé’s algorithm

fails, or we fail to get the right number of samples landing inside [â, b̂]. To conclude the proof of the lemma we
note that:

2dTV (X,X[â,b̂]) =
∑
i∈[â,b̂]

|X[â,b̂](i)−X(i)|+
∑
i/∈[â,b̂]

|X[â,b̂](i)−X(i)|

=
∑
i∈[â,b̂]

∣∣∣ 1

X([â, b̂])
X(i)−X(i)

∣∣∣+
∑
i/∈[â,b̂]

X(i)

=
∑
i∈[â,b̂]

∣∣∣ 1

1−O(ε′)
X(i)−X(i)

∣∣∣+O(ε′)

=
O(ε′)

1−O(ε′)

∑
i∈[â,b̂]

∣∣∣X(i)
∣∣∣+O(ε′)

= O(ε′).

So the triangle inequality gives: dTV (HS , X) = O(ε′), and Lemma 3 is proved. �

2.2 Learning when X is close to a k-heavy Binomial Form PBD.

Lemma 5. For all n, ε′, δ′ > 0, there is an algorithm Learn-PoissonX(n, ε′, δ′) that draws

O(log(1/δ′)/ε′2)
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samples from a target PBD X over [n], does

O(log n · log(1/δ′)/ε′2)

bit operations, and returns two parameters µ̂ and σ̂2. The algorithm has the following guarantee: Suppose X
is not ε′-close to any sparse form PBD in the cover Sε′ of Theorem 4. Let HP = TP (µ̂, σ̂2) be the translated
Poisson distribution with parameters µ̂ and σ̂2. Then with probability at least 1−δ′ we have dTV (X,HP ) ≤ c2ε

′

for some absolute constant c2 ≥ 1.

Our proof plan is to exploit the structure of the cover of Theorem 4. In particular, if X is not ε′-close to any
sparse form PBD in the cover, it must be ε′-close to a PBD in heavy Binomial form with approximately the same
mean and variance asX , as specified by the final part of the cover theorem. Hence, a natural strategy is to obtain
estimates µ̂ and σ̂2 of the mean and variance of the unknown PBD X , and output as a hypothesis a translated
Poisson distribution with parameters µ̂ and σ̂2. We show that this strategy is a successful one. Before providing
the details, we highlight two facts that we will establish in the subsequent analysis and that will be used later.
The first is that, assuming X is not ε′-close to any sparse form PBD in the cover Sε′ , its variance σ2 satisfies

σ2 = Ω(1/ε′2) ≥ θ2 for some universal constant θ. (1)

The second is that under the same assumption, the estimates µ̂ and σ̂2 of the mean µ and variance σ2 of X that
we obtain satisfy the following bounds with probability at least 1− δ:

|µ− µ̂| ≤ ε′ · σ and |σ2 − σ̂2| ≤ ε′ · σ2. (2)

Proof of Lemma 5: We start by showing that we can estimate the mean and variance of the target PBD X .

Lemma 6. For all n, ε, δ > 0, there exists an algorithm A(n, ε, δ) with the following properties: given access
to a PBD X of order n, it produces estimates µ̂ and σ̂2 for µ = E[X] and σ2 = Var[X] respectively such that
with probability at least 1− δ:

|µ− µ̂| ≤ ε · σ and |σ2 − σ̂2| ≤ ε · σ2

√
4 +

1

σ2
.

The algorithm uses
O(log(1/δ)/ε2)

samples and runs in time
O(log n log(1/δ)/ε2).

Proof. We treat the estimation of µ and σ2 separately. For both estimation problems we show how to use
O(1/ε2) samples to obtain estimates µ̂ and σ̂2 achieving the required guarantees with probability at least 2/3.
Then a routine procedure allows us to boost the success probability to 1−δ at the expense of a multiplicative fac-
torO(log 1/δ) on the number of samples. While we omit the details of the routine boosting argument, we remind
the reader that it involves running the weak estimator O(log 1/δ) times to obtain estimates µ̂1, . . . , µ̂O(log 1/δ)

and outputting the median of these estimates, and similarly for estimating σ2.
We proceed to specify and analyze the weak estimators for µ and σ2 separately:

• Weak estimator for µ: Let Z1, . . . , Zm be independent samples from X , and let µ̂ =
∑
i Zi
m . Then

E[µ̂] = µ and Var[µ̂] =
1

m
Var[X] =

1

m
σ2.

So Chebyshev’s inequality implies that

Pr[|µ̂− µ| ≥ tσ/
√
m] ≤ 1

t2
.

Choosing t =
√

3 and m = d3/ε2e, the above imply that |µ̂− µ| ≤ εσ with probability at least 2/3.
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• Weak estimator for σ2: Let Z1, . . . , Zm be independent samples from X , and let σ̂2 =
∑
i(Zi−

1
m

∑
i Zi)

2

m−1
be the unbiased sample variance. (Note the use of Bessel’s correction.) Then it can be checked [Joh03]
that

E[σ̂2] = σ2 and Var[σ̂2] = σ4

(
2

m− 1
+
κ

m

)
,

where κ is the kurtosis of the distribution of X . To bound κ in terms of σ2 suppose that X =
∑n

i=1Xi,
where E[Xi] = pi for all i. Then

κ =
1

σ4

∑
i

(1− 6pi(1− pi))(1− pi)pi (see [NJ05])

≤ 1

σ4

∑
i

(1− pi)pi =
1

σ2
.

Hence, Var[σ̂2] = σ4
(

2
m−1 + κ

m

)
≤ σ4

m (4 + 1
σ2 ). So Chebyshev’s inequality implies that

Pr

[
|σ̂2 − σ2| ≥ t σ

2

√
m

√
4 +

1

σ2

]
≤ 1

t2
.

Choosing t =
√

3 and m = d3/ε2e, the above imply that |σ̂2 − σ2| ≤ εσ2
√

4 + 1
σ2 with probability at

least 2/3.

We proceed to prove Lemma 5. Learn-PoissonX(n, ε′, δ′) runs A(n, ε, δ) from Lemma 6 with ap-
propriately chosen ε = ε(ε′) and δ = δ(δ′), given below, and then outputs the translated Poisson distribution
TP (µ̂, σ̂2), where µ̂ and σ̂2 are the estimated mean and variance of X output by A. Next, we show how to
choose ε and δ, as well as why the desired guarantees are satisfied by the output distribution.

If X is not ε′-close to any PBD in sparse form inside the cover Sε′ of Theorem 4, there exists a PBD Z in
(k = O(1/ε′))-heavy Binomial form inside Sε′ that is within total variation distance ε′ from X . We use the
existence of such Z to obtain lower bounds on the mean and variance ofX . Indeed, suppose that the distribution
of Z is Bin(`, q), a Binomial with parameters `, q. Then Theorem 4 certifies that the following conditions are
satisfied by the parameters `, q, µ = E[X] and σ2 = Var[X]:

(a) `q ≥ k2;

(b) `q(1− q) ≥ k2 − k − 1;

(c) |`q − µ| = O(1); and

(d) |`q(1− q)− σ2| = O(1 + ε′ · (1 + σ2)).

In particular, conditions (b) and (d) above imply that

σ2 = Ω(k2) = Ω(1/ε′2) ≥ θ2,

for some universal constant θ, establishing (1). In terms of this θ, we choose ε = ε′/
√

4 + 1
θ2

and δ = δ′ for the

application of Lemma 6 to obtain—from O(log(1/δ′)/ε′2) samples—estimates µ̂ and σ̂2 of µ and σ2.
From our choice of parameters and the guarantees of Lemma 6, it follows that, if X is not ε′-close to any

PBD in sparse form inside the cover Sε′ , then with probability at least 1− δ′ the estimates µ̂ and σ̂2 satisfy:

|µ− µ̂| ≤ ε′ · σ and |σ2 − σ̂2| ≤ ε′ · σ2,

establishing (2). Moreover, if Y is a random variable distributed according to the translated Poisson distribution
TP (µ̂, σ̂2), we show thatX and Y are withinO(ε′) in total variation distance, concluding the proof of Lemma 5.
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Claim 7. If X and Y are as above, then dTV (X,Y ) ≤ O(ε′).

