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Abstract. In the 2nd Annual FOCS (1961), Chao-Kong Chow proved that every Boolean thresh-
old function is uniquely determined by its degree-0 and degree-1 Fourier coefficients. These numbers
became known as the Chow Parameters. Providing an algorithmic version of Chow’s Theorem—i.e.,
efficiently constructing a representation of a threshold function given its Chow Parameters—has re-
mained open ever since. This problem has received significant study in the fields of circuit complexity,
game theory and the design of voting systems, and learning theory. In this paper we effectively solve
the problem, giving a randomized PTAS with the following behavior:

Given the Chow Parameters of a Boolean threshold function f over n bits and any constant
ε > 0, the algorithm runs in time O(n2 log2 n) and with high probability outputs a representation of
a threshold function f ′ which is ε-close to f .

Along the way we prove several new results of independent interest about Boolean threshold
functions. In addition to various structural results, these include Õ(n2)-time learning algorithms for
threshold functions under the uniform distribution in the following models:

(i) The Restricted Focus of Attention model, answering an open question of Birkendorf et al.
(ii) An agnostic-type model. This contrasts with recent results of Guruswami and Raghaven-

dra who show NP-hardness for the problem under general distributions.
(iii) The PAC model, with constant ε. Our Õ(n2)-time algorithm substantially improves on

the previous best known running time and nearly matches the Ω(n2) bits of training data that any
successful learning algorithm must use.
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1. Introduction. This paper is concerned with Boolean threshold functions:
Definition 1.1. A Boolean function f : {−1, 1}n → {−1, 1} is a threshold

function if it is expressible as f(x) = sgn(w0 + w1x1 + · · · + wnxn) for some real
numbers w0, w1, . . . , wn.

Boolean threshold functions are of fundamental interest in circuit complexity,
game theory/voting theory, and learning theory. Early computer scientists studying
“switching functions” (i.e., Boolean functions) spent an enormous amount of effort on
the class of threshold functions; see for instance the books [10, 26, 36, 48, 38] on this
topic. More recently, researchers in circuit complexity have worked to understand the
computational power of threshold functions and shallow circuits with these functions
as gates; see e.g. [21, 45, 24, 25, 22]. In game theory and social choice theory, where
simple cooperative games [42] correspond to monotone Boolean functions, threshold
functions (with nonnegative weights) are known as “weighted majority” games and
have been extensively studied as models for voting, see e.g. [43, 27, 11, 54]. Finally,
in various guises, the problem of learning an unknown threshold function (“halfs-
pace”) has arguably been the central problem in machine learning for much of the
last two decades, with algorithms such as Perceptron, Weighted Majority, boosting,
and support vector machines emerging as central tools in the field.

A beautiful result of C.-K. Chow from the 2nd FOCS conference [9] gives a sur-
prising characterization of Boolean threshold functions: among all Boolean functions,
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each threshold function f : {−1, 1}n → {−1, 1} is uniquely determined by the “cen-
ter of mass” of its positive inputs, avg{x ∈ {−1, 1}n : f(x) = 1}, and the number of
positive inputs #{x : f(x) = 1}. These n + 1 parameters of f are equivalent, after
scaling and additive shifting, to its degree-0 and degree-1 Fourier coefficients (and
also, essentially, to its “influences” or “Banzhaf power indices”). We give a formal
definition:

Definition 1.2. Given any Boolean function f : {−1, 1}n → {−1, 1}, its Chow

Parameters1 are the rational numbers f̂(0), f̂(1), . . . , f̂(n) defined by f̂(0) = E[f(x)],

f̂(i) = E[f(x)xi], for 1 ≤ i ≤ n. We also say the Chow Vector of f is ~χ = ~χf =

(f̂(0), f̂(1), . . . , f̂(n)). Throughout this paper the notation E[·] and Pr[·] refers to
an x ∈ {−1, 1}n chosen uniformly at random. (We note that this corresponds to the
“Impartial Culture Assumption” in the theory of social choice [19].) Our notation

slightly abuses the standard Fourier coefficient notation of f̂(∅) and f̂({i}).
Chow’s Theorem implies that the following algorithmic problem is in principle

solvable:
The Chow Parameters Problem. Given the Chow Parameters f̂(0), f̂(1), . . . ,

f̂(n) of a Boolean threshold function f , output a representation of f as f(x) =
sgn(w0 + w1x1 + · · ·wnxn).

Unfortunately, the proof of Chow’s Theorem (reviewed in Section 2.3) is com-
pletely nonconstructive and does not suggest any algorithm, much less an efficient
one. As we now briefly describe, over the past five decades the Chow Parameters
problem has been considered by researchers in a range of different fields.

1.1. Background on the Chow Parameters problem. As far back as 1960
researchers studying Boolean functions were interested in finding an efficient algo-
rithm for the Chow Parameters problem [14]. Electrical engineers at the time faced
the following problem: Given an explicit truth table, determine if it can be realized as
a threshold circuit and if so, which one. The Chow Parameters are easily computed
from a truth table, and Chow’s Theorem implies that they give a unique represen-
tation for every threshold function. Several heuristics were proposed for the Chow
Parameters problem [30, 56, 29, 10], an empirical study was performed to compare
various methods [58], and lookup tables were produced mapping Chow Vectors into
weights-based representations for each threshold function on six [39], seven [57], and
eight [41] bits. Winder provides a good early survey [59]. Generalizations of Chow’s
Theorem were later given in [7, 46].

Researchers in game theory have also considered the Chow Parameters problem;
Chow’s Theorem was independently rediscovered by the game theorist Lapidot [34]
and subsequently studied in [11, 13, 54, 18]. In the realm of social choice and vot-
ing theory the Chow Parameters represent the Banzhaf power indices [43, 2] of the n
voters—a measure of each one’s “influence” over the outcome. Here the Chow Param-
eters problem is very natural: Consider designing a voting rule for, say, the European
Union. Target Banzhaf power indices are given, usually in proportion to the square-
root of the states’ populations, and one wishes to come up with a weighted majority
voting rule whose power indices are as close to the targets as possible. Researchers
in voting theory have recently devoted significant attention to this problem [35, 8],
calling it a “fundamental constitutional problem” [16] and in particular considering
its computational complexity [51, 1].

1Chow’s Theorem was proven simultaneously by Tannenbaum [53], but the terminology “Chow
Parameters” has stuck.
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The Chow Parameters problem also has motivation from learning theory. Ben-
David and Dichterman [3] introduced the “Restricted Focus of Attention (RFA)”
model to formalize the idea that learning algorithms often have only partial access
to each example vector. Birkendorf et al. [5] performed a comprehensive study of the
RFA model and observed that the approximation version of the Chow Parameters
problem (given approximate Chow Parameters, output an approximating threshold
function) is equivalent to the problem of efficiently learning threshold functions under
the uniform distribution in the 1-RFA model. (In the 1-RFA model the learner is only
allowed to see one bit of each example string in addition to the label; we give details in
Section 10.) As the main open question posed in [5], Birkendorf et al. asked whether
there is an efficient uniform distribution learning algorithm for threshold functions in
the 1-RFA model. This question motivated subsequent research [20, 47] which gave
information-theoretic sample complexity upper bounds for this learning problem (see
Section 3); however no computationally efficient algorithm was previously known.

To summarize, we believe that the range of different contexts in which the Chow
Parameters Problem has arisen is evidence of its fundamental status.

1.2. The Chow Parameters problem reframed as an approximation
problem. It is unlikely that the Chow Parameters Problem can be solved exactly in
polynomial time—note that even checking the correctness of a candidate solution is
#P-complete, because computing f̂(0) is equivalent to counting 0-1 knapsack solu-
tions. Thus, as is implicitly proposed in [5, 1], it is natural to look for a polynomial-
time approximation scheme (PTAS). Here we mean an approximation in the following
sense:

Definition 1.3. The distance between two Boolean functions f, g : {−1, 1}n →
{−1, 1} is dist(f, g)

def
= Pr[f(x) 6= g(x)]. If dist(f, g) ≤ ε we say that f and g are

ε-close.

We would like a PTAS which, given a value ε and the Chow Parameters of f ,
outputs a (representation of a) threshold function f ′ that is ε-close to f. With this
relaxed goal of approximating f , one may even tolerate only an approximation of the
Chow Parameters of f ; this gives us the variant of the problem that Birkendorf et al.
considered. (Note that, as we discuss in Section 3, it is in no way obvious that ap-
proximate Chow Parameters even information-theoretically specify an approximator
to f .) In particular the following notion of “approximate” Chow Parameters proves
to be most natural:

Definition 1.4. Let f, g : {−1, 1}n → {−1, 1}. We define dChow(f, g)
def
=√∑n

j=0(f̂(j)− ĝ(j))2 to be the Chow Distance between f and g.

1.3. Our results. Our main result is an efficient PTAS A for the Chow Pa-
rameters problem which succeeds given approximations to the Chow Parameters. We
prove:

Main Theorem. There is a function κ(ε) = 2−Õ(1/ε2) such that the following
holds: Let f : {−1, 1}n → {−1, 1} be a threshold function and let 0 < ε < 1/2. Write
~χ for the Chow Vector of f and assume that ~α is a vector satisfying ‖~α− ~χ‖ ≤ κ(ε).
Then given as input ~α and ε the algorithm A performs 2poly(1/κ(ε)) · n2 · log n · log(nδ )
bit operations and outputs the (weights-based) representation of a threshold function
f∗ which with probability at least 1− δ satisfies dist(f, f∗) ≤ ε.

Although the running time dependence on ε is doubly-exponential, we emphasize
that the polynomial dependence on n is quadratic, independent of ε; i.e., A is an
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“EPTAS”. Some of our learning applications have only singly-exponential dependence
on ε.

1.4. Our approach. We briefly describe the two main ingredients of our ap-
proach and explain how we combine them to obtain the efficient algorithm A.

First ingredient: small Chow Distance from a threshold function implies small
distance. An immediate question that arises when thinking about the Chow Parame-
ters problem is how to recognize whether a candidate solution is a good one. If we are
given the Chow Vector ~χf of an unknown threshold function f and we have a candi-
date threshold function g, we can approximate the Chow Vector ~χg of g by sampling.
The following Proposition is easily proved via Fourier analysis in Section 2.3:

Proposition 1.5. dChow(f, g) ≤ 2
√

dist(f, g).
This means that if dChow(f, g) is large then f and g are far apart. But if

dChow(f, g) is small, does this necessarily mean that f and g are close?
This question has been studied in the learning theory community, in [5] (for

threshold functions with small integer weights), [20], and [47]. In Section 3 we show
that the answer is yes by proving the following “robust” version of Chow’s Theorem:

Theorem 1.6. Let f : {−1, 1}n → {−1, 1} be any threshold function and let
g : {−1, 1}n → {−1, 1} be any Boolean function such that dChow(f, g) ≤ ε. Then

dist(f, g) ≤ Õ
(

1/
√

log(1/ε)
)
.

This is the first result of this nature that is completely independent of n. A key
ingredient in the proof of Theorem 1.6 is a new result showing that every threshold
function f is extremely close to a threshold function f ′ for which only a very small
fraction of points have small “margin” (see Section 6 for a precise statement). We
feel that this and Theorem 1.6 have independent interest as structural results about
threshold functions.

Second ingredient: using the Chow Parameters as weights. The second ingredient
in our approach is to establish a result, Theorem 7.1, having the following corollary:

Corollary 7.2. There is an absolute constant C > 0 such that the following
holds. Let f(x) = sgn(w0 + w1x1 + · · ·+ wnxn) be any threshold function, and let H
be the set of 1/εC indices i for which |wi| is largest.2 Then there exists a threshold
function f ′(x) = sgn(v0 + v1x1 + · · ·+ vnxn) with dist(f, f ′) ≤ ε in which the weights

vi for i ∈ [n] \H are the Chow Parameters f̂(i) themselves.
The heuristic of using the Chow Parameters as possible weights was considered

by several researchers in the early ’60s (see [59]); however no theorem on the efficacy
of this approach was previously known. Our proof of Theorem 7.1 and its robust
version Theorem 7.4 rely in part on recent work of Matulef et al. on Property Testing
for threshold functions [37].

