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ABSTRACT
The Chow parameters of a Boolean function f : {−1, 1}n →
{−1, 1} are its n+ 1 degree-0 and degree-1 Fourier coefficients. It
has been known since 1961 [Cho61, Tan61] that the (exact values of
the) Chow parameters of any linear threshold function f uniquely
specify f within the space of all Boolean functions, but until re-
cently [OS11] nothing was known about efficient algorithms for
reconstructing f (exactly or approximately) from exact or approxi-
mate values of its Chow parameters. We refer to this reconstruction
problem as the Chow Parameters Problem.

Our main result is a new algorithm for the Chow Parameters
Problem which, given (sufficiently accurate approximations to) the
Chow parameters of any linear threshold function f , runs in time
Õ(n2) · (1/ε)O(log2(1/ε)) and with high probability outputs a rep-
resentation of an LTF f ′ that is ε-close to f . The only previous

algorithm [OS11] had running time poly(n) · 22Õ(1/ε2)

.
As a byproduct of our approach, we show that for any linear

threshold function f over {−1, 1}n, there is a linear threshold func-
tion f ′ which is ε-close to f and has all weights that are integers
at most

√
n · (1/ε)O(log2(1/ε)). This significantly improves the

best previous result of [DS09] which gave a poly(n) · 2Õ(1/ε2/3)

weight bound, and is close to the known lower bound of max{
√
n,
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(1/ε)Ω(log log(1/ε))} [Gol06, Ser07]. Our techniques also yield im-
proved algorithms for related problems in learning theory.

In addition to being significantly stronger than previous work,
our results are obtained using conceptually simpler proofs. The
two main ingredients underlying our results are (1) a new structural
result showing that for f any linear threshold function and g any
bounded function, if the Chow parameters of f are close to the
Chow parameters of g then f is close to g; (2) a new boosting-like
algorithm that given approximations to the Chow parameters of a
linear threshold function outputs a bounded function whose Chow
parameters are close to those of f .

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Computations
on Discrete Structures; I.2.6 [Learning]: Concept Learning

General Terms
Theory

Keywords
Boolean function; Fourier Analysis; Threshold function; Chow pa-
rameters

1. INTRODUCTION

1.1 Background and motivation.
A linear threshold function, or LTF, over {−1, 1}n is a Boolean

function f : {−1, 1}n → {−1, 1} of the form

f(x) = sign

(
n∑
i=1

wixi − θ
)
,

where w1, . . . , wn, θ ∈ R. The function sign(z) takes value 1
if z ≥ 0 and takes value −1 if z < 0; the wi’s are the weights
of f and θ is the threshold. Linear threshold functions have been
intensively studied for decades in many different fields. They are
variously known as “halfspaces” or “linear separators” in machine



learning and computational learning theory, “Boolean threshold func-
tions,” “(weighted) threshold gates” and “(Boolean) perceptrons (of
order 1)” in computational complexity, and as “weighted majority
games” in voting theory and the theory of social choice. Through-
out this paper we shall refer to them simply as LTFs.

The Chow parameters of a function f : {−1, 1}n → R are the
n+ 1 values

f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for i = 1, . . . , n,

i.e. the n+1 degree-0 and degree-1 Fourier coefficients of f . (Here
and throughout the paper, all probabilities and expectations are with
respect to the uniform distribution over {−1, 1}n unless otherwise
indicated.) It is easy to see that in general the Chow parameters
of a Boolean function may provide very little information about f ;
for example, any parity function on at least two variables has all its
Chow parameters equal to 0. However, in a surprising result, C.-
K. Chow [Cho61] showed that the Chow parameters of an LTF f
uniquely specify f within the space of all Boolean functions map-
ping {−1, 1}n → {−1, 1}. Chow’s proof (given in Appendix A)
is simple and elegant, but is completely non-constructive; it does
not give any clues as to how one might use the Chow parameters
to find f (or an LTF that is close to f ). This naturally gives rise to
the following algorithmic question, which we refer to as the “Chow
Parameters Problem:”

The Chow Parameters Problem (rough statement):
Given (exact or approximate) values for the Chow pa-
rameters of an unknown LTF f , output an (exact or ap-
proximate) representation of f as sign(v1x1 + · · · +
vnxn − θ′).

Motivation and Prior Work. We briefly survey some previous re-
search on the Chow Parameters problem (see Section 1.1 of [OS11]
for a more detailed and extensive account). Motivated by appli-
cations in electrical engineering, the Chow Parameters Problem
was intensively studied in the 1960s and early 1970s; several re-
searchers suggested heuristics of various sorts [Kas63, Win63, KW65,
Der65] which were experimentally analyzed in [Win69]. See [Win71]
for a survey covering much of this early work and [Bau73, Hur73]
for some later work from this period.

Researchers in game theory and voting theory rediscovered Chow’s
theorem in the 1970s [Lap72], and the theorem and related results
have been the subject of study in those communities down to the
present [DS79, EL89, TZ92, Fre97, Lee03, Car04, FM04, TT06,
APL07]. Since the Fourier coefficient f̂(i) can be viewed as rep-
resenting the “influence” of the i-th voter under voting scheme f
(under the “Impartial Culture Assumption” in the theory of so-
cial choice, corresponding to the uniform distribution over inputs
x ∈ {−1, 1}n), the Chow Parameters Problem corresponds to de-
signing a set of weights for n voters so that each individual voter
has a certain desired level of influence over the final outcome.

In the 1990s and 2000s several researchers in learning theory
considered the Chow Parameters Problem. Birkendorf et al. [BDJ+98]
showed that the Chow Parameters Problem is equivalent to the
problem of efficiently learning LTFs under the uniform distribu-
tion in the “1-Restricted Focus of Attention (1-RFA)” model of
Ben-David and Dichterman [BDD98] (we give more details on this
learning model in Appendix E). Birkendorf et al. showed that if f
is an LTF with integer weights of magnitude at most poly(n), then
estimates of the Chow parameters that are accurate to within an ad-
ditive ±ε/poly(n) information-theoretically suffice to specify the
halfspace f to within ε-accuracy. Other information-theoretic re-
sults of this flavor were given by [Gol06, Ser07]. In complexity
theory several generalizations of Chow’s Theorem were given in

[Bru90, RSOK95], and the Chow parameters play an important role
in a recent study [CHIS10] of the approximation-resistance of lin-
ear threshold predicates in the area of hardness of approximation.

Despite this considerable interest in the Chow Parameters Prob-
lem from a range of different communities, the first provably effec-
tive and efficient algorithm for the Chow Parameters Problem was

only obtained fairly recently. [OS11] gave a poly(n) · 22Õ(1/ε2)

-
time algorithm which, given sufficiently accurate estimates of the
Chow parameters of an unknown n-variable LTF f , outputs an LTF
f ′ that has Pr[f(x) 6= f ′(x)] ≤ ε.

1.2 Our results.
In this paper we give a significantly improved algorithm for the

Chow Parameters Problem, whose running time dependence on ε is
almost doubly exponentially better than the [OS11] algorithm. Our
main result is the following:

THEOREM 1 (MAIN, INFORMAL STATEMENT). There is an
Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ)-time algorithmA with the fol-
lowing property: Let f : {−1, 1}n → {−1, 1} be an LTF and let
0 < ε, δ < 1/2. If A is given as input ε, δ and (sufficiently precise
estimates of) the Chow parameters of f , then A outputs integers
v1, . . . , vn, θ such that with probability at least 1 − δ, the linear
threshold function f∗ = sign(v1x1 + · · · + vnxn − θ) satisfies
Prx[f(x) 6= f∗(x)] ≤ ε.

Thus we obtain an efficient randomized polynomial approxima-
tion scheme (ERPAS) with a quasi-polynomial dependence on 1/ε.
We note that for the subclass of LTFs with integer weights of mag-
nitude at most poly(n), our algorithm runs in poly(n/ε) time,
i.e. it is a fully polynomial randomized approximation scheme
(FPRAS) (see Section 4.1 for a formal statement). Even for this
restricted subclass of LTFs, the algorithm of [OS11] runs in time
doubly exponential in 1/ε.

Our main result has a range of interesting implications in learn-
ing theory. First, it directly gives an efficient algorithm for learning
LTFs in the uniform distribution 1-RFA model. Second, it yields
a very fast agnostic-type algorithm for learning LTFs in the stan-
dard uniform distribution PAC model. Both these algorithms run
in time quasi-polynomial in 1/ε. We elaborate on these learning
applications in Appendix E.

An interesting feature of our algorithm is that it outputs an LTF
with integer weights of magnitude at most

√
n · (1/ε)O(log2(1/ε)).

Hence, as a corollary of our approach, we obtain essentially opti-
mal bounds on approximating arbitrary LTFs using LTFs with small
integer weights. It has been known since the 1960s that every n-
variable LTF f has an exact representation sign(w ·x−θ) in which
all the weights wi are integers satisfying |wi| ≤ 2O(n logn), and
Håstad [Hås94] has shown that there is an n-variable LTF f for
which any integer-weight representation must have each |wi| ≥
2Ω(n logn). However, by settling for an approximate representation
(i.e. a representation f ′ = sign(w · x− θ) such that Prx[f(x) 6=
f ′(x)] ≤ ε), it is possible to get away with much smaller inte-
ger weights. Servedio [Ser07] showed that every LTF f can be
ε-approximated using integer weights each at most

√
n · 2Õ(1/ε2),

and this bound was subsequently improved (as a function of ε) to
n3/2 · 2Õ(1/ε2/3) in [DS09]. (We note that ideas and tools that
were developed in work on low-weight approximators for LTFs
have proved useful in a range of other contexts, including hardness
of approximation [FGRW09], property testing [MORS10], and ex-
plicit constructions of pseudorandom objects [DGJ+10].)



Formally, our approach to proving Theorem 1 yields the follow-
ing nearly-optimal weight bound on ε-approximators for LTFs:

THEOREM 2 (LOW-WEIGHT APPROXIMATORS FOR LTFS).
Let f : {−1, 1}n → {−1, 1} be any LTF. There is an LTF f∗ =
sign(v1x1 + · · · + vnxn − θ) such that Prx[f(x) 6= f∗(x)] ≤ ε
and the weights vi are integers that satisfy

n∑
i=1

v2
i = n · (1/ε)O(log2(1/ε)).

The bound on the magnitude of the weights in the above the-
orem is optimal as a function of n and nearly optimal as a func-
tion of ε. Indeed, as shown in [Hås94, Gol06], in general any ε-
approximating LTF f∗ for an arbitrary n-variable LTF f may need
to have integer weights at least max{Ω(

√
n), (1/ε)Ω(log log(1/ε))}.

Thus, Theorem 2 nearly closes what was previously an almost ex-
ponential gap between the known upper and lower bounds for this
problem. Moreover, the proof of Theorem 2 is constructive (as
opposed e.g. to the one in [DS09]), i.e. there is a randomized
poly(n) · (1/ε)O(log2(1/ε))-time algorithm that constructs an ε-
approximating LTF.

Techniques. We stress that not only are the quantitative results of
Theorems 1 and 2 dramatically stronger than previous work, but
the proofs are significantly more self-contained and elementary as
well. The [OS11] algorithm relied heavily on several rather sophis-
ticated results on spectral properties of linear threshold functions;
moreover, its proof of correctness required a careful re-tracing of
the (rather involved) analysis of a fairly complex property test-
ing algorithm for linear threshold functions given in [MORS10].
In contrast, our proof of Theorem 1 entirely bypasses these spec-
tral results and does not rely on [MORS10] in any way. Turning
to low-weight approximators, the improvement from 2Õ(1/ε2) in
[Ser07] to 2Õ(1/ε2/3) in [DS09] required a combination of rather
delicate linear programming arguments and powerful results on the
anti-concentration of sums of independent random variables due to
Halász [Hal77]. In contrast, our proof of Theorem 2 bypasses anti-
concentration entirely and does not require any sophisticated linear
programming arguments.

Two main ingredients underlie the proof of Theorem 1. The first
is a new structural result relating the “Chow distance” and the or-
dinary (Hamming) distance between two functions f and g, where
f is an LTF and g is an arbitrary bounded function. The second is
a new and simple algorithm which, given (approximations to) the
Chow parameters of an arbitrary Boolean function f , efficiently
construct a “linear bounded function” (LBF) g – a certain type of
bounded function – whose “Chow distance” from f is small. We
describe each of these contributions in more detail below.

1.3 The main structural result.
In this subsection we first give the necessary definitions regard-

ing Chow parameters and Chow distance, and then state Theorem 7,
our main structural result.

1.3.1 Chow parameters and distance measures.
We formally define the Chow parameters of a function on {−1, 1}n:

DEFINITION 3. Given any function f : {−1, 1}n → R, its
Chow Parameters are the rational numbers f̂(0), f̂(1), . . . , f̂(n)

defined by f̂(0) = E[f(x)], f̂(i) = E[f(x)xi] for 1 ≤ i ≤ n. We
say that the Chow vector of f is ~χf = (f̂(0), f̂(1), . . . , f̂(n)).

The Chow parameters naturally induce a distance measure be-
tween functions f, g:

DEFINITION 4. Let f, g : {−1, 1}n → R. We define the Chow

distance between f and g to be dChow(f, g)
def
= ‖~χf − ~χg‖2, i.e.

the Euclidean distance between the Chow vectors.

This is in contrast with the familiar L1-distance between func-
tions:

DEFINITION 5. The distance between f, g : {−1, 1}n → R is

defined as dist(f, g)
def
= E[|f(x) − g(x)|]. If dist(f, g) ≤ ε, we

say that f and g are ε-close.

We note that if f, g are Boolean functions with range {−1, 1}
then dist(f, g) = 2Pr[f(x) 6= g(x)] and thus dist is equivalent
(up to a factor of 2) to the familiar Hamming distance.

1.3.2 The main structural result: small Chow-distance
implies small distance.

The following fact can be proved easily using basic Fourier anal-
ysis (see Proposition 1.5 in [OS11]):

FACT 6. Let f, g : {−1, 1}n → R.We have that dChow(f, g) ≤
2
√

dist(f, g).

