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ABSTRACT
We consider a basic problem in unsupervised learning: learn-
ing an unknown Poisson Binomial Distribution. A Poisson
Binomial Distribution (PBD) over {0, 1, . . . , n} is the distri-
bution of a sum of n independent Bernoulli random variables
which may have arbitrary, potentially non-equal, expecta-
tions. These distributions were first studied by S. Poisson
in 1837 [Poi37] and are a natural n-parameter generalization
of the familiar Binomial Distribution. Surprisingly, prior to
our work this basic learning problem was poorly understood,
and known results for it were far from optimal.

We essentially settle the complexity of the learning prob-
lem for this basic class of distributions. As our main re-
sult we give a highly efficient algorithm which learns to
ǫ-accuracy using Õ(1/ǫ3) samples independent of n. The
running time of the algorithm is quasilinear in the size of
its input data, i.e. Õ(log(n)/ǫ3) bit-operations1 (observe
that each draw from the distribution is a log(n)-bit string).
This is nearly optimal since any algorithm must use Ω(1/ǫ2)
samples. We also give positive and negative results for some
extensions of this learning problem.
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1. INTRODUCTION
We begin by considering a somewhat fanciful scenario:

You are the manager of an independent weekly newspaper in
a city of n people. Each week the i-th inhabitant of the city
independently picks up a copy of your paper with probability
pi. Of course you do not know the values p1, . . . , pn; each
week you only see the total number of papers that have
been picked up. For many reasons (advertising, production,
revenue analysis, etc.) you would like to have a detailed
“snapshot” of the probability distribution (pdf) describing
how many readers you have each week. Is there an efficient
algorithm to construct a high-accuracy approximation of the
pdf from a number of observations that is independent of the
population n? We show that the answer is “yes.”

A Poisson Binomial Distribution over the domain [n] =
{0, 1, . . . , n} is the familiar distribution of a sum

X =
n∑

i=1

Xi,

where X1, . . . , Xn are independent Bernoulli (0/1) random
variables with E[Xi] = pi. The pi’s do not need to be all the
same, and thus these distributions generalize the Binomial
distribution B(n, p) and, indeed, comprise a much richer
class of distributions. (See Section 1.2 below.) It is believed
that Poisson [Poi37] was the first to consider this extension
of the Binomial distribution2 and the distribution is some-
times referred to as “Poisson’s Binomial Distribution” in his
honor; we shall simply call these distributions PBDs.

2We thank Yuval Peres and SamWatson for this information
and for telling us the name of these distributions [PW11].



PBDs are one of the most basic classes of discrete distri-
butions; indeed, they are arguably the simplest n-parameter
probability distribution that has some nontrivial structure.
As such they have been intensely studied in probability and
statistics (see Section 1.2) and arise in many settings; for ex-
ample, we note here that tail bounds on PBDs form an im-
portant special case of Chernoff/Hoeffding bounds [Che52,
Hoe63, DP09]. In application domains, PBDs have many
uses in research areas such as survey sampling, case-control
studies, and survival analysis, see e.g. [CL97] for a survey of
the many uses of these distributions in applications. Given
the simplicity and ubiquity of these distributions, it is quite
surprising that the problem of density estimation for PBDs
(i.e. learning an unknown PBD from independent samples)
is not well understood in the statistics or learning theory
literature. This is the problem we consider, and essentially
settle, in this paper.

We work in a natural PAC-style model of learning an un-
known discrete probability distribution which is essentially
the model of [KMR+94]. In this learning framework for
our problem, the learner is provided with independent sam-
ples drawn from an unknown PBD X. Using these samples,
the learner must with probability 1 − δ output a hypoth-
esis distribution X̂ such that the total variation distance
dTV (X, X̂) is at most ǫ, where ǫ, δ > 0 are accuracy and
confidence parameters that are provided to the learner.3 A
proper learning algorithm in this framework outputs a dis-
tribution that is itself a Poisson Binomial Distribution, i.e. a
vector p̂ = (p̂1, . . . , p̂n) which describes the hypothesis PBD

X̂ =
∑n

i=1 X̂i where E[X̂i] = p̂i.

1.1 Our results.
Our main result is a highly efficient algorithm for learn-

ing PBDs from constantly many samples independent of [n].
Since PBDs are an n-parameter family of distributions over
the domain [n], we view a bound completely independent of
n as a surprising result. We prove:

Theorem 1. (Main Theorem) Let X =
∑n

i=1 Xi be an
unknown PBD.

1. [Learning PBDs from constantly many samples]
There is an algorithm with the following properties:
given n and access to independent draws from X, the
algorithm uses

Õ
(
(1/ǫ3) · log(1/δ)

)

samples from X, performs

Õ

(
(1/ǫ3) · log n · log2 1

δ

)

bit operations, and with probability 1−δ outputs a (suc-

cinct description of a) distribution X̂ over [n] which is

such that dTV (X̂,X) ≤ ǫ.

2. [Properly learning PBDs from constantly many
samples] There is an algorithm with the following prop-
erties: given n and access to independent draws from
X, the algorithm uses

Õ
(
(1/ǫ3) · log(1/δ)

)

3[KMR+94] used the Kullback-Leibler divergence as their
distance measure but we find it more natural to use variation
distance.

samples from X, performs

(1/ǫ)O(log
2(1/ǫ)) · Õ

(
log n · log2 1

δ

)

bit operations, and with probability 1−δ outputs a (suc-
cinct description of a) vector p̂ = (p̂1, . . . , p̂n) defining

a PBD X̂ such that dTV (X̂,X) ≤ ǫ.

We note that since each sample drawn from X is a log(n)-
bit string, the number of bit-operations performed by our
first algorithm is quasilinear in the length of its input. The
sample complexity of both our algorithms is not far from
optimal, since Ω(1/ǫ2) samples are required even to dis-
tinguish the (simpler) Binomial distributions B(n, 1/2) and
B(n, 1/2 + ǫ/

√
n), which have variation distance Ω(ǫ).

Motivated by these strong learning results for PBDs, we
also consider learning a more general class of distributions,
namely distributions of the form X =

∑n
i=1 wiXi which are

weighted sums of independent Bernoulli random variables.
We give an algorithm which uses O(log n) samples and runs
in poly(n) time if there are only constantly many different
weights in the sum:

Theorem 2. (Learning sums of weighted indepen-
dent Bernoulli random variables) Let X =

∑n
i=1 aiXi

be a weighted sum of unknown independent Bernoullis such
that there are at most k different values among a1, . . . , an.
Then there is an algorithm with the following properties:
given n, a1, . . . , an and access to independent draws from
X, it uses

Õ(k/ǫ2) · log(n) · log(1/δ)
samples from the target distribution X, runs in time

poly
(
nk · ǫ−k log2(1/ǫ)

)
· log(1/δ),

and with probability 1 − δ outputs a hypothesis vector p̂ ∈
[0, 1]n defining independent Bernoulli random variables X̂i

with E[X̂i] = p̂i such that dTV (X̂, X) ≤ ǫ, where X̂ =∑n
i=1 aiX̂i.

To complement Theorem 2, we also show that if there
are many distinct weights in the sum, then even for weights
with a very simple structure any learning algorithm must
use many samples:

Theorem 3. (Sample complexity lower bound for
learning sums of weighted independent Bernoullis)
Let X =

∑n
i=1 i ·Xi be a weighted sum of unknown indepen-

dent Bernoullis (where the i-th weight is simply i). Let L be
any learning algorithm which, given n and access to inde-
pendent draws from X, outputs a hypothesis distribution X̂
such that dTV (X̂, X) ≤ 1/25 with probability at least e−o(n).
Then L must use Ω(n) samples.

The proofs of Theorems 2 and 3 are postponed to Appendix D.

1.2 Related work.
At a high level, there has been a recent surge of interest

in the theoretical computer science community on funda-
mental algorithmic problems involving basic types of prob-
ability distributions, see e.g. [KMV10, MV10, BS10, VV11]
and other recent papers; our work may be considered as an
extension of this theme. More specifically, there is a broad



literature in probability theory studying various properties
of PBDs; see [Wan93] for an accessible introduction to some
of this work. In particular, many results study approxima-
tions to the Poisson Binomial distribution via simpler dis-
tributions. In a well-known result, Le Cam [Cam60] shows
that for any PBD X =

∑n
i=1 Xi with E[Xi] = pi, it holds

that

dTV

(
X,Poi

( n∑
i=1

pi
))

≤ 2
n∑

i=1

p2i ,

where Poi(λ) is the Poisson distribution with parameter λ.
Subsequently many other proofs of this result and simi-
lar ones were given using a range of different techniques;
[HC60, Che74, DP86, BHJ92] is a sampling of work along
these lines, and Steele [Ste94] gives an extensive list of rel-
evant references. Much work has also been done on ap-
proximating PBDs by normal distributions (see e.g. [Ber41,
Ess42, Mik93, Vol95]) and by Binomial distributions (see e.g.
[Ehm91, Soo96, Roo00]). These results provide structural
information about PBDs that can be well-approximated via
simpler distributions, but fall short of our goal of obtaining
approximations of an unknown PBD up to arbitrary accu-
racy. Indeed, the approximations obtained in the proba-
bility literature (such as the Poisson, Normal and Binomial
approximations) typically depend on the first few moments
of the target PBD, while higher moments are crucial for ar-
bitrary approximation [Roo00].

Taking a different perspective, it is easy to show (see Sec-
tion 2 of [KG71]) that every PBD is a unimodal distribu-
tion over [n]. The learnability of general unimodal distribu-
tions over [n] is well understood: Birgé [Bir87a, Bir97] has
given a computationally efficient algorithm that can learn
any unimodal distribution over [n] to variation distance ǫ
from O(log(n)/ǫ3) samples, and has shown that any algo-
rithm must use Ω(log(n)/ǫ3) samples. (The [Bir87a] lower
bound is stated for continuous unimodal distributions, but
the arguments are easily adapted to the discrete case.) Our
main result, Theorem 1, shows that the additional PBD
assumption can be leveraged to obtain sample complexity
independent of n with a computationally highly efficient al-
gorithm.

So, how might one leverage the structure of PBDs to re-
move n from the sample complexity? A first observation is
that a PBD assigns 1− ǫ of its mass to Oǫ(

√
n) points. So

one could draw samples to (approximately) identify these
points and then try to estimate the probability assigned to
each such point, but clearly such an approach, if followed
näıvely, would give poly(n) sample complexity. Alterna-
tively, one could run Birgé’s algorithm on the restricted sup-
port of size Oǫ(

√
n), but that will not improve the asymp-

totic sample complexity. A different approach would be to
construct a small ǫ-cover (under the total variation distance)
of the space of all PBDs on n variables. Indeed, if such a
cover has size N , it can be shown (see Lemma 11 in Ap-
pendix D.1, or Chapter 7 of [DL01])) that a target PBD can
be learned from O(log(N)/ǫ2) samples. Still it is easy to ar-
gue that any cover needs to have size Ω(n), so this approach
too gives a log(n) dependence in the sample complexity.

Our approach, which removes n completely from the sam-
ple complexity, requires a refined understanding of the struc-
ture of the set of all PBDs on n variables, in fact one that is
more refined than the understanding provided by the afore-
mentioned results (approximating a PBD by a Poisson, Nor-

mal, or Binomial distribution). We give an outline of the
approach in the next section.

1.3 Our approach.
The starting point of our algorithm for learning PBDs is

a theorem of [DP11, Das08] that gives detailed information
about the structure of a small ǫ-cover (under the total vari-
ation distance) of the space of all PBDs on n variables (see
Theorem 4). Roughly speaking, this result says that every
PBD is either close to a PBD whose support is sparse, or
is close to a translated “heavy” Binomial distribution. Our
learning algorithm exploits this structure of the cover; it has
two subroutines corresponding to these two different types
of distributions that the cover maintains. First, assuming
that the target PBD is close to a sparsely supported distri-
bution, it runs Birgé’s unimodal distribution learner over a
carefully selected subinterval of [n] to construct a hypoth-
esis HS; the (purported) sparsity of the distribution makes

it possible for this algorithm to use Õ(1/ǫ3) samples inde-
pendent of n. Then, assuming that the target PBD is close
to a translated “heavy”Binomial distribution, the algorithm
constructs a hypothesis Translated Poisson Distribution HP

[R0̈7] whose mean and variance match the estimated mean
and variance of the target PBD; we show that HP is close
to the target PBD if the target PBD is not close to any
sparse distribution in the cover. At this point the algorithm
has two hypothesis distributions, HS and HP , one of which
should be good; it remains to select one as the final out-
put hypothesis. This is achieved using a form of “hypothesis
testing” for probability distributions.

The above sketch captures the main ingredients of Part (1)
of Theorem 1, but additional work needs to be done to get
the proper learning algorithm of Part (2), since neither the
sparse hypothesis HS nor the Translated Poisson hypothesis
HP is a PBD. Via a sequence of transformations we are
able to show that the Translated Poisson hypothesis HP

can be converted to a Binomial distribution Bin(n′, p) for
some n′ ≤ n. For the sparse hypothesis, we obtain a PBD by
searching a (carefully selected) subset of the ǫ-cover to find a
PBD that is close to our hypothesisHS (this search accounts
for the increased running time in Part (2) versus Part (1)).
We stress that for both the non-proper and proper learning
algorithms sketched above, many technical subtleties and
challenges arise in implementing the high-level plan given
above, requiring a careful and detailed analysis.