Proof. We make use of Lemma 1. Suppose that X =
∑n

i=1Xi, where E[Xi] = pi for all i. Lemma 1 implies
that

dTV (X,TP (µ, σ2)) ≤

√∑
i p

3
i (1− pi) + 2∑

i pi(1− pi)

≤
√∑

i pi(1− pi) + 2∑
i pi(1− pi)

≤ 1√∑
i pi(1− pi)

+
2∑

i pi(1− pi)

=
1

σ
+

2

σ2

= O(ε′). (3)

It remains to bound the total variation distance between the translated Poisson distributions TP (µ, σ2) and
TP (µ̂, σ̂2). For this we use Lemma 2. Lemma 2 implies

dTV (TP (µ, σ2), TP (µ̂, σ̂2)) ≤ |µ− µ̂|
min(σ, σ̂)

+
|σ2 − σ̂2|+ 1

min(σ2, σ̂2)

≤ ε′σ

min(σ, σ̂)
+

ε′ · σ2 + 1

min(σ2, σ̂2)

≤ ε′σ

σ/
√

1− ε′
+

ε′ · σ2 + 1

σ2/(1− ε′)

= O(ε′) +
O(1− ε′)

σ2

= O(ε′) +O(ε′2)

= O(ε′). (4)

The claim follows from (3), (4) and the triangle inequality.

The proof of Lemma 5 is concluded. We remark that the algorithm described above does not need to know
a priori whether or not X is ε′-close to a PBD in sparse form inside the cover Sε′ of Theorem 4. The algorithm

simply runs the estimator of Lemma 6 with ε = ε′/
√

4 + 1
θ2

and δ′ = δ and outputs whatever estimates µ̂ and

σ̂2 the algorithm of Lemma 6 produces. �

2.3 Hypothesis testing.

Our hypothesis testing routine Choose-HypothesisX uses samples from the unknown distribution X to
run a “competition” between two candidate hypothesis distributions H1 and H2 over [n] that are given in the
input. We show that if at least one of the two candidate hypotheses is close to the unknown distribution X , then
with high probability over the samples drawn from X the routine selects as winner a candidate that is close to
X . This basic approach of running a competition between candidate hypotheses is quite similar to the “Scheffé
estimate” proposed by Devroye and Lugosi (see [DL96b, DL96a] and Chapter 6 of [DL01], as well as [Yat85]),
but our notion of competition here is different.

We obtain the following lemma, postponing all running-time analysis to the next section.
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Lemma 8. There is an algorithm Choose-HypothesisX(H1, H2, ε
′, δ′) which is given sample access to

distribution X , two hypothesis distributions H1, H2 for X , an accuracy parameter ε′ > 0, and a confidence
parameter δ′ > 0. It makes

m = O(log(1/δ′)/ε′2)

draws from X and returns some H ∈ {H1, H2}. If dTV (Hi, X) ≤ ε′ for some i ∈ {1, 2}, then with probability
at least 1− δ′ the distribution H that Choose-Hypothesis returns has dTV (H,X) ≤ 6ε′.

Proof of Lemma 8: We first describe how the competition between H1 and H2 is carried out.

Choose-Hypothesis
INPUT: Sample access to distribution X; a pair of hypothesis distributions (H1, H2); ε′, δ′ > 0.

Let W be the support of X , W1 = W1(H1, H2) := {w ∈ W H1(w) > H2(w)}, and p1 = H1(W1), p2 =
H2(W1). /* Clearly, p1 > p2 and dTV (H1, H2) = p1 − p2. */

1. If p1 − p2 ≤ 5ε′, declare a draw and return either Hi. Otherwise:

2. Draw m = 2 log(1/δ′)
ε′2 samples s1, . . . , sm from X , and let τ = 1

m |{i | si ∈ W1}| be the fraction of
samples that fall insideW1.

3. If τ > p1 − 3
2ε
′, declare H1 as winner and return H1; otherwise,

4. if τ < p2 + 3
2ε
′, declare H2 as winner and return H2; otherwise,

5. declare a draw and return either Hi.

The correctness of Choose-Hypothesis is an immediate consequence of the following claim. (In fact
for Lemma 8 we only need item (i) below, but item (ii) will be handy later in the proof of Lemma 10.)

Claim 9. Suppose that dTV (X,Hi) ≤ ε′, for some i ∈ {1, 2}. Then:

(i) if dTV (X,H3−i) > 6ε′, the probability that Choose-HypothesisX(H1, H2, ε
′, δ′) does not declare

Hi as the winner is at most 2e−mε
′2/2, where m is chosen as in the description of the algorithm. (Intu-

itively, if H3−i is very bad then it is very likely that Hi will be declared winner.)

(ii) if dTV (X,H3−i) > 4ε′, the probability that Choose-HypothesisX(H1, H2, ε
′, δ′) declares H3−i as

the winner is at most 2e−mε
′2/2. (Intuitively, if H3−i is only moderately bad then a draw is possible but it

is very unlikely that H3−i will be declared winner.)

Proof. Let r = X(W1). The definition of the total variation distance implies that |r − pi| ≤ ε′. Let us
define independent indicators {Zj}mj=1 such that, for all j, Zj = 1 iff sj ∈ W1. Clearly, τ = 1

m

∑m
j=1 Zj

and E[τ ] = E[Zj ] = r. Since the Zj’s are mutually independent, it follows from the Chernoff bound that
Pr[|τ − r| ≥ ε′/2] ≤ 2e−mε

′2/2. Using |r − pi| ≤ ε′ we get that Pr[|τ − pi| ≥ 3ε′/2] ≤ 2e−mε
′2/2. Hence:

• For part (i): If dTV (X,H3−i) > 6ε′, from the triangle inequality we get that p1 − p2 = dTV (H1, H2) >
5ε′. Hence, the algorithm will go beyond step 1, and with probability at least 1 − 2e−mε

′2/2, it will stop
at step 3 (when i = 1) or step 4 (when i = 2), declaring Hi as the winner of the competition between H1

and H2.

• For part (ii): If p1 − p2 ≤ 5ε′ then the competition declares a draw, hence H3−i is not the winner.
Otherwise we have p1 − p2 > 5ε′ and the above arguments imply that the competition between H1 and
H2 will declare H3−i as the winner with probability at most 2e−mε

′2/2.

This concludes the proof of Claim 9.
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In view of Claim 9, the proof of Lemma 8 is concluded. �

Our Choose-Hypothesis algorithm implies a generic learning algorithm of independent interest.

Lemma 10. Let S be an arbitrary set of distributions over a finite domain. Moreover, let Sε ⊆ S be an ε-cover
of S of size N , for some ε > 0. For all δ > 0, there is an algorithm that uses

O(ε−2 logN log(1/δ))

samples from an unknown distribution X ∈ S and, with probability at least 1− δ, outputs a distribution Z ∈ Sε
that satisfies dTV (X,Z) ≤ 6ε.

Proof. The algorithm performs a tournament, by running Choose-HypothesisX(Hi, Hj , ε, δ/(4N)) for
every pair (Hi, Hj), i < j, of distributions in Sε. Then it outputs any distribution Y ? ∈ Sε that was never a
loser (i.e., won or tied against all other distributions in the cover). If no such distribution exists in Sε then the
algorithm says “failure,” and outputs an arbitrary distribution from Sε.

Since Sε is an ε-cover of S, there exists some Y ∈ Sε such that dTV (X,Y ) ≤ ε. We first argue that with
high probability this distribution Y never loses a competition against any other Y ′ ∈ Sε (so the algorithm does
not output “failure”). Consider any Y ′ ∈ Sε. If dTV (X,Y ′) > 4ε, by Claim 9(ii) the probability that Y
loses to Y ′ is at most 2e−mε

2/2≤ δ
2N . On the other hand, if dTV (X,Y ′) ≤ 4ε, the triangle inequality gives that

dTV (Y, Y ′) ≤ 5ε and thus Y draws against Y ′. A union bound over all N − 1 distributions in Sε \ {Y } shows
that with probability at least 1− δ/2, the distribution Y never loses a competition.

We next argue that with probability at least 1 − δ/2, every distribution Y ′ ∈ Sε that never loses must be
close to X. Fix a distribution Y ′ such that dTV (Y ′, X) > 6ε. Lemma 9(i) implies that Y ′ loses to Y with
probability at least 1 − 2e−mε

2/2 ≥ 1 − δ/(2N). A union bound gives that with probability at least 1 − δ/2,
every distribution Y ′ that has dTV (Y ′, X) > 6ε loses some competition.

Thus, with overall probability at least 1 − δ, the tournament does not output “failure” and outputs some
distribution Y ? such that dTV (X,Y ?) ≤ 6ε. This proves the lemma.

We note that Devroye and Lugosi (Chapter 7 of [DL01]) prove a similar result, but there are some differ-
ences. They also have all pairs of distributions in the cover compete against each other, but they use a different
notion of competition between every pair. Moreover, their approach chooses a distribution in the cover that wins
the maximum number of competitions, whereas our algorithm chooses a distribution that is never defeated (i.e.,
won or tied against all other distributions in the cover).