Our main structural result, Theorem 7, is essentially a converse
which bounds dist(f, g) in terms of dChow when f is an LTF and
g is any bounded function:

THEOREM 7 (MAIN STRUCTURAL RESULT). Let f : {−1, 1}n
→ {−1, 1} be an LTF and g : {−1, 1}n → [−1, 1] be any
bounded function. If dChow(f, g) ≤ ε then

dist(f, g) ≤ 2
−Ω

(
3
√

log(1/ε)
)
.

Since Chow’s theorem says that if f is an LTF and g is any
bounded function then dChow(f, g) = 0 implies that dist(f, g) =
0, Theorem 7 may be viewed as a “robust” version of Chow’s Theo-
rem. Note that the assumption that g is bounded is necessary for the
above statement, since the function g(x) =

∑n
i=0 f̂(i)xi (where

x0 ≡ 1) has dChow(f, g) = 0, but may have dist(f, g) = Ω(1).
Results of this sort but with weaker quantitative bounds were given
earlier in [BDJ+98, Gol06, Ser07, OS11]; we discuss the relation-
ship between Theorem 7 and some of this prior work below.

Discussion. Theorem 7 should be contrasted with Theorem 1.6
of [OS11], the main structural result of that paper. That theo-
rem says that for f : {−1, 1}n → {−1, 1} any LTF and g :
{−1, 1}n → [−1, 1] any bounded function1, if dChow(f, g) ≤ ε

then dist(f, g) ≤ Õ(1/
√

log(1/ε)). Our new Theorem 7 provides
a bound on dist(f, g) which is almost exponentially stronger than
the [OS11] bound.

Theorem 7 should also be contrasted with Theorem 4 (the main
result) of [Gol06], which says that for f an n-variable LTF and g
any Boolean function, if dChow(f, g) ≤ (ε/n)O(log(n/ε) log(1/ε))

then dist(f, g) ≤ ε. Phrased in this way, Theorem 7 says that for f
an LTF and g any bounded function, if dChow(f, g) ≤ εO(log2(1/ε))

then dist(f, g) ≤ ε. So our main structural result may be viewed as
an improvement of Goldberg’s result that removes its dependence
on n. Indeed, this is not a coincidence; Theorem 7 is proved by
carefully extending and strengthening Goldberg’s arguments using
the “critical index” machinery developed in recent studies of struc-
tural properties of LTFs [Ser07, OS11, DGJ+10].
1The theorem statement in [OS11] actually requires that g have
range {−1, 1}, but the proof is easily seen to extend to g :
{−1, 1}n → [−1, 1] as well.



It is natural to wonder whether the conclusion of Theorem 7 can
be strengthened to “dist(f, g) ≤ εc” where c > 0 is some absolute
constant. We show that no such strengthening is possible, and in
fact, no conclusion of the form “dist(f, g) ≤ 2−γ(ε)” is possible
for any function γ(ε) = ω(log(1/ε)/ log log(1/ε)); we prove this
in Section 4.2.

1.4 The algorithmic component.
A straightforward inspection of the arguments in [OS11] shows

that by using our new Theorem 7 in place of Theorem 1.6 of that
paper throughout, the running time of the [OS11] algorithm can be

improved to poly(n)·2(1/ε)O(log2(1/ε))

. This is already a significant

improvement over the poly(n) · 22Õ(1/ε2)

running time of [OS11],
but is significantly worse than the poly(n) · (1/ε)O(log2(1/ε)) run-
ning time which is our ultimate goal.

The second key ingredient of our results is a new algorithm for
constructing an LTF from the (approximate) Chow parameters of
an LTF f . The previous approach to this problem [OS11] con-
structed an LTF with Chow parameters close to ~χf directly and
applied the structural result to the constructed LTF. Instead, our ap-
proach is based on the insight that it is substantially easier to find a
bounded real-valued function g that is close to f in Chow distance.
The structural result can then be applied to g to conclude that g is
close to f in L1-distance. The problem with this idea is, of course,
that we need an LTF that is close to f and not a general bounded
function. However, we show that it is possible to find g which
is a “linear bounded function” (LBF), a type of bounded function
closely related to LTFs. An LBF can then be easily converted to an
LTF with only a small increase in distance from f . We now pro-
ceed to define the notion of an LBF and state our main algorithmic
result formally. We first need to define the notion of a projection:

DEFINITION 8. For a real value a, we denote its projection to
[−1, 1] by P1(a). That is, P1(a) = a if |a| ≤ 1 and P1(a) =
sign(a), otherwise.

DEFINITION 9. A function g : {−1, 1}n → [−1, 1] is referred
to as a linear bounded function (LBF) if there exists a vector of
real values w = (w0, w1, . . . , wn) such that g(x) = P1(w0 +∑n
i=1 wixi). The vector w is said to represent g.

We are now ready to state our main algorithmic result:

THEOREM 10 (MAIN ALGORITHMIC RESULT). There exists
a randomized algorithm ChowReconstruct that for every Boolean
function f : {−1, 1}n → {−1, 1}, given ε > 0, δ > 0 and a vec-
tor ~α = (α0, α1, . . . , αn) such that ‖~χf−~α‖ ≤ ε, with probability
at least 1 − δ, outputs an LBF g such that ‖~χf − ~χg‖ ≤ 6ε. The
algorithm runs in time Õ(n2ε−4 log (1/δ)). Further, g is repre-
sented by a weight vector κv ∈ Rn+1, where κ ∈ R and v is an
integer vector of length ‖v‖ = O(

√
n/ε3).

We remark that the condition on the weight vector v given by
Theorem 10 is the key for the proof of Theorem 2.

Note that the running time of ChowReconstruct is polyno-
mial in the relation between Chow distance and L1-distance. By
the structural result of [BDJ+98], this implies that for the subclass
of LTFs with integer weights of magnitude bounded by poly(n),
we obtain a poly(n/ε) time algorithm, i.e. an FPRAS.

Discussion. It is interesting to note that the approach underly-
ing Theorem 10 is much more efficient and significantly simpler
than the algorithmic approach of [OS11]. The algorithm in [OS11]
roughly works as follows: In the first step, it constructs a “small”

set of candidate LTFs such that at least one of them is close to f ,
and in the second step it identifies such an LTF by searching over
all such candidates. The first step proceeds by enumerating over
“all” possible weights assigned to the “high influence” variables.
This brute force search makes the [OS11] algorithm very ineffi-
cient. Moreover, its proof of correctness requires some sophisti-
cated spectral results from [MORS10], which make the approach
rather complicated.

In this work, our algorithm is based on a boosting-based ap-
proach, which is novel in this context. Our approach is much more
efficient than the brute force search of [OS11] and its analysis is
much simpler, since it completely bypasses the spectral results of
[MORS10]. We also note that the algorithm of [OS11] crucially
depends on the fact that the relation between Chow distance and
distance has no dependence on n. (If this was not the case, the
approach would not lead to a polynomial time algorithm.) Our
boosting-based approach is quite robust, as it has no such limita-
tion. This fact is crucial for us to obtain the aforementioned FPRAS
for small-weight LTFs.

While we are not aware of any prior results similar to Theo-
rem 10 being stated explicitly, we note that weaker forms of our
theorem can be obtained from known results. In particular, Tre-
visan et al. [TTV09] describe an algorithm that given oracle ac-
cess to a Boolean function f , ε′ > 0, and a set of functions H =
{h1, h2, . . . hk}, efficiently finds a bounded function g that for ev-
ery i ≤ n satisfies |E[f · hi] − E[g · hi]| ≤ ε′. One can ob-
serve that if H = {1, x1, . . . , xn}, then the function g returned
by their algorithm is in fact an LBF and that the oracle access to
f can be replaced with approximate values of E[f · hi] for every
i. Hence, the algorithm in [TTV09], applied to the set of functions
H = {1, x1, x2, . . . , xn}, would find an LBF g which is close in
Chow distance to f . A limitation of this algorithm is that, in order
to obtain an LBF which is ∆-close in Chow distance to f , it re-
quires that every Chow parameter of f be given to it with accuracy
of O(∆/

√
n). In contrast, our algorithm only requires that the to-

tal distance of the given vector to ~χf is at most ∆/6. In addition,
the bound on the integer weight approximation of LTFs that can be
obtained from the algorithm in [TTV09] is linear in n3/2, whereas
we obtain the optimal dependence of

√
n.

The algorithm in [TTV09] is a simple adaptation of the hardcore
set construction technique of Impagliazzo [Imp95]. Our algorithm
is also based on the ideas from [Imp95] and, in addition, uses ideas
from the distribution-specific boosting technique in [Fel10].

Learning (or approximating) a function by constructing a bounded
function with approximately the same low-degree Fourier coeffi-
cients is also used in a very recent algorithm for learning a cer-
tain of class of polynomial threshold functions (which includes
polynomial-size DNF formulae) [Fel12]. The algorithm in [Fel12]
uses the same boosting-based approach but, like the algorithm in
[TTV09], requires that every low-degree Fourier coefficient be given
to it with high accuracy. As a result it would be similarly less effi-
cient in our application. The application of this approach in [Fel12]
is based on a substantially simpler structural result (a generalization
of the one we use to obtain our FPRAS for small-weight LTFs).

Organization. In Section 2 we prove the main structural result,
Theorem 7. In Section 3 we give our main algorithmic ingredient,
Theorem 10. Section 4 puts the pieces together and proves our
main theorem, Theorem 15, and our other main results.

2. PROOF OF MAIN STRUCTURAL RESULT:
THEOREM 7



In this section we prove Theorem 7, restated here for conve-
nience:

THEOREM 7 (MAIN STRUCTURAL RESULT). Let f : {−1, 1}n →
{−1, 1} be an LTF and g : {−1, 1}n → [−1, 1] be any bounded

function. If dChow(f, g) ≤ ε then dist(f, g) ≤ 2
−Ω

(
3
√

log(1/ε)
)

.

We give an informal overview of the main ideas of the proof of
Theorem 7 in Section 2.1, and then give the actual proof outline of
Theorem 7 in Section 2.2.

2.1 Proof overview of Theorem 7.
We first note that throughout the informal explanation given in

this subsection, for the sake of clarity we restrict our attention to
the case in which g : {−1, 1}n → {−1, 1} is a Boolean rather
than a bounded function. In the actual proof we deal with bounded
functions using a suitable weighting scheme for points of {−1, 1}n
(see the discussion before Fact 31 near the start of the proof of
Theorem 7).

To better explain our approach, we begin with a few words about
how Theorem 1.6 of [OS11] (the only previously known statement
of this type that is “independent of n”) is proved. The key to that
theorem is a result on approximating LTFs using LTFs with “good
anti-concentration”; more precisely, [OS11] shows that for any LTF
f there is an LTF f ′(x) = sign(v · x − ν), ‖v‖ = 1, that is ex-
tremely close to f (Hamming distance roughly 2−1/ε) and which
has “moderately good anticoncentration at radius ε,” in the sense
that Pr[|v · x − ν| ≤ ε] ≤ Õ(1/

√
log(1/ε)). Given this, Theo-

rem 1.6 of [OS11] is proved using a modification of the proof of
the original Chow’s Theorem. However, for this approach based on
the original Chow proof to work, it is crucial that the Hamming dis-
tance between f and f ′ (namely 2−1/ε) be very small compared to
the anti-concentration radius (which is ε). Subject to this constraint
it seems very difficult to give a significant quantitative improve-
ment of the approximation result in a way that would improve the
bound of Theorem 1.6 of [OS11].

Instead, we hew more closely to the approach used to prove The-
orem 4 of [Gol06]. This approach also involves a perturbation of
the LTF f , but instead of measuring closeness in terms of Ham-
ming distance, a more direct geometric view is taken. In the rest
of this subsection we give a high-level explanation of Goldberg’s
proof and of how we modify it to obtain our improved bound.

The key to Goldberg’s approach is a (perhaps surprising) state-
ment about the geometry of hyperplanes as they relate to the Boolean
hypercube. He establishes the following key geometric result (see
Theorem 13 for a precise statement):

If H is any n-dimensional hyperplane such that an
α fraction of points in {−1, 1}n lie “very close” in
Euclidean distance (essentially 1/quasipoly(n/α)) to
H, then there is a hyperplane H′ which actually con-
tains all those α2n points of the hypercube.

With this geometric statement in hand, an iterative argument is used
to show that if the Hamming distance between LTF f and Boolean
function g is large, then the Euclidean distance between the centers
of mass of (the positive examples for f on which f and g differ)
and (the negative examples for f on which f and g differ) must
be large; finally, this Euclidean distance between centers of mass
corresponds closely to the Chow distance between f and g.

However, the 1/quasipoly(n) closeness requirement in the key
geometric statement means that Goldberg’s Theorem 4 not only de-
pends on n, but this dependence is superpolynomial. The heart of
our improvement is to combine Goldberg’s key geometric state-
ment with ideas based on the “critical index” of LTFs to get a

version of the statement which is completely independent of n.
Roughly speaking, our analogue of Goldberg’s key geometric state-
ment is the following (a precise version is given as Lemma 14 be-
low):

If H is any n-dimensional hyperplane such that an α
fraction of points in {−1, 1}n lie within Euclidean dis-
tance αO(log(1/α)) of H, then there is a hyperplane
H′ which contains all but a tiny fraction of those α2n

points of the hypercube.

Our statement is much stronger than Goldberg’s in that there is
no dependence on n in the distance bound from H, but weaker in
that we do not guarantee H′ passes through every point; it may
miss a tiny fraction of points, but we are able to handle this in
the subsequent analysis. Armed with this improvement, a careful
sharpening of Goldberg’s iterative argument (to get rid of another
dependence on n, unrelated to the tiny fraction of points missed by
H′) lets us prove Theorem 7.

2.2 Chow vs. Hamming distance for bounded
functions: Proof of Theorem 7.

As discussed in Section 2.1, the key to proving Theorem 7 is an
improvement of Theorem 3 in [Gol06].

DEFINITION 11. Given a hyperplane H in Rn and β > 0, the
β-neighborhood of H is defined as the set of points in Rn at Eu-
clidean distance at most β from H.

We recall the following fact which shows how to express the
Euclidean distance of a point from a hyperplane using the standard
representation of the hyperplane:

FACT 12. Let H = {x : w · x − θ = 0} be a hyperplane in
Rn where ‖w‖ = 1. Then for any x ∈ Rn, the Euclidean distance
d(x,H) of x from H is |w · x− θ|.