To prove Theorem 2 we take a more general approach and
then specialize it to weighted sums of independent Bernoullis
with constantly many distinct weights. We show that for any
class S of target distributions, if S has an ǫ-cover of size N
then there is a generic algorithm for learning an unknown
distribution from S to accuracy ǫ that uses O((logN)/ǫ2)
samples. Our approach is rather similar to the algorithm
of [DL01] for choosing a density estimate (but different in
some details); it works by carrying out a tournament that
matches every pair of distributions in the cover against each
other. Our analysis shows that with high probability some
ǫ-accurate distribution in the cover will survive the tourna-
ment undefeated, and that any undefeated distribution will
with high probability be O(ǫ)-accurate. We then specialize
this general result to show how the tournament can be im-
plemented efficiently for the class S of weighted sums of in-
dependent Bernoullis with constantly many distinct weights.



Finally, the lower bound of Theorem 3 is proved by a direct
information-theoretic argument.

1.4 Preliminaries.
For a distribution X supported on [n] = {0, 1, . . . , n} we

write X(i) to denote the value Pr[X = i] of the pdf, and
X(≤ i) to denote the value Pr[X ≤ i] of the cdf. For S ⊆ [n]
we write X(S) to denote

∑
i∈S X(i) and XS to denote the

conditional distribution of X restricted to S.
Recall that the total variation distance between two dis-

tributions X and Y over a finite domain D is

dTV (X,Y ) := (1/2) · ∑
α∈D

|X(α) − Y (α)|

= max
S⊆D

[X(S)− Y (S)].

Similarly, if X and Y are two random variables ranging over
a finite set, their total variation distance dTV (X,Y ) is de-
fined as the total variation distance between their distribu-
tions. For convenience, we will often blur the distinction
between a random variable and its distribution.

Fix a finite domain D, and let P denote some set of dis-
tributions over D. Given δ > 0, a subset Q ⊆ P is said to be
a δ-cover of P (w.r.t. total variation distance) if for every
distribution P in P there exists some distribution Q in Q
such that dTV (P,Q) ≤ δ.

We write S = Sn to denote the set of all PBDs X =∑n
i=1 Xi. We sometimes write {Xi} to denote the PBD X =∑n
i=1 Xi. We also define the Translated Poisson distribution

as follows.

Definition 1 ([R0̈7]). We say that an integer random
variable Y has a translated Poisson distribution with pa-
rameters µ and σ2, written Y = TP (µ, σ2), if

Y = ⌊µ− σ2⌋+ Poisson(σ2 + {µ− σ2}),

where {µ− σ2} represents the fractional part of µ− σ2.

Translated Poisson distributions are useful to us because
known results bound how far they are from PBDs and from
each other. We will use the following results:

Lemma 1 (see (3.4) of [R0̈7]). Let J1, . . . , Jn be in-
dependent random indicators with E[Ji] = pi. Then

dTV

(
n∑

i=1

Ji, TP (µ, σ2)

)
≤
√∑n

i=1 p
3
i (1− pi) + 2∑n

i=1 pi(1− pi)
,

where µ =
∑n

i=1 pi and σ2 =
∑n

i=1 pi(1− pi).

Lemma 2 (Lemma 2.1 of [BL06]). For µ1, µ2 ∈ R and
σ2
1 , σ

2
2 ∈ R+ with ⌊µ1 − σ2

1⌋ ≤ ⌊µ2 − σ2
2⌋, we have

dTV (TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤

|µ1 − µ2|
σ1

+
|σ2

1 − σ2
2 |+ 1

σ2
1

.

2. LEARNING AN UNKNOWN SUM OF
BERNOULLI RANDOM VARIABLES
FROM poly(1/ǫ) SAMPLES

In this section we prove our main result, Theorem 1, by
giving a sample- and time-efficient algorithm for learning an
unknown PBD X =

∑n
i=1 Xi.

A cover for PBDs. An important ingredient in our anal-
ysis is the following theorem, which is an extension of The-
orem 9 of the full version of [DP11]. It defines an ǫ-cover of
the space S = Sn of all order-n PBDs:

Theorem 4 (Cover for PBDs). For all ǫ > 0, there
exists an ǫ-cover Sǫ ⊆ S of S such that

1. |Sǫ| ≤ n3 ·O(1/ǫ) + n ·
(
1
ǫ

)O(log2 1/ǫ)
; and

2. The set Sǫ can be constructed in time linear in its rep-

resentation size, i.e. Õ(n3/ǫ) + Õ(n) ·
(
1
ǫ

)O(log2 1/ǫ)
.

Moreover, if {Yi} ∈ Sǫ, then the collection {Yi} has one
of the following forms, where k = k(ǫ) ≤ C/ǫ is a positive
integer, for some absolute constant C > 0:

(i) (Sparse Form) There is a value ℓ ≤ k3 = O(1/ǫ3) such

that for all i ≤ ℓ we have E[Yi] ∈
{

1
k2 ,

2
k2 , . . . ,

k2−1
k2

}
,

and for all i > ℓ we have E[Yi] ∈ {0, 1}.

(ii) (k-heavy Binomial Form) There is a value ℓ ∈ {0, 1, . . . , n}
and a value q ∈

{
1
kn

, 2
kn

, . . . , kn−1
kn

}
such that for all

i ≤ ℓ we have E[Yi] = q; for all i > ℓ we have
E[Yi] ∈ {0, 1}; and ℓ, q satisfy the bounds ℓq ≥ k2 − 1

k

and ℓq(1− q) ≥ k2 − k − 1− 3
k
.

Finally, for every {Xi} ∈ S for which there is no ǫ-neighbor
in Sǫ that is in sparse form, there exists a collection {Yi} ∈
Sǫ in k-heavy Binomial form such that

(iii) dTV (
∑

i Xi,
∑

i Yi) ≤ ǫ; and

(iv) if µ = E[
∑

i Xi], µ
′ = E[

∑
i Yi], σ

2 = Var[
∑

i Xi] and
σ′2 = Var[

∑
i Yi], then |µ−µ′| = O(ǫ) and |σ2−σ′2| =

O(1 + ǫ · (1 + σ2)).

We remark that [Das08] establishes the same theorem, ex-

cept that the size of the cover is n3·O(1/ǫ)+n·
(
1
ǫ

)O(1/ǫ2)
. In-

deed, this weaker bound is obtained by including in the cover
all possible collections {Yi} ∈ S in sparse form and all pos-
sible collections in k-heavy Binomial form, for k = O(1/ǫ)
specified by the theorem. [DP11] obtains a smaller cover
by only selecting a subset of the collections in sparse form
included in the cover of [Das08]. Finally, the cover theorem
stated in [Das08, DP11] does not include the part of the
above statement following “finally.” We provide a proof of
this extension in Appendix E.1.

We remark also that our analysis in this paper in fact
establishes a slightly stronger version of the above theorem,
with an improved bound on the cover size (as a function of n)
and stronger conditions on the Binomial Form distributions
in the cover. We present this strengthened version of the
Cover Theorem in Appendix E.2.

The learning algorithm. Our algorithm Learn-PBD has
the general structure given in Figure 1 (a detailed version is
given later).

The subroutine Learn-Sparse
X is given sample access to

X and is designed to find an ǫ-accurate hypothesis if the
target PBD X is ǫ-close to some sparse form PBD inside
the cover Sǫ; similarly, Learn-PoissonX is designed to find
an ǫ-accurate hypothesis if X is not ǫ-close to a sparse form
PBD (in this case, Theorem 4 implies that X must be ǫ-close



Learn-PBD

1. Run Learn-SparseX (n, ǫ, δ/3) to get hypothesis
distribution HS.

2. Run Learn-Poisson
X (n, ǫ, δ/3) to get hypothesis

distribution HP .
3. Return the distribution which is the output of

Choose-HypothesisX (HS,HP , ǫ, δ/3).

Figure 1: Learn-PBD

to some k(ǫ)-heavy Binomial form PBD). Finally, Choose-
HypothesisX is designed to choose one of the two hypothe-
ses HS,HP as being ǫ-close to X. The following subsections
describe and prove correctness of these subroutines. We note
that Learn-Sparse and Learn-Poisson do not return the
distributions HS and HP as a list of probabilities for every
point in [n]; rather, they return a succinct description of
these distributions in order to keep the running time of the
algorithm logarithmic in n.

2.1 Learning whenX is close to a Sparse Form
PBD.

Our starting point here is the simple observation that any
PBD is a unimodal distribution over the domain {0, 1, . . . , n}
(there is a simple inductive proof of this, or see Section 2 of
[KG71]). This will enable us to use the algorithm of Birgé
[Bir97] for learning unimodal distributions. We recall Birgé’s
result, and refer the reader to Appendix F for an explanation
of how Theorem 5 as stated below follows from [Bir97].

Theorem 5 ([Bir97]). For all n, ǫ, δ > 0, there is an
algorithm that draws

O

(
log n

ǫ3
log

1

δ
+

1

ǫ2
log

1

δ
log log

1

δ

)

samples from an unknown unimodal distribution X over [n],
does

Õ

(
log2 n

ǫ3
log2

1

δ

)

bit-operations, and outputs a (succinct description of a) hy-
pothesis distribution H over [n] that has the following form:
H is uniform over subintervals [a1, b1], [a2, b2], . . . , [ak, bk],
whose union ∪k

i=1[ai, bi] = [n], where k = O
(
log n

ǫ

)
. In par-

ticular, the algorithm outputs the lists a1 through ak and b1
through bk, as well as the total probability mass that H as-
signs to each subinterval [ai, bi], i = 1, . . . , k. Finally, with
probability at least 1− δ, dTV (X,H) ≤ ǫ.

The main result of this subsection, proved in Appendix A,
is the following:

Lemma 3. For all n, ǫ′, δ′ > 0, there is an algorithm Learn-

Sparse
X (n, ǫ′, δ′) that draws

O

(
1

ǫ′3
log

1

ǫ′
log

1

δ′
+

1

ǫ′2
log

1

δ′
log log

1

δ′

)

samples from a target PBD X over [n], does

log n · Õ
(

1

ǫ′3
log2

1

δ′

)

bit operations, and outputs a (succinct description of a) hy-
pothesis distribution HS over [n] that has the following form:
its support is contained in an explicitly specified interval
[a, b] ⊂ [n], where |b− a| = O(1/ǫ′3), and for every point in
[a, b] the algorithm explicitly specifies the probability assigned
to that point by HS.

4 The algorithm has the following guar-
antee: if X is ǫ′-close to some sparse form PBD Y in the
cover Sǫ′ of Theorem 4, then with probability at least 1− δ′,
dTV (X,HS) ≤ c1ǫ

′, for some absolute constant c1 ≥ 1, and
the support of HS lies in the support of Y .

The high-level idea of Lemma 3 is quite simple. We trun-
cate O(ǫ′) of the probability mass from each end of X to
obtain a conditional distribution X[â,b̂]; since X is unimodal

so is X[â,b̂]. If b̂ − â is larger than O(1/ǫ′3) then the algo-

rithm outputs “fail” (and X could not have been close to a
sparse-form distribution in the cover). Otherwise, we use
Birgé’s algorithm to learn the unimodal distribution X[â,b̂].
See Appendix A for details.

2.2 Learning whenX is close to ak-heavy Bi-
nomial Form PBD.

Lemma 4. For all n, ǫ′, δ′ > 0, there is an algorithm Learn-

Poisson
X (n, ǫ′, δ′) that draws

O(log(1/δ′)/ǫ′2)

samples from a target PBD X over [n], runs in time

O(log n · log(1/δ′)/ǫ′2),

and returns two parameters µ̂ and σ̂2. The algorithm has
the following guarantee: Suppose X is not ǫ′-close to any
Sparse Form PBD in the cover Sǫ′ of Theorem 4. Let HP =
TP (µ̂, σ̂2) be the translated Poisson distribution with param-
eters µ̂ and σ̂2. Then with probability at least 1− δ′ we have
dTV (X,HP ) ≤ c2ǫ

′ for some absolute constant c2 ≥ 1.

Our proof plan is to exploit the structure of the cover of
Theorem 4. In particular, if X is not ǫ′-close to any Sparse
Form PBD in the cover, it must be ǫ′-close to a PBD in
Heavy Binomial Form with approximately the same mean
and variance as X, as specified by the final part of the cover
theorem. Now, given that a PBD in Heavy Binomial Form is
just a translated Binomial distribution, a natural strategy is
to estimate the mean and variance of the target PBD X and
output as a hypothesis a translated Poisson distribution with
these parameters. We show that this strategy is a successful
one. Appendix B gives all details; here we only extract two
facts from the analysis that will be used later. The first is
that assuming X is not ǫ′-close to any Sparse Form PBD in
the cover Sǫ′ , its variance σ2 satisfies

σ2 = Ω(k2) = Ω(1/ǫ′2) ≥ θ2 for some universal constant θ.
(1)

The second is that under the same assumption, the param-
eters µ̂, σ̂2 obtained from the lemma satisfy

|µ− µ̂| ≤ ǫ′ · σ and |σ2 − σ̂2| ≤ ǫ′ · σ2, (2)

where µ, σ2 are respectively the mean and variance of X.

4In particular, our algorithm will output a list of pointers,
mapping every point in [a, b] to some memory location where
the probability assigned to that point by HS is written.



2.3 Hypothesis testing.
Our hypothesis testing routine Choose-HypothesisX runs

a “competition” to choose a winner between two candidate
hypothesis distributions H1 and H2 over [n] that it is given
in the input. We show that if at least one of the two candi-
date hypotheses is close to the target distribution X, then
with high probability over the samples drawn from X the
routine selects as winner a candidate that is close to X.
This basic approach of running a competition between can-
didate hypotheses is quite similar to the “Scheffé estimate”
proposed by Devroye and Lugosi (see [DL96b, DL96a] and
Chapter 6 of [DL01], as well as [Yat85]), but there are some
small differences; the [DL01] approach uses a notion of the
“competition”between two hypotheses which is not symmet-
ric under swapping the two hypotheses, whereas our compe-
tition is symmetric. We obtain the following lemma (proved
in Appendix C), postponing all running-time analysis to the
next section.