2.4 Proof of Theorem 1.

We first show Part (1) of the theorem, where the learning algorithm may output any distribution over [n] and
not necessarily a PBD. Our algorithm has the structure outlined in Figure 1 with the following modifications:
(a) first, if the total variation distance to within which we want to learn X is ε, the second argument of both
Learn-Sparse and Learn-Poisson is set to ε

12 max{c1,c2} , where c1 and c2 are respectively the con-

stants from Lemmas 3 and 5; (b) we replace the third step with Choose-HypothesisX(HS , ĤP , ε/8, δ/3),
where ĤP is defined in terms of HP as described below; and (c) if Choose-Hypothesis returns HS , then
Learn-PBD also returns HS , while if Choose-Hypothesis returns ĤP , then Learn-PBD returns HP .

Definition of ĤP : ĤP is defined in terms of HP and the support of HS in three steps: (i) for all points
i such that HS(i) = 0, we let ĤP (i) = HP (i); (ii) for all points i such that HS(i) 6= 0, we describe in
Appendix C an efficient deterministic algorithm that numerically approximates HP (i) to within an additive
error of ±ε/48s, where s = O(1/ε3) is the cardinality of the support of HS . If ĤP,i is the approximation to
HP (i) output by the algorithm, we set ĤP (i) = max{0, ĤP,i − ε/48s}; notice then that HP (i) − ε/24s ≤
ĤP (i) ≤ HP (i); finally (iii) for an arbitrary point i such that HS(i) = 0, we set ĤP (i) = 1 −

∑
j 6=i ĤP (j),
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to make sure that ĤP is a probability distribution. Observe that ĤP satisfies dTV (ĤP , HP ) ≤ ε/24, and
therefore |dTV (ĤP , X) − dTV (X,HP )| ≤ ε/24. Hence, if dTV (X,HP ) ≤ ε

12 , then dTV (X, ĤP ) ≤ ε
8 and, if

dTV (X, ĤP ) ≤ 6ε
8 , then dTV (X,HP ) ≤ ε.

We remark that the reason why we do not wish to use HP directly in Choose-Hypothesis is purely
computational. In particular, since HP is a translated Poisson distribution, we cannot compute its probabilities
HP (i) exactly, and we need to approximate them. On the other hand, we need to make sure that using approx-
imate values will not cause Choose-Hypothesis to make a mistake. Our ĤP is carefully defined so as to
make sure that Choose-Hypothesis selects a probability distribution that is close to the unknown X , and
that all probabilities that Choose-Hypothesis needs to compute can be computed without much overhead.
In particular, we remark that, in running Choose-Hypothesis, we do not a priori compute the value of ĤP

at every point; we do instead a lazy evaluation of ĤP , as explained in the running-time analysis below.
We proceed now to the analysis of our modified algorithm Learn-PBD. The sample complexity bound and

correctness of our algorithm are immediate consequences of Lemmas 3, 5 and 8, taking into account the precise
choice of constants and the distance between HP and ĤP . Next, let us bound the running time. Lemmas 3
and 5 bound the running time of Steps 1 and 2 of the algorithm, so it remains to bound the running time of
the Choose-Hypothesis step. Notice that W1(HS , ĤP ) is a subset of the support of the distribution HS .
Hence to computeW1(HS , ĤP ) it suffices to determine the probabilities HS(i) and ĤP (i) for every point i in
the support of HS . For every such i, HS(i) is explicitly given in the output of Learn-Sparse, so we only
need to compute ĤP (i). It follows from Theorem 6 (Appendix C) that the time needed to compute ĤP (i) is
Õ(log(1/ε)3 +log(1/ε) · (log n+ 〈µ̂〉+ 〈σ̂2〉)). Since µ̂ and σ̂2 are output by Learn-Poisson, by inspection
of that algorithm it is easy to see that they each have bit complexity at most O(log n + log(1/ε)) bits. Hence,
given that the support of HS has cardinality O(1/ε3), the overall time spent computing the probabilities ĤP (i)
for every point i in the support of HS is Õ( 1

ε3
log n). After W1 is computed, the computation of the values

p1 = HS(W1), q1 = ĤP (W1) and p1−q1 takes time linear in the data produced by the algorithm so far, as these
computations merely involve adding and subtracting probabilities that have already been explicitly computed by
the algorithm. Computing the fraction of samples fromX that fall insideW1 takes timeO

(
log n · log(1/δ)/ε2

)
and the rest of Choose-Hypothesis takes time linear in the size of the data that have been written down so
far. Hence the overall running time of our algorithm is Õ( 1

ε3
log n log2 1

δ ). This gives Part (1) of Theorem 1.

Now we turn to Part (2) of Theorem 1, the proper learning result. We explain how to modify the algorithm
of Part (1) to produce a PBD that is within O(ε) of the unknown X . The main modifications are the following.
First, we replace Learn-Sparse with a different learning algorithm, Proper-Learn-Sparse, which is
based on Lemma 10, and always outputs a PBD. Second, we add a post-processing step to Learn-Poisson
that converts HP to a PBD. After we describe these new ingredients in detail, we describe our proper learning
algorithm.

1. Proper-Learn-SparseX(n, ε, δ): This procedure draws Õ(1/ε2) · log(1/δ) samples from X , does
(1/ε)O(log2(1/ε)) · Õ

(
log n · log 1

δ

)
bit operations, and outputs a PBD HS in sparse form. The guarantee

is similar to that of Learn-Sparse. Namely, if X is ε-close to some sparse form PBD Y in the cover
Sε of Theorem 4, then, with probability at least 1− δ over the samples drawn from X , dTV (X,HS) ≤ 6ε.

We proceed to describe the procedure in tandem with a proof of correctness. As in Learn-Sparse, we
start by truncating Θ(ε) of the probability mass from each end of X to obtain a conditional distribution
X[â,b̂]. In particular, we compute â and b̂ as described in the beginning of the proof of Lemma 3 (setting

ε′ = ε and δ′ = δ). Claim 4 implies that, with probability at least 1 − δ/2, X(≤ â), 1 − X(≤ b̂) ∈
[3ε/2, 5ε/2]. (Let us denote this event by G.) We distinguish the following cases:

• If b̂− â > ω = (C/ε)3, where C is the constant in the statement of Theorem 4, the algorithm outputs
“fail,” returning the trivial hypothesis that puts probability mass 1 on the point 0. Observe that, if
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b̂ − â > ω and X(≤ â), 1 − X(≤ b̂) ∈ [3ε/2, 5ε/2], then X cannot be ε-close to a sparse-form
distribution in the cover.
• If b̂ − â ≤ ω, then the algorithm proceeds as follows. Let S ′ε be an ε-cover of the set of all PBDs

of order ω, i.e., all PBDs which are sums of just ω Bernoulli random variables. By Theorem 4, it
follows that |S ′ε| = (1/ε)O(log2(1/ε)) and that S ′ε can be constructed in time (1/ε)O(log2(1/ε)). Now,
let S̃ε be the set of all distributions of the form A(x− β) where A is a distribution from S ′ε and β is
an integer “shift” which is in the range [â − ω, . . . , b̂]. Observe that there are O(1/ε3) possibilities
for β and |S ′ε| possibilities for A, so we similarly get that |S̃ε| = (1/ε)O(log2(1/ε) and that S̃ε can
be constructed in time (1/ε)O(log2(1/ε) log n. Our algorithm Proper-Learn-Sparse constructs
the set S̃ε and runs the tournament described in the proof of Lemma 10 (using S̃ε in place of Sε, and
δ/2 in place of δ). We will show that, if X is ε-close to some sparse form PBD Y ∈ Sε and event G
happens, then, with probability at least 1− δ

2 , the output of the tournament is a sparse PBD that is 6ε-
close to X .

Analysis: The sample complexity and running time of Proper-Learn-Sparse follow immediately
from Claim 4 and Lemma 10. To show correctness, it suffices to argue that, if X is ε-close to some sparse
form PBD Y ∈ Sε and event G happens, then X is ε-close to some distribution in S̃ε. Indeed, suppose
that Y is an order ω PBD Z translated by some β and suppose that X(≤ â), 1−X(≤ b̂) ∈ [3ε/2, 5ε/2].
Since at least 1− O(ε) of the mass of X is in [â, b̂], it is clear that β must be in the range [â− ω, . . . , b̂],
as otherwise X could not be ε-close to Y. So Y ∈ S̃ε.

2. Locate-Binomial(µ̂, σ̂2, n): This routine takes as input the output (µ̂, σ̂2) of Learn-PoissonX(n, ε, δ)
and computes a Binomial distribution HB , without any additional samples from X . The guarantee is that,
if X is not ε-close to any sparse form distribution in the cover Sε of Theorem 4, then, with probability at
least 1− δ (over the randomness in the output of Learn-Poisson), HB will be O(ε)-close to X .