THEOREM 13 (THEOREM 3 IN [GOL06]). Given any hyper-
plane in Rn whose β-neighborhood contains a subset S of vertices
of {−1, 1}n, where |S| = α · 2n, there exists a hyperplane which
contains all elements of S provided that

0 ≤ β ≤
(

(2/α) · n5+blog(n/α)c · (2 + blog(n/α)!c)
)−1

.

Before stating our improved version of the above theorem, we
define the set U = ∪ni=1ei ∪ 0 where 0 ∈ Rn is the all zeros
vector and ei ∈ Rn is the unit vector in the ith direction.

Our improved version of Theorem 13 is the following:

LEMMA 14. Let H be a hyperplane in Rn whose β-neighborhood
contains a subset S of vertices of {−1, 1}n, where |S| = α·2n. Fix
0 < κ < α/2. Then there exists a hyperplane H′ in Rn that con-
tains a subset S∗ ⊆ S of cardinality at least (α− κ) · 2n provided
that 0 ≤ β ≤ β0, where

β0
def
= (log(1/κ))−1/2·(log log(1/κ))−O(log log log(1/κ))·αO(log(1/α)).

Moreover, the coefficient vector defining H′ has at most

O
(
(1/α2) ·

(
log log(1/κ) + log2(1/α)

))
nonzero coordinates. Further, for any x ∈ U , if x lies on H then x
lies on H′ as well.

Discussion. We note that while Lemma 14 may appear to be in-
comparable to Theorem 13 because it “loses” κ2n points from the



set S, in fact by taking κ = 1/2n+1 it must be the case that our
S∗ is the same as S, and with this choice of κ, Lemma 14 gives a
strict quantitative improvement of Theorem 13. (We stress that for
our application, though, it will be crucial for us to use Lemma 14
by setting the κ parameter to depend only on α independent of n.)
We further note that in any statement like Lemma 14 that does not
“lose” any points from S, the bound on β must necessarily depend
on n; we show this in Appendix F. Finally, the condition at the end
of Lemma 14 (that if x ∈ U lies on H, then it lies on H′ as well)
is something we will require later for technical reasons.

We give the detailed proof of Lemma 14 in Appendix C.2. We
now briefly sketch the main idea underlying the proof of the lemma.
At a high level, the proof proceeds by reducing the number of vari-
ables from n down to

m
def
= O

(
(1/α2) · (log(1/β) + log log(1/κ))

)
followed by an application of Theorem 44, a technical generaliza-
tion of Theorem 13 proved in Appendix G, in Rm. (As we will see
later, we use Theorem 44 instead of Theorem 13 because we need
to ensure that points of U which lie on H continue to lie on H′.)
The reduction uses the notion of the τ -critical index applied to the
vector w defining H. (See Appendix C.1 for the relevant defini-
tions.)

The idea of the proof is that for coordinates i in the “tail” of w
(intuitively, where |wi| is small) the value of xi does not have much
effect on d(x,H), and consequently the condition of the lemma
must hold true in a space of much lower dimension than n. To
show that tail coordinates of x do not have much effect on d(x,H),
we do a case analysis based on the τ -critical index c(w, τ) of w
to show that (in both cases) the 2-norm of the entire “tail” of w
must be small. If c(w, τ) is large, then this fact follows easily by
properties of the τ -critical index. On the other hand, if c(w, τ) is
small we argue by contradiction as follows: By the definition of the
τ -critical index and the Berry-Esséen theorem, the “tail” of w (ap-
proximately) behaves like a normal random variable with standard
deviation equal to its 2-norm. Hence, if the 2-norm was large, the
entire linear form w ·x would have good anti-concentration, which
would contradict the assumption of the lemma. Thus in both cases,
we can essentially ignore the tail and make the effective number of
variables be m which is independent of n.

As described earlier, we view the geometric Lemma 14 as the
key to the proof of Theorem 7; however, to obtain Theorem 7 from
Lemma 14 requires a delicate iterative argument, which we give in
full in Appendix C.3. This argument is essentially a refined ver-
sion of Theorem 4 of [Gol06] with two main modifications: one is
that we generalize the argument to allow g to be a bounded func-
tion rather than a Boolean function, and the other is that we get
rid of various factors of

√
n which arise in the [Gol06] argument

(and which would be prohibitively “expensive” for us). We give the
detailed proof in Appendix C.3.

3. THE ALGORITHM
In this section we give a proof overview of Theorem 10, restated

below for convenience. We give the formal details of the proof in
Appendix D.

THEOREM 10 (MAIN ALGORITHMIC RESULT). There exists a
randomized algorithm ChowReconstruct that for every Boolean
function f : {−1, 1}n → {−1, 1}, given ε > 0, δ > 0 and a vec-
tor ~α = (α0, α1, . . . , αn) such that ‖~χf−~α‖ ≤ ε, with probability
at least 1 − δ, outputs an LBF g such that ‖~χf − ~χg‖ ≤ 6ε. The
algorithm runs in time Õ(n2ε−4 log (1/δ)). Further, g is repre-

sented by a weight vector κv ∈ Rn+1, where κ ∈ R and v is an
integer vector of length ‖v‖ = O(

√
n/ε3).

PROOF OUTLINE. Our algorithm is motivated by the following
intuitive reasoning: since the function α0 +

∑
i∈[n] αi · xi has the

desired Chow parameters, why not just use it to define an LBF g1 as
P1(α0 +

∑
i∈[n] αi · xi)? The answer, of course, is that as a result

of applying the projection operator, the Chow parameters of g1 can
become quite different from the desired vector ~α. Nevertheless, it
seems quite plausible to expect that g1 will be better than a random
guess.

Given the Chow parameters of g1 we can try to correct them by
adding the difference between ~α and ~χg1 to the vector that repre-
sents g1. Again, intuitively we are adding a real-valued function
h1 = α0 − ĝ1(0) +

∑
i∈[n](αi − ĝ1(i)) · xi with the Chow pa-

rameters that we would like to add to the Chow parameters of g1.
And, again, the projection operation is likely to ruin our intention
but we could still hope that we got closer to f and that by doing
this operation for a while we will converge to an LBF with Chow
parameters close to ~α.

While this idea might appear too naive, this is almost exactly
what we do in ChowReconstruct. The main difference be-
tween this naive proposal and our actual algorithm is that at step
t we actually add only half the difference between ~α and the Chow
vector of the current hypothesis ~χgt . This is necessary in our proof
to offset the fact that ~α is only an approximation to ~χf and we can
only approximate the Chow parameters of gt. An additional minor
modification is required to ensure that the resulting weight vector
is a multiple of an integer weight vector of length O(

√
n/ε3).

Proving the correctness of this algorithm is also relatively easy.
If the difference vector is sufficiently large (namely, more than a
small multiple of the difference between ‖~χf − ~α‖) then the lin-
ear function ht defined by this vector can be easily seen as being
correlated with f − gt, namely E[(f − gt)ht] ≥ c‖~χgt − ~α‖2
for a constant c > 0. As was shown in [TTV09] and [Fel10] this
condition for a Boolean ht can be used to decrease a simple poten-
tial function measuring E[(f − gt)2], the l22 distance of the current
hypothesis to f . One issue that arises is this: while the l22 distance
is only reduced if ht is added to gt, in order to ensure that gt+1

is an LBF, we need to add the vector of difference (used to define
ht) to the weight vector representing gt. To overcome this prob-
lem the proof in [TTV09] uses an additional point-wise counting
argument from [Imp95]. This counting argument can be adapted to
the real valued ht, but the resulting argument becomes quite cum-
bersome. Instead, we augment the potential function in a way that
captures the additional counting argument from [Imp95] and easily
generalizes to the real-valued case.

4. THE MAIN RESULTS

4.1 Proofs of Theorems 1 and 2.
In this subsection we put the pieces together and prove our main

results. We start by giving a formal statement of Theorem 1:

THEOREM 15 (MAIN). There is a function κ(ε)
def
= 2−O(log3(1/ε))

such that the following holds: Let f : {−1, 1}n → {−1, 1} be an
LTF and let 0 < ε, δ < 1/2. Write ~χf for the Chow vector of f
and assume that ~α ∈ Rn+1 is a vector satisfying ‖~α−~χf‖ ≤ κ(ε).
Then, there is an algorithm A with the following property: Given
as input ~α, ε and δ, A performs Õ(n2) · poly(1/κ(ε)) · log(1/δ)
bit operations and outputs the (weights-based) representation of an
LTF f∗ which with probability at least 1−δ satisfies dist(f, f∗) ≤
ε.



PROOF OF THEOREM 15. Suppose that we are given a vector
~α ∈ Rn+1 that satisfies ∆ := ‖~α − ~χf‖ ≤ κ(ε), where f is
the unknown LTF to be learned. To construct the desired f∗, we
run algorithm ChowReconstruct (from Theorem 10) on input
~α. The algorithm runs in time poly(1/∆) · Õ(n2) · log(1/δ) and
outputs an LBF g such that with probability at least 1− δ we have
dChow(f, g) ≤ 6∆ ≤ 6κ(ε). (We can set the constants appropri-
ately in the definition of the function κ(ε) above, so that the quan-
tity on the RHS of the latter relation is smaller than the “quasi-
polynomial” quantity we need in the main structural theorem, so
that the conclusion is “dist(f, g) ≤ ε/2”.) By Theorem 7 we get
that with probability at least 1− δ we have dist(f, g) ≤ ε/2. Writ-
ing the LBF g as g(x) = P1(v0 +

∑n
i=1 vixi), we now claim that

f∗(x) = sign(v0 +
∑n
i=1 vixi) has dist(f, f∗) ≤ ε. This is sim-

ply because for each input x ∈ {−1, 1}n, the contribution that x
makes to to dist(f, f∗) is at most twice the contribution x makes
to dist(f, g). This completes the proof of Theorem 15.

As a simple corollary, we obtain Theorem 2.

PROOF OF THEOREM 2. Let f : {−1, 1}n → {−1, 1} be an
arbitrary LTF. We apply Theorem 15 above, for δ = 1/3, and
consider the LTF f∗ produced by the above proof. Note that the
weights vi defining f∗ are identical to the weights of the LBF g
output by the algorithm ChowReconstruct. It follows from
Theorem 10 that these weights are integers that satisfy

∑n
i=1 v

2
i =

O(n ·∆−6), where ∆ = Ω(κ(ε)), and the proof is complete.

As pointed out in Section 1.2 our algorithm runs in poly(n/ε) time
for LTFs whose integer weight is at most poly(n). Formally, we
have:

THEOREM 16. Let f = sign(
∑n
i=1 wixi − θ) be an LTF with

integer weights wi such that W
def
=
∑n
i=1 |wi| = poly(n). Fix

0 < ε, δ < 1/2. Write ~χf for the Chow vector of f and assume
that ~α ∈ Rn+1 is a vector satisfying ‖~α− ~χf‖ ≤ ε/(12W ). Then,
there is an algorithm A′ with the following property: Given as
input ~α, ε and δ, A′ performs poly(n/ε) · log(1/δ) bit operations
and outputs the (weights-based) representation of an LTF f∗ which
with probability at least 1− δ satisfies dist(f, f∗) ≤ ε.

The algorithm and proof of the above theorem are identical to the
ones in Theorem 15 above, except that we apply a simpler structural
result from [BDJ+98] relating dChow(f, g) and dist(f, g) when f
is a LTF with small integer weights rather than applying our Theo-
rem 7.

4.2 Near-optimality of Theorem 7.
Theorem 7 says that if f is an LTF and g : {−1, 1}n → [−1, 1]

satisfy dChow(f, g) ≤ ε then dist(f, g) ≤ 2−Ω( 3
√

log(1/ε)). It is
natural to wonder whether the conclusion can be strengthened to
“dist(f, g) ≤ εc” where c > 0 is some absolute constant. Here
we observe that no conclusion of the form “dist(f, g) ≤ 2−γ(ε)”
is possible for any function γ(ε) = ω(log(1/ε)/ log log(1/ε)).

To see this, fix γ to be any function such that

γ(ε) = ω(log(1/ε)/ log log(1/ε)).

If there were a stronger version of Theorem 7 in which the conclu-
sion is “then dist(f, g) ≤ 2−γ(ε),” the arguments of Section 4.1
would give that for any LTF f , there is an LTF f ′ = sign(v ·x−ν)
such that Pr[f(x) 6= f ′(x)] ≤ ε, where each vi ∈ Z satisfies
|vi| ≤ poly(n) · (1/ε)o(log log(1/ε)). Taking ε = 1/2n+1, this
tells us that f ′ must agree with f on every point in {−1, 1}n, and
each integer weight in the representation sign(v · x− ν) is at most

2o(n logn). But choosing f to be Håstad’s function from [Hås94],
this is a contradiction, since any integer representation of that func-
tion must have every |vi| ≥ 2Ω(n logn).

4.3 Applications to computational learning the-
ory.

In this section we state some consequences of our approach in
algorithmic learning theory. For a more detailed discussion (with
the proofs), see Appendix E. The first application is to the “Re-
stricted Focus of Attention” (RFA) learning framework introduced
by Ben-David and Dichterman [BDD98].

THEOREM 17. There is an algorithm which performs Õ(n2) ·
(1/ε)O(log2(1/ε)) · log( 1

δ
) bit-operations and properly learns LTFs

to accuracy ε and confidence 1 − δ in the uniform distribution 1-
RFA model.

A variant of our technique also results in a very fast “agnostic-
type” algorithm for learning LTFs under the uniform distribution.

THEOREM 18. There is an algorithm B with the following per-
formance guarantee: Let f be any Boolean function and let opt =
dist(f,H). Given 0 < ε, δ < 1/2 and access to independent uni-
form examples (x, f(x)), algorithm B outputs the (weights-based)
representation of an LTF f∗ which with probability 1 − δ satis-
fies dist(f∗, f) ≤ 2−Ω( 3

√
log(1/opt)) + ε. The algorithm performs

Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ) bit operations.