Lemma 5. There is an algorithm
Choose-Hypothesis

X (H1,H2, ǫ
′, δ′) which is given oracle ac-

cess to X, two hypothesis distributions H1,H2 for X, an ac-
curacy parameter ǫ′, and a confidence parameter δ′. It makes

m = O(log(1/δ′)/ǫ′2)

draws from X and returns some H ∈ {H1,H2}. If one of
H1, H2 has dTV (Hi, X) ≤ ǫ′ then with probability 1− δ′ the
H that Choose-Hypothesis returns has dTV (H,X) ≤ 6ǫ′.

Here we only describe the competition since we will refer
to it later. Let W be the support of X. To set up the
competition between H1 and H2, we define the following
subset of W:

W1 = W1(H1,H2) := {w ∈ W H1(w) > H2(w)} . (3)

Let then p1 = H1(W1) and q1 = H2(W1). Clearly, p1 > q1
and dTV (H1,H2) = p1 − q1.

The competition between H1 and H2 is carried out as
follows:

1. If p1 − q1 ≤ 5ǫ′, declare a draw and return either
Hi. Otherwise:

2. Draw m = O
(

log(1/δ′)

ǫ′2

)
samples s1, . . . , sm from X,

and let τ = 1
m
|{i | si ∈ W1}| be the fraction of samples

that fall inside W1.
3. If τ > p1 − 3

2
ǫ′, declare H1 as winner and return

H1; otherwise,
4. if τ < q1+

3
2
ǫ′, declare H2 as winner and return H2;

otherwise,
5. declare a draw and return either Hi.

2.4 Proof of Theorem 1.
We first treat Part (1) of the theorem, where the learning

algorithm may output any distribution over [n] and not nec-
essarily a PBD. Our algorithm has the structure outlined in
Figure 1 with the following modifications: (a) if the target
total variation distance is ǫ, the second argument of both
Learn-Sparse and Learn-Poisson is set to ǫ

12max{c1,c2}
,

where c1 and c2 are respectively the constants from Lem-
mas 3 and 4; (b) we replace the third step with Choose-

Hypothesis
X (HS, ĤP , ǫ/8, δ/3), where ĤP is defined in terms

of HP as described below. If the Choose-Hypothesis pro-
cedure returns HS, then Learn-PBD also returns HS, while

if Choose-Hypothesis returns ĤP , then Learn-PBD returns

HP . We proceed to define ĤP .

Definition of ĤP : For every point i where HS(i) = 0,

we let ĤP (i) = HP (i). For the points i where HS(i) 6= 0, in
Appendix G we describe an efficient deterministic algorithm
that numerically approximates HP (i) to within an additive
±ǫ/24s, where s = O(1/ǫ3) is the cardinality of the sup-

port of HS. We define ĤP (i) to equal the approximation

to HP (i) that is output by the algorithm. Observe that ĤP

satisfies dTV (ĤP ,HP ) ≤ ǫ/24, and therefore |dTV (ĤP , X)−
dTV (X,HP )| ≤ ǫ/24. In particular, if dTV (X,HP ) ≤ ǫ

12
,

then dTV (X, ĤP ) ≤ ǫ
8
, and if dTV (X, ĤP ) ≤ 6ǫ

8
, then we

have that dTV (X,HP ) ≤ ǫ.
We do not use HP directly in Choose-Hypothesis because

of computational considerations. Since HP is a translated
Poisson distribution, we cannot compute its values HP (i)
exactly, but using approximate values may cause Choose-

Hypothesis to make a mistake. So we use ĤP instead of

HP in Choose-Hypothesis; ĤP is carefully designed both
to be close enough to HP so that Choose-Hypothesis will
select a probability distribution close to the target X, and to
allow efficient computation of all probabilities that Choose-
Hypothesis needs without much overhead. In particular,
we remark that in running Choose-Hypothesis we do not a

priori compute the value of ĤP at every point; we do instead

a lazy evaluation of ĤP , as explained in the running-time
analysis below.

We proceed now to the analysis of our modified algorithm
Learn-PBD. The sample complexity bound and correctness of
our algorithm are immediate consequences of Lemmas 3, 4
and 5, taking into account the precise choice of constants

and the distance between HP and ĤP . To bound the run-
ning time, Lemmas 3 and 4 bound the running time of
Steps 1 and 2 of the algorithm, so it remains to bound
the running time of the Choose-Hypothesis step. Notice

that W1(HS, ĤP ) is a subset of the support of the dis-

tribution HS. Hence to compute W1(HS, ĤP ) it suffices

to determine the probabilities HS(i) and ĤP (i) for every
point i in the support of HS. For every such i, HS(i)
is explicitly given in the output of Learn-Sparse, so we

only need to compute ĤP (i). It follows from Theorem 7

(Appendix G) that the time needed to compute ĤP (i) is

Õ(log3(1/ǫ) + log n + |µ̂| + |σ̂2|), where |µ̂| and |σ̂2| are re-
spectively the description complexities (bit lengths) of µ̂ and
σ̂2. Since these parameters are output by Learn-Poisson,
by inspection of that algorithm it is easy to see that they
are each at most O(log n + log log(1/δ) + log(1/ǫ)). Hence,
given that the support of HS has cardinality O(1/ǫ3), the

overall time spent computing all probabilities under ĤP is
Õ( 1

ǫ3
log n log 1

δ
). After W1 is computed, the computation

of the values p1 = HS(W1), q1 = ĤP (W1) and p1 − q1 takes
time linear in the data produced by the algorithm so far,
as these computations merely involve adding and subtract-
ing probabilities that have already been explicitly computed
by the algorithm. Computing the fraction of samples from
X that fall inside W1 takes time O

(
log n · log(1/δ)/ǫ2

)
and

the rest of Choose-Hypothesis takes time linear in the size



of the data that have been written down so far. Hence the
overall running time of our algorithm is Õ( 1

ǫ3
log n log2 1

δ
).

This gives Part (1) of Theorem 1.

Next we turn to Part (2) of Theorem 1, the proper learning
result. We explain how to modify the algorithm of Part (1)
to produce a PBD that is within O(ǫ) of the target X. We
only need to add two post-processing steps converting HS

and HP to PBDs; we describe and analyze these two steps
below. For convenience we write c to denote max{c1, c2} ≥ 1
in the following discussion.

1. Locate-Sparse(HS ,
ǫ

12c
): This routine searches through

the sparse-form PBDs inside the cover S ǫ
12c

to identify
a sparse-form PBD that is within distance ǫ

6
from HS,

or outputs“fail” if it cannot find one. Note that if there
is a sparse-form PBD Y that is ǫ

12c
-close to X and

Learn-Sparse succeeds, then Y must be ǫ
6
-close toHS,

since by Lemma 3 whenever Learn-Sparse succeeds
the output distribution satisfies dTV (X,HS) ≤ ǫ

12
. We

show that if there is a sparse-form PBD Y that is ǫ
12c

-
close to X and Learn-Sparse succeeds (an event that
occurs with probability 1 − δ/3, see Lemma 3), our
Locate-Sparse search routine, described below, will
output a sparse-form PBD that is ǫ

6
-close to HS. In-

deed, given the preceding discussion, if we searched
over all sparse-form PBDs inside the cover, it would
be trivial to meet this guarantee. To save on com-
putation time, we prune the set of sparse-form PBDs
we search over, completing the entire search in time(
1
ǫ

)O(log2 1/ǫ) · log(n) · Õ
(
log2(1/δ)

)
.

Here is a detailed explanation and run-time analysis of
the improved search: First, note that the description
complexity of HS is poly(1/ǫ) · log n · Õ(log2(1/δ)) as
HS is output by an algorithm with this running time.
Moreover, given a sparse-form PBD in S ǫ

12c
, we can

compute all probabilities in the support of the distri-
bution in time poly(1/ǫ) log n. Indeed, by part (i) of
Theorem 4 a sparse-form PBD has O(1/ǫ3) non-trivial
Bernoulli random variables and those each use prob-
abilities pi that are integer multiples of some value
which is Ω(ǫ2). So an easy dynamic programming al-
gorithm can compute all probabilities in the support
of the distribution in time poly(1/ǫ) log n, where the
log n overhead is due to the fact that the support of the
distribution is some interval in [n]. Finally, we argue
that we can restrict our search to only a small subset
of the sparse-form PBDs in S ǫ

12c
. For this, we note

that we can restrict our search to sparse-form PBDs
whose support is a superset of the support of HS. In-
deed, the final statement of Lemma 3 implies that, if
Y is an arbitrary sparse-form PBD that is ǫ

12c
-close

to X, then with probability 1 − δ/3 the output HS

of Learn-Sparse will have support that is a subset of
the support of Y . Given this, we only need to try(
1
ǫ

)O(log2 1/ǫ)
sparse-form PBDs in the cover to find

one that is close to HS. Hence, the overall running

time of our search is
(
1
ǫ

)O(log2 1/ǫ) · log n · Õ(log2 1/δ).

2. Locate-Binomial(µ̂, σ̂2, n): This routine tries to com-
pute a Binomial distribution that is O(ǫ)-close to HP

(recall that HP ≡ TP (µ̂, σ̂2). Analogous to Locate-

Sparse, we will show that if X is not ǫ
12c

-close to

any sparse-form distribution inside S ǫ
12c

and Learn-

Poisson succeeds (for convenience we call these condi-
tions our “working assumptions” in the following dis-
cussion), then the Binomial distribution output by our
routine will be O(ǫ)-close to HP and thus O(ǫ)-close
to X.

Let µ̂ and σ̂2 be the parameters output by Learn-

Poisson, and let µ and σ2 be the (unknown) mean and
variance of the targetX. Our routine has several steps.
The first two steps eliminate corner-cases in the values
µ̂ and σ̂2 computed by Learn-Poisson, while the last
step defines a Binomial distributionB(n̂, p̂) with n̂ ≤ n
that is close to HP ≡ TP (µ̂, σ̂2) under our working
assumptions. (We note that a significant portion of
the work below is to ensure that n̂ ≤ n, which does not
seem to follow from a more direct approach. Getting
n̂ ≤ n is necessary in order for our learning algorithm
for order-n PBDs to truly be proper.) Throughout
(a), (b) and (c) below we assume that our working
assumptions hold (note that this assumption is being
used every time we employ the bounds (1) or (2) from
Section 2.2).

(a) Tweaking σ̂2: If σ̂2 ≤ n
4

then set σ2
1 = σ̂2, and

otherwise set σ2
1 = n

4
. We note for future refer-

ence that in both cases Equation (2) gives

σ2
1 ≤ (1 +O(ǫ))σ2. (4)

We claim that this setting of σ2
1 results in

dTV (TP (µ̂, σ̂2), TP (µ̂, σ2
1)) ≤ O(ǫ). If σ̂2 ≤ n

4
then this variation distance is zero and the claim
certainly holds. Otherwise we have the following
(see Equation (2)):

(
1 + ǫ

12c

)
σ2 ≥ σ̂2 > σ2

1 =
n
4
≥ ∑n

i=1 pi(1 − pi) = σ2. Hence, by Lemma 2
we get:

dTV (TP (µ̂, σ̂2), TP (µ̂, σ2
1)) ≤ |σ̂2 − σ2

1 |+ 1

σ2
1

≤ O(ǫ)σ2 + 1

σ2

= O(ǫ), (5)

where we used the fact that σ2 = Ω(1/ǫ2) (see
(1)).

(b) Tweaking σ2
1 : If µ̂

2 ≤ n(µ̂−σ2
1) then set σ2

2 = σ2
1 ,

and otherwise set σ2
2 = nµ̂−µ̂2

n
. We claim that

this results in dTV (TP (µ̂, σ2
1), TP (µ̂, σ2

2)) ≤ O(ǫ).
If µ̂2 ≤ n(µ̂ − σ2

1) then as before the variation
distance is zero and the claim holds. Otherwise,
we observe that σ2

1 > σ2
2 and σ2

2 ≥ 0 (the last
assertion follows from the fact that µ̂ must be at
most n). So we have (see (2)) that

|µ− µ̂| ≤ O(ǫ)σ ≤ O(ǫ)µ, (6)

which implies

n− µ̂ ≥ n− µ−O(ǫ)σ. (7)

We now observe that

µ2 =

(
n∑

i=1

pi

)2

≤ n

(
n∑

i=1

p2i

)
= n(µ− σ2)



where the inequality is Cauchy-Schwarz. Rear-
ranging this yields

µ(n− µ)

n
≥ σ2. (8)

We now have that

σ2
2 =

µ̂(n− µ̂)

n

≥ (1−O(ǫ))µ(n− µ−O(ǫ)σ)

n

≥ (1−O(ǫ))
(
σ2 −O(ǫ)σ

)
, (9)

where the first inequality follows from (6) and (7)
and the second follows from (8) and the fact that
any PBD over n variables satisfies µ ≤ n. Hence,
by Lemma 2 we get:

dTV (TP (µ̂, σ2
1), TP (µ̂, σ2

2))

≤ σ2
1 − σ2

2 + 1

σ2
2

≤ (1 +O(ǫ))σ2 − (1−O(ǫ))σ2 +O(ǫ)σ + 1

(1−O(ǫ))σ2 −O(ǫ)σ

≤ O(ǫ)σ2

(1−O(ǫ))σ2
= O(ǫ), (10)

where we used the bound σ2 = Ω(1/ǫ2) (see (1)).

(c) Constructing a Binomial Distribution: We con-
struct a Binomial distribution HB that is O(ǫ)-
close to TP (µ̂, σ2

2). If we do this then we have
dTV (HB,HP ) = O(ǫ) by (5), (10) and the trian-
gle inequality. The Binomial distribution HB we
construct is Bin(n̂, p̂), where

n̂ =
⌊
µ̂2/(µ̂− σ2

2)
⌋

and p̂ = (µ̂− σ2
2)/µ̂.