The algorithm and intuitive explanation. Given these two ingredients, our PTAS
A for the approximate Chow Parameters problem works by constructing a “small”
(depending only on ε) number of candidate threshold functions. It enumerates “all”
(in some sense) possible weight settings for the indices in H, and for each one produces
a candidate threshold function by setting the remaining weights equal to the given
Chow Parameters. The second ingredient tells us that at least one of these candidate
threshold functions must be close to to the unknown threshold function f , and thus

2As we discuss at the beginning of Section 7, for any threshold function f the value |f̂(i)| is equal
to Infi(f), the influence of the i-th variable on f . It is well known and easy to show (see e.g. Lemma 7
of [17]) that for a threshold function f(x) = sgn(w0 +w1x1 + · · ·+wnxn), if Infi(f) > Infj(f) then

|wi| > |wj |. So we may equivalently view H as the set of 1/εC indices i for which |f̂(i)| is largest.
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must have small Chow Distance to f , by Proposition 1.5. Now the first ingredient
tells us that any threshold function whose Chow Distance to the target Chow Vector
is small must itself be close to the target. So the algorithm can estimate each of the
candidates’ Chow Vectors (this takes Õ(n2) time) and output any candidate whose
Chow Distance to the target vector is small.

1.5. Consequences in learning theory. As we show in Section 10, our ap-
proach yields a range of new algorithmic results in learning theory. Our Main Theorem
directly gives the first poly(n)-time algorithm for learning threshold functions in the
uniform distribution 1-RFA model, answering the question of [5]:

Theorem 1.7. There is an algorithm which performs 22Õ(1/ε2) · n2 · log n · log(nδ )
bit operations and properly learns threshold functions to accuracy ε and confidence
1− δ in the uniform distribution 1-RFA model.

A variant of our algorithm gives a very fast agnostic-type learning algorithm
for threshold functions (equivalently, an algorithm for learning Boolean threshold
functions from uniformly distributed examples when there is adversarial noise in the
labels):

Theorem 1.8. Let g be any Boolean function and let opt = minf Pr[f(x) 6= g(x)]
where the min is over all threshold functions and the probability is uniform over
{−1, 1}n. Given an input parameter ε > 0 and access to independent uniform ex-
amples (x, g(x)), algorithm B outputs the (weights-based) representation of a thresh-
old function f∗ which with probability at least 1 − δ satisfies Pr[f∗(x) 6= g(x)] ≤
O(optΩ(1))+ε. The algorithm performs poly(1/ε)·n2·log(nδ ) + 2poly(1/ε)·n·log n·log( 1

δ )
bit operations.

For example, if opt = 1/ log(n), our algorithm takes time O(n2 · log n · log(nδ ))

and outputs a hypothesis with accuracy 1/ logΩ(1)(n). Thereom 1.8 is in interesting
contrast with the algorithm of Kalai et al. [28] which constructs an (opt+ ε)-accurate
hypothesis but runs in npoly(1/ε) time (and does not output a threshold function). As
we discuss in Section 10, recent hardness results of Guruswami and Raghavendra [23]
imply that if P 6= NP there can be no algorithm comparable to ours for learning under
arbitrary (as opposed to uniform) distributions over {−1, 1}n.

Finally, as a corollary of Theorem 1.8, we obtain a uniform-distribution PAC
learning algorithm for threshold functions that runs in time Õ(n2) for learning to con-
stant accuracy ε = Θ(1). The fastest previous algorithm we are aware of for learning
arbitrary threshold functions in this model (linear programming, using Vaidya [55])
runs in Õ(n4.5) ·poly(1/ε) time. Thus our algorithm is significantly faster for learning
to accuracy ε = Θ(1), and in fact is faster as long as ε < 1/(log n)c for sufficiently
small constant c > 0. As we explain later, our time bound is very close to the Ω(n2)
bits of input that any learning algorithm must use.

2. Preliminaries.

2.1. Fourier analysis. This paper extensively uses the basics of Fourier analysis
over the Boolean cube {−1, 1}n. We give a brief review. We consider functions
f : {−1, 1}n → R (though we often focus on Boolean-valued functions which map
to {−1, 1}), and we think of the inputs x to f as being distributed according to the
uniform probability distribution. The set of such functions forms a 2n-dimensional
inner product space with inner product given by 〈f, g〉 = Ex[f(x)g(x)]. The set of
functions (χS)S⊆[n] defined by χS(x) =

∏
i∈S xi forms a complete orthonormal basis

for this space. We will also often write simply xS for
∏
i∈S xi. Given a function
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f : {−1, 1}n → R we define its Fourier coefficients by f̂(S) = Ex[f(x)xS ], and we

have that f(x) =
∑
S f̂(S)xS .

As an easy consequence of orthonormality we have Plancherel’s identity 〈f, g〉 =∑
S f̂(S)ĝ(S), which has as a special case Parseval’s identity, Ex[f(x)2] =

∑
S f̂(S)2.

From this it follows that for every f : {−1, 1}n → {−1, 1} we have
∑
S f̂(S)2 = 1.

The following definitions are fairly standard in the analysis of Boolean functions:
Definition 2.1. A function f : {−1, 1}n → {−1, 1} is said to be a “junta on

J ⊂ [n]” if f only depends on the coordinates in J . Typically we think of J as a
“small” set in this case.

Definition 2.2. We say that f : {−1, 1}n → R is “τ -regular” if |f̂(i)| ≤ τ for
all i ∈ [n].

The following simple lemma is implicit in [37]; we state and prove it explicitly
here for completeness.

Lemma 2.3. Let f(x) : {−1, 1}n → {−1, 1} be a Boolean threshold function and
let J ⊂ [n] be any subset of coordinates. If f is τ -close to a junta on J , then f is
τ -close to a junta on J which is itself a Boolean threshold function.

Proof. We assume without loss of generality that J is the set {1, . . . , r}. It is clear
that the junta over {−1, 1}r to which f is closest is the function g(x1, . . . , xr) that
maps each input (x1, . . . , xr) to the more commonly occuring value of the restricted
function fx1,...,xr (a function of variables xr+1, . . . , xn). But for f(x) = sgn(w0 +
w1x1+· · ·+wnxn) this more common value will be sgn(w0+w1x1+· · ·+wrxr), because
for uniform (xr+1, . . . , xn) ∈ {−1, 1}n−r the random variable wr+1xr+1 + · · ·+wnxn
is centered around zero.

We will also require the following lemma, which gives a lower bound on the
degree-1 Fourier weight of any threshold function in terms of its bias:

Lemma 2.4. Let f : {−1, 1}n → {−1, 1} be a Boolean threshold function and
suppose that 1− |E[f ]| = p. Then

n∑
i=1

f̂(i)2 ≥ p2/2.

Before giving the proof let us contrast this lemma with some known results.
Proposition 2.2 of Talagrand [52] gives a general upper bound

∑n
i=1 f̂(i)2 ≤ O(p2 log(1/p))

for any Boolean function satisfying 1− |E[f ]| = p. In [37] it is shown that a slightly
stronger bound Θ(p2 log(1/p)) holds for threshold functions f that are sufficiently
τ -regular. However when we use Lemma 2.4 we will not have regularity (and even if
we did, the extra log factor would not end up improving any of our bounds).

Proof. Write f(x) = sgn(w0 + w1x1 + · · · + wnxn), where we assume without
loss of generality that

∑n
j=1 w

2
j = 1 and that w0 + w1x1 + · · · + wnxn 6= 0 for all

x ∈ {−1, 1}n. We have

E[f(x)(w · x)] =

n∑
i=1

f̂(i)wi ≤

√√√√ n∑
i=1

f̂(i)2,

where the equality is Plancherel’s identity and the inequality is Cauchy-Schwarz. On
the other hand, using the definition of f we obtain

E[f(x)(w · x)] = E[1{|w·x|≥|w0|} · |w · x|] = p ·E[|w · x|
∣∣ |w · x| ≥ |w0|].
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The first equality above holds because each x such that |w · x| < |w0| can be paired
with −x; the value of f is the same on these two inputs, so their contributions to the
expectation cancel each other out. The second equality above is a routine renormal-
ization using the equality 1− |E[f ]| = p.

We now recall the Khintchine inequality with best constant [50], which says that
for any w ∈ Rn we have E[|w · x|] ≥ 1√

2
‖w‖. Since ‖w‖ = 1 in our setting, we get

E[|w · x|] ≥= 1√
2
, so surely E[|w · x|

∣∣ |w · x| ≥ |w0|] ≥ 1/
√

2. Thus combining all

statements yields √√√√ n∑
i=1

f̂(i)2 ≥ p/
√

2,

completing the proof.

2.2. Mathematical tools. We use the following simple estimate on several oc-
casions:

Fact 2.5. Suppose A and B are nonnegative and |A−B| ≤ η. Then |
√
A−
√
B| ≤

η/
√
B.

Proof. |
√
A−
√
B| = |A−B|√

A+
√
B
≤ η√

B
.

We also will need some results from probability theory:
Definition 2.6. We write Φ for the c.d.f. (cumulative density function) of a

standard mean-0, variance-1 Gaussian random variable. We extend the notation by
writing Φ[a, b] to denote Φ(b)−Φ(a), allowing b < a. Finally, we will use the estimate
|Φ[a, b]| ≤ |b− a| without comment.

The Berry-Esseen theorem is a version of the Central Limit Theorem with explicit
error bounds:

Theorem 2.7. (Berry-Esseen) Let X1, . . . , Xn be a sequence of independent
random variables satisfying E[Xi] = 0 for all i,

√∑
E[X2

i ] = σ, and
∑

E[|Xi|3] = ρ3.
Let S = (X1 + · · ·+Xn)/σ and let F denote the c.d.f. of S. Then

sup
x
|F (x)− Φ(x)| ≤ Cρ3/σ

3,

where Φ is the c.d.f. of a standard Gaussian random variable, and C is a universal
constant. It is known [49] that one can take C = .7915.

Corollary 2.8. Let x1, . . . , xm denote independent ±1 random bits and let
w1, . . . , wm ∈ R. Write σ =

√∑
w2
i , and assume |wi|/σ ≤ τ for all i. Then for any

interval [a, b] ⊆ R,∣∣Pr[a ≤ w1x1 + · · ·+ wmxm ≤ b]− Φ([ aσ ,
b
σ ])
∣∣ ≤ 2τ.

In particular,

Pr[a ≤ w1x1 + · · ·+ wmxm ≤ b] ≤
|b− a|
σ

+ 2τ.

2.3. Margins, and Chow’s Theorem. Having introduced Fourier analysis, we
recall and prove Proposition 1.5:

Proposition 1.5. dChow(f, g) ≤ 2
√

dist(f, g).
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Proof. For f, g : {−1, 1}n → {−1, 1} we have

dist(f, g) =
1

4
E[(f(x)− g(x))2] =

1

4

∑
S⊆[n]

(f̂(S)− ĝ(S))2

≥ 1

4

n∑
j=0

(f̂(j)− ĝ(j))2 =
1

4
dChow(f, g)2,

where the second equality is Parseval’s identity.
Let us introduce a notion of “margin” for threshold functions:
Definition 2.9. Let f : {−1, 1}n → {−1, 1} be a Boolean threshold function,

f(x) = sgn(w0+w1x1+· · ·+wnxn), where the weights are scaled so that
∑
j≥0 w

2
j = 1.

Given a particular input x ∈ {−1, 1}n we define marg(f, x) = |w0 + w1x1 + · · · +
wnxn|.3

Remark 2.10. The usual notion of “margin” from learning theory also involves
scaling the data points x so that ‖x‖ ≤ 1 for all x. Thus we have that the learning
theoretic margin of f on x is marg(f, x)/

√
n.

We now present a proof of Chow’s theorem from 1961:
Theorem 2.11. (Chow.) Let f : {−1, 1}n → {−1, 1} be a Boolean threshold

function and let g : {−1, 1}n → {−1, 1} be a Boolean function such that ĝ(j) = f̂(j)
for all 0 ≤ j ≤ n. Then g = f .

Note that another way of phrasing this is: “If f is a Boolean threshold function,
g is a Boolean function, and dChow(f, g) = 0, then dist(f, g) = 0.” Our Theorem 1.6
gives a “robust” version of this statement.