Let µ and σ2 be the (unknown) mean and variance of distribution X and assume that X is not ε-close
to any sparse form distribution in Sε. Our analysis from Section 2.2 shows that, with probability at least
1 − δ, the output (µ̂, σ̂2) of Learn-PoissonX(n, ε, δ) satisfies that dTV (X,TP (µ̂, σ̂2)) = O(ε) as
well as the bounds (1) and (2) of Section 2.2 (with ε in place of ε′). We will call all these conditions our
“working assumptions.” We provide no guarantees when the working assumptions are not satisfied.

We proceed to describe Locate-Binomial. Our routine has three steps. The first two eliminate corner-
cases in the values of µ̂ and σ̂2, while the last step defines a Binomial distribution HB ≡ Bin(n̂, p̂) with
n̂ ≤ n that is O(ε)-close to HP ≡ TP (µ̂, σ̂2) and hence to X under our working assumptions. (We note
that a significant portion of the work below is to ensure that n̂ ≤ n, which does not seem to follow from
a more direct approach. Getting n̂ ≤ n is necessary in order for our learning algorithm for order-n PBDs
to be truly proper.) Throughout (a), (b) and (c) below we assume that our working assumptions hold. In
particular, our assumptions are used every time we employ the bounds (1) and (2) of Section 2.2.

(a) Tweaking σ̂2: If σ̂2 ≤ n
4 , we set σ2

1 = σ̂2; otherwise, we set σ2
1 = n

4 . We note for future reference
that in both cases (2) gives

(1− ε)σ2 ≤ σ2
1 ≤ (1 + ε)σ2, (5)

where the lower bound follows from (2) and the fact that any PBD satisfies σ2 ≤ n
4 .

We prove next that our setting of σ2
1 results in dTV (TP (µ̂, σ̂2), TP (µ̂, σ2

1)) ≤ O(ε). Indeed, if
σ̂2 ≤ n

4 then this distance is zero and the claim certainly holds. Otherwise we have that (1 + ε)σ2 ≥
σ̂2 > σ2

1 = n
4 ≥ σ

2, where we used (2). Hence, by Lemma 2 we get:

dTV (TP (µ̂, σ̂2), TP (µ̂, σ2
1)) ≤ |σ̂2 − σ2

1|+ 1

σ̂2

≤ εσ2 + 1

σ2
= O(ε), (6)
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where we used the fact that σ2 = Ω(1/ε2) from (1).

(b) Tweaking σ2
1: If µ̂2 ≤ n(µ̂ − σ2

1), set σ2
2 = σ2

1; otherwise, set σ2
2 = nµ̂−µ̂2

n . We claim that this
results in dTV (TP (µ̂, σ2

1), TP (µ̂, σ2
2)) ≤ O(ε). Indeed, if µ̂2 ≤ n(µ̂−σ2

1), then clearly the distance
is zero and the claim holds. Otherwise

• Observe first that σ2
1 > σ2

2 and σ2
2 ≥ 0, where the last assertion follows from the fact that µ̂ ≤ n

by construction.
• Next, suppose that X = PBD(p1, . . . , pn). Then from Cauchy-Schwarz we get that

µ2 =

(
n∑
i=1

pi

)2

≤ n

(
n∑
i=1

p2
i

)
= n(µ− σ2).

Rearranging this yields
µ(n− µ)

n
≥ σ2. (7)

We now have that

σ2
2 =

nµ̂− µ̂2

n
≥ n(µ− εσ)− (µ+ εσ)2

n

=
nµ− µ2 − ε2σ2 − εσ(n+ 2µ)

n

≥ σ2 − ε2

n
σ2 − 3εσ

≥ (1− ε2)σ2 − 3εσ ≥ (1−O(ε))σ2 (8)

where the first inequality follows from (2), the second inequality follows from (7) and the fact
that any PBD over n variables satisfies µ ≤ n, and the last one from (1).
• Given the above, we get by Lemma 2 that:

dTV (TP (µ̂, σ2
1), TP (µ̂, σ2

2)) ≤ σ2
1 − σ2

2 + 1

σ2
1

≤ (1 + ε)σ2 − (1−O(ε))σ2 + 1

(1− ε)σ2
= O(ε), (9)

where we used that σ2 = Ω(1/ε2) from (1).

(c) Constructing a Binomial Distribution: We construct a Binomial distribution HB that is O(ε)-close
to TP (µ̂, σ2

2). If we do this then, by (6), (9), our working assumption that dTV (HP , X) = O(ε),
and the triangle inequality, we have that dTV (HB, X) = O(ε) and we are done. The Binomial
distribution HB that we construct is Bin(n̂, p̂), where

n̂ =
⌊
µ̂2/(µ̂− σ2

2)
⌋

and p̂ = (µ̂− σ2
2)/µ̂.

Note that, from the way that σ2
2 is set in Step (b) above, we have that n̂ ≤ n and p̂ ∈ [0, 1], as

required for Bin(n̂, p̂) to be a valid Binomial distribution and a valid output for Part 2 of Theorem 1.
Let us bound the total variation distance between Bin(n̂, p̂) and TP (µ̂, σ2

2). First, using Lemma 1
we have:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂))

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)
. (10)
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Notice that

n̂p̂(1− p̂) ≥
(

µ̂2

µ̂− σ2
2

− 1

)(
µ̂− σ2

2

µ̂

)(
σ2

2

µ̂

)
= σ2

2 − p̂(1− p̂) ≥ (1−O(ε))σ2 − 1

≥ Ω(1/ε2),

where the second inequality uses (8) (or (5) depending on which case of Step (b) we fell into) and
the last one uses the fact that σ2 = Ω(1/ε2) from (1). So plugging this into (10) we get:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂)) = O(ε).

The next step is to compare TP (n̂p̂, n̂p̂(1− p̂)) and TP (µ̂, σ2
2). Lemma 2 gives:

dTV (TP (n̂p̂, n̂p̂(1− p̂)), TP (µ̂, σ2
2))

≤ |n̂p̂− µ̂|
min(

√
n̂p̂(1− p̂), σ2)

+
|n̂p̂(1− p̂)− σ2

2|+ 1

min(n̂p̂(1− p̂), σ2
2)

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)
= O(ε).

By the triangle inequality we get

dTV (Bin(n̂, p̂), TP (µ̂, σ2
2) = O(ε),

which was our ultimate goal.

3. Proper-Learn-PBD: Given the Proper-Learn-Sparse and Locate-Binomial routines de-
scribed above, we are ready to describe our proper learning algorithm. The algorithm is similar to our
non-proper learning one, Learn-PBD, with the following modifications: In the first step, instead of
running Learn-Sparse, we run Proper-Learn-Sparse to get a sparse from PBD HS . In the
second step, we still run Learn-Poisson as we did before to get a translated Poisson distribution
HP . Then we run Choose-Hypothesis feeding it HS and HP as input. If the distribution re-
turned by Choose-Hypothesis is HS , we just output HS . If it returns HP instead, then we run
Locate-Binomial to convert it to a Binomial distribution that is still close to the unknown distribu-
tion X . We tune the parameters ε and δ based on the above analyses to guarantee that, with probability at
least 1− δ, the distribution output by our overall algorithm is ε-close to the unknown distribution X . The

number of samples we need is Õ(1/ε2) log(1/δ), and the running time is
(

1
ε

)O(log2 1/ε) · Õ(log n · log 1
δ ).

This concludes the proof of Part 2 of Theorem 1, and thus of the entire theorem.

3 Learning weighted sums of independent Bernoullis

In this section we consider a generalization of the problem of learning an unknown PBD, by studying the
learnability of weighted sums of independent Bernoulli random variables X =

∑n
i=1wiXi. (Throughout this

section we assume for simplicity that the weights are “known” to the learning algorithm.) In Section 3.1 we show
that if there are only constantly many different weights then such distributions can be learned by an algorithm
that uses O(log n) samples and runs in time poly(n). In Section 3.2 we show that if there are n distinct weights
then even if those weights have an extremely simple structure – the i-th weight is simply i – any algorithm must
use Ω(n) samples.
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3.1 Learning sums of weighted independent Bernoulli random variables with few distinct weights

Recall Theorem 2:

THEOREM 2. LetX =
∑n

i=1 aiXi be a weighted sum of unknown independent Bernoulli random variables such
that there are at most k different values in the set {a1, . . . , an}. Then there is an algorithm with the following
properties: given n, a1, . . . , an and access to independent draws from X , it uses

Õ(k/ε2) · log(n) · log(1/δ)

samples from the target distribution X , runs in time

poly
(
nk · (k/ε)k log2(k/ε)

)
· log(1/δ),

and with probability at least 1−δ outputs a hypothesis vector p̂ ∈ [0, 1]n defining independent Bernoulli random
variables X̂i with E[X̂i] = pi such that dTV (X̂,X) ≤ ε, where X̂ =

∑n
i=1 aiX̂i.