Note that by the way σ2
2 is set in step (b) above

we indeed have n̂ ≤ n as claimed in Part 2 of
Theorem 1.

Let us bound the total variation distance between
Bin(n̂, p̂) and TP (µ̂, σ2

2). Using Lemma 1 we have:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂))

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)
. (11)

Notice that

n̂p̂(1− p̂) ≥
(

µ̂2

µ̂− σ2
2

− 1

)(
µ̂− σ2

2

µ̂

)(
σ2
2

µ̂

)

= σ2
2 − p̂(1− p̂) ≥ (1−O(ǫ))σ2 − 1

= Ω(1/ǫ2),

where the next-to-last step used (9) and the last
used the fact that σ2 = Ω(1/ǫ2) (see (1). So plug-
ging this into (11) we get:

dTV (Bin(n̂, p̂), TP (n̂p̂, n̂p̂(1− p̂)) = O(ǫ).

The next step is to compare TP (n̂p̂, n̂p̂(1 − p̂))

and TP (µ̂, σ2
2). Lemma 2 gives:

dTV (TP (n̂p̂, n̂p̂(1− p̂)), TP (µ̂, σ2
2))

≤ |n̂p̂− µ̂|
min(

√
n̂p̂(1− p̂), σ2)

+
|n̂p̂(1− p̂)− σ2

2 |+ 1

min(n̂p̂(1− p̂), σ2
2)

≤ 1√
n̂p̂(1− p̂)

+
2

n̂p̂(1− p̂)

= O(ǫ).

By the triangle inequality we get

dTV (Bin(n̂, p̂), TP (µ̂, σ2
2) = O(ǫ),

which was our ultimate goal.

Given the above Locate-Sparse and Locate-Binomial

routines, the algorithm Proper-Learn-PBD has the following
structure: It first runs Learn-PBD with accuracy parameters
ǫ, δ. If Learn-PBD returns the distribution HS computed
by subroutine Learn-Sparse, then Proper-Learn-PBD out-
puts the result of Locate-Sparse(HS ,

ǫ
12c

). If, on the other
hand, Learn-PBD returns the translated Poisson distribution
HP = TP (µ̂, σ̂2) computed by subroutine Learn-Poisson,
then Proper-Learn-PBD returns the Binomial distribution
constructed by the routine Locate-Binomial(µ̂, σ̂2, n). It
follows from the correctness of Learn-PBD and the above
discussion that, with probability 1−δ, the output of Proper-
Learn-PBD is within total variation distance O(ǫ) of the tar-
get X. The number of samples is the same as in Learn-PBD,

and the running time is
(
1
ǫ

)O(log2 1/ǫ)·Õ(log n log2 1/δ). This
concludes the proof of Part 2 of Theorem 1, and thus of the
entire theorem.

3. CONCLUSION AND OPEN PROBLEMS
While we have essentially settled the sample and time

complexity of learning an unknown Poisson Binomial Dis-
tribution to high accuracy, several natural goals remain for
future work. One goal is to obtain a proper learning al-
gorithm which is as computationally efficient as our non-
proper algorithm. Another goal is to understand the sample
complexity of learning log-concave distributions over [n] (a
distribution X over [n] is log-concave if p2i ≥ pi+1pi−1 for
every i, where pj denotes Pr[X = j]). Every PBD over
[n] is log-concave (see Section 2 of [KG71]), and every log-
concave distribution over [n] is unimodal; thus this class
lies between the class of PBDs (now known to be learnable

from Õ(1/ǫ3) samples) and the class of unimodal distribu-
tions (for which Ω(log(n)/ǫ3) samples are known to be nec-
essary). Can log-concave distributions over [n] be learned
from poly(1/ǫ) samples independent of n? If not, what is
the dependence of the sample complexity on n?

4. REFERENCES
[Ber41] Andrew C. Berry. The accuracy of the gaussian

approximation to the sum of independent
variates. Transactions of the American
Mathematical Society, 49(1):122–136, 1941.

[BHJ92] A.D. Barbour, L. Holst, and S. Janson. Poisson
Approximation. Oxford University Press, New
York, NY, 1992.
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APPENDIX

A. PROOF OF LEMMA 3
The Algorithm Learn-Sparse

X (n, ǫ′, δ′) works as follows:
It first draws M = 32 log(8/δ′)/ǫ′2 samples from X and
sorts them to obtain a list of values 0 ≤ s1 ≤ · · · ≤ sM ≤ n.
In terms of these samples, let us define â := s⌈2ǫ′M⌉ and

b̂ := s⌊(1−2ǫ′)M⌋. We claim the following:

Claim 6. With probability at least 1−δ′/2, we have X(≤
â) ∈ [3ǫ′/2, 5ǫ′/2] and X(≤ b̂) ∈ [1− 5ǫ′/2, 1− 3ǫ′/2].

Proof. We only show that X(≤ â) ≥ 3ǫ′/2 with proba-
bility at least 1 − δ′/8, since the arguments for X(≤ â) ≤
5ǫ′/2, X(≤ b̂) ≤ 1 − 3ǫ′/2 and X(≤ b̂) ≥ 1 − 5ǫ′/2 are
identical. Given that each of these conditions is met with
probability at least 1−δ′/8, the union bound establishes our
claim.

To show that X(≤ â) ≥ 3ǫ′/2 is satisfied with probability
at least 1− δ′/8 we argue as follows: Let α′ = max{i | X(≤
i) < 3ǫ′/2}. Clearly, X(≤ α′) < 3ǫ′/2 while X(≤ α′ + 1) ≥
3ǫ′/2. Given this, of M samples drawn from X an expected
number of at most 3ǫ′M/2 samples are ≤ α′. It follows
then from the Chernoff bound that the probability that more

than 7
4
ǫ′M samples are ≤ α′ is at most e−(ǫ′/4)2M/2 ≤ δ′/8.

Hence, â ≥ α′ + 1, which implies that X(≤ â) ≥ 3ǫ′/2.

If b̂ − â > (C/ǫ′)3, where C is the constant in the state-
ment of Theorem 4, the algorithm outputs “fail”, returning
the trivial hypothesis which puts probability mass 1 on the
point 0. Otherwise, the algorithm runs Birgé’s unimodal dis-
tribution learner (Theorem 5) on the conditional distribu-
tionX[â,b̂], and outputs the result of Birgé’s algorithm. Since
X is unimodal, it follows that X[â,b̂] is also unimodal, hence
Birgé’s algorithm is appropriate for learning it. The way we
apply Birgé’s algorithm to learn X[â,b̂] given samples from
the original distribution X is the obvious one: we draw sam-
ples from X, ignoring all samples that fall outside of [â, b̂],
until the right O(log(1/δ′) log(1/ǫ′)/ǫ′3) number of samples

fall inside [â, b̂], as required by Birgé’s algorithm for learning
a distribution of support of size (C/ǫ′)3 with probability 1−
δ′/4. Once we have the right number of samples in [â, b̂], we
run Birgé’s algorithm to learn the conditional distribution
X[â,b̂]. Note that the number of samples we need to draw

from X until the right O(log(1/δ′) log(1/ǫ′)/ǫ′3) number of

samples fall inside [â, b̂] is still O(log(1/δ′) log(1/ǫ′)/ǫ′3),

with probability at least 1− δ′/4. Indeed, since X([â, b̂]) =
1−O(ǫ′), it follows from the Chernoff bound that with prob-
ability at least 1 − δ′/4, if K = Θ(log(1/δ′) log(1/ǫ′)/ǫ′3)
samples are drawn from X, at least K(1−O(ǫ′)) fall inside

[â, b̂].
Analysis: It is easy to see that the sample complexity of

our algorithm is as promised. For the running time, notice
that, if Birgé’s algorithm is invoked, it will return two lists of
numbers a1 through ak and b1 through bk, as well as a list
of probability masses q1, . . . , qk assigned to each subinter-
val [ai, bi], i = 1, . . . , k, by the hypothesis distribution HS,
where k = O(log(1/ǫ′)/ǫ′). In linear time, we can compute
a list of probabilities q̂1, . . . , q̂k, representing the probabil-
ity assigned by HS to every point of subinterval [ai, bi], for
i = 1, . . . , k. So we can represent our output hypothesis
HS via a data structure that maintains O(1/ǫ′3) pointers,
having one pointer per point inside [a, b]. The pointers map
points to probabilities assigned by HS to these points. Thus
turning the output of Birgé’s algorithm into an explicit dis-
tribution over [a, b] incurs linear overhead in our running
time, and hence the running time of our algorithm is also
as promised. Moreover, we also note that the output dis-
tribution has the promised structure, since in one case it
has a single atom at 0 and in the other case it is the out-
put of Birgé’s algorithm on a distribution of support of size
(C/ǫ′)3.

It only remains to justify the last part of the lemma. Let
Y be the sparse-form PBD that X is close to; say that Y
is supported on {a′, . . . , b′} where b′ − a′ ≤ (C/ǫ′)3. Since
X is ǫ′-close to Y in total variation distance it must be the
case that X(≤ a′ − 1) ≤ ǫ′. Since X(≤ â) ≥ 3ǫ′/2 by
Claim 6, it must be the case that â ≥ a′. Similar argu-
ments give that b̂ ≤ b′. So the interval [â, b̂] is contained
in [a′, b′] and has length at most (C/ǫ′)3. This means that
Birgé’s algorithm is indeed used correctly by our algorithm
to learn X[â,b̂], with probability at least 1 − δ′/2 (that is,

unless Claim 6 fails). Now it follows from the correctness
of Birgé’s algorithm (Theorem 5) and the discussion above,
that the hypothesis HS output when Birgé’s algorithm is
invoked satisfies dTV (HS, X[â,b̂]) ≤ ǫ′, with probability at

least 1−δ′/2, i.e. unless either Birgé’s algorithm fails, or we

fail to get the right number of samples landing inside [â, b̂].



To conclude the proof of the lemma we note that:

2dTV (X,X[â,b̂])

=
∑

i∈[â,b̂]

|X[â,b̂](i)−X(i)|+
∑

i/∈[â,b̂]

|X[â,b̂](i)−X(i)|

=
∑

i∈[â,b̂]

∣∣∣ 1

X([â, b̂])
X(i)−X(i)

∣∣∣+
∑

i/∈[â,b̂]

X(i)

=
∑

i∈[â,b̂]

∣∣∣ 1

1−O(ǫ′)
X(i)−X(i)

∣∣∣+O(ǫ′)

=
O(ǫ′)

1−O(ǫ′)

∑

i∈[â,b̂]

∣∣∣X(i)
∣∣∣+O(ǫ′)

= O(ǫ′).

So the triangle inequality gives: dTV (HS, X) = O(ǫ′), and
Lemma 3 is proved.

B. PROOF OF LEMMA 4
We start by showing that we can estimate the mean and

variance of the target PBD X.

Lemma 7. For all n, ǫ, δ > 0, there exists an algorithm
A(n, ǫ, δ) with the following properties: given access to a
PBD X over [n], it produces estimates µ̂ and σ̂2 for µ =
E[X] and σ2 = Var[X] respectively such that with probability
at least 1− δ:

|µ− µ̂| ≤ ǫ · σ and |σ2 − σ̂2| ≤ ǫ · σ2

√
4 +

1

σ2
.

The algorithm uses

O(log(1/δ)/ǫ2)

samples and runs in time

O(log n log(1/δ)/ǫ2).

Proof. We treat the estimation of µ and σ2 separately.
For both estimation problems we show how to use O(1/ǫ2)
samples to obtain estimates µ̂ and σ̂2 achieving the required
guarantees with probability at least 2/3. Then a routine
procedure allows us to boost the success probability to 1− δ
at the expense of a multiplicative factor O(log 1/δ) on the
number of samples. While we omit the details of the routine
boosting argument, we remind the reader that it involves
running the weak estimator O(log 1/δ) times to obtain esti-
mates µ̂1, . . . , µ̂O(log 1/δ) and outputting the median of these

estimates, and similarly for estimating σ2.
We proceed to specify and analyze the weak estimators

for µ and σ2 separately:

• Weak estimator for µ: Let Z1, . . . , Zm be independent

samples from X, and let µ̂ =
∑

i Zi

m
. Then

E[µ̂] = µ and Var[µ̂] =
1

m
Var[X] =

1

m
σ2.

So Chebyshev’s inequality implies that

Pr[|µ̂− µ| ≥ tσ/
√
m] ≤ 1

t2
.

Choosing t =
√
3 and m = 3/ǫ2, the above imply that

|µ̂− µ| ≤ ǫσ with probability at least 2/3.

• Weak estimator for σ2: Let Z1, . . . , Zm be independent

samples from X, and let σ̂2 =
∑

i(Zi−
1
m

∑
i Zi)

2

m−1
be the

unbiased sample variance (note the use of Bessel’s cor-
rection). Then it can be checked [Joh03] that

E[σ̂2] = σ2 and Var[σ̂2] = σ4

(
2

m− 1
+

κ

m

)
,

where κ is the kurtosis of the distribution of X. To
bound κ in terms of σ2 suppose that X =

∑n
i=1 Xi,

where E[Xi] = pi for all i. Then

κ =
1

σ4

∑

i

(1− 6pi(1− pi))(1− pi)pi (see [NJ05])

≤ 1

σ4

∑

i

|1− 6pi(1− pi)|(1− pi)pi

≤ 1

σ4

∑

i

(1− pi)pi =
1

σ2
.