Proof. Write f(x) = sgn(w0 + w1x1 + · · ·+ wnxn), where the weights are scaled
so that

∑n
j=0 w

2
j = 1. We may assume without loss of generality that marg(f, x) 6= 0

for all x. (Otherwise, first perturb the weights slightly without changing f .) Now we
have

0 =

n∑
j=0

wj(f̂(j)− ĝ(j))

= E[(w0 + w1x1 + · · ·+ wnxn)(f(x)− g(x))]

= E[1{f(x)6=g(x)} · 2marg(f, x)].

The first equality is by the assumption that f̂(j) = ĝ(j) for all 0 ≤ j ≤ n, the second
equality is linearity of expectation (or Plancherel’s identity), and the third equality
uses the fact that f(x) = sgn(w0 +w1x1 + · · ·+wnxn). But since marg(f, x) is always
strictly positive, we must have Pr[f(x) 6= g(x)] = 0 as claimed.

3. First ingredient: small Chow Distance implies small distance. Our
main result in this section is the following.

Theorem 1.6 Restated. Let f : {−1, 1}n → {−1, 1} be any threshold function
and let g : {−1, 1}n → {−1, 1} be any Boolean function such that dChow(f, g) ≤ ε.

Then dist(f, g) ≤ Õ
(

1/
√

log(1/ε)
)
.4

Let us compare this with some recent results with a similar qualitative fla-
vor. The main result of Goldberg [20] is a proof that for any threshold function

3This notation is slightly informal as it doesn’t show the dependence on the representation of f .
4For a quantity q < 1, the notation “Õ(q)” means “O(q · logc(1/q)) for some absolute constant

c.”
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f and any Boolean function g, if |f̂(j) − ĝ(j)| ≤ (ε/n)O(log(n/ε) log(1/ε)) for all 0 ≤
j ≤ n, then dist(f, g) ≤ ε. Note that the condition of Goldberg’s theorem requires
that dChow(f, g) ≤ n−O(logn). Subsequently Servedio [47] showed that to obtain

dist(f, g) ≤ ε it suffices to have |f̂(j)− ĝ(j)| ≤ 1/(2Õ(1/ε2) · n) for all 0 ≤ j ≤ n. This
is a worse requirement in terms of ε but a better one in terms of n; however it still
requires that dChow(f, g) ≤ 1/

√
n. In contrast, Theorem 1.6 allows the Chow Distance

between f and g to be an absolute constant independent of n. This independence of n
will be crucial later on when we use Theorem 1.6 to obtain a computationally efficient
algorithm for the Chow Parameters problem.

At a high level, we prove Theorem 1.6 by giving a “robust” version of the proof of
Chow’s Theorem (Theorem 2.11). A first obvious approach to making the argument
robust is to try to show that every threshold function has margin Ω(1) (independent
of n) on every x. However this is well known to be badly false. A next attempt
might be to show that every threshold function has a representation with margin
Ω(1) on almost every x. This too turns out to be impossible (cf. our discussion after
the statement of Lemma 5.1 below). The key to getting an “n-independent” margin
lower bound is to also very slightly alter the threshold function. Specifically, the next
few sections of the paper will be devoted to the proof of the following:

Theorem 3.1. Let f : {−1, 1}n → {−1, 1} be any threshold function and let
ρ > 0 be sufficiently small. Then there is a threshold function f ′ : {−1, 1}n → {−1, 1}
with dist(f, f ′) ≤ 2−1/ρ satisfying

Pr
x

[marg(f ′, x) ≤ ρ] ≤ Õ
(

1/
√

log(1/ρ)
)
.

In other words, any threshold function f is very close to another threshold function
f ′ satisfying marg(f ′, x) ≥ Ω(1) for almost all x. We remark that although the fraction
of points failing the margin bound could be as large as inverse-logarithmic in ρ, we
only have to change f on a fraction of points which is exponentially small in 1/ρ to
achieve this.

Theorem 3.1 is the key structural result for threshold functions that allows us to
“robustify” the proof of Theorem 2.11. We will now show how Theorem 1.6 follows
from Theorem 3.1.

Proof. (Theorem 1.6.) Given f , apply Theorem 3.1 with its parameter ρ set (with
foresight) to

ρ =
√
ε log(1/ε).

This yields a threshold function f ′(x) = sgn(u0+u1x1+· · ·+unxn), with
∑n
j=0 u

2
j = 1

satisfying

dist(f, f ′) ≤ 2−1/ρ � ε

and

Pr
x

[marg(f ′, x) ≤ ρ] ≤ τ def
= Õ

(
1/
√

log(1/ρ)
)

=
poly log log(1/ε)√

log(1/ε)
. (3.1)

Since dist(f, f ′) ≤ ε, by Proposition 1.5 we have dChow(f, f ′) ≤ 2
√
ε and thus

dChow(f ′, g) ≤ 3
√
ε by the triangle inequality. We now follow the proof of Chow’s
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Theorem 2.11:

3
√
ε ≥ dChow(f ′, g) =

√
n∑
j=0

u2
j ·
√

n∑
j=0

(f̂ ′(j)− ĝ(j))2

≥
n∑
j=0

uj(f̂ ′(j)− ĝ(j))

= E[1{f ′(x) 6=g(x)} · 2marg(f ′, x)], (3.2)

where the second inequality is Cauchy-Schwarz.
Now suppose that Pr[f ′(x) 6= g(x)] ≥ 2τ . Then by (3.1) we must have that for

at least a τ fraction of x’s, both f ′(x) 6= g(x) and marg(f ′, x) > ρ. This gives a
contribution exceeding τρ to (3.2). But

τρ =
√
ε · poly log log(1/ε) > 3

√
ε,

a contradiction. Thus dist(f ′, g) ≤ 2τ and so

dist(f, g) ≤ dist(f, f ′) + dist(f ′, g) ≤ ε+ 2τ = Õ
(

1/
√

log(1/ε)
)
.

4. The critical index and anticoncentration. Fix a representation f(x) =
sgn(w0+w1x1+· · ·+wnxn) of a threshold function. Throughout this section we adopt
the convention that |w1| ≥ · · · ≥ |wn| > 0 (this will be without loss of generality, by
permuting indices).

The notion of the “critical index” of the sequence of weights w1, . . . , wn will be
useful for us. Roughly speaking, it allows us to approximately decompose any linear
form w0 + w1x1 + · · · + wnxn over random ±1 xi’s into a short dominant “head”,
w0 +w1x1 + · · ·+wsmallxsmall, and a long remaining “tail” which acts like a Gaussian
random variable. The “τ -critical index” of w1, . . . , wn is essentially the least index
` for which the random variable w`x` + · · · + wnxn behaves like a Gaussian up to
error τ . The notion of a critical index was (implicitly) introduced and used in [47].

Towards proving a margin lower bound such as Theorem 3.1 for f , we need to
show some kind of “anticoncentration” for the random variable w0+w1x1+· · ·+wnxn;
we want it to rarely be near 0. Let us describe intuitively how analyzing the critical
index helps us show this. If the critical index of w1, . . . , wn is large, then it must be the
case that the initial weights w1, w2, . . . up to the critical index are rapidly decreasing
(roughly speaking, if the weights wi, wi+1, . . . stayed about the same for a long stretch
this would cause wixi + · · · + wnxn to behave like a Gaussian). This rapid decrease
can in turn be shown to imply that the the “head” part w0 +w1x1 + · · ·+wsmallxsmall

is not too concentrated around any particular value; see Theorem 4.2 below. On the
other hand, if the critical index ` is small, then the random variable w`x`+ · · ·+wnxn
behaves like a Gaussian. Since Gaussians have good anticoncentration, the overall
linear form w0 +w1x1 + · · ·+wnxn will have good anticoncentration, regardless of the
head part’s value. We need to alter f slightly to make these two cases go through, but
having done so, we are able to bound the fraction of inputs x for which marg(f, x) is
very small, leading to Theorem 3.1.

We now give precise definitions. For 1 ≤ k ≤ n we write σk to denote the 2-norm

of the “tail weights” starting from k; i.e. σk
def
=
√∑n

i≥k w
2
i .

Definition 4.1. Fix a parameter 0 < τ < 1/2. We define the τ -critical index of
the weight vector w to be the least index ` such that w` is “small” relative to σ` in the
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following sense:

|w`|
σ`
≤ τ. (4.1)

(If no index 1 ≤ ` ≤ n satisfies (4.1), as is the case for ( 1
2 ,

1
4 ,

1
8 , . . . ,

1
2n ) for example,

then we say that the τ -critical index is +∞.) The connection between Equation (4.1)
and behaving like a Gaussian up to error τ is given by the Berry-Esseen Theorem,
stated in Section 2.2.

The following anticoncentration result shows that if the critical index is large,
then the random variable w1x1 + · · ·+wnxn does not put much probability mass close
to any particular value:

Theorem 4.2. Let 0 < τ < 1/2 and t ≥ 1 be parameters, and define k =⌈
O(1) t

τ2 ln
(
t
τ

)⌉
. If the τ -critical index ` for w1, . . . , wn satisfies ` ≥ k, then we have

Pr
x

[|w0 + w1x1 + · · ·+ wnxn| ≤
√
t · σk] ≤ O(2−t).

A similar result was established in [47]. The following subsections §4.1, 4.2, 4.3
are devoted to the proof of Theorem 4.2. Throughout, they assume ` denotes the
τ -critical index of w1, . . . , wn where |w1| ≥ · · · ≥ |wn| > 0 as in the condition of
Theorem 4.2.

4.1. Partitioning weights into blocks. The following simple lemma shows
that the tail weight decreases exponentially up to the τ -critical index:

Lemma 4.3. For 1 ≤ a < b ≤ `, we have σ2
b < (1−τ2)b−aσ2

a < (1−τ2)b−aw2
a/τ

2.
Proof. Since a is less than the critical index, we have w2

a > τ2σ2
a = τ2(w2

a+σ2
a+1),

or equivalently (1 − τ2)w2
a > τ2σ2

a+1. Adding (1 − τ2)σ2
a+1 to both sides gives (1 −

τ2)(w2
a + σ2

a+1) > (1 − τ2)σ2
a+1 + τ2σ2

a+1, which is equivalent to (1 − τ2)σ2
a > σ2

a+1.
This implies that σ2

b < (1− τ2)b−aσa; the second inequality follows from w2
a > τ2σ2

a.

Fix a parameter Z > 1. We divide the list of weights w1, . . . , w` into “Z-blocks” of
consecutive weights as follows. The first Z-block B1 is w1, . . . , wk1 where k1 is defined
to be the first index such that w1 (the largest weight in the block) is “large” relative
to σk1+1 (the total “tail weight” of all weights after the Z-block) in the following
sense:

|w1| > Z · σk1+1.

Similarly for i = 2, 3, . . . the ith Z-block Bi is wki−1+1, . . . , wki where ki is the first
index such that

|wki−1+1| > Z · σki+1.

The following lemma says each Z-block must be relatively short prior to the
critical index:

Lemma 4.4. Suppose that the ith Z-block Bi is such that ki−1 +1+m ≤ `, where

m
def
=

1

τ2
· ln(Z2/τ2). (4.2)

Then Bi is of length at most m.
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Proof. Suppose that the length |Bi| of the ith Z-block were more than m. Ap-
plying Lemma 4.3 with b− a = m, we have

σ2
ki−1+1+m < (1− τ2)mw2

ki−1+1/τ
2 ≤ e−τ

2mw2
ki−1+1/τ

2.

But by the assumption that the ith Z-block is longer than m, we also have

w2
ki−1+1 ≤ Z2σ2

ki−1+1+m.

Combining these inequalities and plugging in our expression for m we get a contra-
diction.

An easy consequence is that if the critical index is large, then there must be many
blocks prior to it:

Corollary 4.5. For t ≥ 1, suppose that the τ -critical index ` is at least tm,
where m is defined as in (4.2). Then kt ≤ tm, i.e. there are at least t complete
Z-blocks by the (tm)-th weight.

4.2. Block structure and concentration of the random variable w ·x. Let
f(x) = sgn(w0+w1x1+· · ·+wnxn) be a threshold function with |w1| ≥ · · · ≥ |wn| > 0,
and let B1, B2, . . . be the Z-blocks for w as defined in the previous subsection. In this
subsection we prove the following lemma which is a slight variant of a similar result
in [47]. Intuitively the lemma says that if a weight vector v has “many” blocks, then
for any w0 ∈ R, only an exponentially small fraction of points x ∈ {−1, 1}n will have
a “small” margin for the threshold function sgn(w0 +w1x1 + · · ·+wnxn). As we show
in the next subsection, Theorem 4.2 will be an easy consequence of this lemma.