Given a vector a = (a1, . . . , an) of weights, we refer to a distribution X =
∑n

i=1 aiXi (where X1, . . . , Xn

are independent Bernoullis which may have arbitrary means) as an a-weighted sum of Bernoullis, and we write
Sa to denote the space of all such distributions.

To prove Theorem 2 we first show that Sa has an ε-cover that is not too large. We then show that by running
a “tournament” between all pairs of distributions in the cover, using the hypothesis testing subroutine from
Section 2.3, it is possible to identify a distribution in the cover that is close to the target a-weighted sum of
Bernoullis.

Lemma 11. There is an ε-cover Sa,ε ⊂ Sa of size |Sa,ε| ≤ (n/k)3k · (k/ε)k·O(log2(k/ε)) that can be constructed
in time poly(|Sa,ε|).

Proof. Let {bj}kj=1 denote the set of distinct weights in a1, . . . , an, and let nj =
∣∣{i ∈ [n] | ai = bj}

∣∣. With
this notation, we can write X =

∑k
j=1 bjSj = g(S), where S = (S1, . . . , Sk) with each Sj a sum of nj

many independent Bernoulli random variables and g(y1, . . . , yk) =
∑k

j=1 bjyj . Clearly we have
∑k

j=1 nj = n.
By Theorem 4, for each j ∈ {1, . . . , k} the space of all possible Sj’s has an explicit (ε/k)-cover Sjε/k of size

|Sjε/k| ≤ n2
j + n · (k/ε)O(log2(k/ε)). By independence across Sj’s, the product Q =

∏k
j=1 S

j
ε/k is an ε-cover for

the space of all possible S’s, and hence the set

{Q =
k∑
j=1

bjSj : (S1, . . . , Sk) ∈ Q}

is an ε-cover for Sa. So Sa has an explicit ε-cover of size |Q| =
∏k
j=1 |S

j
ε/k| ≤ (n/k)2k ·(k/ε)k·O(log2(k/ε)).

Proof of Theorem 2: We claim that the algorithm of Lemma 10 has the desired sample complexity and can be
implemented to run in the claimed time bound. The sample complexity bound follows directly from Lemma 10.
It remains to argue about the time complexity. Note that the running time of the algorithm is poly(|Sa,ε|) times
the running time of a competition. We will show that a competition betweenH1, H2 ∈ Sa,ε can be carried out by
an efficient algorithm. This amounts to efficiently computing the probabilities p1 = H1(W1) and q1 = H2(W1)
and efficiently computing H1(x) and H2(x) for each of the m samples x drawn in step (2) of the competition.
Note that W =

∑k
j=1 bi · {0, 1, . . . , nj}. Clearly, |W| ≤

∏k
j=1(nj + 1) = O((n/k)k). It is thus easy to see

that p1, q1 and each of H1(x), H2(x) can be efficiently computed as long as there is an efficient algorithm for
the following problem: given H =

∑k
j=1 bjSj ∈ Sa,ε and w ∈ W , compute H(w). Indeed, fix any such H,w.

We have that

H(w) =
∑

m1,...,mk

k∏
j=1

Pr
H

[Sj = mj ],
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where the sum is over all k-tuples (m1, . . . ,mk) such that 0 ≤ mj ≤ nj for all j and b1m1 + · · ·+ bkmk = w
(as noted above there are at most O((n/k)k) such k-tuples). To complete the proof of Theorem 2 we note that
PrH [Sj = mj ] can be computed in O(n2

j ) time by standard dynamic programming. �

We close this subsection with the following remark: In [DDS12b] the authors have given a poly(`, log(n),
1/ε)-time algorithm that learns any `-modal distribution over [n] (i.e., a distribution whose pdf has at most `
“peaks” and “valleys”) using O(` log(n)/ε3 + (`/ε)3 log(`/ε)) samples. It is natural to wonder whether this
algorithm could be used to efficiently learn a sum of n weighted independent Bernoulli random variables with k
distinct weights, and thus give an alternate algorithm for Theorem 2, perhaps with better asymptotic guarantees.
However, it is easy to construct a sum X =

∑n
i=1 aiXi of n weighted independent Bernoulli random variables

with k distinct weights such that X is 2k-modal. Thus, a naive application of the [DDS12b] result would only
give an algorithm with sample complexity exponential in k, rather than the quasilinear sample complexity of
our current algorithm. If the 2k-modality of the above-mentioned example is the worst case (which we do not
know), then the [DDS12b] algorithm would give a poly(2k, log(n), 1/ε)-time algorithm for our problem that
uses O(2k log(n)/ε3) + 2O(k) · Õ(1/ε3) examples (so comparing with Theorem 2, exponentially worse sample
complexity as a function of k, but exponentially better running time as a function of n). Finally, in the context of
this question (how many modes can there be for a sum of n weighted independent Bernoulli random variables
with k distinct weights), it is interesting to recall the result of K.-I. Sato [Sat93] which shows that for any N
there are two unimodal distributions X,Y such that X + Y has at least N modes.

3.2 Sample complexity lower bound for learning sums of weighted independent Bernoulli ran-
dom variables

Recall Theorem 3:

THEOREM 3. Let X =
∑n

i=1 i · Xi be a weighted sum of unknown independent Bernoulli random variables
(where the i-th weight is simply i). Let L be any learning algorithm which, given n and access to independent
draws from X , outputs a hypothesis distribution X̂ such that dTV (X̂,X) ≤ 1/25 with probability at least
e−o(n). Then L must use Ω(n) samples.

Proof of Theorem 3: We define a probability distribution over possible target probability distributions X as
follows: A subset S ⊂ {n/2 + 1, . . . , n} of size |S| = n/100 is drawn uniformly at random from all

( n/2
n/100

)
possible outcomes.. The vector p = (p1, . . . , pn) is defined as follows: for each i ∈ S the value pi equals
100/n = 1/|S|, and for all other i the value pi equals 0. The i-th Bernoulli random variable Xi has E[Xi] = pi,
and the target distribution is X = Xp =

∑n
i=1 iXi.

We will need two easy lemmas:

Lemma 12. Fix any S, p as described above. For any j ∈ {n/2 + 1, . . . , n} we have Xp(j) 6= 0 if and only if
j ∈ S. For any j ∈ S the value Xp(j) is exactly (100/n)(1− 100/n)n/100−1 > 35/n (for n sufficiently large),
and hence Xp({n/2 + 1, . . . , n}) > 0.35 (again for n sufficiently large).

The first claim of the lemma holds because any set of c ≥ 2 numbers from {n/2 + 1, . . . , n} must sum to
more than n. The second claim holds because the only way a draw x from Xp can have x = j is if Xj = 1 and
all other Xi are 0 (here we are using limx→∞(1− 1/x)x = 1/e).

The next lemma is an easy consequence of Chernoff bounds:

Lemma 13. Fix any p as defined above, and consider a sequence of n/2000 independent draws from Xp =∑
i iXi. With probability 1 − e−Ω(n) the total number of indices j ∈ [n] such that Xj is ever 1 in any of the

n/2000 draws is at most n/1000.

We are now ready to prove Theorem 3. Let L be a learning algorithm that receives n/2000 samples. Let
S ⊂ {n/2 + 1, . . . , n} and p be chosen randomly as defined above, and set the target to X = Xp.
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We consider an augmented learner L′ that is given “extra information.” For each point in the sample, instead
of receiving the value of that draw from X the learner L′ is given the entire vector (X1, . . . , Xn) ∈ {0, 1}n. Let
T denote the set of elements j ∈ {n/2 + 1, . . . , n} for which the learner is ever given a vector (X1, . . . , Xn)
that has Xj = 1. By Lemma 13 we have |T | ≤ n/1000 with probability at least 1 − e−Ω(n); we condition on
the event |T | ≤ n/1000 going forth.

Fix any value ` ≤ n/1000. Conditioned on |T | = `, the set T is equally likely to be any `-element subset of
S, and all possible “completions” of T with an additional n/100−` ≥ 9n/1000 elements of {n/2+1, . . . , n}\T
are equally likely to be the true set S.