The case opt = 0 corresponds to learning LTFs under the uniform
distribution with no noise (non-agnostic learning). In this case it is
easy to see that the above proof gives a Õ(n2) · (1/ε)O(log2(1/ε))

time algorithm, which is a significant improvement over the Õ(n2)·
2poly(1/ε) running time of the previous fastest algorithm [OS11].
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APPENDIX
A. PROOF OF CHOW’S THEOREM

For completeness we state and prove Chow’s Theorem here:

THEOREM 19 ([CHO61]). Let f : {−1, 1}n → {−1, 1} be
an LTF and let g : {−1, 1}n → [−1, 1] be a bounded function
such that ĝ(j) = f̂(j) for all 0 ≤ j ≤ n. Then g = f .

PROOF. Write f(x) = sign(w0 +w1x1 + · · ·+wnxn), where
the weights are scaled so that

∑n
j=0 w

2
j = 1. We may assume



without loss of generality that |w0 +w1x1 + · · ·+wnxn| 6= 0 for
all x. (If this is not the case, first translate the separating hyperplane
by slightly perturbing w0 to make it hold; this can be done without
changing f ’s value on any point of {−1, 1}n.) Now we have

0 =

n∑
j=0

wj(f̂(j)− ĝ(j))

= E[(w0 + w1x1 + · · ·+ wnxn)(f(x)− g(x))]

= E[|f(x)− g(x)| · |w0 + w1x1 + · · ·+ wnxn|].

The first equality is by the assumption that f̂(j) = ĝ(j) for all
0 ≤ j ≤ n, the second equality is linearity of expectation (or
Plancherel’s identity), and the third equality uses the fact that

sign(f(x)− g(x)) = f(x) = sign(w0 + w1x1 + · · ·+ wnxn)

for any bounded function g with range [−1, 1]. But since |w0 +
w1x1 + · · · + wnxn| is always strictly positive, we must have
Pr[f(x) 6= g(x)] = 0 as claimed.

B. USEFUL BACKGROUND

B.1 Probabilistic Facts.
We require some basic probability results including the standard

additive Hoeffding bound:

THEOREM 20. Let X1, . . . , Xn be independent random vari-
ables such that for each j ∈ [n], Xj is supported on [aj , bj ] for
some aj , bj ∈ R, aj ≤ bj . Let X =

∑n
j=1 Xj . Then, for any

t > 0, Pr
[
|X−E[X]| ≥ t

]
≤ 2 exp

(
−2t2/

∑n
j=1(bj − aj)2

)
.

The Berry-Esséen theorem (see e.g. [Fel68]) gives explicit error
bounds for the Central Limit Theorem:

THEOREM 21. (Berry-Esséen) LetX1, . . . , Xn be independent
random variables satisfying E[Xi] = 0 for all i ∈ [n],

√∑
iE[X2

i ] =

σ, and
∑
iE[|Xi|3] = ρ3. Let S = (X1 + · · · + Xn)/σ and

let F denote the cumulative distribution function (cdf) of S. Then
supx |F (x)−Φ(x)| ≤ ρ3/σ

3 where Φ denotes the cdf of the stan-
dard gaussian random variable.

An easy consequence of the Berry-Esséen theorem is the fol-
lowing fact, which says that a regular linear form has good anti-
concentration (i.e. it assigns small probability mass to any small
interval):

FACT 22. Let w = (w1, . . . , wn) be a τ -regular vector in Rn
and write σ to denote ‖w‖2. Then for any interval [a, b] ⊆ R,
we have

∣∣Pr[
∑n
i=1 wixi ∈ (a, b]]− Φ([a/σ, b/σ])

∣∣ ≤ 2τ , where

Φ([c, d])
def
= Φ(d)− Φ(c). In particular, it follows that

Pr
[ n∑
i=1

wixi ∈ (a, b]
]
≤ |b− a|/σ + 2τ.

B.2 Useful inequalities.
We will use the following basic inequalities.

FACT 23. For a, b ∈ (0, 1),

(ab)log(1/a)+log(1/b) ≥ a2 log(1/a) · b2 log(1/b).

PROOF.

(ab)log(1/a)+log(1/b) = 2− log2(1/a)−log2(1/b)−2 log(1/a)·log(1/b)

≥ 2−2 log2(1/a)−2 log2(1/b)

= a2 log(1/a) · b2 log(1/b),

where the inequality is the Arithmetic-Geometric mean inequal-
ity.

Similarly, we obtain:

FACT 24. For x, y ≥ 1,

(x+ y)− log(x+y) ≥ (2x)− log(2x) · (2y)− log(2y).

B.3 Useful facts about affine spaces.
A subset V ⊆ Rn is said to be an affine subspace if it is closed

under affine combinations of vectors in V . Equivalently, V is an
affine subspace of Rn if V = X + b where b ∈ Rn and X is a
linear subspace of Rn. The affine dimension of V is the same as
the dimension of the linear subspace X . A hyperplane in Rn is an
affine space of dimension n−1. Throughout the paper we use bold
capital letters such as H to denote hyperplanes.

In this paper whenever we refer to a “subspace” we mean an
affine subspace unless explicitly otherwise indicated. The dimen-
sion of an affine subspace V is denoted by dim(V ). Similarly, for
a set S ⊆ Rn, we write span(S) to denote the affine span of S, i.e.

span(S) = {s+
m∑
i=1

wi(x
i−yi) | s, xi, yi ∈ S,wi ∈ R,m ∈ N}.

The following very useful fact about affine spaces was proved by
Odlyzko[Odl88].

FACT 25. [Odl88] Any affine subspace of Rn of dimension d
contains at most 2d elements of {−1, 1}n.

C. MISSING PROOFS FROM SECTION 2
In this section we provide a detailed proof of our main structural

result (Theorem 7).

C.1 Tools for Theorem 7.
As described above, a key ingredient in the proof of Theorem 7

is the notion of the “critical index” of an LTF f . The critical index
was implicitly introduced and used in [Ser07] and was explicitly
used in [DS09, DGJ+10, OS11] and other works. To define the
critical index we need to first define “regularity”:

DEFINITION 26 (REGULARITY). Fix τ > 0. We say that a
vector w = (w1, . . . , wn) ∈ Rn is τ -regular if maxi∈[n] |wi| ≤
τ‖w‖ = τ

√
w2

1 + · · ·+ w2
n. A linear form w · x is said to be

τ -regular if w is τ -regular, and similarly an LTF is said to be τ -
regular if it is of the form sign(w · x− θ) where w is τ -regular.

Regularity is a helpful notion because if w is τ -regular then the
Berry-Esséen theorem (stated below) tells us that for uniform x ∈
{−1, 1}n, the linear form w · x is “distributed like a Gaussian up
to error τ .” This can be useful for many reasons; in particular, it
will let us exploit the strong anti-concentration properties of the
Gaussian distribution.

Intuitively, the critical index of w is the first index i such that
from that point on, the vector (wi, wi+1, . . . , wn) is regular. A
precise definition follows:



DEFINITION 27 (CRITICAL INDEX). Given a vector w ∈ Rn
such that |w1| ≥ · · · ≥ |wn| > 0, for k ∈ [n] we denote by σk
the quantity

√∑n
i=k w

2
i . We define the τ -critical index c(w, τ) of

w as the smallest index i ∈ [n] for which |wi| ≤ τ · σi. If this
inequality does not hold for any i ∈ [n], we define c(w, τ) =∞.

The following simple fact states that the “tail weight” of the vec-
tor w decreases exponentially prior to the critical index:

FACT 28. For any vector w = (w1, . . . , wn) such that |w1| ≥
· · · ≥ |wn| > 0 and 1 ≤ a ≤ c(w, τ), we have σa < (1 −
τ2)(a−1)/2 · σ1.

PROOF. If a < c(w, τ), then by definition |wa| > τ · σa.
This implies that σa+1 <

√
1− τ2 · σa. Applying this inequal-

ity repeatedly, we get that σa < (1 − τ2)(a−1)/2 · σ1 for any
1 ≤ a ≤ c(w, τ).

C.2 Proof of Lemma 14.
At a high level, the proof proceeds by reducing the number of

variables from n down to

m
def
= O

(
(1/α2) · (log(1/β) + log log(1/κ))

)
followed by an application of Theorem 44, a technical generaliza-
tion of Theorem 13 proved in Appendix G, in Rm. (As we will see
later, we use Theorem 44 instead of Theorem 13 because we need
to ensure that points of U which lie on H continue to lie on H′.)
The reduction uses the notion of the τ -critical index applied to the
vector w defining H.

The idea of the proof is that for coordinates i in the “tail” of w
(intuitively, where |wi| is small) the value of xi does not have much
effect on d(x,H), and consequently the condition of the lemma
must hold true in a space of much lower dimension than n. To show
that tail coordinates of x do not have much effect on d(x,H), we
do a case analysis based on the τ -critical index c(w, τ) of w. If
c(w, τ) is large then the 2-norm of the entire “tail” of w must be
small, and if c(w, τ) is small then we use the regularity of the tail of
w to show again that its 2-norm must be small. Thus in both cases,
we can essentially ignore the tail and make the effective number of
variables be m which is independent of n.

Let 0 < τ < α. Let H = {x ∈ Rn | w · x = θ} where
we can assume (by rescaling) that ‖w‖2 = 1 and (by reordering
the coordinates) that |w1| ≥ |w2| ≥ . . . ≥ |wn|. Note that the
Euclidean distance of any point x ∈ Rn from H is |w · x − θ|.
Let us also define V def

= H ∩ U . Set τ def
= α/4 (for conceptual

clarity we will continue to use “τ” for as long as possible in the
arguments below). We consider the τ -critical index c(w, τ) of the
vectorw ∈ Rn and proceed by case analysis based on its value. Fix
the parameter K0

def
= Θ

(
(1/τ2) · (log log(1/κ) + log(1/β))

)
.

Case I: c(w, τ) > K0. In this case, we partition [n] into a set of
“head” coordinates H = [K0] and a complementary set of “tail”
coordinates T = [n] \H . Writing w as (wH , wT ) and likewise for
x, it follows from Fact 28 that ‖wT ‖ ≤ O(β/

√
log(1/κ)). By the

Hoeffding bound, for (1 − κ) fraction of x ∈ {−1, 1}n we have
that |wT ·xT | ≤ β. Therefore, for (1−κ) fraction of x ∈ {−1, 1}n
we have

|wH · xH − θ| ≤ |w · x− θ|+ |wT · xT | ≤ |w · x− θ|+ β.

By the assumption of the lemma, there exists a set S ⊆ {−1, 1}n
of cardinality at least α · 2n such that for all x ∈ S we have |w ·
x − θ| ≤ β. A union bound and the above inequality imply that

there exists a set S∗ ⊆ S of cardinality at least (α − κ) · 2n with
the property that for all x ∈ S∗, we have

|wH · xH − θ| ≤ 2β.

Also, any x ∈ U satisfies ‖xT ‖ ≤ 1. Hence for any x ∈ V , we
have that

|wH · xH − θ| ≤ |w · x− θ|+ |wT · xT | = |wT · xT |
≤ ‖wT ‖ · ‖xT ‖ ≤ O(β/

√
log(1/κ)) ≤ β.

Define the projection mapping φH : Rn → R|H| by φH : x 7→
xH and consider the image of S∗, i.e. S′ def

= φH(S∗). It is clear
that |S′| ≥ (α− κ) · 2|H| and that for all xH ∈ S′, we have

|wH · xH − θ| ≤ 2β.

Similarly, if V ′ is the image of V under φH , then for every xH ∈
V ′ we have |wH · xH − θ| ≤ β. It is also clear that ‖wT ‖ < 1/2

and hence ‖wH‖ > 1/2. Thus for every xH ∈ (S′ ∪ V ′) we have∣∣∣∣wH · xH‖wH‖
− θ

‖wH‖

∣∣∣∣ ≤ 4β.

We now define the K0-dimensional hyperplane HH as HH
def
=

{xH ∈ R|H| | wH · xH = θ}. As all points in S′ ∪ V ′ are in the
4β-neighborhood of HH , we may now apply Theorem 44 for the
hyperplane HH over R|H| to deduce the existence of an alternate
hyperplane H′H = {xH ∈ R|H| | vH · xH = ν} that contains all
points in S′ ∪ V ′. The only condition we need to verify in order
that Theorem 44 may be applied is that 4β is upper bounded by(

2

α− κ ·K
5+blog(K0/(α−κ))c
0 ·

(
2 + blog

(
K0

α− κ

)
c!
))−1

.

In the following C1, C2, etc. denote unspecified absolute positive
constants. Using κ < α/2, it suffices to ensure

β < (α/K0)C1(log(K0/α)).

Recalling that τ = α/4 and plugging in the value of K0 in terms
of α, κ and β, we need to verify that

β <

(
α3

log log(1/κ) + log(1/β)

)C2(log(1/α3)+log(log log(1/κ)+log(1/β)))

.

Using Fact 23, we get that the right hand side is lower bounded by

αC3 log(1/α)·(log log(1/κ)+log(1/β))−C3 log(log log(1/κ)+log(1/β)).

Using Fact 24, we get that the above expression is lower bounded
by

αC4 log(1/α)·log log(1/κ)−C4 log log log(1/κ)·log(1/β)−C4 log log(1/β).

Thus it suffices to verify that

β ≤ αC4 log(1/α)·log log(1/κ)−C4 log log log(1/κ)·log(1/β)−C4 log log(1/β).

It is easy to see that for

β ≤ αO(log(1/α)) · log log(1/κ)−O(log log log(1/κ))

(with sufficiently large constants inside theO(·) notation), the above
inequality is indeed true and hence it is true for β ≤ β0.

Thus, we get a new hyperplane H′K0
= {xH ∈ R|H| | vH ·

xH = ν} that contains all points in S′∪V ′. It is then clear that the
n-dimensional hyperplane H′ = {x ∈ Rn | vH · xH = ν} con-
tains all the points in S∗ = (φH)−1(S′) and the points in V , and



that the vector vH defining H′ has the claimed number of nonzero
coordinates. So the theorem is proved in Case I.
Case II: c(w, τ) ≤ K0. In this case, we partition [n] into “head”
and “tail” based on the value of c(w, τ) by taking H = [c(w, τ)]
and T = [n] \ H . We use the fact that wT is τ -regular to deduce
that the norm of the tail must be small.

CLAIM 29. We have ‖wT ‖2 ≤ 2β/(α− 3τ) = 8β/α.