So Var[σ̂2] = σ4
(

2
m−1

+ κ
m

)
≤ σ4

m
(4 + 1

σ2 ). So Cheby-

shev’s inequality implies that

Pr

[
|σ̂2 − σ2| ≥ t

σ2

√
m

√
4 +

1

σ2

]
≤ 1

t2
.

Choosing t =
√
3 and m = 3/ǫ2, the above imply that

|σ̂2 − σ2| ≤ ǫσ2
√

4 + 1
σ2 with probability at least 2/3.

We now proceed to prove Lemma 4. Suppose that X
is not ǫ′-close to any PBD in sparse form inside the cover
Sǫ′ of Theorem 4. Then there exists a PBD Z in k = k(ǫ′)-
heavy Binomial form inside Sǫ′ that is within total variation
distance ǫ′ from X. We use the existence of such a Z to
obtain lower bounds on the mean and variance ofX. Indeed,
suppose that the distribution of Z is Bin(ℓ, q) + t, i.e. a
Binomial with parameters ℓ, q that is translated by t. Then
Theorem 4 certifies that the following conditions are satisfied
by the parameters ℓ, q, t, µ = E[X] and σ2 = Var[X]:

(a) ℓq ≥ k2 − 1
k
;

(b) ℓq(1− q) ≥ k2 − k − 1− 3
k
;

(c) |t + ℓq − µ| = O(ǫ′); and

(d) |ℓq(1− q)− σ2| = O(1 + ǫ · (1 + σ2)).

In particular, conditions (b) and (d) above imply that

σ2 = Ω(k2) = Ω(1/ǫ′2) ≥ θ2

for some universal constant θ, as mentioned in Section 2.2
(see Equation (1)). Hence we can apply Lemma 7 with

ǫ = ǫ′/
√

4 + 1
θ2

and δ = δ′ to obtain—from O(log(1/δ′)/ǫ′2)

samples and with probability at least 1−δ′—estimates µ̂ and
σ̂2 of µ and σ2 respectively that satisfy

|µ− µ̂| ≤ ǫ′ · σ and |σ2 − σ̂2| ≤ ǫ′ · σ2.

(see Equation (2) of Section 2.2).
Now let Y be a random variable distributed according to

the translated Poisson distribution TP (µ̂, σ̂2). We conclude
the proof of Lemma 4 by showing that Y and X are within
O(ǫ′) in total variation distance.



Claim 8. If X and Y are as above, then dTV (X,Y ) ≤
O(ǫ′).

Proof. We make use of Lemma 1. Suppose that X =∑n
i=1 Xi, where E[Xi] = pi for all i. Lemma 1 implies that

dTV (X,TP (µ, σ2)) ≤
√∑

i p
3
i (1− pi) + 2∑

i pi(1− pi)

≤
√∑

i pi(1− pi) + 2∑
i pi(1− pi)

≤ 1√∑
i pi(1− pi)

+
2∑

i pi(1− pi)

=
1

σ
+

2

σ2

= O(ǫ′). (12)

It remains to bound the total variation distance between the
translated Poisson distributions TP (µ, σ2) and TP (µ̂, σ̂2).
For this we use Lemma 2. Lemma 2 implies

dTV (TP (µ, σ2), TP (µ̂, σ̂2)) ≤ |µ− µ̂|
min(σ, σ̂)

+
|σ2 − σ̂2|+ 1

min(σ2, σ̂2)

≤ ǫ′σ

min(σ, σ̂)
+

ǫ′ · σ2 + 1

min(σ2, σ̂2)

≤ ǫ′σ

σ/
√
1− ǫ′

+
ǫ′ · σ2 + 1

σ2/(1− ǫ′)

= O(ǫ′) +
1− ǫ′

σ2

= O(ǫ′) +O(ǫ′2)

= O(ǫ′). (13)

The claim follows from (12), (13) and the triangle inequal-
ity.

This concludes the proof of Lemma 4 as well.

As a final remark, we note that the algorithm described
above does not need to know a priori whether or not X is
ǫ′-close to a PBD in sparse form inside the cover Sǫ′ of Theo-
rem 4. The algorithm simply runs the estimator of Lemma 7

with ǫ = ǫ′/
√

4 + 1
θ2

and δ′ = δ and outputs whatever esti-

mates µ̂ and σ̂2 the algorithm of Lemma 7 produces.

C. PROOF OF LEMMA 5
Let W be the support of X. To set up the competition

between H1 and H2, we define the following subset of W:

W1 = W1(H1,H2) := {w ∈ W H1(w) > H2(w)} .
Let then p1 = H1(W1) and q1 = H2(W1). Clearly, p1 > q1
and dTV (H1,H2) = p1 − q1.

The competition between H1 and H2 is carried out as
follows:

1. If p1 − q1 ≤ 5ǫ′, declare a draw and return either Hi.
Otherwise:

2. Draw m = O
(

log(1/δ′)

ǫ′2

)
samples s1, . . . , sm from X,

and let τ = 1
m
|{i | si ∈ W1}| be the fraction of samples

that fall inside W1.

3. If τ > p1 − 3
2
ǫ′, declare H1 as winner and return H1;

otherwise,

4. if τ < q1 + 3
2
ǫ′, declare H2 as winner and return H2;

otherwise,

5. declare a draw and return either Hi.

It is not hard to check that the outcome of the competi-
tion does not depend on the ordering of the pair of distri-
butions provided in the input; that is, on inputs (H1,H2)
and (H2,H1) the competition outputs the same result for a
fixed sequence of samples s1, . . . , sm drawn from X.

The correctness of Choose-Hypothesis is an immediate
consequence of the following claim. (In fact for Lemma 5 we
only need item (i) below, but item (ii) will be handy later
in the proof of Lemma 11.)

Claim 9. Suppose that dTV (X,H1) ≤ ǫ′. Then:

(i) If dTV (X,H2) > 6ǫ′, then the probability that the com-
petition between H1 and H2 does not declare H1 as the

winner is at most e−mǫ′2/2. (Intuitively, if H2 is very
bad then it is very likely that H1 will be declared win-
ner.)

(ii) If dTV (X,H2) > 4ǫ′, the probability that the competi-
tion between H1 and H2 declares H2 as the winner is

at most e−mǫ′2/2. (Intuitively, if H2 is only moderately
bad then a draw is possible but it is very unlikely that
H2 will be declared winner.)

Proof. Let r = X(W1). The definition of the total vari-
ation distance implies that |r−p1| ≤ ǫ′. Let us define the 0/1
(indicator) random variables {Zj}mj=1 as Zj = 1 iff sj ∈ W1.
Clearly, τ = 1

m

∑m
j=1 Zj and E[τ ] = E[Zj ] = r. Since the

Zj ’s are mutually independent, it follows from the Chernoff

bound that Pr[τ ≤ r − ǫ′/2] ≤ e−mǫ′2/2. Using |r − p1| ≤ ǫ′

we get that Pr[τ ≤ p1 − 3ǫ′/2] ≤ e−mǫ′2/2. Hence:

• For part (i): If dTV (X,H2) > 6ǫ′, from the triangle
inequality we get that p1 − q1 = dTV (H1, H2) > 5ǫ′.
Hence, the algorithm will go beyond step 1, and with

probability at least 1− e−mǫ′2/2, it will stop at step 3,
declaring H1 as the winner of the competition between
H1 and H2.

• For part (ii): If p1 − q1 ≤ 5ǫ′ then the competition
declares a draw, hence H2 is not the winner. Otherwise
we have p1 − q1 > 5ǫ′ and the above arguments imply
that the competition between H1 and H2 will declare

H2 as the winner with probability at most e−mǫ′2/2.

This concludes the proof of Claim 9 and of Lemma 5.

D. LEARNING WEIGHTED SUMS OF IN-
DEPENDENT BERNOULLIS

In this section we consider a generalization of the problem
of learning an unknown PBD, by studying the learnability
of weighted sums of independent Bernoulli random variables
X =

∑n
i=1 wiXi. (Throughout this section we assume for

simplicity that the weights are “known” to the learning al-
gorithm.) In Section D.1 we show that if there are only
constantly many different weights then such distributions
can be learned by an algorithm that uses O(log n) samples
and runs in time poly(n). In Section D.2 we show that if
there are n distinct weights then even if those weights have
an extremely simple structure – the i-th weight is simply i
– any algorithm must use Ω(n) samples.



D.1 Learning sums of weighted independent
Bernoulli random variables with few dis-
tinct weights

Recall Theorem 2:

Theorem 2. Let X =
∑n

i=1 aiXi be a weighted sum of
unknown independent Bernoulli random variables such that
there are at most k different values in the set {a1, . . . , an}.
Then there is an algorithm with the following properties:
given n, a1, . . . , an and access to independent draws from
X, it uses

Õ(k/ǫ2) · log(n) · log(1/δ)
samples from the target distribution X, runs in time

poly
(
nk · (k/ǫ)k log2(k/ǫ)

)
· log(1/δ),

and with probability 1 − δ outputs a hypothesis vector p̂ ∈
[0, 1]n defining independent Bernoulli random variables X̂i

with E[X̂i] = pi such that dTV (X̂,X) ≤ ǫ, where X̂ =∑n
i=1 aiX̂i.

Given a vector a = (a1, . . . , an) of weights, we refer to
a distribution X =

∑n
i=1 aiXi (where X1, . . . , Xn are inde-

pendent Bernoullis which may have arbitrary means) as an
a-weighted sum of Bernoullis, and we write Sa to denote the
space of all such distributions.

To prove Theorem 2 we first show that Sa has an ǫ-cover
that is not too large. We then show that by running a “tour-
nament”between all pairs of distributions in the cover, using
the hypothesis testing subroutine from Section 2.3, it is pos-
sible to identify a distribution in the cover that is close to
the target a-weighted sum of Bernoullis.

Lemma 10. There is an ǫ-cover Sa,ǫ ⊂ Sa of size |Sa,ǫ| ≤
(n/k)3k · (k/ǫ)k·O(log2(k/ǫ)) that can be constructed in time
poly(|Sa,ǫ|).

Proof. Let {bj}kj=1 denote the set of distinct weights
in a1, . . . , an, and let nj =

∣∣{i ∈ [n] | ai = bj}
∣∣. With

this notation, we can write X =
∑k

j=1 bjSj = g(S), where

S = (S1, . . . , Sk) with each Sj a sum of nj many independent

Bernoulli random variables and g(y1, . . . , yk) =
∑k

j=1 bjyj .

Clearly we have
∑k

j=1 nj = n. By Theorem 4, for each j ∈
{1, . . . , k} the space of all possible Sj ’s has an explicit (ǫ/k)-

cover Sj
ǫ/k

of size |Sj
ǫ/k

| ≤ n3
j ·O(k/ǫ) + n · (k/ǫ)O(log2(k/ǫ)).

By independence across Sj ’s, the product Q =
∏k

j=1 S
j
ǫ/k

is

an ǫ-cover for the space of all possible S’s, and hence the set

{Q =
k∑

j=1

bjSj : (S1, . . . , Sk) ∈ Q}

is an ǫ-cover for Sa. So Sa has an explicit ǫ-cover of size

|Q| =∏k
j=1 |S

j
ǫ/k| ≤ (n/k)3k · (k/ǫ)k·O(log2(k/ǫ)).

(We note that a slightly stronger quantitative bound on
the cover size can be obtained using Theorem 6 instead of
Theorem 4, but the improvement is negligible for our ulti-
mate purposes.)

Lemma 11. Let S be any collection of distributions over
a finite set. Suppose that Sǫ ⊂ S is an ǫ-cover of S of size
N . Then there is an algorithm that uses

O(ǫ−2 logN log(1/δ))

samples from an unknown target distribution X ∈ S and
with probability 1 − δ outputs a distribution Z ∈ Sǫ that
satisfies dTV (X,Z) ≤ 6ǫ.

Devroye and Lugosi (Chapter 7 of [DL01]) prove a similar
result by having all pairs of distributions in the cover com-
pete against each other using their notion of a competition,
but again there are some small differences: their approach
chooses a distribution in the cover which wins the maximum
number of competitions, whereas our algorithm chooses a
distribution that is never defeated (i.e. won or achieved a
draw against all other distributions in the cover).

Proof. The algorithm performs a tournament by run-
ning the competition Choose-HypothesisX (Hi,Hj , ǫ, δ/(2N))
for every pair of distinct distributions Hi,Hj in the cover Sǫ.
It outputs a distribution Y ⋆ ∈ Sǫ that was never a loser (i.e.
won or achieved a draw in all its competitions). If no such
distribution exists in Sǫ then the algorithm outputs“failure.”

Since Sǫ is an ǫ-cover of S , there exists some Y ∈ Sǫ

such that dTV (X,Y ) ≤ ǫ. We first argue that with high
probability this distribution Y never loses a competition
against any other Y ′ ∈ Sǫ (so the algorithm does not out-
put “failure”). Consider any Y ′ ∈ Sǫ. If dTV (X,Y ′) > 4ǫ,
by Claim 9(ii) the probability that Y loses to Y ′ is at most

2e−mǫ2/2 = O(1/N). On the other hand, if dTV (X,Y ′) ≤ 4ǫ,
the triangle inequality gives that dTV (Y, Y ′) ≤ 5ǫ and thus
Y draws against Y ′. A union bound over all N distributions
in Sǫ shows that with probability 1 − δ/2, the distribution
Y never loses a competition.

We next argue that with probability at least 1−δ/2, every
distribution Y ′ ∈ Sǫ that never loses has Y ′ close to X. Fix
a distribution Y ′ such that dTV (Y ′, X) > 6ǫ; Lemma 9(i)

implies that Y ′ loses to Y with probability 1− 2e−mǫ2/2 ≥
1− δ/(2N). A union bound gives that with probability 1−
δ/2, every distribution Y ′ that has dTV (Y ′, X) > 6ǫ loses
some competition.