Let H denote the hypothesis distribution over [n] that algorithm L outputs. Let R denote the set {n/2 +
1, . . . , n} \ T ; note that since |T | = ` ≤ n/1000, we have |R| ≥ 499n/1000. Let U denote the set {i ∈
R : H(i) ≥ 30/n}. Since H is a distribution we must have |U | ≤ n/30. It is easy to verify that we have
dTV (X,H) ≥ 5

n |S\U |. Since S is a uniform random extension of T with at most n/100−` ∈ [9n/1000, n/100]
unknown elements of R and |R| ≥ 499n/1000, an easy calculation shows that Pr[|S \ U | > 8n/1000] is
1 − e−Ω(n). This means that with probability 1 − e−Ω(n) we have dTV (X,H) ≥ 8n

1000 ·
5
n = 1/25, and the

theorem is proved. �

4 Conclusion and open problems

Since the initial conference publication of this work [DDS12a], some progress has been made on problems
related to learning Poisson Binomial Distributions. The initial conference version [DDS12a] asked whether log-
concave distributions over [n] (a generalization of Poisson Binomial Distributions) can be learned to accuracy
ε with poly(1/ε) samples independent of n. An affirmative answer to this question was subsequently provided
in [CDSS13]. More recently, [DDO+13] studied a different generalization of Poisson Binomial Distributions
by considering random variables of the form X =

∑n
i=1Xi where the Xi’s are mutually independent (not

necessarily identical) distributions that are each supported on the integers {0, 1, . . . , k − 1} (so, the k = 2 case
corresponds to Poisson Binomial Distributions). [DDO+13] gave an algorithm for learning these distributions
to accuracy ε using poly(k, 1/ε) samples (independent of n).

While our results in this paper essentially settle the sample complexity of learning an unknown Poisson Bi-
nomial Distribution, several goals remain for future work. Our non-proper learning algorithm is computationally
more efficient than our proper learning algorithm, but uses a factor of 1/ε more samples. An obvious goal is to
obtain “the best of both worlds” by coming up with anO(1/ε2)-sample algorithm which performs Õ(log(n)/ε2)
bit operations and learns an unknown PBD to accuracy ε (ideally, such an algorithm would even be proper and
output a PBD as its hypothesis). Another goal is to sharpen the sample complexity bounds of [DDO+13] and
determine the correct polynomial dependence on k and 1/ε for the generalized problem studied in that work.
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A Extension of the Cover Theorem: Proof of Theorem 4

Theorem 4 is restating the main cover theorem (Theorem 1) of [DP13], except that it claims an additional
property, namely what follows the word “finally” in the statement of the theorem. (We will sometimes refer
to this property as the last part of Theorem 4 in the following discussion.) Our goal is to show that the cover
of [DP13] already satisfies this property without any modifications, thereby establishing Theorem 4. To avoid
reproducing the involved constructions of [DP13], we will assume that the reader has some familiarity with
them. Still, our proof here will be self-contained.

First, we note that the ε-cover Sε of Theorem 1 of [DP13] is a subset of a larger ε
2 -cover S ′ε/2 of size

n2 +n · (1/ε)O(1/ε2), which includes all the k-sparse and all the k-heavy Binomial PBDs (up to permutations of
the underlying pi’s), for some k = O(1/ε). Let us call S ′ε/2 the “large ε

2 -cover” to distinguish it from Sε, which
we will call the “small ε-cover.” The reader is referred to Theorem 2 in [DP13] (and the discussion following
that theorem) for a description of the large ε

2 -cover, and to Section 3.2 of [DP13] for how this cover is used to
construct the small ε-cover. In particular, the small ε-cover is a subset of the large ε/2-cover, including only a
subset of the sparse form distributions in the large ε/2-cover. Moreover, for every sparse form distribution in the
large ε/2-cover, the small ε-cover includes at least one sparse form distribution that is ε/2-close in total variation
distance. Hence, if the large ε/2-cover satisfies the last part of Theorem 4 (with ε/2 instead of ε and S ′ε/2 instead
of Sε), it follows that the small ε-cover also satisfies the last part of Theorem 4.

So we proceed to argue that, for all ε, the large ε-cover implied by Theorem 2 of [DP13] satisfies the last
part of Theorem 4. Let us first review how the large cover is constructed. (See Section 4 of [DP13] for the
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details.) For every collection of indicators {Xi}ni=1 with expectations {E[Xi] = pi}i, the collection is subjected
to two filters, called the Stage 1 and Stage 2 filters, and described respectively in Sections 4.1 and 4.2 of [DP13].
Using the same notation as [DP13], let us denote by {Zi}i the collection output by the Stage 1 filter and by
{Yi}i the collection output by the Stage 2 filter. The collection {Yi}i output by the Stage 2 filter satisfies
dTV (

∑
iXi,

∑
i Yi) ≤ ε, and is included in the cover (possibly after permuting the Yi’s). Moreover, it is in

sparse or heavy Binomial form. This way, it is made sure that, for every {Xi}i, there exists some {Yi}i in the
cover that is ε-close and is in sparse or heavy Binomial form. We proceed to show that the cover thus defined
satisfies the last part of Theorem 4.

For {Xi}i, {Yi}i and {Zi}i as above, let (µ, σ2), (µZ , σ
2
Z) and (µY , σ

2
Y ) denote respectively the (mean,

variance) pairs of the variables X =
∑

iXi, Z =
∑

i Zi and Y =
∑

i Yi. We argue first that the pair (µZ , σ
2
Z)

satisfies |µ − µZ | = O(ε) and |σ2 − σ2
Z | = O(ε · (1 + σ2)). Next we argue that, if the collection {Yi}i output

by the Stage 2 filter is in heavy Binomial form, then (µY , σ
2
Y ) satisfies |µ − µY | = O(1) and |σ2 − σ2

Y | =
O(1 + ε · (1 + σ2)), concluding the proof.

• Proof for (µZ , σ
2
Z): The Stage 1 filter only modifies the indicatorsXi with pi ∈ (0, 1/k)∪(1−1/k, 1), for

some well-chosen k = O(1/ε). For convenience let us define Lk = {i pi ∈ (0, 1/k)} andHk = {i pi ∈
(1− 1/k, 1)} as in [DP13]. The filter of Stage 1 rounds the expectations of the indicators indexed by Lk
to some value in {0, 1/k} so that no single expectation is altered by more than an additive 1/k, and the
sum of these expectations is not modified by more than an additive 1/k. Similarly, the expectations of the
indicators indexed byHk are rounded to some value in {1− 1/k, 1}. See the details of how the rounding
is performed in Section 4.1 of [DP13]. Let us then denote by {p′i}i the expectations of the indicators {Zi}i
resulting from the rounding. We argue that the mean and variance of Z =

∑
i Zi is close to the mean and

variance of X . Indeed,

|µ− µZ | =

∣∣∣∣∣∑
i

pi −
∑
i

p′i

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Lk∪Hk

pi −
∑

i∈Lk∪Hk

p′i

∣∣∣∣∣∣
≤ O(1/k) = O(ε). (11)

Similarly,

|σ2 − σ2
Z | =

∣∣∣∣∣∑
i

pi(1− pi)−
∑
i

p′i(1− p′i)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈Lk

pi(1− pi)−
∑
i∈Lk

p′i(1− p′i)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈Hk

pi(1− pi)−
∑
i∈Hk

p′i(1− p′i)

∣∣∣∣∣∣ .
We proceed to bound the two terms of the RHS separately. Since the argument is symmetric for Lk and
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Hk we only do Lk. We have∣∣∣∣∣∣
∑
i∈Lk

pi(1− pi)−
∑
i∈Lk

p′i(1− p′i)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈Lk

(pi − p′i)(1− (pi + p′i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈Lk

(pi − p′i)−
∑
i∈Lk

(pi − p′i)(pi + p′i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i∈Lk

(pi − p′i)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i∈Lk

(pi − p′i)(pi + p′i)

∣∣∣∣∣∣
≤ 1

k
+
∑
i∈Lk

|pi − p′i|(pi + p′i)

≤ 1

k
+

1

k

∑
i∈Lk

(pi + p′i)

≤ 1

k
+

1

k

2
∑
i∈Lk

pi + 1/k


=

1

k
+

1

k

 2

1− 1/k

∑
i∈Lk

pi(1− 1/k) + 1/k


≤ 1

k
+

1

k

 2

1− 1/k

∑
i∈Lk

pi(1− pi) + 1/k


≤ 1

k
+

1

k2
+

2

k − 1

∑
i∈Lk

pi(1− pi).