Lemma 4.6. Fix a value t such that there exist at least t complete Z-blocks
B1, . . . , Bt in the weight vector w. Then for any w0 ∈ R, we have

Pr[|w0 + w1x1 + · · ·+ wnxn| ≤ σkt+1 · (Z/6)] ≤ 2−t + 2te−Z
2/72.

Here the probability is taken over a uniform random choice of x from {−1, 1}n.
We first give some necessary preliminary results and then prove Lemma 4.6. Our

approach follows that of [47] with slight modifications.
Let us view the choice of a uniform random assignment x to the variables in Z-

blocks B1, . . . , Bt as taking place in successive stages, where in the ith stage values are
assigned to the variables in the ith Z-block Bi. Immediately after the ith stage, some
value—call it ξi—has been determined for w0 + w1x1 + · · · + wkixki . The following
simple lemma shows that if ξi is too far from 0, then it is unlikely that the remaining
variables xki+1, . . . , xn will come out in such a way as to make the final sum close
to 0.

Lemma 4.7. For any value A > 0 and any 1 ≤ i ≤ t, if |ξi| ≥ 2σki+1

√
2 ln(2/A),

then we have

Prxki+1,...,xn [|w0 + w1x1 + · · ·+ wnxn| ≤ σki+1

√
2 ln(2/A)] ≤ A. (4.3)

Proof. By the lower bound on |ξi| in the hypothesis of the lemma, it can only be
the case that |w0 + w1x1 + · · ·+ wnxn| ≤ σki+1

√
2 ln(2/A) if

|wki+1xki+1 + · · ·+ wnxn| ≥ σki+1

√
2 ln(2/A). (4.4)

We now recall the Hoeffding bound (see e.g. [12]), which says that for any 0 6= v ∈ Rr

and any γ > 0, we have Prx∈{−1,1}r [|v1x1 + · · ·+vrxr| ≤ γ
√
v2

1 + · · ·+ v2
r ] ≤ 2e−γ

2/2.
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Since w2
ki+1 + · · ·+ w2

n = σ2
ki+1, this Hoeffding bound implies that the probability of

(4.4) is at most

2e−(
√

2 ln(2/A))2/2 = A.

We henceforth fix A to be A
def
= 2e−Z

2/72, so we have 6
√

2 ln(2/A) = Z. We now
show that regardless of the value of ξi−1, we have |ξi| ≤ 2σki+1(Z/6) with probability
at most 1/2 over the choice of values for variables in block Bi in the ith stage.

Lemma 4.8. For any ξi−1 ∈ R, we have

Prxki−1+1,...,xki
[|ξi| ≤ 2σki+1(Z/6) | ξi−1] ≤ 1/2.

Proof. Since ξi equals ξi−1 + (wki−1+1xki−1+1 + · · · + wkixki), we have |ξi| ≤
2σki+1(Z/6) if and only if the value wki−1+1xki−1+1 + · · ·+wkixki lies in the interval

[IL, IR]
def
= [−ξi−1 − 2σki+1(Z/6),−ξi−1 + 2σki+1(Z/6)]

of width 2
3σki+1Z.

First suppose that 0 /∈ [IL, IR], i.e. the whole interval has the same sign. If this
is the case then Pr[wki−1+1xki−1+1 + · · ·+ wkixki ∈ [IL, IR]] ≤ 1

2 since by symmetry
the value wki−1+1xki−1+1 + · · ·+ wkixki is equally likely to be positive or negative.

Now suppose that 0 ∈ [IL, IR]. By definition of ki, we know that σki+1 ≤
|wki−1+1|/Z, and consequently we have that the width of the interval [IL, IR] is at
most 2

3 |wki−1+1|. But now observe that once the value of xki−1+1 is set to either +1
or −1, this effectively shifts the “target interval,” which now wki−1+2xki−1+2 + · · ·+
wkixki must hit, by a displacement of wki−1+1 to become [IL −wki−1+1xki−1+1, IR −
wki−1+1xki−1+1]. (Note that in the special case where ki = ki−1 + 1, the value
wki−1+2xki−1+2+· · ·+wkixki which must hit the target interval is simply 0.) Since the
original interval [IL, IR] contained 0 and was of length at most 2

3 |wki−1+1|, the new
interval does not contain 0, and thus again by symmetry we have that the probability
(now over the choice of xki−1+2, . . . , xki) that wki−1+1xki−1+1 + · · · + wkixki lies in
[IL, IR] is at most 1

2 .

In order to have |w0 +w1x1 + · · ·+wnxn| ≤ σkt+1

√
2 ln(2/A), it must be the case

that either
(i) each |ξi| < 2σki+1

√
2 ln(2/A) for i = 1, . . . , t; or

(ii) for some 1 ≤ i ≤ t we have |ξi| ≥ 2σki+1

√
2 ln(2/A) but nonetheless |w0 +

w1x1 + · · ·+ wnxn| < σki+1

√
2 ln(2/A).

Lemma 4.8 gives us that the probability of (i) is at most (1/2)t = 2−t, and
Lemma 4.7 with the union bound gives us that the probability of (ii) is at most t ·A.
This proves Lemma 4.6.

4.3. Proof of Theorem 4.2. Let Z = 12
√
t. We take m = 1

τ2 · ln(Z2/τ2) as in
(4.2), and we have k = tm+1. With these choices the condition ` ≥ k of Theorem 4.2
together with Corollary 4.5 implies that there are at least t complete Z-blocks in the
weight vector w. Thus we may apply Lemma 4.6, and we have that

Pr[|w0 + w1x1 + · · ·+ wnxn| ≤ σkt+1 · 2
√
t] ≤ 2−t + 2te−2t ≤ O(2−t).

Now we further observe that since there are in fact t complete Z-blocks prior to the
kth weight, we have kt + 1 ≤ k and hence σkt+1 ≥ σk, so the above inequality implies

Pr[|w0 + w1x1 + · · ·+ wnxn| ≤
√
t · σk] ≤ O(2−t).

This is the desired conclusion of Theorem 4.2.
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4.4. Extension of Theorem 4.2. The same proof with a slightly different
choice of Z (taking Z = O(1)tC) in fact gives us the following significantly stronger
version of Theorem 4.2; however this stronger version is not more useful for our
purposes:

Theorem 4.9. In the setting of Theorem 4.2, let C ≥ 1/2 be another parameter,
and suppose we instead define

k =

⌈
O(1)

t

τ2
ln

(
tC

τ

)⌉
.

Then if ` ≥ k,

Pr
x

[|w0 + w1x1 + · · ·+ wnxn| ≤ tC · σk] ≤ O(2−t).

5. Approximating threshold functions using not-too-large head weights.
The main result of this section is a lemma which roughly says that any threshold func-
tion f can be approximated by a threshold function f ′ in which the 2-norm of the
tail weights, σk, is at least an Ω(1) fraction of the head weights. This is important so
that the Gaussian random variable to which the tail part is close has Ω(1) variance
and thus sufficiently good anticoncentration.

Lemma 5.1. Let f : {−1, 1}n → {−1, 1} be any threshold function, f(x) =
sgn(w0 + w1x1 + · · · + wnxn) (recall that we assume |w1| ≥ |w2| ≥ · · · ≥ |wn|). Let

0 < ε < 1/2 and 1 ≤ k ≤ n be parameters, and write σk
def
=
√∑

j≥k w
2
j . Assuming

σk > 0, there are numbers v0, . . . , vk−1 satisfying

|vi| ≤ k(k+1)/2 ·
√

3 ln(2/ε) · σk (5.1)

such that the threshold function f ′ : {−1, 1}n → {−1, 1} defined by

f ′(x) = sgn(v0 + v1x1 + · · ·+ vk−1xk−1 + wkxk + · · ·+ wnxn)

satisfies dist(f, f ′) ≤ ε. One may further ensure that |v1| ≥ |v2| ≥ · · · ≥ |vk−1| ≥ |wk|
and that sgn(vi) = sgn(wi) for all i.

Before proving this lemma, let us give an illustration. Consider the threshold
function

f(x) = sgn(nx1 + nx2 + x3 + · · ·+ xn), (5.2)

with k = 3. The tail weights here have σ3 =
√
n− 2, which of course is not a

constant fraction of the two head weights, n. Further, this cannot be fixed just
by choosing a different weights-based representation of the same function f . What
Lemma 5.1 shows here is that we can shrink the head weights from n all the way
down to Θ(

√
ln(1/ε))

√
n without changing the function on more than an ε fraction

of points (this heavily uses the fact that the tail acts like a Gaussian with standard
deviation

√
n− 2). Then indeed σ3 is an Ω(f(ε)) fraction of the head weights for a

function f(ε) that is independent of n, as desired.
We now give the proof of Lemma 5.1, a modification of the classic argument of [40]

which bounds the weights required for exact representation of any threshold function.
Proof. We will first prove the theorem without the extra constraints |v1| ≥ |v2| ≥

· · · ≥ |vk−1| ≥ |wk| and sgn(vi) = sgn(wi). At the end of the proof we will show how
these constraints can also be ensured.
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Let h : {−1, 1}k−1 → R denote the head of f ,

h(x) = w0 + w1x1 + · · ·+ wk−1xk−1.

Consider the system S of 2k−1 linear equations in k unknowns named u0, . . . , uk−1:
for each x ∈ {−1, 1}k−1 we include the equation

u0 + u1x1 + · · ·+ uk−1xk−1 = h(x).

Of course, the linear system S is satisfiable, since (u0, . . . , uk−1) = (w0, . . . , wk−1) is
a solution.

Let C be defined by

C =
√

3 ln(2/ε) · σk,

and consider the system LP of 2k−1 linear inequalities over unknowns u0, . . . , uk−1:
for each x ∈ {−1, 1}k−1 we include the (in)equality

u0 + u1x1 + · · ·+ uk−1xk−1


≥ C if h(x) ≥ C,

= h(x) if |h(x)| < C,

≤ −C if h(x) ≤ −C.

(5.3)

We have that LP is feasible, since it is a relaxation of the satisfiable system S.
Now we use the following standard result from the theory of linear inequalities,

which is a straightforward consequence of Cramer’s rule and is implicit in several
works (see e.g. the proof at the start of Section 3 of [24]):

Lemma 5.2. Let LP denote a feasible linear program over k variables u0, . . . , uk−1

in which the constraint matrix has all entries from {−1, 0, 1} and the right-hand
side has all entries at most C in absolute value. Then there is a feasible solution
(v0, . . . , vk−1) in which

|vi| ≤ k(k+1)/2 · C

for each i.
This implies that there is a feasible solution (u0, . . . , uk−1) = (v0, . . . , vk−1) to LP

in which the numbers vi are not too large in magnitude: specifically, using Lemma 5.2
we may obtain

|vi| ≤ k(k+1)/2 · C. (5.4)

We now show that the threshold function

f ′(x) = sgn(v0 + v1x1 + · · ·+ vk−1xk−1 + wkxk + · · ·wnxn)

satisfies dist(f, f ′) ≤ ε.
Given x ∈ {−1, 1}n, let us abuse notation by writing

h(x) = h(x1, . . . , xk−1) = w0 + w1x1 + · · ·+ wk−1xk−1;

let us also write

h′(x) = v0 + v1x1 + · · ·+ vk−1xk−1
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for the head of f ′ and

t(x) =
∑
j≥k

wjxj

for the tail, which is common to both f and f ′. Now if x is any input for which
|h(x)| < C then we have h(x) = h′(x) by construction, and hence f(x) = f ′(x). Thus
in order for f(x) to disagree with f(x′) it must at least be the case that |h(x)| ≥ C.
Moreover, it must also be the case that |t(x)| ≥ C, for otherwise sgn(h(x) + t(x)) will
equal sgn(h′(x) + t(x)), because h(x) and h′(x) have the same sign by construction.
But the Hoeffding bound implies that

Pr
x

[|t(x)| ≥ C] ≤ Pr
x

[|t(x)| ≥
√

2 ln(2/ε) · σk] ≤ 2e− ln(2/ε) = ε.