Thus, with overall probability at least 1 − δ, the tourna-
ment does not output “failure” and outputs some distribu-
tion Y ⋆ such that dTV (X,Y ⋆) is at most 6ǫ. This proves the
lemma.

Proof of Theorem 2: We claim that the algorithm of
Lemma 11 has the desired sample complexity and can be
implemented to run in the claimed time bound. The sam-
ple complexity bound follows directly from Lemma 11. It
remains to argue about the time complexity. Note that
the running time of the algorithm is poly(|Sa,ǫ|) times the
running time of a competition. We will show that a com-
petition between H1,H2 ∈ Sa,ǫ can be carried out by an
efficient algorithm. This amounts to efficiently computing
the probabilities p1 = H1(W1) and q1 = H2(W1). Note that

W =
∑k

j=1 bi ·{0, 1, . . . , nj}. Clearly, |W| ≤∏k
j=1(nj+1) =

O((n/k)k). It is thus easy to see that p1, q1 can be efficiently
computed as long as there is an efficient algorithm for the
following problem: givenH =

∑k
j=1 bjSj ∈ Sa,ǫ and w ∈ W,

compute H(w). Indeed, fix any such H,w. We have that

H(w) =
∑

m1,...,mk

k∏
j=1

Pr
H
[Sj = mj ],

where the sum is over all k-tuples (m1, . . . ,mk) such that
0 ≤ mj ≤ nj for all j and b1m1 + · · · + bkmk = w (as



noted above there are at most O((n/k)k) such k-tuples). To
complete the proof of Theorem 2 we note that PrH [Sj =
mj ] can be computed in O(n2

j ) time by standard dynamic
programming. �

We close this subsection with the following remark: In re-
cent work [DDS12] the authors have given a poly(ℓ, log(n),
1/ǫ)-time algorithm that learns any ℓ-modal distribution
over [n] (i.e. a distribution whose pdf has at most ℓ “peaks”
and “valleys”) using O(ℓ log(n)/ǫ3+(ℓ/ǫ)3 log(ℓ/ǫ)) samples.
It is natural to wonder whether this algorithm could be
used to efficiently learn a sum of n weighted independent
Bernoulli random variables with k distinct weights, and thus
give an alternate algorithm for Theorem 2, perhaps with
better asymptotic guarantees. However, it is easy to con-
struct a sum X =

∑n
i=1 aiXi of n weighted independent

Bernoulli random variables with k distinct weights such that
X is 2k-modal. Thus a naive application of the [DDS12]
result would only give an algorithm with sample complex-
ity exponential in k, rather than the quasilinear sample
complexity of our current algorithm. If the 2k-modality
of the above-mentioned example is the worst case (which
we do not know), then the [DDS12] algorithm would give
a poly(2k, log(n), 1/ǫ)-time algorithm for our problem that

uses O(2k log(n)/ǫ3)+ 2O(k) · Õ(1/ǫ3) examples (so compar-
ing with Theorem 2, exponentially worse sample complexity
as a function of k, but exponentially better running time as
a function of n). Finally, in the context of this question (how
many modes can there be for a sum of n weighted indepen-
dent Bernoulli random variables with k distinct weights), it
is interesting to recall the result of K.-I. Sato [Sat93] which
shows that for any N there are two unimodal distributions
X,Y such that X + Y has at least N modes.

D.2 Sample complexity lower bound for learn-
ing sums of weighted independent Bernoulli
random variables

Recall Theorem 3:

Theorem 3. Let X =
∑n

i=1 i · Xi be a weighted sum of
unknown independent Bernoulli random variables (where the
i-th weight is simply i). Let L be any learning algorithm
which, given n and access to independent draws from X,
outputs a hypothesis distribution X̂ such that dTV (X̂,X) ≤
1/25 with probability at least e−o(n). Then L must use Ω(n)
samples.

Proof of Theorem 3: We define a probability distribution
over possible target probability distributions X as follows:
A subset S ⊂ {n/2 + 1, . . . , n} of size |S| = n/100 is drawn

uniformly at random from all
(

n/2
n/100

)
possible outcomes..

The vector p = (p1, . . . , pn) is defined as follows: for each
i ∈ S the value pi equals 100/n = 1/|S|, and for all other
i the value pi equals 0. The i-th Bernoulli random variable
Xi has E[Xi] = pi, and the target distribution is X = Xp =∑n

i=1 iXi.
We will need two easy lemmas:

Lemma 12. Fix any S, p as described above. For any
j ∈ {n/2 + 1, . . . , n} we have Xp(j) 6= 0 if and only if
j ∈ S. For any j ∈ S the value Xp(j) is exactly (100/n)(1−
100/n)n/100−1 > 35/n (for n sufficiently large), and hence
Xp({n/2+1, . . . , n}) > 0.35 (again for n sufficiently large).

The first claim of the lemma holds because any set of c ≥ 2
numbers from {n/2 + 1, . . . , n} must sum to more than n.
The second claim holds because the only way a draw x from
Xp can have x = j is if Xj = 1 and all other Xi are 0 (here
we are using limx→∞(1− 1/x)x = 1/e).

The next lemma is an easy consequence of Chernoff bounds:

Lemma 13. Fix any p as defined above, and consider a
sequence of n/2000 independent draws from Xp =

∑
i iXi.

With probability 1−e−Ω(n) the total number of indices j ∈ [n]
such that Xj is ever 1 in any of the n/2000 draws is at most
n/1000.

We are now ready to prove Theorem 3. Let L be a learning
algorithm that receives n/2000 samples. Let S ⊂ {n/2 +
1, . . . , n} and p be chosen randomly as defined above, and
set the target to X = Xp.

We consider an augmented learner L′ that is given “extra
information.” For each point in the sample, instead of re-
ceiving the value of that draw from X the learner L′ is given
the entire vector (X1, . . . , Xn) ∈ {0, 1}n. Let T denote the
set of elements j ∈ {n/2 + 1, . . . , n} for which the learner
is ever given a vector (X1, . . . , Xn) that has Xj = 1. By
Lemma 13 we have |T | ≤ n/1000 with probability at least

1 − e−Ω(n); we condition on the event |T | ≤ n/1000 going
forth.

Fix any value ℓ ≤ n/1000. Conditioned on |T | = ℓ, the set
T is equally likely to be any ℓ-element subset of S, and all
possible “completions” of T with an additional n/100 − ℓ ≥
9n/1000 elements of {n/2 + 1, . . . , n} \ T are equally likely
to be the true set S.

Let H denote the hypothesis distribution over [n] that al-
gorithm L outputs. Let R denote the set {n/2+1, . . . , n}\T ;
note that since |T | = ℓ ≤ n/1000, we have |R| ≥ 499n/1000.
Let U denote the set {i ∈ R : H(i) ≥ 30/n}. Since H is
a distribution we must have |U | ≤ n/30. Each element in
S \ U “costs” at least 5/n in variation distance between X
and H . Since S is a uniform random extension of T with
at most n/100 − ℓ ∈ [9n/1000, n/100] unknown elements
of R and |R| ≥ 499n/1000, an easy calculation shows that

Pr[|S \ U | > 8n/1000] is 1 − e−Ω(n). This means that with

probability 1−e−Ω(n) we have dTV (X,H) ≥ 8n
1000

· 5
n
= 1/25,

and the theorem is proved. �

E. EXTENSIONS OF THE COVER THEO-
REM

E.1 Proof of Theorem 4
We only need to argue that the ǫ-covers constructed in the

works [Das08] and [DP11] satisfy the part of the theorem
following “finally;” we will refer to this part of the theorem
as the last part in the following discussion. Moreover, in
order to avoid reproducing here the involved constructions
of [Das08] and [DP11], we will assume that the reader has
some familiarity with these constructions. Nevertheless, we
will try to make our proof self-contained.

First, we claim that we only need to establish the last part
of Theorem 4 for the cover obtained in [Das08]. Indeed, the
ǫ-cover of [DP11] is just a subset of the ǫ/2-cover of [Das08],
which includes only a subset of the sparse form distributions
in the ǫ/2-cover of [Das08]. Moreover, for every sparse form
distribution in the ǫ/2-cover of [Das08], the ǫ-cover of [DP11]



includes at least one sparse form distribution that is ǫ/2-
close in total variation distance. Hence, if the ǫ/2-cover of
[Das08] satisfies the last part of Theorem 4, it follows that
the ǫ-cover of [DP11] also satisfies the last part of Theorem 4.

We proceed to argue that the cover of [Das08] satisfies
the last part of Theorem 4. The construction of the ǫ-cover
in [Das08] works roughly as follows: Given an arbitrary col-
lection of indicators {Xi}ni=1 with expectations E[Xi] = pi
for all i, the collection is subjected to two filters, called the
Stage 1 and the Stage 2 filters (see respectively Sections 5
and 6 of [Das08]). Using the same notation as [Das08] let us
denote by {Zi}i the collection output by the Stage 1 filter
and by {Yi}i the collection output by the Stage 2 filter. The
collection output by the Stage 2 filter is included in the ǫ-
cover of [Das08], satisfies that dTV (

∑
i Xi,

∑
i Yi) ≤ ǫ, and

is in either the heavy Binomial or the sparse form.
Let (µZ , σ

2
Z) and (µY , σ2

Y ) denote respectively the (mean,
variance) pairs of the variables Z =

∑
i Zi and Y =

∑
i Yi.

We argue first that the pair (µZ , σ
2
Z) satisfies |µ − µZ | =

O(ǫ) and |σ2 − σ2
Z | = O(ǫ · (1 + σ2)), where µ and σ2 are

respectively the mean and variance of X =
∑

i Xi. Next
we argue that, if the collection {Yi}i output by the Stage 2
filter is in heavy Binomial form, then (µY , σ2

Y ) also satisfies
|µ− µY | = O(ǫ) and |σ2 − σ2

Y | = O(1 + ǫ · (1 + σ2)).

• Proof for (µZ , σ
2
Z): The Stage 1 filter only modifies the

indicators Xi with pi ∈ (0, 1/k)∪ (1− 1/k, 1), for some
well-chosen k = O(1/ǫ) (as in the statement of The-
orem 4). For convenience let us define L = {i pi ∈
(0, 1/k)} and H = {i pi ∈ (1− 1/k, 1)} as in [Das08].
The filter of Stage 1 rounds the expectations of the in-
dicators indexed by L to some value in {0, 1/k} so that
no expectation is altered by more than an additive 1/k,
and the sum of these expectations is not modified by
more than an additive 1/k. Similarly, the expectations
of the indicators indexed by H are rounded to some
value in {1− 1/k, 1}. See the details of how the round-
ing is performed in Section 5 of [Das08]. Let us then
denote by {p′i}i the expectations of the indicators {Zi}i
resulting from the rounding. We argue that the mean
and variance of Z =

∑
i Zi is close to the mean and

variance of X. Indeed,

|µ− µZ | =

∣∣∣∣∣
∑

i

pi −
∑

i

p′i

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈L∪H

pi −
∑

i∈L∪H

p′i

∣∣∣∣∣
≤ O(1/k) = O(ǫ). (14)

Similarly,

|σ2 − σ2
Z | =

∣∣∣∣∣
∑

i

pi(1− pi)−
∑

i

p′i(1− p′i)

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈L

pi(1− pi)−
∑

i∈L

p′i(1− p′i)

∣∣∣∣∣+
∣∣∣∣∣
∑

i∈H

pi(1− pi)−
∑

i∈H

p′i(1− p′i)

∣∣∣∣∣ .

We proceed to bound the two terms of the above sum-
mation separately. Since the argument is symmetric for

L and H we only do L. We have
∣∣∣∣∣
∑

i∈L

pi(1− pi)−
∑

i∈L

p′i(1− p′i)

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈L

(pi − p′i)(1− (pi + p′i))

∣∣∣∣∣

=

∣∣∣∣∣
∑

i∈L

(pi − p′i)−
∑

i∈L

(pi − p′i)(pi + p′i)

∣∣∣∣∣

≤
∣∣∣∣∣
∑

i∈L

(pi − p′i)

∣∣∣∣∣+
∣∣∣∣∣
∑

i∈L

(pi − p′i)(pi + p′i)

∣∣∣∣∣

≤ 1

k
+
∑

i∈L

|pi − p′i|(pi + p′i)

≤ 1

k
+

1

k

∑

i∈L

(pi + p′i)

≤ 1

k
+

1

k

(
2
∑

i∈L

pi + 1/k

)

≤ 1

k
+

1

k

(
2

1− 1/k

∑

i∈L

pi(1− 1/k) + 1/k

)

≤ 1

k
+

1

k

(
2

1− 1/k

∑

i∈L

pi(1− pi) + 1/k

)

≤ 1

k
+

1

k2
+

2

k − 1

∑

i∈L

pi(1− pi).

Using the above (and a symmetric argument for index
set H) we obtain:

|σ2 − σ2
Z | ≤

2

k
+

2

k2
+

2

k − 1
σ2 = O(ǫ)(1 + σ2). (15)

• Proof for (µY , σ2
Y ): After the Stage 1 filter is applied to

the collection {Xi}, the resulting collection of random
variables {Zi} has expectations p′i ∈ {0, 1} ∪ [1/k, 1 −
1/k], for all i. The Stage 2 filter has different form
depending on the cardinality of the set M = {i | p′i ∈
[1/k, 1 − 1/k]}. In particular, if |M| ≥ k3 the output
of the Stage 2 filter is in heavy Binomial form, while if
if |M| < k3 the output of the Stage 2 filter is in sparse
form. As we are only looking to provide a guarantee
for the distributions in heavy Binomial form, it suffices
to only consider the former case next.

– |M| ≥ k3: Let {Yi} be the collection produced
by Stage 2 and let Y =

∑
i Yi. Then Lemma 6.1

in [Das08] implies that

|µZ − µY | = O(ǫ) and |σ2
Z − σ2

Y | = O(1).