Using the above (and a symmetric argument for index setHk) we obtain:

|σ2 − σ2
Z | ≤

2

k
+

2

k2
+

2

k − 1
σ2 = O(ε)(1 + σ2). (12)

• Proof for (µY , σ
2
Y ): After the Stage 1 filter is applied to the collection {Xi}i, the resulting collection of

random variables {Zi}i has expectations p′i ∈ {0, 1} ∪ [1/k, 1 − 1/k], for all i. The Stage 2 filter has
different form depending on the cardinality of the setM = {i | p′i ∈ [1/k, 1 − 1/k]}. In particular, if
|M| > k3 the output of the Stage 2 filter is in heavy Binomial form, while if |M| ≤ k3 the output of the
Stage 2 filter is in sparse form. As we are only looking to provide guarantee for the distributions in heavy
Binomial form, it suffices to only consider the former case next.

– |M| > k3: Let {Yi}i be the collection produced by Stage 2 and let Y =
∑

i Yi. Then Lemma 4
of [DP13] implies that

|µZ − µY | = O(1) and |σ2
Z − σ2

Y | = O(1).

Combining this with (11) and (12) gives

|µ− µY | = O(1) and |σ2 − σ2
Y | = O(1 + ε · (1 + σ2)).

This concludes the proof of Theorem 4.
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B Birgé’s theorem: Learning unimodal distributions

Here we briefly explain how Theorem 5 follows from [Bir97]. We assume that the reader is moderately familiar
with the paper [Bir97].

Birgé (see his Theorem 1 and Corollary 1) upper bounds the expected variation distance between the target
distribution (which he denotes f ) and the hypothesis distribution that is constructed by his algorithm (which
he denotes f̂n; it should be noted, though, that his “n” parameter denotes the number of samples used by the
algorithm, while we will denote this by “m”, reserving “n” for the domain {1, . . . , n} of the distribution).
More precisely, [Bir97] shows that this expected variation distance is at most that of the Grenander estimator
(applied to learn a unimodal distribution when the mode is known) plus a lower-order term. For our Theorem 5
we take Birgé’s “η” parameter to be ε. With this choice of η, by the results of [Bir87a, Bir87b] bounding the
expected error of the Grenander estimator, if m = O(log(n)/ε3) samples are used in Birgé’s algorithm then the
expected variation distance between the target distribution and his hypothesis distribution is at most O(ε). To
go from expected error O(ε) to an O(ε)-accurate hypothesis with probability at least 1 − δ, we run the above-
described algorithm O(log(1/δ)) times so that with probability at least 1− δ some hypothesis obtained is O(ε)-
accurate. Then we use our hypothesis testing procedure of Lemma 8, or, more precisely, the extension provided
in Lemma 10, to identify an O(ε)-accurate hypothesis from within this pool of O(log(1/δ)) hypotheses. (The
use of Lemma 10 is why the running time of Theorem 5 depends quadratically on log(1/δ) and why the sample
complexity contains the second 1

ε2
log 1

δ log log 1
δ term.)

It remains only to argue that a single run of Birgé’s algorithm on a sample of size m = O(log(n)/ε3) can be
carried out in Õ(log2(n)/ε3) bit operations (recall that each sample is a log(n)-bit string). His algorithm begins
by locating an r ∈ [n] that approximately minimizes the value of his function d(r) (see Section 3 of [Bir97]) to
within an additive η = ε (see Definition 3 of his paper); intuitively this r represents his algorithm’s “guess” at
the true mode of the distribution. To locate such an r, following Birgé’s suggestion in Section 3 of his paper, we
begin by identifying two consecutive points in the sample such that r lies between those two sample points. This
can be done using logm stages of binary search over the (sorted) points in the sample, where at each stage of the
binary search we compute the two functions d− and d+ and proceed in the appropriate direction. To compute
the function d−(j) at a given point j (the computation of d+ is analogous), we recall that d−(j) is defined as
the maximum difference over [1, j] between the empirical cdf and its convex minorant over [1, j]. The convex
minorant of the empirical cdf (over m points) can be computed in Õ((log n)m) bit-operations (where the log n
comes from the fact that each sample point is an element of [n]), and then by enumerating over all points in the
sample that lie in [1, j] (in timeO((log n)m)) we can compute d−(j). Thus it is possible to identify two adjacent
points in the sample such that r lies between them in time Õ((log n)m). Finally, as Birgé explains in the last
paragraph of Section 3 of his paper, once two such points have been identified it is possible to again use binary
search to find a point r in that interval where d(r) is minimized to within an additive η. Since the maximum
difference between d− and d+ can never exceed 1, at most log(1/η) = log(1/ε) stages of binary search are
required here to find the desired r.

Finally, once the desired r has been obtained, it is straightforward to output the final hypothesis (which Birgé
denotes f̂n). As explained in Definition 3, this hypothesis is the derivative of F̃ rn , which is essentially the convex
minorant of the empirical cdf to the left of r and the convex majorant of the empirical cdf to the right of r. As
described above, given a value of r these convex majorants and minorants can be computed in Õ((log n)m)
time, and the derivative is simply a collection of uniform distributions as claimed. This concludes our sketch of
how Theorem 5 follows from [Bir97].

C Efficient Evaluation of the Poisson Distribution

In this section we provide an efficient algorithm to compute an additive approximation to the Poisson probability
mass function. It seems that this should be a basic operation in numerical analysis, but we were not able to find
it explicitly in the literature. Our main result for this section is the following.
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Theorem 6. There is an algorithm that, on input a rational number λ > 0, and integers k ≥ 0 and t > 0,
produces an estimate p̂k such that

|p̂k − pk| ≤
1

t
,

where pk = λke−λ

k! is the probability that the Poisson distribution of parameter λ assigns to integer k. The
running time of the algorithm is Õ(〈t〉3 + 〈k〉 · 〈t〉+ 〈λ〉 · 〈t〉).

Proof. Clearly we cannot just compute e−λ, λk and k! separately, as this will take time exponential in the
description complexity of k and λ. We follow instead an indirect approach. We start by rewriting the target
probability as follows

pk = e−λ+k ln(λ)−ln(k!).

Motivated by this formula, let
Ek := −λ+ k ln(λ)− ln(k!).

Note that Ek ≤ 0. Our goal is to approximate Ek to within high enough accuracy and then use this approxima-
tion to approximate pk.

In particular, the main part of the argument involves an efficient algorithm to compute an approximation ̂̂Ek
to Ek satisfying ∣∣∣̂̂Ek − Ek∣∣∣ ≤ 1

4t
≤ 1

2t
− 1

8t2
. (13)

This approximation will have bit complexity Õ(〈k〉+〈λ〉+〈t〉) and be computable in time Õ(〈k〉·〈t〉+〈λ〉+〈t〉3).

We show that if we had such an approximation, then we would be able to complete the proof. For this,

we claim that it suffices to approximate e
̂̂
Ek to within an additive error 1

2t . Indeed, if p̂k were the result of this
approximation, then we would have:

p̂k ≤ e
̂̂
Ek +

1

2t

≤ eEk+ 1
2t
− 1

8t2 +
1

2t

≤ eEk+ln(1+ 1
2t

) +
1

2t

≤ eEk
(

1 +
1

2t

)
+

1

2t
≤ pk +

1

t
;

and similarly

p̂k ≥ e
̂̂
Ek − 1

2t

≥ eEk−( 1
2t
− 1

8t2
) − 1

2t

≥ eEk−ln(1+ 1
2t

) − 1

2t

≥ eEk
/(

1 +
1

2t

)
− 1

2t

≥ eEk
(

1− 1

2t

)
− 1

2t
≥ pk −

1

t
.

To approximate e
̂̂
Ek given ̂̂Ek, we need the following lemma:
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Lemma 14. Let α ≤ 0 be a rational number. There is an algorithm that computes an estimate êα such that∣∣∣êα − eα∣∣∣ ≤ 1

2t

and has running time Õ(〈α〉 · 〈t〉+ 〈t〉2).

Proof. Since eα ∈ [0, 1], the point of the additive grid { i4t}
4t
i=1 closest to eα achieves error at most 1/(4t).

Equivalently, in a logarithmic scale, consider the grid {ln i
4t}

4t
i=1 and let j∗ := arg minj

{∣∣∣α− ln( j4t)
∣∣∣}. Then,

we have that ∣∣∣∣ j∗(4t)
− eα

∣∣∣∣ ≤ 1

4t
.

The idea of the algorithm is to approximately identify the point j∗, by computing approximations to the points of
the logarithmic grid combined with a binary search procedure. Indeed, consider the “rounded” grid {l̂n i

4t}
4t
i=1

where each l̂n( i4t) is an approximation to ln( i4t) that is accurate to within an additive 1
16t . Notice that, for

i = 1, . . . , 4t:

ln

(
i+ 1

4t

)
− ln

(
i

4t

)
= ln

(
1 +

1

i

)
≥ ln

(
1 +

1

4t

)
> 1/8t.