Hence indeed Pr[f(x) 6= f ′(x)] ≤ ε, as desired.
Finally, we complete the proof by showing how to ensure the extra constraints

|v1| ≥ |v2| ≥ · · · ≥ |vk−1| ≥ |wk| and sgn(vi) = sgn(wi). First, the constraints
sgn(ui) = sgn(wi) can be added into LP—by this we mean adding constraints like
u1 ≥ 0, u2 ≤ 0, etc. Next, the constraints

sgn(w1)u1 ≥ sgn(w2)u2

sgn(w2)u2 ≥ sgn(w3)u3

· · ·
sgn(wk−2)uk−2 ≥ sgn(wk−1)uk−1

can be added into LP; again, these are constraints like −ui ≥ ui+1. Finally, we
can add the constraint sgn(wk−1)uk−1 ≥ |wk|. Of course, LP remains feasible after
the addition of all of these constraints, since (u0, . . . , uk−1) = (w0, . . . , wk−1) is still a
solution. It remains to show that there is still a solution satisfying the bounds in (5.4).
But this still follows from Lemma 5.2: the added constraints only have coefficients in
{−1, 0, 1}, and the added right-hand side entries are all 0, except for the last, which
is |wk| ≤ σk ≤ C.

6. Every threshold function is close to a threshold function for which
few points have small margin. In this subsection we show how to combine The-
orem 4.2 and Lemma 5.1 to establish the following:

Theorem 6.1. Let f : {−1, 1}n → {−1, 1} be any threshold function and let
0 < τ < 1/2. Then there is a threshold function f ′ : {−1, 1}n → {−1, 1} with
dist(f, f ′) ≤ ε satisfying Prx[marg(f ′, x) ≤ ρ] ≤ O(τ),

where ε = ε(τ) = 2−2O(log3(1/τ)/τ2)

and ρ = ρ(τ) = 2−O(log3(1/τ)/τ2).

Our main structural results about margins, Theorem 3.1, is simply a rephrasing of
the above theorem. Hence proving Theorem 6.1 completes the proof of Theorem 1.6,
the “first ingredient” in our solution to the Chow Parameters Problem.

The plan for the proof of Theorem 6.1 follows the intuition described in the
beginning of Section 4. We consider the location of the τ -critical index of f . Case 1
is that it occurs quite early. In that case, the resulting tail acts like a Gaussian (up
to error τ), and hence we can get a good anticoncentration bound so long as the tail’s
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variance is large enough. To ensure this, we alter f at the beginning of the argument
using Lemma 5.1, which yields tail weights with total variance lower bounded by a
function that depends only on τ. Case 2 is that the critical index occurs late. In this
case we get anticoncentration by appealing to Theorem 4.2. We again use Lemma 5.1
so that the σk parameter is not too small.

We now give the formal proof.
Proof. (Theorem 6.1) We intend to apply Theorem 4.2 in Case 2 with its t

parameter set to log(1/τ), so that the anticoncentration is O(τ). Thus we will need
to ensure the τ -critical index parameter ` is at least

k
def
=

⌈
O(1)

log(1/τ)

τ2
ln

(
log(1/τ)

τ

)⌉
. (6.1)

To that end, fix a weights-based representation of f ,

f(x) = sgn(w0 + w1x1 + · · ·+ wnxn),

where we may assume that |w1| ≥ |w2| ≥ · · · ≥ |wn| > 0. Write σk =
√∑

j≥k w
2
j , and

observe that σk > 0 since each wi 6= 0. Now apply Lemma 5.1, with its parameter ε

set to 2−k
O(k)

. This yields a new threshold function

f ′(x) = sgn(v0 + v1x1 + · · ·+ vk−1xk−1 + wkxk + · · ·wnxn), (6.2)

where each vi satisfies

|vi| ≤ kO(k) · σk, (6.3)

and also |v1| ≥ |v2| ≥ · · · ≥ |vk−1| ≥ |wk|. This f ′ has dist(f, f ′) ≤ ε = 2−k
O(k)

.
To analyze marg(f ′, x), let us normalize the weights of f ′ by dividing each weight

by
√
v2

0 + · · ·+ v2
k−1 + w2

k + · · ·+ w2
n. We thus may write

f ′(x) = sgn(u0 + u1x1 + · · ·+ uk−1xk−1 + ukxk + · · ·unxn),

where
∑
j≥0 u

2
j = 1. Equation (6.2) implies that for each of the k values i = 0, . . . , k−1

we have that v2
i is at most kO(k) times as large as w2

k + · · · + w2
n. Letting σ′i denote√∑

j≥i u
2
j and recalling that

∑
j≥0 u

2
j = 1, this is easily seen to imply that

σ′k ≥ k−O(k). (6.4)

Recalling that we still have |u1| ≥ |u2| ≥ · · · ≥ |un| > 0, let ` be the τ -critical
index for u1, . . . , un, and consider two cases:
Case 1: ` < k. In this case, consider any fixed choice for x1, . . . , x`−1 and write
h = u0 + u1x1 + · · ·+ u`−1x`−1. Using the definition of τ -critical index and applying
the Berry-Esseen Corollary 2.8 to u`x` + · · ·+ unxn we get

Pr
x`,...,xn

[−h− γ ≤ u`x` + · · ·+ unxn ≤ −h+ γ] ≤ 2γ

σ′`
+ 2τ,

for any choice of γ ≥ 0. Taking γ = τσ′` ≥ τσ′k we conclude

Pr
x

[marg(f ′, x) ≤ τσ′k] ≤ 4τ.
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Case 2: ` ≥ k. In this case we apply Theorem 4.2, with its parameter t set to
log(1/τ), as described at the beginning of the proof. With k defined as in (6.1), we
conclude

Pr
x

[marg(f ′, x) ≤
√

log(1/τ) · σ′k] ≤ O(τ).

Combining the results of the two cases and using σ′k ≥ k−O(k) from (6.4), we
conclude that we always have

Pr
x

[marg(f ′, x) ≤ τk−O(k)] ≤ O(τ).

Now it only remains to observe that by definition (6.1) of k,

k−O(k) = 2−O(log3(1/τ)/τ2).

Hence we have that

dist(f, f ′) ≤ 2−k
O(k)

≤ ε(τ)

and

τk−O(k) ≥ τ2−O(log3(1/τ)/τ2) ≥ ρ(τ).

7. Second ingredient: using Chow Parameters as weights for tail vari-
ables. We begin this section with some informal motivation for and description of
our “second ingredient”.

We first recall that every threshold function f is unate; this means that for every
i, f is either monotone increasing or monotone decreasing as a function of its i-
th coordiante. A well-known consequence of unateness is that the magnitude of the
Fourier coefficient |f̂(i)| is equal to the influence of the variable xi on f ; i.e. Pr[f(x) 6=
f(y)] where x is drawn uniformly from {−1, 1}n and y is x with the ith bit flipped.
As done in the “first ingredient”, it is natural to group together the high-influence
variables, forming the “head” indices of f . We refer to the remaining indices as the
“tail” indices. Note that an algorithm for the Chow Parameters problem can do this
grouping, since it is given the f̂(i)’s.

The following theorem states that any threshold function f is either already close
to a junta over the head indices, or is close to a threshold function obtained by
replacing the tail weights with (suitably scaled versions of) the tail Chow Parameters.
(We have made no effort to optimize the precise polynomial dependence of τ(ε) on ε.)

Theorem 7.1. There is a polynomial function τ(ε) = poly(ε) such that the
following holds: Let f be a Boolean threshold function over head indices H and tail
indices T ,

f(x) = sgn

(
v0 +

∑
i∈H

vixi +
∑
i∈T

wixi

)
,

and let 0 < ε < 1/2. Assume that H contains all indices i such that |f̂(i)| ≥ τ(ε)2.
Then one of the following holds:

(i) f is O(ε)-close to a junta over H; or,
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(ii) we can normalize the weights so that
∑
i∈T w

2
i = 1, in which case f is

O(ε)-close to the Boolean threshold function

f ′(x) = sgn

(
v0 +

∑
i∈H

vixi +
∑
i∈T

f̂(i)

σ
xi

)
,

where σ denotes
√∑

i∈T f̂(i)2.

We remark that it can be shown that statement (ii) in this theorem in fact always
holds (assuming σ 6= 0), even when f is close to a junta. We omit the proof as our
overall results do not need this strengthening. We also remark that by Parseval’s
identity, one can take the set H ⊂ [n] in the theorem to be the 1/τ(ε)4 = poly(1/ε)
indices for which the weights are the largest.

Theorem 7.1 has the following immediate corollary:
Corollary 7.2. Under the hypotheses of Theorem 7.1, there exists a threshold

function f ′(x) = sgn(v0+v1x1+· · ·+vnxn) which is O(ε)-close to f in which vi = f̂(i)
for all i 6∈ H.

Proof. In case (i), Lemma 2.3 implies that f is O(ε)-close to the junta sgn(v0 +∑
i∈H vixi). We can put this junta over H into the desired format by scaling the

weights {vi}i∈H so large that the weights {vi = f̂(i)}i 6∈H are collectively irrelevant.
Otherwise, we are in case (ii) and we can scale all weights by σ.

Theorem 7.1 suggests an approach to constructing a “small” list of candidate
threshold functions for the Chow Parameters problem. We take H to be all indices
with Chow Parameter of magnitude at least τ(ε)2; as mentioned, there are at most
1/τ(ε)4 such indices. If f is close to a junta over H (case (i)), we can construct a
list of candidates that will contain such a close-to-f junta by simply enumerating all
junta threshold functions over H; intuitively this is a “small” number of candidates
since |H| is “small.” On the other hand, if we are in case (ii) then simply using the
Chow Parameters as the tail weights almost gives us a threshold function which is
ε-close to f—it remains only to fill in the |H| unknown head weights.

We deal with the unknown head weights via the following extension of Theo-
rem 7.1, which shows that it is enough to consider head weights with bounded preci-
sion within a bounded range:

Theorem 7.3. Statement (ii) in Theorem 7.1 can be replaced by the following:
(ii) f is O(ε)-close to a Boolean threshold function f ′ of the form

f ′(x) = sgn

(
u0 +

∑
i∈H

uixi +
∑
i∈T

f̂(i)

σ
xi

)
,

where the weights ui are integer multiples of
√
τ(ε)/|H| with magnitude at most

2O(|H| log |H|)
√

ln(1/τ(ε)).
Theorem 7.3 is sufficient if we are given the exact values of the Chow Parameters,

but as described in Section 1.2 we consider the more difficult scenario in which we
are only given approximations to the Chow Parameters (this is the scenario required
for 1-RFA learning). Thus we want an extension of Theorem 7.3 which requires only
that the input vector be close to the Chow Parameters of f . We prove the following:

Theorem 7.4. Theorem 7.3 continues to hold if, instead of using the vector
~γ = [f̂(i)]i∈T for the (pre-scaled) tail weights, we used a vector ~α satisfying

‖~α− ~γ‖ ≤ Ω(ε4). (7.1)
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Since Theorem 7.4 is our ultimate goal we prove it directly; this is the object of
Section 8 The proof builds on ideas developed in the proof of correctness of the
poly(1/ε)-query testing algorithm for the class of threshold functions given by Matulef
et al. [37]. In the remainder of this section we give a sketch of the proof of Theorem 7.4,
and also develop some technical geometric lemmas needed in the proof.

Proof sketch. The “completeness” analysis of [37] (together with geometric lem-
mas) helps us show that if f is far from a junta over H, then all restrictions of the head
indices give rise to Chow vectors (of the different restrictions of f) that are mutually
“approximately parallel”:

Definition 7.5. We say two vectors ~β and ~γ are η-approximately parallel if

‖~β‖ · ‖~γ‖ − ~β · ~γ ≤ η. (7.2)

The completeness argument of [37] also gives us that there is a set of weights for
the head indices lying in the required range and with the required precision, that are
compatible in a certain technical sense with all the restrictions of the head. Additional
geometric arguments show that the average of the Chow Vectors of the restrictions—
which equals the tail of the Chow Vector of f itself—is a “long” vector which is itself
approximately parallel to the Chow vectors of the restrictions. Next, these properties,
along with the “soundness” analysis of [37], are used to show that replacing the tail
weights with the tail Chows of f causes very little error for each restriction to the
head indices. Finally, the “compatible” head weights from above are used to obtain an
overall high-accuracy approximator for f whose head weights have the stated bounded
magnitude and granularity and whose tail weights are the tail Chow parameters of f .