Combining this with (14) and (15) gives

|µ−µY | = O(ǫ) and |σ2−σ2
Y | = O(1+ǫ ·(1+σ2)).

This concludes the proof of Theorem 4.

E.2 Improved Version of Theorem 4
In our new improved version of the Cover Theorem, the

k-heavy Binomial Form distributions in the cover are actu-
ally Binomial distributions Bin(ℓ, q) (rather than translated
Binomial distributions as in the original version) for some
ℓ ≤ n and some q which is of the form (integer)/ℓ (rather



than q of the form (integer)/(kn) as in the original version).
This gives an improved bound on the cover size. For clarity
we state in full the improved version of Theorem 4 below:

Theorem 6 (Cover for PBDs, stronger version).
For all ǫ > 0, there exists an ǫ-cover Sǫ ⊆ S of S such that

1. |Sǫ| ≤ n2 + n ·
(
1
ǫ

)O(log2 1/ǫ)
; and

2. The set Sǫ can be constructed in time linear in its rep-

resentation size, i.e. Õ(n2) + Õ(n) ·
(
1
ǫ

)O(log2 1/ǫ)
.

Moreover, if {Zi} ∈ Sǫ, then the collection {Zi} has one
of the following forms, where k = k(ǫ) ≤ C/ǫ is a positive
integer, for some absolute constant C > 0:

(i) (Sparse Form) There is a value ℓ ≤ k3 = O(1/ǫ3) such

that for all i ≤ ℓ we have E[Zi] ∈
{

1
k2 ,

2
k2 , . . . ,

k2−1
k2

}
,

and for all i > ℓ we have E[Zi] ∈ {0, 1}.
(ii) (Binomial Form) There is a value ℓ̄ ∈ {0, 1, . . . , n} and

a value q̄ ∈
{

1
n
, 2
n
, . . . , n−1

n

}
such that for all i ≤ ℓ̄ we

have E[Zi] = q̄; for all i > ℓ̄ we have E[Zi] = 0; and
ℓ̄, q̄ satisfy the bounds ℓ̄q̄ ≥ k2 − 2− 1

k
and ℓ̄q̄(1− q̄) ≥

k2 − k − 3− 3
k
.

Finally, for every {Xi} ∈ S for which there is no ǫ-neighbor
in Sǫ that is in sparse form, there exists a collection {Zi} ∈
Sǫ in Binomial form such that

(iii) dTV (
∑

i Xi,
∑

i Zi) ≤ ǫ; and

(iv) if µ = E[
∑

i Xi], µ̄ = E[
∑

i Zi], σ
2 = Var[

∑
i Xi] and

σ̄2 = Var[
∑

i Zi], then |µ−µ̄| = 2+O(ǫ) and |σ2−σ̄2| =
O(1 + ǫ · (1 + σ2)).

Proof. Suppose that X = {Xi} ∈ S is a PBD that is
not ǫ1-close to any Sparse Form PBD in the cover Sǫ1 of
Theorem 4, where ǫ1 = Θ(ǫ) is a suitable (small) constant
multiple of ǫ (more on this below). Let µ, σ2 denote the
mean and variance of

∑
i Xi. Parts (iii) and (iv) of Theo-

rem 4 imply that there is a collection {Yi} ∈ Sǫ1 in k-heavy
Binomial Form that is close to

∑
i Xi both in variation dis-

tance and in its mean µ′ and variance σ′2. More precisely,
let ℓ, q be the parameters defining {Yi} as in part (ii) of The-
orem 4 and let µ′, σ′2 be the mean and variance of

∑
i Yi;

so we have µ′ = ℓq + t for some integer 0 ≤ t ≤ n − ℓ and
σ′2 = ℓq(1− q) ≥ Ω(1/ǫ21) from part (ii). This implies that
the bounds |µ−µ′| = O(ǫ1) and |σ2−σ′2| = O(1+ǫ1 ·(1+σ2))
of (iv) are at least as strong as the bounds given by Equa-
tion (2) (here we have used the fact that ǫ1 is a suitably
small constant multiple of ǫ), so we may use the analysis
of Section 2.2. The analysis of Section 2.2 (Claim 8 and
Lemma 2) gives that dTV (X,TP (µ′, σ′2)) ≤ O(ǫ1).

Now the analysis of Locate-Binomial (from Section 2.4)
implies that TP (µ′, σ′2) is O(ǫ1)-close to a Binomial dis-
tribution Bin(n̂, p̂). We first observe that in Step 2.a of
Section 2.4, the variance σ′2 = ℓq(1 − q) is at most n/4
and so the σ2

1 that is defined in Step 2.a equals σ′2. We
next observe that by the Cauchy-Schwarz inequality we have
µ′2 ≤ n(µ′ − σ′2), and thus the value σ2

2 defined in Step 2.b
of Section 2.4 also equals σ′2. Thus we have that the distri-
bution Bin(n̂, p̂) resulting from Locate-Binomial is defined
by

n̂ =

⌊
(ℓq + t)2

ℓq2 + t

⌋
and p̂ =

ℓq2 + t

ℓq + t
.

So we have established that X is O(ǫ1)-close to the Bi-
nomial distribution Bin(n̂, p̂). We first establish that the

parameters n̂, p̂ and the corresponding mean and variance
µ̂ = n̂p̂, σ̂2 = n̂p̂(1− p̂) satisfy the bounds claimed in parts
(ii) and (iv) of Theorem 6. To finally prove the theorem
we will take ℓ̄ = n̂ and q̄ to be p̂ rounded to the nearest
integer multiple of 1/n, and we will show that the Binomial
distribution Bin(ℓ̄, q̄) satisfies all the claimed bounds.

If t = 0 then it is easy to see that n̂ = ℓ and p̂ = q and all
the claimed bounds in parts (ii) and (iv) of Theorem 6 hold
as desired for n̂, p̂, µ̂ and σ̂2. Otherwise t ≥ 1 and we have

µ̂ = n̂p̂

≥
(
(ℓq + t)2

ℓq2 + t
− 1

)
·
(
ℓq2 + t

ℓq + t

)

≥ ℓq + t− 1

≥ ℓq ≥ k2 − 1/k,

and similarly

σ̂2 = n̂p̂(1− p̂)

≥
(
(ℓq + t)2

ℓq2 + t
− 1

)
·
(
ℓq2 + t

ℓq + t

)
·
(
ℓq − ℓq2

ℓq + t

)

= ℓq(1− q)− p̂(1− p̂)

≥ k2 − k − 2− 3

k
,

so we have the bounds claimed in (ii). Similarly, we have

µ′ = ℓq + t =

(
(ℓq + t)2

ℓq2 + t

)
·
(
ℓq2 + t

ℓq + t

)
≥ µ̂ = n̂p̂ ≥ µ′ − 1

so from part (iv) of Theorem 4 we get the desired bound
|µ − µ̂| ≤ 1 + O(ǫ) of Theorem 6. Recalling that σ′2 =
ℓq(1 − q), we have shown above that σ̂2 ≥ σ′2 − 1; we now
observe that

σ′2 =

(
(ℓq + t)2

ℓq2 + t

)
·
(
ℓq2 + t

ℓq + t

)
·
(
ℓq − ℓq2

ℓq + t

)
≥ n̂p̂(1−p̂) = σ̂2,

so from part (iv) of Theorem 4 we get the desired bound
|σ2 − σ̂2| ≤ O(1 + ǫ(1 + σ2)) of Theorem 6.

Finally, we take ℓ̄ = n̂ and q̄ to be p̂ rounded to the near-
est multiple of 1/n as described above; Z = Bin(ℓ̄, q̄) is the
desired Binomial distribution whose existence is claimed by
the theorem, and the parameters µ̄, σ̄2 of the theorem are
µ̄ = ℓ̄q̄, σ̄2 = ℓ̄q̄(1 − q̄). Passing from Bin(n̂, p̂) to Bin(ℓ̄, q̄)
changes the mean and variance of the Binomial distribution
by at most 1, so all the claimed bounds from parts (ii) and
(iv) of Theorem 6 indeed hold. To finish the proof of the the-
orem it remains only to show that dTV (Bin(ℓ̄, p̂),Bin(ℓ̄, q̄)) ≤
O(ǫ). Similar to Section 2.2 this is done by passing through
Translated Poisson distributions. We show that

dTV (Bin(ℓ̄, p̂), TP (ℓ̄p̂, ℓ̄p̂(1− p̂))),

dTV (TP (ℓ̄p̂, ℓ̄p̂(1− p̂)), TP (ℓ̄q̄, ℓ̄q̄(1− q̄))), and

dTV (TP (ℓ̄q̄, ℓ̄q̄(1− q̄)),Bin(ℓ̄, q̄))

are each at most O(ǫ), and invoke the triangle inequality.

1. Bounding dTV (Bin(ℓ̄, p̂), TP (ℓ̄p̂, ℓ̄p̂(1−p̂))): Using Lemma 1,
we get

dTV (Bin(ℓ̄, p̂), TP (ℓ̄p̂, ℓ̄p̂(1− p̂)))

≤ 1√
ℓp̂(1− p̂)

+
2

ℓp̂(1− p̂)
.

Since ℓ̄p̂ = n̂p̂ ≥ k2 − 1/k = Ω(1/ǫ2) we have that the
RHS above is at most O(ǫ).



2. Bounding dTV (TP (ℓ̄p̂, ℓ̄p̂(1−p̂)), TP (ℓ̄q̄, ℓ̄q̄(1−q̄))): Let
σ̃2 denote min{ℓ̄p̂(1− p̂), ℓ̄q̄(1− q̄)}. Since |q̄− p̂| ≤ 1/n,
we have that

ℓ̄q̄(1− q̄) = ℓ̄p̂(1− p̂)±O(1) = Ω(1/ǫ2),

so σ̃ = Ω(1/ǫ). We use Lemma 2, which tells us that

dTV (TP (ℓ̄p̂, ℓ̄p̂(1− p̂)), TP (ℓ̄q̄, ℓ̄q̄(1− q̄)))

≤ |ℓ̄p̂− ℓ̄q̄|
σ̃

+
|ℓ̄p̂(1− p̂)− ℓ̄q̄(1− q̄)|+ 1

σ̃2
. (16)

Since |p̂− q̄| ≤ 1/n, we have that |ℓ̄p̂− ℓ̄q̄| = ℓ̄|p̂− q̂| ≤
ℓ̄/n ≤ 1, so the first fraction on the RHS of (16 is O(ǫ).
The second fraction is at most (O(1) + 1)/σ̃2 = O(ǫ2),
so we get

dTV (TP (ℓ̄p̂, ℓ̄p̂(1− p̂)), TP (ℓ̄q̄, ℓ̄q̄(1− q̄))) ≤ O(ǫ)

as desired.

3. Bounding dTV (TP (ℓ̄q̄, ℓ̄q̄(1− q̄)),Bin(ℓ̄, q̄)): Similar to
the first case above, we use Lemma 1, together with the
lower bound σ̃ = Ω(1/ǫ), to get the desired O(ǫ) upper
bound.

This concludes the proof of Theorem 6.

F. BIRGÉ’S THEOREM: LEARNING UNI-
MODAL DISTRIBUTIONS

Here we briefly explain how Theorem 5 follows from [Bir97].
We assume that the reader is moderately familiar with the
paper [Bir97].

Birgé (see his Theorem 1 and Corollary 1) upper bounds
the expected variation distance between the target distribu-
tion (which he denotes f) and the hypothesis distribution

that is constructed by his algorithm (which he denotes f̂n;
it should be noted, though, that his “n” parameter denotes
the number of samples used by the algorithm, while we will
denote this by “m”, reserving “n” for the domain {1, . . . , n}
of the distribution). More precisely, [Bir97] shows that this
expected variation distance is at most that of the Grenander
estimator (applied to learn a unimodal distribution when the
mode is known) plus a lower-order term. For our Theorem 5
we take Birgé’s “η” parameter to be ǫ. With this choice of
η, by the results of [Bir87a, Bir87b] bounding the expected
error of the Grenander estimator, if m = O(log(n)/ǫ3) sam-
ples are used in Birgé’s algorithm then the expected vari-
ation distance between the target distribution and his hy-
pothesis distribution is at most O(ǫ). To go from expected
error ǫ to an ǫ-accurate hypothesis with probability 1 − δ,
we run the above-described algorithm O(log(1/δ)) times so
that with probability at least 1−δ some hypothesis obtained
is ǫ-accurate. Then we use our hypothesis testing procedure
of Lemma 5, or, more precisely, the extension provided in
Lemma 11, to identify an O(ǫ)-accurate hypothesis. (The
use of Lemma 11 is why the running time of Theorem 5
depends quadratically on log(1/δ).)

It remains only to argue that a single run of Birgé’s algo-
rithm on a sample of size m = O(log(n)/ǫ3) can be carried

out in Õ(log2(n)/ǫ3) bit operations (recall that each sam-
ple is a log(n)-bit string). His algorithm begins by locating
an r ∈ [n] that approximately minimizes the value of his
function d(r) (see Section 3 of [Bir97]) to within an additive

η = ǫ (see Definition 3 of his paper); intuitively this r rep-
resents his algorithm’s “guess” at the true mode of the dis-
tribution. To locate such an r, following Birgé’s suggestion
in Section 3 of his paper, we begin by identifying two con-
secutive points in the sample such that r lies between those
two sample points. This can be done using logm stages of
binary search over the (sorted) points in the sample, where
at each stage of the binary search we compute the two func-
tions d− and d+ and proceed in the appropriate direction.
To compute the function d−(j) at a given point j (the com-
putation of d+ is analogous), we recall that d−(j) is defined
as the maximum difference over [1, j] between the empirical
cdf and its convex minorant over [1, j]. The convex mino-
rant of the empirical cdf (over m points) can be computed

in Õ((log n)m) bit-operations (where the log n comes from
the fact that each sample point is an element of [n]), and
then by enumerating over all points in the sample that lie
in [1, j] (in time O((log n)m)) we can compute d−(j). Thus
it is possible to identify two adjacent points in the sample
such that r lies between them in time Õ((log n)m). Finally,
as Birgé explains in the last paragraph of Section 3 of his pa-
per, once two such points have been identified it is possible
to again use binary search to find a point r in that interval
where d(r) is minimized to within an additive η. Since the
maximum difference between d− and d+ can never exceed
1, at most log(1/η) = log(1/ǫ) stages of binary search are
required here to find the desired r.