PROOF. Suppose for the sake of contradiction that

‖wT ‖2 > 2β/(α− 3τ).

By the Berry-Esséen theorem (Theorem 21, or more precisely Fact 22),
for all δ > 0 we have

supt∈R PrxT [|wT · xT − t| ≤ δ] ≤
2δ

‖wT ‖
+ 2τ.

By setting δ def
= (α− 3τ)‖wT ‖/2 > β we get that

supt∈R PrxT [|wT · xT − t| ≤ δ] < α,

and consequently

Prx[|w · x− θ| ≤ β] ≤ sup
t∈R

PrxT [|wT · xT − t| ≤ β]

≤ sup
t∈R

PrxT [|wT · xT − t| ≤ δ]

< α

which contradicts the existence of the set S in the statement of the
lemma.

The rest of the proof proceeds similarly to Case I. By the Ho-
effding bound, for 1− κ fraction of x ∈ {−1, 1}n we have

|wH · xH − θ| ≤ |w · x− θ|+ β′

where β′ = O
(

(β/α) ·
√

log(1/κ)
)
. By the assumption of the

lemma and a union bound, there exists a set S∗ ⊆ S of cardinality
at least (α− κ) · 2n with the property that for all x ∈ S∗ we have

|wH · xH − θ| ≤ β′ + β.

Turning to V , for every point x ∈ V we have that |wH ·xH − θ| ≤
|w · x− θ|+ |wT · xT | = |wT · xT |. For x ∈ V the value wT · xT
is either 0 (if x = 0) or is (wT )i (if x = ei) for some i ∈ T. Since
wT is τ -regular we have |(wT )i| ≤ τ · ‖wT ‖ ≤ (α/4) · (8β/α) =
2β, so for every x ∈ V we have |wH · xH − θ| ≤ 2β ≤ β + β′.

As before, we define the projection mapping φH : Rn → R|H|

by φH : x 7→ xH . We let S′ def
= φH(S∗) and V ′ def

= φH(V ). It is
clear that |S′| ≥ (α−κ) · 2|H| and that for all xH ∈ (S′ ∪V ′) we
have

|wH · xH − θ| ≤ β′ + β.

and that for all xH ∈ V ′, |wH · xH − θ| ≤ β. We now define

the |H|-dimensional hyperplane HH as HH
def
= {xH ∈ R|H| |

wH · xH = θ}. As before, we note that ‖wT ‖ < 1/2 and hence
‖wH‖ > 1/2. Hence, every point xH ∈ S′∪V ′ is 2(β+β′) ≤ 4β′

close to HH . As all points in S′∪V ′ are 4β′ close to HH , we may
now apply Theorem 44 over R|H| to deduce the existence of an
alternate hyperplane H′H

def
= {xH ∈ R|H| | vH · xH = ν} that

contains all points in S′ and V ′. The only condition we need to
verify is that 4β′ is at most(

2

α− κ · |H|
5+blog(|H|/(α−κ))c · (2 + blog(|H|/(α− κ))c!)

)−1

.

As β′ = O((β
√

log(1/κ))/α), doing a calculation akin to the
calculation in Case I (now using |H| ≤ K0) we get that the above
inequality is true for

β ≤ (log(1/κ))−1/2·αO(log(1/α))·log log(1/κ)−O(log log log(1/κ))

as long as the constant inside the O(·) notation are sufficiently
large. (It is instructive to note here that it is Case II which is the
“bottleneck” for our overall bound, in the sense that we require
a stronger upper bound on β for Case II than for Case I.) It is
now clear that the n-dimensional hyperplane H′ = {x ∈ Rn |
vH · xH = ν} contains all the points in S∗ = (φH)−1(S′) and
the points in V , and has the claimed number of nonzero coordi-
nates. This proves the Lemma in Case II and concludes the proof
of Lemma 14.

C.3 Proof of Theorem 7.
As mentioned in the body of the paper, our proof is essentially

a refined version of Theorem 4 of [Gol06] with two main modifi-
cations: one is that we generalize Goldberg’s arguments to allow g
to be a bounded function rather than a Boolean function, and the
other is that we get rid of various factors of

√
n which arise in the

[Gol06] argument (and which would be prohibitively “expensive”
for us). The key to getting rid of these factors is the following sim-
ple lemma:

LEMMA 30. Let S ⊆ {−1, 1}n andW : S → [0, 2] such that∑
x∈SW(x) = δ2n. Also, let v ∈ Rn have ‖v‖ = 1. Then∑

x∈S
W(x) · |v · x| = O(δ

√
log(1/δ)) · 2n.

PROOF. For any x ∈ S, let D(x)
def
= W(x)/(

∑
x∈SW(x)).

Clearly, D defines a probability distribution over S. By definition,
Ex∼D[|v · x|] = (

∑
x∈SW(x) · |v · x|)/(

∑
x∈SW(x)). Since∑

x∈SW(x) = δ · 2n, to prove the lemma it suffices to show that
Ex∼D[|v · x|] = O(

√
log(1/δ)). Recall that for any non-negative

random variable Y , we have the identity E[Y ] =
∫
t≥0

Pr[Y >

t] dt. Thus, we have

Ex∼D[|v · x|] =

∫
t≥0

Prx∼D[|v · x| > t] dt.

To bound this quantity, we exploit the fact that the integrand is
concentrated. Indeed, by the Hoeffding bound we have that

Prx∼{−1,1}n [|v · x| > t] ≤ 2e−t
2/2.

This implies that the setA = {x ∈ {−1, 1}n : |v·x| > t} is of size
at most 2e−t

2/22n. SinceW(x) ≤ 2 for all x ∈ S, we have that∑
x∈A∩SW(x) ≤ 4e−t

2/22n. This implies that Prx∼D[|v · x| >
t] ≤ (4/δ) · e−t

2/2. The following chain of inequalities completes
the proof:

Ex∼D [|v · x|] =∫ √2 ln(1/δ)

t=0

Prx∼D[|w·x| > t] dt+

∫
t≥
√

2 ln(1/δ)

Prx∼D[|v·x| > t] dt

≤
√

2 ln(1/δ) +

∫
t≥
√

2 ln(1/δ)

Prx∼D[|v · x| > t] dt

≤
√

2 ln(1/δ) +

∫
t≥
√

2 ln(1/δ)

4e−t
2/2

δ
dt

≤
√

2 ln(1/δ) +

∫
t≥
√

2 ln(1/δ)

4te−t
2/2

δ
dt =

√
2 ln(1/δ) + 4.



We are now ready to prove Theorem 7.

PROOF OF THEOREM 7. Let f : {−1, 1}n → {−1, 1} be an
LTF and g : {−1, 1}n → [−1, 1] be an arbitrary bounded function.
Assuming that dist(f, g) = ε, we will prove that dChow(f, g) ≥
δ = δ(ε)

def
= εΘ(log2(1/ε)).

Let us define V+ = {x ∈ {−1, 1}n | f(x) = 1, g(x) < 1} and
V− = {x ∈ {−1, 1}n | f(x) = −1, g(x) > −1}. Also, for every
point x ∈ {−1, 1}n, we associate a weightW(x) = |f(x)−g(x)|
and for a set S, we defineW(S)

def
=
∑
x∈SW(x).

It is clear that V+ ∪ V− is the disagreement region between f
and g and that thereforeW(V+) +W(V−) = ε · 2n. We claim that
without loss of generality we may assume that (ε − δ) · 2n−1 ≤
W(V+),W(V−) ≤ (ε+ δ) · 2n−1. Indeed, if this condition is not
satisfied, we have that |f̂(0)−ĝ(0)| > δ which gives the conclusion
of the theorem.

We record the following trivial fact which shall be used several
times subsequently.

FACT 31. For W as defined above, for all X ⊆ {−1, 1}n,
|X| ≥ W(X)/2.

We start by defining V 0
+ = V+, V 0

− = V− and V 0 = V 0
+ ∪

V 0
−. The following simple proposition will be useful throughout

the proof, since it characterizes the Chow distance between f and g
(excluding the degree-0 coefficients) as the (normalized) Euclidean
distance between two well-defined points in Rn:

PROPOSITION 32. Let µ+ =
∑
x∈V+

W(x) · x and µ− =∑
x∈V−W(x)·x. Then

∑n
i=1(f̂(i)−ĝ(i))2 = 2−2n·‖µ+−µ−‖2.

PROOF. For i ∈ [n] we have that f̂(i) = E[f(x)xi] and hence
f̂(i) − ĝ(i) = E[(f(x) − g(x))xi]. Hence 2n(f̂(i) − ĝ(i)) =∑
x∈V+

W(x) · xi −
∑
x∈V−W(x) · xi = (µ+ − µ−) · ei where

(µ+ − µ−) · ei is the inner product of the vector µ+ − µ− with
the unit vector ei. Since e1, . . . , en form a complete orthonormal
basis for Rn, it follows that

‖µ+ − µ−‖2 = 22n
∑
i∈[n]

(f̂(i)− ĝ(i))2

proving the claim.

If η ∈ Rn has ‖η‖ = 1 then it is clear that ‖µ+ − µ−‖ ≥
(µ+−µ−)·η. By Proposition 32, to lower bound the Chow distance
dChow(f, g), it suffices to establish a lower bound on (µ+−µ−) ·η
for a unit vector η of our choice.

Before proceeding with the proof we fix some notation. For any
line ` in Rn and point x ∈ Rn, we let `(x) denote the projection
of the point x on the line `. For a set X ⊆ Rn and a line ` in Rn,
`(X)

def
= {`(x) : x ∈ X}. We use ̂̀to denote the unit vector in the

direction of ` (its orientation is irrelevant for us).

DEFINITION 33. For a function W : {−1, 1}n → [0,∞), a
set X ⊆ {−1, 1}n is said to be (ε, ν)-balanced if (ε − ν)2n−1 ≤∑
x∈XW(x) ≤ (ε+ ν)2n−1.

Whenever we say that a set X is (ε, ν)-balanced, the associated
functionW is implicitly assumed to be the one defined at the start
of the proof of Theorem 7. The following proposition will be very
useful during the course of the proof.

PROPOSITION 34. LetX1, X2 ⊆ {−1, 1}n be (ε, ν)-balanced
sets where ν ≤ ε/8. Let ` be a line in Rn and q ∈ ` be a point
on ` such that the sets `(X1) and `(X2) lie on opposite sides of

q. Suppose that S
def
= {x | x ∈ X1 ∪ X2 and ‖`(x) − q‖ ≥ β}.

If
∑
x∈SW(x) ≥ γ2n, then for µ1 =

∑
x∈X1

W(x) · x and
µ2 =

∑
x∈X2

W(x) · x, we have

|(µ1 − µ2) · ̂̀| ≥ (βγ − ν
√

2 ln(16/ε))2n.

In particular, for ν
√

2 ln(16/ε) ≤ βγ/2, we have |(µ1−µ2)· ̂̀| ≥
(βγ/2)2n.

PROOF. We may assume that the projection `(x) of any point
x ∈ X1 on ` is of the form q + λx ̂̀where λx > 0, and that the
projection `(x) of any point x ∈ X2 on ` is of the form q − λx ̂̀
where λx > 0. We can thus write

(µ1 − µ2) · ̂̀ =
∑
x∈X1

W(x)(q · ̂̀+ λx)−
∑
x∈X2

W(x)(q · ̂̀− λx)

= (W(X1)−W(X2)) q · ̂̀+
∑

x∈X1∪X2

W(x) · λx.

By the triangle inequality we have∣∣∣(µ1 − µ2) · ̂̀∣∣∣ ≥ ∑
x∈X1∪X2

W(x)·λx−|q·̂̀| |(W(X1)−W(X2))|

so it suffices to bound each term separately. For the first term we
can write ∑

x∈X1∪X2

W(x) · λx ≥
∑
x∈S
W(x) · λx ≥ βγ2n.

To bound the second term, we first recall that (by assumption)
|W(X1)−W(X2)| ≤ ν2n. Also, we claim that |q·̂̀| <√2 ln(16/ε).
This is because otherwise the function defined by g(x) = sign(x ·̂̀−q·̂̀) will be ε/8 close to a constant function on {−1, 1}n. In par-
ticular, at least one of |X1|, |X2| must be at most (ε/8)2n. How-
ever, by Fact 31, for i = 1, 2 we have that |Xi| ≥ W(Xi)/2 ≥
(ε/4 − ν/4)2n > (ε/8)2n resulting in a contradiction. Hence it
must be the case that |q · ̂̀| < √

2 ln(16/ε). This implies that
|(µ1 − µ2) · ̂̀| ≥ (βγ − ν

√
2 ln(16/ε))2n and the proposition is

proved.

We consider a separating hyperplane A0 for f and assume (with-
out loss of generality) that A0 does not contain any points of the
unit hypercube {−1, 1}n. Let A0 = {x ∈ Rn | w ·x = θ}, where
‖w‖ = 1, θ ∈ R and f(x) = sign(w · x− θ).

Consider a line `0 normal to A0, so w is the unit vector defining
the direction of `0 that points to the halfspace f−1(1). As stated
before, the exact orientation of `0 is irrelevant to us and the choice
of orientation here is arbitrary. Let q0 ∈ Rn be the intersection
point of `0 and A0. Then we can write the line `0 as `0 = {p ∈
Rn | p = q0 + λw, λ ∈ R}.

Define β def
= εO(log(1/ε)) and consider the set of points

S0 = {x : x ∈ V 0 | ‖`0(x)− q0‖ ≥ β}.

The following claim states that if W(S0) is not very small, we
get the desired lower bound on the Chow distance.

CLAIM 35. Suppose thatW(S0) ≥ γ0·2n where γ0
def
= β4 log(1/ε)−2·

ε. Then dChow(f, g) ≥ δ.

PROOF. To prove the desired lower bound, we will apply Propo-
sition 32. Consider projecting every point in V 0 on the line `0. Ob-
serve that the projections of V 0

+ are separated from the projections



of V 0
− by the point q0. Also, we recall that the sets V 0

+ and V 0
− are

(ε, δ) balanced. Thus, if we define µ+ =
∑
x∈V 0

+
W(x) · x and

µ− =
∑
x∈V 0
−
W(x) · x, we can apply Proposition 34 to get that

|(µ+−µ−) ·w| ≥ (βγ0− δ
√

2 ln(16/ε))2n ≥ δ2n. This implies
that ‖µ+ − µ−‖2 ≥ δ222n and using Proposition 32, this proves
that dChow(f, g) ≥ δ.