Given that our approximations are accurate to within an additive 1/16t, it follows that the rounded grid {l̂n i
4t}

4t
i=1

is monotonic in i.
The algorithm does not construct the points of this grid explicitly, but adaptively as it needs them. In

particular, it performs a binary search in the set {1, . . . , 4t} to find the point i∗ := arg mini

{∣∣∣α− l̂n( i4t)
∣∣∣}. In

every iteration of the search, when the algorithm examines the point j, it needs to compute the approximation

gj = l̂n( j4t) and evaluate the distance |α−gj |. It is known that the logarithm of a number xwith a binary fraction
of L bits and an exponent of o(L) bits can be computed to within a relative error O(2−L) in time Õ(L) [Bre75].
It follows from this that gj has O(〈t〉) bits and can be computed in time Õ(〈t〉). The subtraction takes linear
time, i.e., it uses O(〈α〉 + 〈t〉) bit operations. Therefore, each step of the binary search can be done in time
O(〈α〉) + Õ(〈t〉) and thus the overall algorithm has O(〈α〉 · 〈t〉) + Õ(〈t〉2) running time.

The algorithm outputs i∗

4t as its final approximation to eα. We argue next that the achieved error is at most
an additive 1

2t . Since the distance between two consecutive points of the grid {ln i
4t}

4t
i=1 is more than 1/(8t) and

our approximations are accurate to within an additive 1/16t, a little thought reveals that i∗ ∈ {j∗−1, j∗, j∗+1}.
This implies that i

∗

4t is within an additive 1/2t of eα as desired, and the proof of the lemma is complete.

Given Lemma 14, we describe how we could approximate e
̂̂
Ek given ̂̂Ek. Recall that we want to output an

estimate p̂k such that |p̂k − e
̂̂
Ek | ≤ 1/(2t). We distinguish the following cases:

• If ̂̂Ek ≥ 0, we output p̂k := 1. Indeed, given that
∣∣∣̂̂Ek−Ek∣∣∣ ≤ 1

4t andEk ≤ 0, if ̂̂Ek ≥ 0 then ̂̂Ek ∈ [0, 1
4t ].

Hence, because t ≥ 1, e
̂̂
Ek ∈ [1, 1 + 1/2t], so 1 is within an additive 1/2t of the right answer.

• Otherwise, p̂k is defined to be the estimate obtained by applying Lemma 14 for α :=
̂̂
Ek. Given the bit

complexity of ̂̂Ek, the running time of this procedure will be Õ(〈k〉 · 〈t〉+ 〈λ〉 · 〈t〉+ 〈t〉2).

Hence, the overall running time is Õ(〈k〉 · 〈t〉+ 〈λ〉 · 〈t〉+ 〈t〉3).

In view of the above, we only need to show how to compute ̂̂Ek. There are several steps to our approxima-
tion:
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1. (Stirling’s Asymptotic Approximation): Recall Stirling’s asymptotic approximation (see e.g., [Whi80]
p.193), which says that ln k! equals

k ln(k)− k + (1/2) · ln(2π) +

m∑
j=2

Bj · (−1)j

j(j − 1) · kj−1
+O(1/km)

where Bk are the Bernoulli numbers. We define an approximation of ln k! as follows:

l̂n k! := k ln(k)− k + (1/2) · ln(2π) +

m0∑
j=2

Bj · (−1)j

j(j − 1) · kj−1

for m0 := O
(⌈
〈t〉
〈k〉

⌉
+ 1
)
.

2. (Definition of an approximate exponent Êk): Define Êk := −λ + k ln(λ) − l̂n(k!). Given the above
discussion, we can calculate the distance of Êk to the true exponent Ek as follows:

|Ek − Êk| ≤ | ln(k!)− l̂n(k!)| ≤ O(1/km0) (14)

≤ 1

10t
. (15)

So we can focus our attention to approximating Êk. Note that Êk is the sum of m0 + 2 = O( log t
log k ) terms.

To approximate it within error 1/(10t), it suffices to approximate each summand within an additive error

of O(1/(t · log t)). Indeed, we so approximate each summand and our final approximation ̂̂Ek will be the
sum of these approximations. We proceed with the analysis:

3. (Estimating 2π): Since 2π shows up in the above expression, we should try to approximate it. It is known
that the first ` digits of π can be computed exactly in time O(log ` ·M(`)), where M(`) is the time to
multiply two `-bit integers [Sal76, Bre76]. For example, if we use the Schönhage-Strassen algorithm for
multiplication [SS71], we get M(`) = O(` · log ` · log log `). Hence, choosing ` := dlog2(12t · log t)e,
we can obtain in time Õ(〈t〉) an approximation 2̂π of 2π that has a binary fraction of ` bits and satisfies:

|2̂π − 2π| ≤ 2−` ⇒ (1− 2−`)2π ≤ 2̂π ≤ (1 + 2−`)2π.

Note that, with this approximation, we have∣∣∣ln(2π)− ln(2̂π)
∣∣∣ ≤ ln(1− 2−`) ≤ 2−` ≤ 1/(12t · log t).

4. (Floating-Point Representation): We will also need accurate approximations to ln 2̂π, ln k and lnλ. We
think of 2̂π and k as multiple-precision floating point numbers base 2. In particular,

• 2̂π can be described with a binary fraction of `+ 3 bits and a constant size exponent; and

• k ≡ 2dlog ke · k
2dlog ke

can be described with a binary fraction of dlog ke, i.e., 〈k〉, bits and an exponent
of length O(log log k), i.e., O(log 〈k〉).

Also, since λ is a positive rational number, λ = λ1
λ2

, where λ1 and λ2 are positive integers of at most
〈λ〉 bits. Hence, for i = 1, 2, we can think of λi as a multiple-precision floating point number base
2 with a binary fraction of 〈λ〉 bits and an exponent of length O(log 〈λ〉). Hence, if we choose L =
dlog2(12(3k + 1)t2 · k · λ1 · λ2)e = O(〈k〉 + 〈λ〉 + 〈t〉), we can represent all numbers 2̂π, λ1, λ2, k as
multiple precision floating point numbers with a binary fraction of L bits and an exponent of O(logL)
bits.
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5. (Estimating the logs): It is known that the logarithm of a number x with a binary fraction of L bits and an
exponent of o(L) bits can be computed to within a relative error O(2−L) in time Õ(L) [Bre75]. Hence,

in time Õ(L) we can obtain approximations l̂n 2̂π, l̂n k, l̂nλ1, l̂nλ2 such that:

• |l̂n k − ln k| ≤ 2−Lln k ≤ 1
12(3k+1)t2

; and similarly

• |l̂nλi − lnλi| ≤ 1
12(3k+1)t2

, for i = 1, 2;

• |l̂n 2̂π − ln 2̂π| ≤ 1
12(3k+1)t2

.

6. (Estimating the terms of the series): To complete the analysis, we also need to approximate each term of
the form cj =

Bj
j(j−1)·kj−1 up to an additive error of O(1/(t · log t)). We do this as follows: We compute

the numbers Bj and kj−1 exactly, and we perform the division approximately.

Clearly, the positive integer kj−1 has description complexity j · 〈k〉 = O(m0 · 〈k〉) = O(〈t〉+ 〈k〉), since
j = O(m0). We compute kj−1 exactly using repeated squaring in time Õ(j · 〈k〉) = Õ(〈t〉 + 〈k〉). It is
known [Fil92] that the rational number Bj has Õ(j) bits and can be computed in Õ(j2) = Õ(〈t〉2) time.
Hence, the approximate evaluation of the term cj (up to the desired additive error of 1/(t log t)) can be
done in Õ(〈t〉2 +〈k〉), by a rational division operation (see e.g., [Knu81]). The sum of all the approximate
terms takes linear time, hence the approximate evaluation of the entire truncated series (comprising at most
m0 ≤ 〈t〉 terms) can be done in Õ(〈t〉3 + 〈k〉 · 〈t〉) time overall.

Let ̂̂Ek be the approximation arising if we use all the aforementioned approximations. It follows from the
above computations that ∣∣∣̂̂Ek − Êk∣∣∣ ≤ 1

10t
.

7. (Overall Error): Combining the above computations we get:∣∣∣̂̂Ek − Ek∣∣∣ ≤ 1

4t
.

The overall time needed to obtain ̂̂Ek was Õ(〈k〉 · 〈t〉 + 〈λ〉 + 〈t〉3) and the proof of Theorem 6 is
complete.
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