Finally, once the desired r has been obtained, it is straight-
forward to output the final hypothesis (which Birgé denotes

f̂n). As explained in Definition 3, this hypothesis is the

derivative of F̃ r
n , which is essentially the convex minorant of

the empirical cdf to the left of r and the convex majorant
of the empirical cdf to the right of r. As described above,
given a value of r these convex majorants and minorants
can be computed in Õ((log n)m) time, and the derivative is
simply a collection of uniform distributions as claimed. This
concludes our sketch of how Theorem 5 follows from [Bir97].

G. EFFICIENT EVALUATION OF THE POIS-
SON DISTRIBUTION

In this section we provide an efficient algorithm to com-
pute an additive approximation to the Poisson probability
mass function. This seems like a basic operation in numeri-
cal analysis, but we were not able to find it explicitly in the
literature.

Before we state our theorem we need some notation. For
a positive integer n, denote by |n| its description complexity
(bit complexity), i.e. |n| = ⌈log2 n⌉. We represent a positive
rational number q as q1

q2
, where q1, q2 are relatively prime

positive integers. The description complexity of q is defined
to be |q| = |q1|+|q2|. We are now ready to state our theorem
for this section:

Theorem 7. There is an algorithm that, on input a ra-
tional number λ > 0, and integers k ≥ 0 and t > 0, produces
an estimate p̂k such that

|p̂k − pk| ≤
1

t
,

where pk = λke−λ

k!
is the probability that the Poisson dis-

tribution of parameter λ assigns to integer k. The running
time of the algorithm is Õ(|t|3 + |k| · |t|+ |λ| · |t|).



Proof. Clearly we cannot just compute e−λ, λk and k!
separately, as this will take time exponential in the descrip-
tion complexity of k and λ. We follow instead an indirect
approach. We start by rewriting the target probability as
follows

pk = e−λ+k ln(λ)−ln(k!).

Motivated by this formula, let

Ek := −λ+ k ln(λ)− ln(k!).

Note that Ek ≤ 0. Our goal is to approximate Ek to within
high enough accuracy and then use this approximation to
approximate pk.

In particular, the main part of the argument involves an

efficient algorithm to compute an approximation
̂̂
Ek to Ek

satisfying
∣∣∣̂̂Ek − Ek

∣∣∣ ≤ 1

4t
≤ 1

2t
− 1

8t2
. (17)

This approximation has bit complexity Õ(|k| + |λ| + |t|)
and can be computed in time Õ(|k| · |t|+ |λ|+ |t|3).

We first show how to use such an approximation to com-
plete the proof. We claim that it suffices to approximate

e
̂̂
Ek to within an additive error 1

2t
. Indeed, if p̂k is the result

of this approximation, then:

p̂k ≤ e
̂̂
Ek +

1

2t

≤ e
Ek+

1
2t

− 1

8t2 +
1

2t

≤ eEk+ln(1+ 1
2t

) +
1

2t

≤ eEk

(
1 +

1

2t

)
+

1

2t
≤ pk +

1

t
;

and similarly

p̂k ≥ e
̂̂
Ek − 1

2t

≥ e
Ek−( 1

2t
− 1

8t2
) − 1

2t

≥ eEk−ln(1+ 1
2t

) − 1

2t

≥ eEk

/(
1 +

1

2t

)
− 1

2t

≥ eEk

(
1− 1

2t

)
− 1

2t
≥ pk − 1

t
.

We will need the following lemma:

Lemma 14. Let α ≤ 0 be a rational number. There is an
algorithm that computes an estimate êα such that

∣∣êα − eα
∣∣ ≤ 1

2t

and has running time Õ(|α| · |t|+ |t|2).

Proof. Since eα ∈ [0, 1], the point of the additive grid
{ i
4t
}4ti=1 closest to eα achieves error at most 1/(4t). Equiv-

alently, in a logarithmic scale, consider the grid {ln i
4t
}4ti=1

and let j∗ := argminj

{∣∣∣α− ln( j
4t
)
∣∣∣
}
. Then, we have that

∣∣∣∣
j∗

(4t)
− eα

∣∣∣∣ ≤
1

4t
.

The idea of the algorithm is to approximately identify the
point j∗, by computing approximations to the points of the
logarithmic grid combined with a binary search procedure.

Indeed, consider the “rounded” grid {̂ln i
4t
}4ti=1 where each

l̂n( i
4t
) is an approximation to ln( i

4t
) that is accurate to

within an additive 1
16t

. Notice that, for i = 1, . . . , 4t:

ln

(
i+ 1

4t

)
− ln

(
i

4t

)
= ln

(
1 +

1

i

)
≥ ln

(
1 +

1

4t

)
> 1/8t.

Given that our approximations are accurate to within an

additive 1/16t, it follows that the rounded grid {̂ln i
4t
}4ti=1 is

monotonic in i.
The algorithm does not construct the points of this grid

explicitly, but adaptively as it needs them. In particular, it
performs a binary search in the set {1, . . . , 4t} to find the

point i∗ := argmini

{∣∣∣α− l̂n( i
4t
)
∣∣∣
}
. In every iteration of the

search, when the algorithm examines the point j, it needs

to compute the approximation gj = l̂n( j
4t
) and evaluate the

distance |α−gj |. It is known that the logarithm of a number
x with a binary fraction of L bits and an exponent of o(L)
bits can be computed to within a relative error O(2−L) in

time Õ(L) [Bre75]. It follows from this that gj has O(|t|) bits
and can be computed in time Õ(|t|). The subtraction takes
linear time, i.e. it uses O(|α|+|t|) bit operations. Therefore,
each step of the binary search can be done in time O(|α|) +
Õ(|t|) and thus the overall algorithm has O(|α| · |t|)+ Õ(|t|2)
running time.

The algorithm outputs i∗

4t
as its final approximation to eα.

We argue next that the achieved error is at most an additive
1
2t
. Since the distance between two consecutive points of the

grid {ln i
4t
}4ti=1 is more than 1/(8t) and our approximations

are accurate to within an additive 1/16t, a little thought

reveals that i∗ ∈ {j∗ − 1, j∗, j∗ + 1}. This implies that i∗

4t
is within an additive 1/2t of eα as desired, and the proof of
the lemma is complete.

We now proceed to describe how to approximate e
̂̂
Ek .

Recall that we want to output an estimate p̂k such that

|p̂k − e
̂̂
Ek | ≤ 1/(2t). We distinguish the following cases:

• If
̂̂
Ek ≥ 0, we output p̂k := 1. Indeed, given that∣∣∣̂̂Ek−Ek

∣∣∣ ≤ 1
4t

and Ek ≤ 0, if
̂̂
Ek ≥ 0 then

̂̂
Ek ∈ [0, 1

4t
].

Hence, because t ≥ 1, e
̂̂
Ek ∈ [1, 1+ 1/2t], so 1 is within

an additive 1/2t of the right answer.

• Otherwise, p̂k is defined to be the estimate obtained

by applying Lemma 14 for α :=
̂̂
Ek. Given the bit

complexity of
̂̂
Ek, the running time of this procedure

will be Õ(|k| · |t|+ |λ| · |t|+ |t|3).
Hence, the overall running time is Õ(|k| · |t|+ |λ| · |t|+ |t|3 ).
We now show how to compute

̂̂
Ek. There are several steps

to our approximation:

1. (Stirling’s Asymptotic Approximation): Recall Stirling’s
asymptotic approximation (see e.g. [Whi80] p.193), which
says that ln k! equals

k ln(k)−k+(1/2)·ln(2π)+
m∑

j=2

Bj · (−1)j

j(j − 1) · kj−1
+O(1/km)



where Bk are the Bernoulli numbers. We define an
approximation of ln k! as follows:

l̂n k! := k ln(k)− k+(1/2) · ln(2π)+
m0∑

j=2

Bj · (−1)j

j(j − 1) · kj−1

for m0 := ⌈ |t|
|k|

⌉+ 1.

2. (Definition of an approximate exponent Êk): Define

Êk := −λ+k ln(λ)− l̂n(k!). Given the above discussion,

we can calculate the distance of Êk to the true exponent
Ek as follows:

|Ek − Êk| ≤ | ln(k!)− l̂n(k!)| ≤ O(1/km0 ) (18)

≤ 1

10t
. (19)

So we can focus our attention to approximating Êk.

Note that Êk is the sum of m0 + 2 = O( log t
log k

) terms.

To approximate it within error 1/(10t), it suffices to
approximate each summand within an additive error of
O(1/(t · log t)). Indeed, we so approximate each sum-

mand and our final approximation
̂̂
Ek will be the sum

of these approximations. We proceed with the analysis:

3. (Estimating 2π): Since 2π shows up in the above ex-
pression, we should try to approximate it. It is known
that the first ℓ digits of π can be computed exactly in
time O(log ℓ · M(ℓ)), where M(ℓ) is the time to mul-
tiply two ℓ-bit integers [Sal76, Bre76]. For example,
if we use the Schönhage-Strassen algorithm for multi-
plication [SS71], we get M(ℓ) = O(ℓ · log ℓ · log log ℓ).
Hence, choosing ℓ := ⌈log2(12t · log t)⌉, we can obtain

in time Õ(|t|) an approximation 2̂π of 2π that has a
binary fraction of ℓ bits and satisfies:

|2̂π − 2π| ≤ 2−ℓ ⇒ (1− 2−ℓ)2π ≤ 2̂π ≤ (1 + 2−ℓ)2π.

Note that, with this approximation, we have
∣∣∣ln(2π)− ln(2̂π)

∣∣∣ ≤ ln(1− 2−ℓ) ≤ 2−ℓ ≤ 1/(12t · log t).

4. (Floating-Point Representation): We will also need ac-

curate approximations to ln 2̂π, ln k and lnλ. We think
of 2̂π and k as multiple-precision floating point numbers
base 2. In particular,

• 2̂π can be described with a binary fraction of ℓ+3
bits and a constant size exponent; and

• k ≡ 2⌈log k⌉ · k

2⌈log k⌉ can be described with a binary

fraction of ⌈log k⌉, i.e. |k|, bits and an exponent of
length O(log log k), i.e. O(log |k|).

Also, since λ is a positive rational number, λ = λ1

λ2
,

where λ1 and λ2 are positive integers of at most |λ| bits.
Hence, for i = 1, 2, we can think of λi as a multiple-
precision floating point number base 2 with a binary
fraction of |λ| bits and an exponent of length O(log |λ|).
Hence, if we choose L = ⌈log2(12(3k + 1)t2 · k · λ1 ·
λ2)⌉ = O(|k| + |λ|+ |t|), we can represent all numbers

2̂π, λ1, λ2, k as multiple precision floating point num-
bers with a binary fraction of L bits and an exponent
of O(logL) bits.

5. (Estimating the logs): It is known that the logarithm
of a number x with a binary fraction of L bits and an

exponent of o(L) bits can be computed to within a rela-

tive error O(2−L) in time Õ(L) [Bre75]. Hence, in time

Õ(L) we can obtain approximations ̂ln 2̂π, l̂n k, l̂nλ1, l̂nλ2

such that:

• |l̂n k − ln k| ≤ 2−Lln k ≤ 1
12(3k+1)t2

; and similarly

• |̂lnλi − lnλi| ≤ 1
12(3k+1)t2

, for i = 1, 2;

• |̂ln 2̂π − ln 2̂π| ≤ 1
12(3k+1)t2

.

6. (Estimating the terms of the series): To complete the
analysis, we also need to approximate each term of

the form cj =
Bj

j(j−1)·kj−1 up to an additive error of

O(1/(t · log t)). We do this as follows: We compute
the numbers Bj and kj−1 exactly, and we perform the
division approximately.

Clearly, the positive integer kj−1 has description com-
plexity j · |k| = O(m0 · |k|) = O(|t| + |k|), since j =
O(m0). We compute kj−1 exactly using repeated squar-

ing in time Õ(j · |k|) = Õ(|t|+ |k|). It is known [Fil92]

that the rational number Bj has Õ(j) bits and can be

computed in Õ(j2) = Õ(|t|2) time. Hence, the approxi-
mate evaluation of the term cj (up to the desired addi-

tive error of 1/(t log t)) can be done in Õ(|t|2+|k|), by a
rational division operation (see e.g. [Knu81]). The sum
of all the approximate terms takes linear time, hence
the approximate evaluation of the entire truncated se-
ries (comprising at most m0 ≤ |t| terms) can be done

in Õ(|t|3 + |k| · |t|) time overall.

Let
̂̂
Ek be the approximation arising if we use all the

aforementioned approximations. It follows from the
above computations that

∣∣∣̂̂Ek − Êk

∣∣∣ ≤ 1

10t
.

7. (Overall Error): Combining the above computations we
get:

∣∣∣̂̂Ek − Ek

∣∣∣ ≤ 1

4t
.

The overall time needed to obtain
̂̂
Ek was Õ(|k| · |t| +

|λ|+ |t|3) and the proof of Theorem 7 is complete.