If the condition of Claim 35 is not satisfied, then we have that
W(V 0 \S0) ≥ (ε−γ0)2n. By Fact 31, we have |V 0 \S0| ≥ (ε−
γ0)2n−1. We now apply Lemma 14 to obtain another hyperplane
A1 which passes through all but κ1 · 2n points (κ1

def
= γ0/2) in

V 0 \ S0. We note that the condition of the lemma is satisfied, as
log(1/κ1) = poly(log(1/ε)) and |V 0 \ S0| > (ε/4) · 2n.

From this point onwards, our proof uses a sequence of blog(1/ε)c
cases. To this end, we define γj = β4 log(1/ε)−2(j+1) · ε. At the
beginning of case j, we will have an affine space Aj of dimension
n − j such that W(V 0 ∩ Aj) ≥ (ε − 2(

∑j−1
`=0 γ`))2

n. We note
that this is indeed satisfied at the beginning of case 1. To see this,
recall thatW(V 0 \ S0) > (ε− γ0)2n. Also, we have that

W ((V 0 \ S0) \ (V 0 ∩A1)) ≤ 2|(V 0 \ S0) \ (V 0 ∩A1)|
≤ 2κ12n = γ02n.

These together imply thatW(V 0∩A1) ≥ (ε−2γ0)2n confirming
the hypothesis for j = 1.

We next define V j = V 0 ∩ Aj , V j+ = V j ∩ V+ and V j− =

V j ∩ V−. Similarly, define ∆j
+ = V 0

+ \ V j+ and ∆j
− = V 0

− \ V j−.
Let A′j+1 = Aj ∩ A0. Note that Aj 6⊆ A0. This is because Aj
contains points from {−1, 1}n as opposed to A0 which does not.
Also, Aj is not contained in a hyperplane parallel to A0 because
Aj contains points of the unit hypercube lying on either side of A0.
Hence it must be the case that dim(A′j+1) = n − (j + 1). Let `j
be a line orthogonal to A′j+1 which is parallel to Aj . Again, we
observe that the direction of `j is unique.

We next observe that all points inA′j+1 project to the same point
in `j , which we call qj . Let us define Λj+ = `j(V

j
+) and Λj− =

`j(V
j
−). We state the following important observation.

OBSERVATION 36. The sets Λj+ and Λj− are separated by qj .

Next, we define Sj as :

Sj = {x ∈ V j | ‖`j(x)− qj‖2 ≥ β}.

The next claim is analogous to Claim 35. It says that ifW(Sj) is
not too small, then we get the desired lower bound on the Chow
distance. The proof is slightly more technical and uses Lemma 30.

CLAIM 37. For j ≤ log(8/ε), suppose thatW(Sj) ≥ γj · 2n
where γj is as defined above. Then dChow(f, g) ≥ δ.

PROOF. We start by observing that(
ε− 4

j−1∑̀
=0

γ`

)
2n−1 ≤ W(V j+),W(V j−) ≤ (ε+ δ)2n−1.

The upper bound is obvious because V j+ ⊆ V 0
+ and V j− ⊆ V 0

− and
the range ofW is non-negative. To see the lower bound, note that
W(V 0 \V j) ≤ 2(

∑j−1
`=0 γ`)2

n. As V 0
+ \V j+ and V 0

− \V j− are both
contained in V 0 \ V j , we get the stated lower bound. We also note
that

2

(
j−1∑
`=0

γ`

)
2n = 2

(
j−1∑
`=0

β4 log(1/ε)−2`−2

)
2n

≤ 4β4 log(1/ε)−2j2n.

This implies that the sets V j+ and V j− are (ε, 4β4 log(1/ε)−2j + δ)

balanced. In particular, using that δ ≤ 4β4 log(1/ε)−2j , we can say
that the sets V j+ and V j− are (ε, 8β4 log(1/ε)−2j)-balanced. We also
observe that for j ≤ log(8/ε), we have that 8β4 log(1/ε)−2j ≤ ε/8.
Let us define µj+ =

∑
x∈V j+

W(x)·x and µj− =
∑
x∈V j−

W(x)·x.

An application of Proposition 34 yields that |(µj+ − µ
j
−) · ̂̀j | ≥

(βγj − 8β4 log(1/ε)−2j
√

2 ln(16/ε))2n.
We now note that

(µ+−µ−)· ̂̀j = (µj+−µ
j
−)· ̂̀j+

 ∑
x∈∆

j
+

W(x)−
∑
x∈∆

j
−

W(x)

· ̂̀j .
Defining µ′j+ =

∑
x∈∆

j
+
W(x) · x and µ′j− =

∑
x∈∆

j
−
W(x) · x,

the triangle inequality implies that∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ ∣∣∣(µj+ − µj−) · ̂̀j∣∣∣− ∣∣∣µ′j+ · ̂̀j∣∣∣− ∣∣∣µ′j− · ̂̀j∣∣∣ .
Using Lemma 30 and that W(∆j

+),W(∆j
−) ≤ W(V 0 \ V j) ≤

8β4 log(1/ε)−2j · 2n, we get that∣∣∣µ′j+ · ̂̀j∣∣∣ =
∑

x∈∆
j
+

W(x) · x · ̂̀j
= O

(
|∆j

+| ·
√

log(2n/|∆j
+|)
)

= O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
and similarly∣∣∣µ′j− · ̂̀j∣∣∣ =

∑
x∈∆

j
−

W(x) · x) · ̂̀j
= O

(
|∆j
−| ·

√
log(2n/|∆j

−|)
)

= O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
.

This implies that∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ (βγj − 8β4 log(1/ε)−2j
√

2 ln(8/ε))2n

−O
(
β4 log(1/ε)−2j · log3/2(1/ε) · 2n

)
.

Plugging in the value of γj , we see that for ε smaller than a suffi-
ciently small constant, we have that∣∣∣(µ+ − µ−) · ̂̀j∣∣∣ ≥ βγj2n−1.

An application of Proposition 32 finally gives us that

dChow(f, g) ≥ 2−n‖µ+−µ−‖ ≥ 2−n(µ+−µ−)· ̂̀j = βγj/2 ≥ δ

which establishes the Claim.

If the hypothesis of Claim 37 fails, then we construct an affine space
Aj+1 of dimension n − j − 1 such thatW(V 0 ∩ Aj+1) ≥ (ε −
2
∑j
`=0 γ`)2

n as described next. We recall that U = ∪ni=1ei ∪ 0.
It is obvious there is some subset Yj ⊆ U such that |Yj | = j and
span(Aj ∪Yj) = Rn. Now, let us define H′j

def
= span(Yj ∪A′j+1).

Clearly, H′j is a hyperplane and every point x ∈ (V 0 ∩Aj) \Sj is
at a distance at most β from H ′j . This is because every x ∈ (V 0 ∩
Aj) \ Sj is at a distance at most β from A′j+1 and A′j+1 ⊂ H′j .
Also, note that all x ∈ Yj lie on H′j .



Note thatW((V 0 ∩ Aj) \ Sj) ≥ (ε− 2
∑j−1
`=0 γ` − γj)2

n. As
prior calculation has shown, for j ≤ log(8/ε) we haveW((V 0 ∩
Aj) \ Sj) ≥ (ε− 2

∑j−1
`=0 γ` − γj)2

n ≥ (ε/2)2n. Using Fact 31,
we get that |(V 0 ∩Aj) \Sj | ≥ (ε/4)2n. Thus, putting κj = γj/2
and applying Lemma 14, we get a new hyperplane Hj such that
|((V 0∩Aj)\Sj)\(Hj∩V 0)| ≤ (γj/2) ·2n. Using that the range
ofW is bounded by 2, we getW(((V 0∩Aj)\Sj)\(Hj∩V 0)) ≤
γj ·2n. Thus, we get thatW(Hj∩V 0∩Aj) ≥ (ε−2

∑j
`=0 γ`)2

n.
Also, Yj ⊂ Hj .

Let us now define Aj+1 = Aj ∩Hj . It is clear thatW(Aj+1 ∩
V 0) ≥ (ε − 2

∑j
`=0 γ`)2

n. Also, dim(Aj+1) < dim(Aj). To
see this, assume for contradiction that dim(Aj) = dim(Aj+1).
This means that Aj ⊆ Hj . Also, Yj ⊂ Hj . This means that
span(Aj ∪Yj) ⊂ Hj . But span(Aj ∪Yj) = Rn which cannot be
contained in Hj . Thus we have that dim(Aj+1) = dim(Aj)− 1.

Now we observe that taking j = blog(8/ε)c, we have a sub-
space Aj of dimension n − j which has W(Aj ∩ V 0) ≥ (ε −
2
∑j−1
`=0 γ`)2

n > (ε/2)2n. By Fact 31, we have that |Aj ∩ V 0| ≥
(ε/4)2n. However, by Fact 25, a subspace of dimension n− j can
contain at most 2n−j points of {−1, 1}n. Since j = blog(8/ε)c,
this leads to a contradiction. That implies that the number of cases
must be strictly less than blog(8/ε)c. In particular, for some j <
blog(8/ε)c, it must be the case that |Sj | ≥ γj2

n. For this j, by
Claim 37, we get a lower bound of δ on dChow(f, g). This con-
cludes the proof of Theorem 7.

D. PROOF OF THEOREM 10
In this section we give a proof of our main algorithmic result

(Theorem 10).
We build g through the following iterative process. Let g′0 ≡ 0

and let g0 = P1(g′0). Given gt, we compute the Chow parame-
ters of gt to accuracy ε/(4

√
n+ 1) and let (β0, β1, . . . , βn) de-

note the results. For each 0 ≤ i ≤ n we define g̃t(i) to be the
closest value to βi that ensures that αi − βi is an integer multiple
of ε/(2

√
n+ 1). Let χ̃gt = (g̃t(0), . . . , g̃t(n)) denote the result-

ing vector of coefficients. Note that

‖χ̃gt − ~χgt‖ ≤
√ ∑
i∈[0..n]

(ε/(2
√
n+ 1))2 = ε/2.

If ρ , ‖~α− χ̃gt‖ ≤ 4ε then we stop and output gt. By triangle
inequality,

‖~χf − ~χgt‖ ≤ ‖~χf − ~α‖+ ‖~α− χ̃gt‖+ ‖χ̃gt − ~χgt‖
≤ ε(1 + 4 + 1/2) < 6ε,

in other words gt satisfies the claimed condition.
Otherwise (when ρ > 4ε), let g′t+1 = g′t + ht/2 and gt+1 =

P1(g′t+1) for

ht ,
∑

i∈[0..n]

(αi − g̃t(i))xi.

Note that this is equivalent to adding the vector (~α − χ̃gt)/2 to
the degree 0 and 1 Fourier coefficients of g′t (which are also the
components of the vector representing gt).

To prove the convergence of this process we define a potential
function at step t as

E(t) = E[(f − gt)2] + 2E[(f − gt)(gt − g′t)]
= E[(f − gt)(f − 2g′t + gt)].

The key claim of this proof is that

E(t+ 1)− E(t) ≤ −2ε2.

To prove this claim we first prove that

E[(f − gt)ht] ≥ ρ(ρ− 3

2
ε). (1)

To prove equation (1) we observe that, by Cauchy-Schwartz in-
equality,

E[(f − gt)ht] =
∑

i∈[0..n]

(f̂(i)− ĝt(i))(αi − g̃t(i))

=
∑

i∈[0..n]

[
(f̂(i)− αi)(αi − g̃t(i)) +

(g̃t(i)− ĝt(i))(αi − g̃t(i)) + (αi − g̃t(i))2
]

≥ −ρε− ρε/2 + ρ2 ≥ ρ2 − 3

2
ρε.

In addition, by Parseval’s identity,

E[h2
t ] =

∑
i∈[0..n]

(αi − g̃t(i))2 = ρ2 . (2)

Now,

E(t+ 1)− E(t) =

= E[(f − gt+1)(f − 2g′t+1 + gt+1)]−E[(f − gt)(f − 2g′t + gt)]

= E
[
(f − gt)(2g′t − 2g′t+1) + (gt+1 − gt)(2g′t+1 − gt − gt+1)

]
= −E[(f − gt)ht] + E

[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
(3)

To upper-bound the expression E [(gt+1 − gt)(2g′t+1 − gt − gt+1)]
we prove that for every point x ∈ {−1, 1}n,

(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) ≤ ht(x)2/2.

We first observe that

|gt+1(x)−gt(x)| = |P1(g′t(x)+ht(x)/2)−P1(g′t(x))| ≤ |ht(x)/2|

(a projection operation does not increase the distance). Now

|2g′t+1(x)− gt(x)− gt+1(x)| ≤
|g′t+1(x)− gt(x)|+ |(g′t+1(x)− gt+1(x)|.

The first part |g′t+1(x)− gt(x)| = |ht(x)/2 + g′t(x)− gt(x)| ≤
|ht(x)/2| unless g′t(x) − gt(x) 6= 0 and g′t(x) − gt(x) has the
same sign as ht(x). However, in this case gt+1(x) = gt(x) and
as a result (gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) = 0.
Similarly, |g′t+1(x) − gt+1(x)| ≤ |ht(x)/2| unless gt+1(x) =
gt(x). Altogether we obtain that

(gt+1(x)− gt(x))(2g′t+1(x)− gt(x)− gt+1(x)) ≤
max{0, |ht(x)/2|(|ht(x)/2|+ |ht(x)/2|)} = ht(x)2/2.

This implies that

E
[
(gt+1 − gt)(2g′t+1 − gt − gt+1)

]
≤ E[h2

t ]/2 = ρ2/2. (4)

By substituting equations (1) and (4) into equation (3), we obtain
the claimed decrease in the potential function

E(t+ 1)−E(t) ≤ −ρ2 +
3

2
ρε+ρ2/2 = −(ρ−3ε)ρ/2 ≤ −2ε2.