We now state and prove the required geometric lemmas. It is straightforward to
characterize the vectors that are η-approximately parallel to a fixed vector ~β:

Proposition 7.6. Fix a nonzero vector ~β and a value η > 0. The set S =
{all vectors ~γ that are η-approximately parallel to ~β} is a closed solid paraboloid of

revolution along an axis in the direction ~β, with vertex located at

−η~β
2‖~β‖2

.

Proof. We have ~γ ∈ S if and only if ‖~γ‖ ≤ η

‖ ~β‖
+ γ · ~β

‖~β‖
, i.e. γ is closer to the

origin than to the hyperplane η

‖ ~β‖
+

~β

‖~β‖
·x = 0. Thus S is the paraboloid of revolution

whose focus is the origin and whose directrix plane is η

‖ ~β‖
+

~β

‖~β‖
·x = 0; this paraboloid

has axis vector in the direction ~β and has vertex −η~β
2‖~β‖2

as claimed.

The next lemma gives sufficient conditions for two vectors ~β, ~β′ to be approxi-
mately parallel:

Lemma 7.7. Let ~β and ~β′ be vectors with ‖~β‖, ‖~β′‖ ≤ 1 and let W,W ′ be numbers
satisfying ∣∣‖~β‖2 −W ∣∣ ≤ τ1/12,

∣∣‖~β′‖2 −W ′∣∣ ≤ τ1/12, (7.3)

∣∣(~β · ~β′)2 −W ·W ′
∣∣ ≤ τ1/12, (7.4)
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where 0 < τ < 1/2. Assume also that ~β · ~β′ ≥ 0. Then ~β and ~β′ are O(τ1/36)-
approximately parallel.

Proof. If either ‖~β‖ ≤ τ1/36 or ‖~β′‖ ≤ τ1/36 then the claim holds easily:

‖~β‖ · ‖~β′‖ − ~β · ~β′ ≤ 1 · τ1/36 − 0 = τ1/36.

Otherwise, substituting (7.3) into (7.4) (and using 0 ≤W,W ′ ≤ 1 + τ1/12 = O(1)) we
get ∣∣(~β · ~β′)2 − ‖~β‖2 · ‖~β′‖2

∣∣ ≤ O(τ1/12).

Now we apply Fact 2.5 and use ‖~β‖ · ‖~β′‖ ≥ τ2/36 to conclude

∣∣|~β · ~β′| − ‖~β‖ · ‖~β′‖∣∣ ≤ O(τ1/12

τ1/18

)
= O(τ1/36).

Since |~β · ~β′| = ~β · ~β′ by assumption, the proof is complete.

Roughly speaking, the next lemma says that in a group of vectors that are all
mutually approximately parallel, if a “large” fraction of the vectors are “long” then
the average of all the vectors in the group must also be fairly long.

Lemma 7.8. Suppose {βπ}π∈Π is a collection of vectors which are mutually η-
approximately parallel. Write Πε for those π such that ‖βπ‖ ≥ ε and write λ =
|Πε|/|Π|. Assume that η ≤ (3/4)ε2. Then ~γ = avgπ∈Π[βπ] satisfies

‖~γ‖ ≥ λε/2− η/ε.

Proof. Write γ = λ~g + (1 − λ)~e, where ~g = avgπ∈Πε [βπ] and ~e is the average of
the remaining βπ’s. We have

‖~g‖2 =
1

|Πε|2
∑

π,π′∈Πε

βπ · βπ′ ≥
1

|Πε|2
∑

π,π′∈Πε

(‖βπ‖ · ‖βπ′‖ − η) ≥ ε2 − η ≥ ε2/4,

where we used the fact that each pair βπ, βπ′ is η-approximately parallel and also η ≤
(3/4)ε2. On the other hand, by the convexity of the paraboloid from Proposition 7.6,
~g is η-approximately parallel to all βπ for π 6∈ Πε; hence, ~e is η-approximately parallel
to ~g. Given this and Proposition 7.6, the least value that ‖λ~g + (1− λ)~e‖ can take is
if ~e were − η

2‖~g‖2~g. Thus we have a lower bound

‖γ‖ ≥ λ‖~g‖ − (1− λ)
η

2‖~g‖
≥ λ‖~g‖ − η

2‖~g‖
.

The above quantity is an increasing function of ‖~g‖, so using ‖~g‖ ≥
√
ε2/4 = ε/2 we

get

‖γ‖ ≥ λε/2− η/ε,

as claimed.
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8. Proof of Theorem 7.4 via Property Testing. As mentioned, our proof of
Theorem 7.4 builds on the efficient property testing algorithm for threshold functions
developed in [37]. We are able to use in a mostly black-box fashion their “soundness”
theorem:

Theorem 8.1. Let g : {−1, 1}n → {−1, 1} be a θ-regular Boolean threshold

function and write ~β = (ĝ(1), . . . , ĝ(n)), so |~β(i)| ≤ θ for each i. Let ~γ be a vector

with ‖~γ‖ = 1 which is θ1/9-approximately parallel to ~β. Assume also |~γ(i)| ≤ θ1/9 for
all i. Then g is O(θ1/18)-close to the threshold function sgn(h), where

h(x) = t+ ~γ(1)x1 + · · ·+ ~γ(n)xn, t = µ−1(E[g]).

(Here µ is the function µ(θ) = Φ[−θ, θ].5)
Roughly, this theorem says that if g is a threshold function with all its degree-1

Chow Parameters small and ~γ is approximately parallel to the Chow Vector of g, then
g is well approximated by a threshold function whose weights are the coordinates of
~γ. Theorem 8.1 is essentially proved in [37] as their “Theorem 49”. But since it does
not appear there exactly as we need it, we prove Theorem 8.1 in Section 8.1.

The remainder of this section is devoted to the proof of Theorem 7.4. This will
require extending the “completeness” results in [37]’s main property testing algorithm
for Boolean threshold functions, the “Test-LTF” algorithm given in Section 6.5 of
[37]. In order to have as self-contained a presentation as possible in this paper, we
present a streamlined version of that test in Appendix A. (We can use a streamlined
version because in the original testing scenario it was necessary to estimate certain
parameters and implicitly identify certain sets; here we can work directly with the
desired parameters and sets.) We consider this testing algorithm as being applied to
a Boolean threshold function f . We begin by reviewing the steps of the algorithm
and recalling a few facts that are established in the proof of the testing algorithm’s
completeness, Theorem 62 of [37].

Step 1 of Test-LTF (see Appendix A) defines the set H = {i ∈ [n] : |f̂(i)| ≥ τ2}.
(Note that this definition of H is consistent with our assumption on H from Section 7,
see Theorem 7.1 in particular.)

Step 2 defines the set Π of all restrictions π that fix the variables in H.
We introduce some notation before discussing Step 3. Given a restriction π which

assigns values to the variables in H, we write fπ to denote the function obtained by
applying the restriction π to f . We introduce the notation

~βπ = [f̂π(i)]i∈T ,

a vector whose coordinates are indexed by the tail indices T . (We remind the reader
that the “tail” T is the set [n] \H.)

We next come to the testing algorithm’s Step 3. If at least a 1− ε fraction of the
restrictions π to H satisfy |E[fπ]| ≥ 1 − ε (this corresponds to Step 3a), then it is
easy to see that f is O(ε)-close to being a junta over H; in this case condition (i) of
Theorem 7.4 holds, and we are done.

Otherwise, it must be the case that less than a 1 − ε fraction of the restrictions
π to H satisfy |E[fπ]| ≥ 1 − ε (i.e. Test-LTF executes Step 3(b)). In this case we
observe from Lemma 2.4 that

‖~βπ‖ ≥ Ω(ε) for at least an ε fraction of restrictions π, (8.1)

5In [37] it was Φ[θ,−θ], as their definition of µ used a different sign convention.
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and we proceed to show that condition (ii) of Theorem 7.4 must hold. From now on
we shall assume the weights of f are normalized so that

∑
i∈T w

2
i = 1.

We now consider the analysis of Step 3b in the testing algorithm’s proof of com-
pleteness. In particular, we recall Claim 64 of [37] (a component of the completeness
proof) which is as follows:

Claim 8.2. (Claim 64 of [37]) Under the conditions of Step 3b, there is a vector
` ∈ RT with ‖`‖ = 1 and all coefficients of magnitude at most Ω(

√
τ), such that the

following two statements hold: 1. For every restriction π ∈ Π fixing the variables in
H, the LTF fπ is expressed as fπ(x) = sgn(` ·x−(θ′−w′ ·π)). 2. For every restriction
π ∈ Π fixing the variables in H, fπ is

√
τ -regular.

We now would like to recall “Theorem 48” from [37], the first part of which
intuitively states that every regular threshold function h with mean µ has essentially
the same value of

∑n
i=1 ĥ(i)2; namely, a certain number W (µ).

Definition 8.3. The function W : [−1, 1] → [0, 2/π] is defined to be W (ν) =
(2ϕ(µ−1(−ν)))2.6

We now restate Theorem 48 from [37]:
Theorem 8.4. Let f1 be a τ -regular threshold function (where τ is assumed less

than a sufficiently small constant). Then∣∣∣∣∣
n∑
i=1

f̂1(i)2 −W (E[f1])

∣∣∣∣∣ ≤ τ1/6. (8.2)

Further, suppose f2 : {−1, 1}n → {−1, 1} is another τ -regular threshold function that
can be expressed using the same linear form as f1; i.e., f1(x) = sgn(w · x − θ1) and
f2(x) = sgn(w · x− θ2) for some w, θ1, θ2. Then∣∣∣∣∣∣

(
n∑
i=1

f̂1(i)f̂2(i)

)2

−W (E[f1])W (E[f2])

∣∣∣∣∣∣ ≤ τ1/6. (8.3)

Since fπ is
√
τ -regular, we may apply this result and we conclude that∣∣∣‖~βπ‖2 −W (E[fπ])

∣∣∣ ≤ τ1/12

and ∣∣∣(~βπ · ~βπ′)2 −W (E[fπ])W (E[fπ′ ])
∣∣∣ ≤ τ1/12

hold for all restrictions π, π′. We also observe here that ~βπ · ~βπ′ ≥ 0 always holds;
this is because fπ and fπ′ are Boolean threshold functions over the same linear form

(modulo the constant term) and thus sgn(f̂π(i)) = sgn(f̂π′(i)) for all i ∈ T . Using
these facts along with our Lemma 7.7 lets us deduce the following:

~βπ and ~βπ′ are O(τ1/36)-approximately parallel for all restrictions π, π′. (8.4)

We next recall Lemma 65 from [37]:
Lemma 8.5. (Lemma 65 of [37]) Suppose that |E[fπ]−µ(θ′−w′ ·π)| ≤

√
τ holds

for every restriction π ∈ Π fixing the variables in H. Then there is a vector w∗ whose

6The exact formula for W (·) is not important in this paper but we provide it for completeness.
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entries are integer multiples of
√
τ/|H| at most 2O(|H| log |H|)

√
ln(1/τ) in absolute

value, and an integer multiple θ∗ of
√
τ/|H|, also at most 2O(|H| log |H|)

√
ln(1/η) in

absolute value, such that |E[fπ]− µ(θ∗ − w∗ · π)| ≤ 4η1/6 also holds for all π ∈ Π.
Rephrasing, this lemma establishes the existence of head weights ui, each of which

is an integer multiple of
√
τ/|H| with magnitude at most 2O(|H| log |H|)

√
ln(1/τ), such

that ∣∣µ(u0 +
∑
i∈H

uiπi)−E[fπ]
∣∣ ≤ O(τ1/6) for all restrictions π. (8.5)

(Recall again that µ is the function µ(θ) = Φ[−θ, θ].)
We now come to the key part of the present proof: analyzing

~γ
def
= avgπ[~βπ] = [f̂(i)]i∈T .