We now observe that

E(t) = E[(f − gt)2] + 2E[(f − gt)(gt − g′t)] ≥ 0



for all t. This follows from noting that for every x and f(x) ∈
{−1, 1}, either f(x)−P1(g′t(x)) and P1(g′t(x))− g′t(x) have the
same sign or one of them equals zero. Therefore

E[(f − gt)(gt − g′t)] ≥ 0

(and, naturally, E[(f − gt)2] ≥ 0). It is easy to see that E(0) = 1
and therefore this process will stop after at most 1/(2ε2) steps.

We now establish the claimed weight bound on the LBF output
by the algorithm and the bound on the running time. Let T denote
the number of iterations of the algorithm. By our construction, the
function gT = P1(

∑
t≤T ht/2) is an LBF represented by weight

vector ~w such that wi =
∑
j≤T (αi − g̃j(i))/2. Our rounding of

the estimates of Chow parameters of gt ensures that each of (αi −
g̃j(i))/2 is a multiple of κ = ε/(4

√
n+ 1). Hence gT can be

represented by vector ~w = κ~v, where vector ~v has only integer
components. At every step j,√ ∑

i∈[0..n]

(αi − g̃j(i))2 ≤ 2 + ε+ ε/2 = O(1).

Therefore, by triangle inequality, ‖~w‖ = O(ε−2) and hence ‖~v‖ =
‖~w‖/κ = O(

√
n/ε3).

The running time of the algorithm is essentially determined by
finding χ̃gt in each step t. Finding χ̃gt requires estimating each
ĝt(i) = E[gt(x) · xi] to accuracy ε/(4

√
n+ 1). Chernoff bounds

imply that, by using the empirical mean of gt(x) ·xi onO((n/ε2) ·
log (n/(εδ)) random points as our estimate of ĝt(i) we can en-
sure that, with probability at least 1 − δ, the estimates are within
ε/(4
√
n+ 1) of the true values for all n + 1 Chow parameters of

gt for every t ≤ T = O(ε−2).
Evaluating gt on any point x ∈ {−1, 1}n takes O(n) time and

we need to evaluate it on O((n/ε2) · log (n/(εδ)) points in each of
O(ε−2) steps. This gives us the claimed total running time bound
of Õ(n2ε−4 log (1/δ)).

D.1 Faster algorithms for small-weight LTFs
In this section, we restate Theorem 16 followed by its proof.

THEOREM 16. Let f = sign(
∑n
i=1 wixi − θ) be an LTF with

integer weights wi such that W
def
=
∑n
i=1 |wi| = poly(n). Fix

0 < ε, δ < 1/2. Write ~χf for the Chow vector of f and assume
that ~α ∈ Rn+1 is a vector satisfying ‖~α− ~χf‖ ≤ ε/(12W ). Then,
there is an algorithm A′ with the following property: Given as
input ~α, ε and δ, A′ performs poly(n/ε) · log(1/δ) bit operations
and outputs the (weights-based) representation of an LTF f∗ which
with probability at least 1− δ satisfies dist(f, f∗) ≤ ε.

PROOF. As stated before, both the algorithm and proof of the
above theorem are identical to the ones in Theorem 15. The details
follow.

Given a vector ~α ∈ Rn+1 satisfying ∆ := ‖~α−~χf‖ ≤ ε/(12W ),
where f is the unknown LTF, we run algorithm ChowReconstruct
on input ~α. The algorithm runs in time poly(1/∆)·Õ(n2)·log(1/δ),
which is poly(n/ε) · log(1/δ) by our assumption on W , and out-
puts an LBF g such that with probability at least 1−δ, dChow(f, g) ≤
6∆ ≤ ε/(2W ). At this point, we need to apply the following sim-
ple structural result of [BDJ+98]:

FACT 38. Let f = sign(
∑n
i=1 wixi − θ) be an LTF with in-

teger weights wi, where W
def
=
∑n
i=1 |wi|, and g : {−1, 1}n →

[−1, 1] be an arbitrary bounded function. Fix 0 < ε < 1/2. If
dChow(f, g) ≤ ε/W , then dist(f, g) ≤ ε.

The above fact implies that, with probability at least 1 − δ, the
LBF g output by the algorithm satisfies dist(f, g) ≤ ε/2. If g(x) =
P1(v0 +

∑n
i=1 vixi), we similarly have that the LTF f∗(x) =

sign(v0 +
∑n
i=1 vixi) has dist(f, f∗) ≤ ε. This completes the

proof.

E. APPLICATIONS TO COMPUTATIONAL
LEARNING THEORY.

In this section we show that our approach yields a range of inter-
esting algorithmic applications in learning theory.

E.0.1 Learning threshold functions in the 1-RFA model.
Ben-David and Dichterman [BDD98] introduced the “Restricted

Focus of Attention” (RFA) learning framework to model the phe-
nomenon (common in the real world) of a learner having incom-
plete access to examples. We focus here on the uniform-distribution
“1-RFA” model. In this setting each time the learner is to receive
a labeled example, it first specifies an index i ∈ [n]; then an n-
bit string x is drawn from the uniform distribution over {−1, 1}n
and the learner is given (xi, f(x)). So for each labeled example,
the learner is only shown the i-th bit of the example along with the
label.

Birkendorf et al. [BDJ+98] asked whether LTFs can be learned
in the uniform distribution 1-RFA model, and showed that a sample
ofO(n·W 2·log(n

δ
)/ε2) many examples is information-theoretically

sufficient for learning an unknown threshold function with inte-
ger weights wi that satisfy

∑
i |wi| ≤ W. The results of Gold-

berg [Gol06] and Servedio [Ser07] show that samples of size
(n/ε)O(log(n/ε) log(1/ε)) and poly(n) · 2Õ(1/ε2) respectively are
information-theoretically sufficient for learning an arbitrary LTF
to accuracy ε, but none of these earlier results gave a computation-
ally efficient algorithm. [OS11] gave the first algorithm for this
problem; as a consequence of their result for the Chow Parameters
Problem, they gave an algorithm which learns LTFs to accuracy ε
and confidence 1−δ in the uniform distribution 1-RFA model, run-

ning in 22Õ(1/ε2)

· n2 · logn · log(n
δ

) bit operations. As a direct
consequence of Theorem 1, we obtain a much more time efficient
learning algorithm for this learning task. We now restate Theo-
rem 17 here for convenience.

THEOREM 17. There is an algorithm which performs
Õ(n2)·(1/ε)O(log2(1/ε))·log( 1

δ
) bit-operations and properly learns

LTFs to accuracy ε and confidence 1−δ in the uniform distribution
1-RFA model.

E.0.2 Agnostic-type learning.
In this section we show that a variant of our main algorithm gives

a very fast “agnostic-type” algorithm for learning LTFs under the
uniform distribution.

Let us briefly review the uniform distribution agnostic learning
model [KSS94] in our context. Let f : {−1, 1}n → {−1, 1}
be an arbitrary boolean function. We write opt = dist(f,H)

def
=

minh∈HPrx[h(x) 6= f(x)], where H denotes the class of LTFs.
A uniform distribution agnostic learning algorithm is given uniform
random examples labeled according to an arbitrary f and outputs a
hypothesis h satisfying dist(h, f) ≤ opt + ε.

The only efficient algorithm for learning LTFs in this model [KKMS05]
is non-proper and runs in time nO(1/ε4). This motivates the de-
sign of more efficient algorithms with potentially relaxed guaran-
tees. [OS11] give an “agnostic-type” algorithm, that guarantees
dist(h, f) ≤ optΩ(1) + ε and runs in time poly(n) · 2poly(1/ε). In



contrast, we give an algorithm that is significantly more efficient,
but has a relaxed error guarantee. Theorem 18 from Section 4.3 is
restated here followed by its proof.

THEOREM 18. There is an algorithm B with the following per-
formance guarantee: Let f be any Boolean function and let opt =
dist(f,H). Given 0 < ε, δ < 1/2 and access to independent uni-
form examples (x, f(x)), algorithm B outputs the (weights-based)
representation of an LTF f∗ which with probability 1 − δ satis-
fies dist(f∗, f) ≤ 2−Ω( 3

√
log(1/opt)) + ε. The algorithm performs

Õ(n2) · (1/ε)O(log2(1/ε)) · log(1/δ) bit operations.

PROOF. We describe the algorithm B in tandem with a proof
of correctness. We start by estimating each Chow parameter of f
(using the random labeled examples) to accuracyO(κ(ε)/

√
n); we

thus compute a vector ~α ∈ Rn+1 that satisfies ∆ := ‖~α− ~χf‖ ≤
κ(ε). We then run algorithm ChowReconstruct (from Theo-
rem 10) on input ~α. The algorithm runs in time poly(1/∆)·Õ(n2)·
log(1/δ) and outputs an LBF g such that with probability at least
1− δ we have dChow(f, g) ≤ 6∆ ≤ 6κ(ε). By assumption, there
exists an LTF h∗ such that dist(h∗, f) ≤ opt. By Fact 6 we get
dChow(h∗, f) ≤ 2

√
opt. An application of the triangle inequality

now gives dChow(g, h∗) ≤ 2
√
opt+4κ(ε). By Theorem 7, we thus

obtain dist(g, h∗) ≤ 2−Ω( 3
√

log(1/opt)) + ε/2. Writing the LBF g
as g(x) = P1(v0 +

∑n
i=1 vixi), we similarly have that f∗(x) =

sign(v0 +
∑n
i=1 vixi) has dist(f, f∗) ≤ 2−Ω( 3

√
log(1/opt)) + ε. It

is easy to see that the running time is dominated by the second step
and the proof of Theorem 18 is complete.

F. NEAR-OPTIMALITY OF LEMMA 14
The following lemma shows that in any statement like Lemma 14

in which the hyperplane H′ passes through all the points in S, the
distance bound on β can be no larger than n−1/2 as a function of
n. This implies that the result obtained by taking κ = 1/2n+1

in Lemma 14, which gives a distance bound of n−(1/2+o(1)) as a
function of n, is optimal up to the o(1) in the exponent.

LEMMA 39. Fix ε > 8n−1/2. There is a hyperplane H ∈ Rn
and a set S ⊆ {−1, 1}n such that |S| ≥ ε

8
2n and the following

properties both hold:

• For every x ∈ S we have d(x,H) ≤ 2εn−1/2; and

• There is no hyperplane H′ which passes through all the points
in S.

PROOF. Without loss of generality, let us assume K = 4/ε2 is
an even integer; note that by assumption K < n/2. Now let us
define the hyperplane H by

H =

{
x ∈ Rn : (x1 + . . .+ xK) +

2(xK+1 + . . .+ xn)

(n−K)
= 0

}
Let us define S = {x ∈ {−1, 1}n : d(x,H) ≤ 4/

√
K(n−K)}.

It is easy to verify that every x ∈ S indeed satisfies d(x,H) ≤
2εn−1/2 as claimed. Next, let us define A as follows:

A = {x ∈ {−1, 1}n : x1 + . . .+ xK = 0

and

|xK+1 + . . .+ xn| ≤ 2
√
n−K}.

It is easy to observe that A ⊆ S. Also, we have

Prx1,...,xK [x1 + . . .+ xK = 0] ≥ (2
√
K)−1

and

PrxK+1,...,xn [|xK+1 + . . .+ xn| ≤ 2
√
n−K] ≥ 1/2.

Hence we have that |S| ≥ ε2n/8. We also observe that the point
z ∈ {−1, 1}n defined as

z := (1, 1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
K−2

,−1, . . . ,−1) (5)

(whose first two coordinates are 1, nextK−2 coordinates alternate
between 1 and −1, and final n−K coordinates are −1) lies on H
and hence z ∈ S.

We next claim that the dimension of the affine span of the points
in A ∪ z is n. This obviously implies that there is no hyperplane
which passes through all points in A ∪ z, and hence no hyperplane
which passes through all points in S. Thus to prove the lemma it
remains only to prove the following claim:

CLAIM 40. The dimension of the affine span of the elements of
A ∪ z is n.

To prove the claim, we observe that if we let Y denote the affine
span of elements inA∪z and Y ′ denote the linear space underlying
Y , then it suffices to show that the dimension of Y ′ is n. Each
element of Y ′ is obtained as the difference of two elements in Y .

First, let y ∈ {−1, 1}n be such that∑
i≤K

yi =
∑

K+1≤i≤n

yi = 0.

Let y⊕i ∈ {−1, 1}n be obtained from y by flipping the i-th bit.
For each i ∈ {K + 1, . . . , n} we have that y and y⊕i are both in
A, so subtracting the two elements, we get that the basis vector ei
belongs to Y ′ for each i ∈ {K + 1, . . . , n}.

Next, let i 6= j ≤ K be positions such that yi = 1 and yj = −1.
Let yij denote the vector which is the same as y except that the
signs are flipped at coordinates i and j. Since yij belongs to A, by
subtracting y from yij we get that for every vector eij (i 6= j ≤ K)
which has 1 in coordinate i, −1 in coordinate j, and 0 elsewhere,
the vector eij belongs to Y ′.

The previous two paragraphs are easily seen to imply that the
linear space Y ′ contains all vectors x ∈ Rn that satisfy the con-
dition x1 + · · · + xK = 0. Thus to show that the dimension of
Y ′ is n, it suffices to exhibit any vector in Y ′ that does not satisfy
this condition. But it is easy to see that the vector y − z (where z
is defined in (5)) is such a vector. This concludes the proof of the
claim and of Lemma 39.

G. USEFUL VARIANTS OF GOLDBERG’S
THEOREMS

For technical reasons we require an extension of Theorem 13
(Theorem 3 of [Gol06]) which roughly speaking is as follows: the
hypothesis is that not only does the set S ⊂ {−1, 1}n lie close to
hyperplane H but so also does a (small) set R of points in {0, 1}n;
and the conclusion is that not only does “almost all” of S (the subset
S∗) lie on H′ but so also does all of R. To obtain this extension
we need a corresponding extension of an earlier result of Goldberg
(Theorem 2 of [Gol06]), which he uses to prove his Theorem 3;
similar to our extension of Theorem 13 our extension of Theorem 2
of [Gol06] deals with points from both {−1, 1}n and {0, 1}n. The
simplest approach we have found to obtain our desired extension
of Theorem 2 of [Gol06] uses the “Zeroth Inverse Theorem” of Tao
and Vu [TV09]. We begin with a useful definition from their paper:



DEFINITION 41. Given a vectorw = (w1, . . . , wk) of real val-
ues, the cube S(w) is the subset of R defined as 2

S(w) =

{
k∑
i=1

εiwi : (ε1, . . . , εn) ∈ {−1, 0, 1}n
}
.