We first observe that

|~γ(i)| ≤
√
τ for all i ∈ T . (8.6)

This is because each fπ is
√
τ -regular and thus |~βπ(i)| ≤

√
τ for all i ∈ T . Using

Proposition 7.6 (in particular, the convexity of the set of vectors that are O(τ1/36)-

approximately parallel to ~βπ), we deduce from (8.4) that

~βπ and ~γ are O(τ1/36)-approximately parallel for all restrictions π. (8.7)

At this point we fix τ = Ω(ε144). This gives us that O(τ1/36) ≤ (3/4)ε2, so
combining (8.1), (8.4), and Lemma 7.8, we conclude that

σ
def
= ‖~γ‖ ≥ Ω(ε2)−O(τ1/36)/ε ≥ Ω(ε2) = Ω(τ1/72). (8.8)

With conditions (8.6), (8.7), and (8.8) in hand, we are in a position to apply
Theorem 8.1 (i.e., essentially Theorem 49 from [37]) which analyzes the soundness
of the testing algorithm. Applying Theorem 8.1 to the vector ~γ would be sufficient
to prove Theorem 7.3; to prove the present theorem, we further observe that condi-
tion (7.1)—i.e., ‖~α−~γ‖ ≤ Ω(ε4) = Ω(τ1/36)—easily implies that the vector ~α satisfies
the following conditions:

σ′
def
= ‖~α‖ ≥ Ω(τ1/72); (8.9)

|~α(i)| ≤ O(τ1/36) for all i ∈ T ;

~βπ and ~α are O(τ1/36)-approximately parallel for all restrictions π.

These allow us to apply Theorem 8.1 where each fπ plays the role of “g” and ~α′ = ~α/σ′

plays the role of “~γ” in Theorem 8.1. Note that we have

|~α′(i)| ≤ O(τ1/72) for all i ∈ T

and

~α′ is O(τ1/72)-approximately parallel to each ~βπ.
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We may take θ in Theorem 8.1 to be O(τ1/8) and conclude that each fπ is O(τ1/144)-
close to the threshold function

hπ
def
= sgn

(
µ−1(E[fπ]) +

∑
i∈T

~α′(i)xi

)
.

Let

f ′(x)
def
= sgn

(
u0 +

∑
i∈H

uixi +
∑
i∈T

~α′(i)xi

)
.

We shall show that for each π we have dist(fπ, f
′
π) ≤ O(τ1/144); by our choice of

τ = Ω(ε144) this means that dist(fπ, f
′
π) ≤ O(ε) for all π, which implies the theorem.

We have

dist(fπ, f
′
π) ≤ dist(fπ, hπ) + dist(hπ, f

′
π) ≤ O(τ1/144) + dist(hπ, f

′
π)

so it remains only to show that dist(hπ, f
′
π) ≤ O(τ1/144). Since hπ and f ′π are threshold

functions with the same linear part
∑
i∈T ~α(i)xi but different thresholds, we have that

dist(fπ, hπ) equals

Pr

[
−
∑
i∈T

~α′(i)xi lies between µ−1(E[fπ]) and u0 +
∑
i∈H

uiπi

]
.

We may apply the Berry-Esseen theorem to deduce that the above probability is at
most O(τ1/72) plus ∣∣∣∣∣Φ

[
µ−1(E[fπ]), u0 +

∑
i∈H

uiπi

]∣∣∣∣∣ . (8.10)

It is easy to check that by definition of the µ function this is at most

1

2

∣∣∣∣∣µ(µ−1(E[fπ]))− µ

(
u0 +

∑
i∈H

uiπi

)∣∣∣∣∣ =
1

2

∣∣∣∣∣E[fπ]− µ

(
u0 +

∑
i∈H

uiπi

)∣∣∣∣∣
which is at most O(τ1/6) by (8.5). This concludes the proof of Theorem 7.4.

8.1. Proof of Theorem 8.1. Here we give the proof of Theorem 8.1, which as
mentioned essentially appears already in [37]:

Proof. We follow closely the proof of Theorem 49 from [37]. We first handle the
case that |E[g]| ≥ 1− θ1/18; without loss of generality, assume E[g] ≥ 1− θ1/18. Now
by definition,

1− θ1/18 ≤ E[g] = µ(t) = Φ[−t, t] = 1− 2Pr[N(0, 1) ≤ −t]

and hence 2Pr[N(0, 1) ≤ −t] ≤ θ1/18. But Pinelis’s subgaussian inequality [44]
implies that

Pr[~γ′(1)x1 + · · ·+ ~γ′(n)xn ≤ −t] ≤ O(Pr[N(0, 1) ≤ −t])

and hence Pr[h(x) ≤ 0] ≤ O(θ1/18). Thus E[sgn(h)] ≥ 1−O(θ1/18) and we have that
g and sgn(h) are O(θ1/18)-close.
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We henceforth assume |E[g]| ≤ 1− θ1/18. Exactly as in the proof of Theorem 49
of [37], this implies √

W (E[g]) ≥ Ω(θ1/18). (8.11)

(Here W still denotes the function mentioned in Definition 8.3.) Again, as in Theo-
rem 49 we consider E[gh] and get (analogous to equation (29) in [37])

E[|h|]−E[gh] ≤
(√

W (E[g])− ~β · ~γ
)

+O(θ1/9).

Since ~β and ~γ are θ1/9-approximately parallel and ‖~γ‖ = 1, we get

E[|h|]−E[gh] ≤
(√

W (E[g])− ‖~β‖
)

+θ1/9+O(θ1/9) =
(√

W (E[g])− ‖~β‖
)

+O(θ1/9).

(8.12)
Since g is θ-regular, Theorem 48 in [37] (restated as Theorem 8.4 of this paper) implies∣∣‖~β‖2 −W (E[g])

∣∣ ≤ θ1/6;

together with Fact 2.5 and (8.11) this gives∣∣‖~β‖ −√W (E[g])
∣∣ ≤ θ1/6/

√
W (E[g]) = O(θ1/9).

Substituting this into (8.12) yields

E[|h|]−E[gh] ≤ Cθ1/9 (8.13)

for some universal constant C. Now similarly to the proof of Theorem 49 we note
that (using Corollary 2.8) we have

Pr[|h(x)| ≤ Cθ1/18] ≤ 2Cθ1/18 + 2θ1/9 ≤ (2C + 2)θ1/18.

If Pr[h(x) 6= g(x)] ≥ (2C + 3)θ1/18 then we have that for at least a θ1/18 fraction of
points x both h(x) 6= g(x) and |h| > Cθ1/18. This implies that

E[|h|]−E[gh] > θ1/18 · Cθ1/18 = Cθ1/9

in contradiction to (8.13). Thus Pr[h 6= g] ≤ (2C + 3)θ1/18, completing the proof.

9. Proof of the main theorem. Having established the two ingredients, we
are able to prove are main theorem, restated here for convenience:

Main Theorem. There is a randomized algorithm A and a function κ(ε) =

2−Õ(1/ε2) such that the following holds. Let f : {−1, 1}n → {−1, 1} be a threshold
function and let 0 < ε < 1/2. Write ~χ for the Chow Vector of f and assume that ~α
is a vector satisfying

‖~α− ~χ‖ ≤ κ(ε). (9.1)

Then given as input ~α and ε the algorithm A performs 2poly(1/κ(ε)) · n2 · log n · log(nδ )
bit operations and outputs the (weights-based) representation of a threshold function
f∗ which with probability at least 1− δ satisfies dist(f, f∗) ≤ ε.

Proof. We first present a high-level description of the entire algorithm. We then
give a more detailed explanation of how the algorithm performs its main step, Step 1,
and prove correctness of the algorithm. Finally we analyze the running time.
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High-level description of A. Algorithm A is given ε > 0 and the vector ~α as input.
The algorithm executes the following steps:

Step 0. Truncate each ~α(i) to additive accuracy ±
√
κ(ε)/(n+ 1). (Note that this

changes the location of ~α by distance at most κ(ε), so absorbing the factor of 2 into
the definition of κ(ε) we have that (9.1) still holds for the new ~α.)

Step 1. Generate a list of 2poly(1/κ(ε)) “candidate” threshold functions f ′.

Step 2. Let ε0 = 2−Õ(1/ε2) be such that in an application of Theorem 1.6, having
dChow(f, f∗) ≤ 6

√
ε0 implies dist(f, f∗) ≤ ε. Estimate each of the candidates’ Chow

Vectors to within distance
√
ε0 (see Fact 9.2 for how this is done), and output any f∗

whose Chow Vector estimate has distance at most 4
√
ε0 from ~α.

Having outlined the algorithm, we now give a detailed explanation of Step 1 and
prove correctness. Running time analysis is deferred to the end.

Step 1 details and correctness. The way that A generates the 2poly(1/κ(ε)) “can-
didate” threshold functions in Step 1 is based on Theorem 7.4. Let τ0 denote τ(ε0).
The set H in Theorem 7.4 is taken to be the set of all indices 1 ≤ i ≤ n for which
|~α(i)| ≥ τ2

0 /2. If we now fix κ(ε) = τ2
0 /2 (which is indeed 2−Õ(1/ε2)), we are assured

that H contains all indices i for which |~χ(i)| = |f̂(i)| ≥ τ2
0 , since if H were missing

even one such index this would cause ‖~α− ~χ‖ > κ(ε) contrary to (9.1). Note also that

|H| ≤ O(1/τ4
0 ) = poly(1/κ(ε)), since

∑
~α(i)2 ≈

∑
f̂(i)2 ≤ 1.

Algorithm A performs Step 1 by generating two sets of candidate threshold func-
tions, corresponding to the two cases in Theorem 7.4. The first set simply consists of
all threshold functions which are juntas over H. Recalling the classic fact [40] that
every threshold function over |H| Boolean variables can be represented using inte-
ger weights each of magnitude 2O(|H| log |H|), algorithm A can construct all candidate
threshold functions in the first set in time 2O(|H|2 log |H|) = 2poly(1/κ(ε)) by simply creat-
ing a candidate from each possible vector of integer weights in this range. The second
set of candidates consists of all threshold functions whose “head weights” (for indices
in H) are integer multiples of

√
τ0/|H| with magnitude at most 2O(|H| log |H|)

√
ln(1/τ0)

and whose “tail weights” (for indices in T = [n] \ H) are given by ~α/‖~α‖. It is not
difficult to see that there are again at most 2poly(1/κ(ε)) such candidates.

By Theorem 7.4, at least one of the two sets of candidates contains a threshold
function f ′ which has dist(f, f ′) ≤ ε0. (This uses the fact that as required by state-
ment (ii) of Theorem 7.4, we indeed have ‖~α−~χ‖ ≤ κ(ε) ≤ Ω(ε40).) By Proposition 1.5

this f ′ also satisfies dChow(f, f ′) ≤ 2
√
ε0; writing ~χ′ for the Chow vector of f ′, the

triangle inequality implies

‖~α− ~χ′‖ ≤ ‖~α− ~χ‖+ ‖~χ− ~χ′‖ ≤ 3
√
ε0

(this uses the fact that κ(ε) is smaller than
√
ε0).

To conclude the proof of correctness, we now observe that since Step 2 estimates
the Chow Vector of each candidate to within distance

√
ε0, there must indeed be at

least one candidate f∗ whose Chow Vector estimate has distance at most 4
√
ε0 from

~α. So f∗’s true Chow Vector has distance at most 5
√
ε0 from ~α, and the triangle

inequality implies dChow(f, f∗) ≤ 6
√
ε0 (again using κ(ε) ≤ √ε0). Now Theorem 1.6

implies dist(f, f∗) ≤ ε, as desired. This concludes the proof of correctness.
Running time analysis. We first observe that as a result of the truncation per-

formed in Step 0, each number ~α(i) is represented using only O(log n + log(1/κ(ε)))
bits. (Without this truncation, if the input vector ~α were the exact Chow Vector of
a threshold function f then each ~α(i) could require an n-bit representation; working
with these numbers would slow down the algorithm by almost a factor of n.)
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As described above, algorithm A generates two sets with a total of 2poly(1/κ(ε))

candidate threshold functions f ′. Each candidate in either set has poly(1/κ(ε)) many
“head weights,” each of which is represented with poly(1/κ(ε)) bits. The tail weights
in the second set of candidates are each represented using O(log n+ log(1/κ(ε))) bits
before normalization (i.e. before dividing by ‖~α‖), and also O(log n + log(1/κ(ε)))
bits after normalization (this is a consequence of the lower bound ‖~α‖ ≥ Ω(ε20) ≥
poly(1/κ(ε)) which follows from (8.9) in the proof of Theorem 7.4). This straightfor-
wardly yields the following facts:

Fact 9.1. Given an input x ∈ {−1, 1}n and a candidate threshold function f ′ as
described above, one can evaluate f ′(x) using poly(1/κ(ε))+O(1)·n(log n+log(1/κ(ε)))
bit operations.