The “Zeroth Inverse Theorem” of [TV09] is as follows:

THEOREM 42. Suppose w ∈ Rn, d ∈ N and θ ∈ R satisfy
Prx∈{−1,1}n [w · x = θ] > 2−d−1. Then there exists a d-element
subset A = {i1, . . . , id} ⊂ [n] such that for v = (wi1 , . . . , wid)
we have {w1, . . . , wn} ⊆ S(v).

For convenience of the reader, we include the proof here.

PROOF OF THEOREM 42. Towards a contradiction, assume that
there is no v = (wi1 , . . . , wid) such that {w1, . . . , wn} ⊆ S(v).
Then an obvious greedy argument shows that there are distinct in-
tegers i1, . . . , id+1 ∈ [n] such that wi1 , . . . , wid+1 is dissociated,
i.e. there does not exist j ∈ [n] and εi ∈ {−1, 0, 1} such that
wj =

∑
i 6=j εiwi.

Let v = (wi1 , . . . , wid+1). By an averaging argument, it is easy
to see that if Prx∈{−1,1}n [w · x = θ] > 2−d−1, then ∃ν ∈ R
such that Prx∈{−1,1}d+1 [v · x = ν] > 2−d−1. By the pigeon hole
principle, this means that there exist x, y ∈ {−1, 1}d+1 such that
x 6= y and v · ((x− y)/2) = 0. Since entries of (x− y)/2 are in
{−1, 0, 1}, and not all the entries in (x−y)/2 are zero, this means
that v is not dissociated resulting in a contradiction.

Armed with this result, we now prove the extension of Gold-
berg’s Theorem 2 that we will need later:

THEOREM 43. Let w ∈ Rn have ‖w‖2 = 1 and let θ ∈ R
be such that Prx∈{−1,1}n [w · x = θ] = α. Let H denote the
hyperplane H = {x ∈ Rn | w · x = θ}. Suppose that span(H ∩
({−1, 1}n ∪ {0, 1}n)) = H, i.e. the affine span of the points in
{−1, 1}n ∪ {0, 1}n that lie on H is H. Then all entries of w are
integer multiples of f(n, α)−1, where

f(n, α) ≤ (2n)blog(1/α)c+3/2 · (blog(1/α)c)!

PROOF. We first observe that w · (x−y) = 0 for any two points
x, y that both lie on H. Consider the system of homogeneous linear
equations in variables w′1, . . . , w′n defined by

w′ ·(x−y) = 0 for all x, y ∈ H∩({−1, 1}n∪{0, 1}n). (6)

Since span(H∩({−1, 1}n∪{0, 1}n)) is by assumption the entire
hyperplane H, the system (6) must have rank n−1; in other words,
every solutionw′ that satisfies (6) must be some rescalingw′ = cw
of the vector w defining H.

Let A denote a subset of n − 1 of the equations comprising (6)
which has rank n− 1 (so any solution to A must be a vector w′ =
cw as described above). We note that each coefficient in each equa-
tion ofA lies in {−2,−1, 0, 1, 2}. Let us define d = blog(1/α)c+
1. By Theorem 42, there is some wi1 , . . . , wid′ with d′ ≤ d such

that for v def
= (wi1 , . . . , wid′ ), we have {w1, . . . , wn} ⊆ S(v);

in other words, for all j ∈ [n] we have wj =
∑d′

`=1 ε`,jwi` where
each ε`,j belongs to {−1, 0, 1}. Substituting these relations into the
systemA, we get a new system of homogenous linear equations, of
rank d′−1, in the variablesw′i1 , . . . , w

′
id′

, where all coefficients of
2In [TV09] the cube is defined only allowing εi ∈ {−1, 1} but
this is a typographical error; their proof uses the εi ∈ {−1, 0, 1}
version that we state.

all variables in all equations of the system are integers of magnitude
at most 2n.

Let M denote a subset of d′ − 1 equations from this new sys-
tem which has rank d′ − 1. In other words, viewing M as a d′ ×
(d′ − 1) matrix, we have the equation M · vT = 0 where all
entries in the matrix M are integers in [−2n, 2n]. Note that at
least one of the values wi1 , . . . , wid′ is non-zero (for if all of them
were 0, then since {w1, . . . , wn} ⊆ S(v) it would have to be
the case that w1 = · · · = wn = 0.). Without loss of gener-
ality we may suppose that wi1 has the largest magnitude among
wi1 , . . . , wid′ . We now fix the scaling constant c, where w′ = cw,
to be such that w′i1 = 1. Rearranging the system M(cv)T =

M(1, w′i2 , . . . , w
′
id′

)T = 0, we get a new system of d′ − 1 lin-
ear equations M ′(w′i2 , . . . , w

′
id′

)T = b where M ′ is a (d′ − 1)×
(d′ − 1) matrix whose entries are integers in [−2n, 2n] and b is a
vector whose entries are integers in [−2n, 2n].

We now use Cramer’s rule to solve the system

M ′(w′i2 , . . . , w
′
id′

)T = b.

This gives us that w′ij = det(M ′j)/ det(M ′) where M ′j is the ma-
trix obtained by replacing the jth column of M ′ by b. So each w′ij
is an integer multiple of 1/det(M ′) and is bounded by 1 (by our
earlier assumption about wi1 having the largest magnitude). Since
{w′1, . . . , w′n} ⊆ S(v), we get that each value w′i is an integer
multiple of 1/ det(M ′), and each |w′i| ≤ n. Finally, since M ′ is a
(d′−1)×(d′−1) matrix where every entry is an integer of magni-
tude at most 2n, we have that | det(M ′)| ≤ (2n)d

′−1 · (d′− 1)! ≤
(2n)d−1 · (d − 1)!. Moreover, the `2 norm of the vector w′ is
bounded by n3/2. So renormalizing (dividing by c) to obtain the
unit vector w back from w′ = cw, we see that every entry of
w is an integer multiple of 1/N , where N is a quantity at most
(2n)d+1/2 · d!. Recalling that d = blog(1/α)c+ 1, the theorem is
proved.

We next prove the extension of Theorem 3 from [Gol06] that we
require. The proof is almost identical to the proof in [Gol06] except
for the use of Theorem 43 instead of Theorem 2 from [Gol06] and
a few other syntactic changes. For the sake of clarity and complete-
ness, we give the complete proof here.

THEOREM 44. Given any hyperplane H in Rn whose β-
neighborhood contains a subset S of vertices of {−1, 1}n where
S = α · 2n, there exists a hyperplane which passes through all
the points of ({−1, 1}n ∪ {0, 1}n) that are contained in the β-
neighborhood of H provided that

0 ≤ β ≤
(

(2/α) · n5+blog(n/α)c · (2 + blog(n/α)c)!
)−1

.

Before giving the proof, we note that the hypothesis of our the-
orem is the same as the hypothesis of Theorem 3 of [Gol06]. The
only difference in the conclusion is that while Goldberg proves that
all points of {−1, 1}n in the β-neighborhood of H lie on the new
hyperplane, we prove this for all the points of ({−1, 1}n∪{0, 1}n)
in the β-neighborhood of H.

PROOF. Let H = {x | w · x− t = 0} with ‖w‖ = 1. Also, let
S = {x ∈ {−1, 1}n | d(x,H) ≤ β} and S′ = {x ∈ ({−1, 1}n∪
{0, 1}n) | d(x,H) ≤ β}. For any x ∈ S′ we have that w · x ∈
[t − β, t + β]. Following [Gol06] we create a new weight vector
w′ ∈ Rn by rounding each coordinatewi ofw to the nearest integer
multiple of β (rounding up in case of a tie). Since every x ∈ S′

has entries from {−1, 0, 1}, we can deduce that for any x ∈ S′, we



have

t−β−nβ/2 < w·x−nβ/2 < w′·x < w·x+nβ/2 ≤ t+β+nβ/2.

Thus for every x ∈ S′, the value w′ · x lies in a semi-open interval
of length β(n+ 2); moreover, since it only takes values which are
integer multiples of β, there are at most n+ 2 possible values that
w′ · x can take for x ∈ S′. Since S ⊂ S′ and |S| ≥ α2n, there
must be at least one value t′ ∈ (t−nβ/2−β, t+nβ/2 +β] such
that at least α2n/(n + 2) points in S lie on the hyperplane H1

defined as H1 = {x : w′ · x = t′}. We also let A1 = span{x ∈
S′ : w′ · x = t′}. It is clear that A1 ⊂ H1. Also, since at least
α2n/(n+ 2) points of {−1, 1}n lie on A1, by Fact 25 we get that
dim(A1) ≥ n− log(n+ 2)− log(1/α).

It is easy to see that ‖w′ − w‖ ≤
√
nβ/2, which implies that

‖w′‖ ≥ 1 −
√
nβ/2. Note that for any x ∈ S′ we have |w′ · x −

t′| ≤ (n + 2)β. Recalling Fact 12, we get that for any x ∈ S′ we
have d(x,H1) ≤ (β(n+ 2))/(1−

√
nβ/2). Since

√
nβ � 1, we

get that d(x,H1) ≤ 2nβ for every x ∈ S′.
At this point our plan for the rest of the proof of Theorem 44 is as

follows: First we will construct a hyperplane Hk (by an inductive
construction) such that span(Hk ∩ ({−1, 1}n ∪ {0, 1}n)) = Hk,
A1 ⊆ Hk, and all points in S′ are very close to Hk (say within
Euclidean distance γ). Then we will apply Theorem 43 to conclude
that any point {−1, 1}n ∪ {0, 1}n which is not on Hk must have
Euclidean distance at least some γ′ from Hk. If γ′ > γ then we can
infer that every point in S′ lies on Hk, which proves the theorem.
We now describe the construction that gives Hk.

If dim(A1) = n − 1, then we let k = 1 and stop the process,
since as desired we have span(Hk∩({−1, 1}n∪{0, 1}n)) = Hk,
A1 = Hk, and d(x,Hk) ≤ 2nβ for every x ∈ S′. Otherwise, by
an inductive hypothesis, we may assume that for some j ≥ 1 we
have an affine space Aj and a hyperplane Hj such that

• A1 ⊆ Aj ( Hj ;

• dim(Aj) = dim(A1) + j − 1, and

• for all x ∈ S′ we have d(x,Hj) ≤ 2jnβ.

Using this inductive hypothesis, we will construct an affine space
Aj+1 and a hyperplane Hj+1 such that A1 ⊂ Aj+1 ⊆ Hj+1,
dim(Aj+1) = dim(A1) + j, and for all x ∈ S′ we have

d(x,Hj+1) ≤ 2j+1nβ.

If Aj+1 = Hj+1, we stop the process, else we continue.
We now describe the inductive construction. Since Aj ( Hj ,

there must exist an affine subspace A′j such that Aj ⊆ A′j ( Hj

and dim(A′j) = n− 2. Let xj denote arg maxx∈S′ d(x,A′j). (We
assume that maxx∈S′ d(x,A′j) > 0; if not, then choose xj to be
an arbitrary point in {−1, 1}n not lying on A′j . In this case, the
properties of the inductive construction will trivially hold.) Define
Hj+1 = span(A′j ∪ xj). It is clear that Hj+1 is a hyperplane. We
claim that for x ∈ S′ we have

d(x,Hj+1) ≤ d(x,Hj)+d(xj ,Hj) ≤ 2jnβ+2jnβ = 2j+1nβ.

To see this, observe that without loss of generality we may assume
that Hj passes through the origin and thus A′j is a linear subspace.
Thus we have that ‖x⊥A′j‖ ≤ ‖(xj)⊥A′j‖ for all x ∈ S′, where
for a point z ∈ Rn we write z⊥A′j to denote the component of x
orthogonal to A′j . Let r = ‖x⊥A′j‖ and r1 = ‖xj,⊥A′j‖, where
r1 ≥ r. Let θ denote the angle that x⊥A′j makes with Hj and let
φ denote the angle that x⊥A′j makes with (xj)⊥A′j . Then it is easy
to see that d(x,Hj+1) = |r · sin(θ − φ)|, d(x,Hj) = |r · sin(θ)|
and d(xj ,Hj) = |r1 · sin(φ)|. Thus, we only need to check that if

r1 ≥ r, then |r · sin(θ− φ)| ≤ |r · sin(θ)|+ |r1 · sin(φ)| which is
trivial to check.

Let Aj+1 = span(Aj ∪ xj) and note that A1 ⊂ Aj+1 ⊆ Hj+1

and dim(Aj+1) = dim(Aj) + 1. As shown above, for all x ∈ S′
we have d(x,Hj+1) ≤ 2j+1nβ. This completes the inductive
construction.

Since dim(A1) ≥ n− log(n+ 2)− log(1/α), the process must
terminate for some k ≤ log(n + 2) + log(1/α). When the pro-
cess terminates, we have a hyperplane Hk satisfying the following
properties:

• span(Hk ∩ ({−1, 1}n ∪ {0, 1}n)) = Hk; and

• |Hk ∩ S| ≥ α2n/(n+ 2); and

• for all x ∈ S′ we have d(x,Hk) ≤ 2knβ ≤ (1/α)n(n +
2)β.

We can now apply Theorem 43 to the hyperplane Hk to get that if
Hk = {x | v · x− ν = 0} with ‖v‖ = 1, then all the entries of v
are integral multiples of a quantity E−1 where

E ≤ (2n)blog((n+2)/α)c+3/2 · (blog((n+ 2)/α)c)!.

Consequently v · x is an integral multiple of E−1 for every x ∈
({−1, 1}n ∪ {0, 1}n). Since there are points of {−1, 1}n on Hk,
it must be the case that ν is also an integral multiple of E. So if
any x ∈ ({−1, 1}n ∪ {0, 1}n) is such that d(x,Hk) < E, then
d(x,Hk) = 0 and hence x actually lies on Hk. Now recall that for
any x ∈ S′ we have d(x,Hk) ≤ (n/α)(n+2)β. Our upper bound
on β from the theorem statement ensures that (n/α)(n + 2)β <
E−1, and consequently every x ∈ S′ must lie on Hk, proving the
theorem.