Fact 9.2. Given a candidate threshold function f ′ as described above and an
accuracy parameter 0 < η < 1/2, one can estimate the Chow vector ~χf ′ to within
L2-distance η with confidence 1− δ using a total of at most poly(1/κ(ε)) · n2 log(nδ ) ·
(log n+ log(1/κ(ε)))/η2 bit operations.
Proof sketch: Generate a sample of O(n log(nδ )/η2) uniform random examples and use
it to empirically estimate each of the n+ 1 Chow Parameters (E[f(x)xi] or E[f(x)])
to accuracy ±η/

√
n+ 1 with confidence 1− δ

n+1 . The bit complexity is linear in the
number of examples times the time required to evaluate each example, which is upper
bounded by the claimed bound.

By taking δ/M in place of δ in the above, one can estimate the Chow Vector for
each of a set of M candidate threshold functions to within distance η with confidence
1− δ using

M · poly(1/κ(ε)) · n2 log

(
Mn

δ

)
· (log n+ log(1/κ(ε)))/η2

bit operations. In our context we have η =
√
ε0 = 2−Õ(1/ε2) and M = 2poly(1/κ(ε)), so

the overall running time for constructing all the estimates in Step 2, which dominates
the overall running time of Algorithm A, is at most

2poly(1/κ(ε)) · n2 · log n · log(nδ )

bit operations as claimed. This concludes the running time analysis of Algorithm A,
and with it the proof of the Main Theorem.

10. Applications to learning theory. As we now explain, our main theorem
has a range of interesting consequences in learning theory.

10.1. Learning threshold functions in the 1-RFA model. We briefly recall
the 1-RFA model that was introduced by Ben-David and Dichterman [3] to model the
phenomenon of a learner having incomplete access to examples. In this model there is
a target function f and a distribution D over n-bit examples. Each time the learner is
about to receive a labeled example it specifies an index 1 ≤ i ≤ n, then an n-bit string
x is drawn from the distribution D and the learner is given (xi, f(x)), i.e. she is only
shown the i-th bit of the example along with the label. It is not difficult to show (see
Birkendorf et al. [5]) that it is information-theoretically impossible to learn threshold
functions in the 1-RFA model if the distribution D is allowed to be arbitrary. Thus,
we restrict our attention to the uniform distribution setting in which D is uniform
over {−1, 1}n.

Birkendorf et al. [5] showed that a sample of O(nW 2 log(nδ )/ε2) many examples is
information-theoretically sufficient for learning an unknown threshold function with
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integer weights wi that satisfy
∑
i |wi| ≤W. For constant ε, the results of Goldberg [20]

and Servedio [47] mentioned in Section 3 respectively yield nO(logn) and poly(n) sam-
ple complexity bounds for learning arbitrary threshold functions. However, no efficient
algorithms were proposed to accompany any of these information-theoretic bounds.

Birkendorf et al. [5] asked whether there is an efficient uniform-distribution 1-RFA
learning algorithm for threshold functions.7 For constant ε, our Main Theorem gives
an affirmative answer: each of the n+ 1 Chow Parameters (E[f(x)xi] or E[f(x)]) can
be empirically estimated in the 1-RFA model, so it is straightforward to construct
an approximation ~α to the Chow Vector ~χf of f as required by our Main Theorem.
Since the running time of the algorithm A dominates the time required to construct
~α, we have:

Theorem 1.7 Restated. There is an algorithm which properly learns threshold
functions to accuracy ε and confidence 1−δ in the uniform distribution 1-RFA model.

The algorithm performs 22Õ(1/ε2) · n2 · log n · log(nδ ) bit operations.

10.2. A fast agnostic-type learning algorithm for halfspaces under the
uniform distribution. The agnostic learning model was introduced by Kearns et
al. in 1994 [31], but quite recently there has been considerable progress in both pos-
itive and negative results on agnostically learning threshold functions. Let D be a
distribution over {−1, 1}n and let g : {−1, 1}n → {−1, 1} be an arbitrary Boolean
function. We write opt to denote the optimal error rate of any threshold function for
approximating g with respect to D, i.e.

opt
def
= min

f
Prx∼D[f(x) 6= g(x)]

where the min is taken over all threshold functions f . An algorithm which, for any g
and any D, constructs a hypothesis h satisfying

Prx∼D[h(x) 6= g(x)] ≤ opt + ε (10.1)

is said to be an agnostic learning algorithm for threshold functions.
Positive results. Kalai et al. [28] gave a uniform distribution agnostic learning

algorithm for threshold functions: if D is the uniform distribution over {−1, 1}n,
their algorithm outputs a hypothesis h which satisfies (10.1) as desired. However,
the hypothesis that the algorithm constructs is of the form sgn(p(x)) where p(x) is a
polynomial of degree O(1/ε4), so the algorithm is not proper since it does not output
a threshold function. Perhaps more significantly, the running time of their algorithm
is nO(1/ε4).

Negative results. Results of Klivans and Sherstov [32] and Feldman et al. [15] show
that under plausible cryptographic hardness assumptions, there is no polynomial-time
algorithm that can agnostically learn threshold functions under arbitrary distribu-
tions. Feldman et al. [15] also showed that complexity-theoretic assumptions rule
out even a very weak form of proper agnostic learning for threshold functions. More
precisely, they showed that for any constant ε > 0, if P 6= NP then there is no algo-
rithm which, given a data set of labeled examples (x, y) (where each x ∈ Qn) that has
opt = 1− ε, outputs a threshold function hypothesis that agrees with 1

2 + ε fraction of
the labeled examples. Guruswami and Raghavendra [23] proved that this result holds
even if the data points x belong to the Boolean cube {−1, 1}n.

7More precisely, they explicitly asked whether there is a proper learning algorithm, i.e. one which
constructs a threshold function as its hypothesis; our algorithm is of course proper.
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Our results. As we now show, the tools we have developed quite directly yield
a very fast agnostic-type uniform distribution learning algorithm for threshold func-
tions. We call our algorithm “agnostic-type” instead of agnostic because the hypothe-
sis it constructs is guaranteed to have error at most O(optΩ(1)) + ε instead of opt+ ε.8

However, our algorithm has some significant advantages to offset this drawback: chief
among these is its running time, which is Õ(n2) for any constant ε. So for example, if
opt > 0 is a sufficiently small constant then our algorithm can construct a hypothesis
with error rate 0.01 in time Õ(n2), while to construct a similarly accurate hypothesis

the [28] algorithm would need running time something like n108

. We also note that
our algorithm constructs a threshold function hypothesis and hence is proper ; this
is in contrast with the [28] algorithm. Indeed, it is interesting to observe that the
result of [23] shows that (assuming P 6= NP) no analogue of our algorithm with a
similar performance guarantee can exist for learning under arbitrary distributions D
over {−1, 1}n.

Theorem 10.1. There is an algorithm B with the following performance guaran-
tee: Let g be any Boolean function and let opt = minf Pr[f(x) 6= g(x)] where the min
is over all threshold functions and the probability is uniform over {−1, 1}n. Given an
input parameter ε > 0 and access to independent uniform examples (x, g(x)), algo-
rithm B outputs the (weights-based) representation of a threshold function f∗ which
with probability at least 1−δ satisfies Pr[h(x) 6= g(x)] ≤ O(optΩ(1))+ε. The algorithm
performs

poly(1/ε) · n2 · log(nδ ) + 2poly(1/ε) · n · log n · log( 1
δ )

bit operations.
The algorithm and analysis are similar to Algorithm A from Section 9, but slightly

simpler since we do not need to estimate Chow Parameters and use Theorem 1.6 to
gauge the accuracy of each candidate – instead we can just directly estimate the
empirical accuracy of each candidate using random examples. This is what enables
the algorithm to save an exponential in the dependence on ε compared with the
running time of Algorithm A, and also a log n factor since we do not have to take a
union bound over all n + 1 estimated Chow Parameters of each candidate. We now
give a detailed proof.

Proof. (Theorem 10.1.) We will initially assume that the algorithm B is given the
value of opt as input. At the end of the proof we briefly discuss how this assumption
can be removed.

Let γ
def
= Θ(εO(1)). Algorithm B works as follows:

Step 0. Using uniform examples (x, g(x)), empirically estimate each of the n +

1 Chow Parameters ĝ(i)
def
= E[g(x)xi] and ĝ(0)

def
= E[g(x)] to additive accuracy

±γ/
√
n+ 1. Let ~α denote the estimated Chow vector of g obtained this way.

Step 1. Use ~α to generate a list of candidate threshold functions f ′.
Step 2. For each candidate threshold function f ′, empirically estimate the error

rate Pr[f ′(x) 6= g(x)] to within additive accuracy ±ε/4, using the source of uniform
examples (x, g(x)). Output the candidate f∗ whose estimated error rate is lowest.

8We remark here that [28] in fact show that achieving opt + ε accuracy in time n1/ε2−κ for any
constant κ > 0 would imply a very substantial improvement in the fastest known algorithms for the
challenging problem of learning parity with noise: in particular, this would give an algorithm running

in time 2n
1−κ′

, improving on the current 2n/ logn running time of [6]. We feel that this motivates
research into algorithms which, like the one we present, have higher error rates but faster running
times.
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Let f be the threshold function such that Pr[f(x) 6= g(x)] = opt. From Proposi-
tion 1.5 we have dChow(f, g) ≤ 2

√
opt. Since the estimated Chow Vector ~α has distance

at most γ from the true Chow Vector ~χg, we have

‖~α− ~χf‖ ≤ µ, where µ
def
= 2
√
opt + γ. (10.2)

(Here µ essentially plays the role of “κ(ε)” in the right-hand side of (9.1).
Let H denote the set of all indices 1 ≤ i ≤ n for which |~α(i)| ≥ µ. This set H

must contain all indices i for which |~χf (i)| ≥ 2µ, for if H were missing even one such
index this would cause ‖~α − ~χf‖ > µ in violation of (10.2). We have |H| ≤ O(1)/µ2

since
∑
~α(i)2 ≈

∑
f̂(i)2 ≤ 1.

Similar to Algorithm A, Algorithm B performs Step 1 by generating two sets of
candidates according to Theorem 7.4 (where now the role of “τ(ε)2” of that theorem
is played by 2µ). The first set of candidates are all threshold function juntas over
H9 and the second set are all threshold functions whose tail weights (for variables in
[n] \H) are given by ~α/‖~α‖ and whose head weights (for variables in H) are integer
multiples of (2µ)1/4/|H| with magnitude at most 2O(|H| log |H|)

√
ln(1/µ). Our bound

on |H| implies that there are at most 2poly(1/µ) candidates in total.
Now let τ(·) denote the polynomial function from Theorem 7.4. There is a value

κ = O(µΩ(1)) such that both of the following hold: (i) ‖~α − ~χf‖ ≤ Cκ4, where C
is the constant implicit in the RHS of (7.1); and (ii) τ(κ) ≤ µ. (Note that if τ(κ)
is greater than µ, we may take a larger polynomial for τ in Theorem 7.4 without
affecting the correctness of that theorem.) We may thus apply Theorem 7.4 (with
κ playing the role of “ε” in the theorem’s statement) and conclude that at least
one candidate is O(κ)-close to f. Since f is opt-close to g, this means that some
candidate is (O(κ) + opt)-close to g. Since each candidate’s error rate with respect
to g is empirically estimated to within additive accuracy ±ε/4, this means that a
candidate will be found with estimated error w.r.t. g at most O(κ) + opt + ε/4, and
that the true error rate of this candidate w.r.t. g is at most O(κ) + opt+ ε/2. Tracing
back through the definitions of κ, µ and γ, we have that the error rate of this candidate
w.r.t. g is at most

O(κ)+opt+ε/2 ≤ O(µΩ(1))+opt+ε/2 ≤ O((2
√
opt+γ)Ω(1))+opt+ε/2 ≤ O(optΩ(1))+ε

as claimed.
Now we analyze the running time of the algorithm. In Step 0, the algorithm needs

O(n log(n/δ)/γ2) examples to obtain all n+ 1 estimates with total failure probability
δ/2; this takes O(n2 log(n/δ)/γ2) bit operations. For Steps 1 and 2, as described
above there are at most 2poly(1/µ) candidates that are generated. In each candidate
representation, the first poly(1/µ) many weights have poly(1/µ)-bit representations
and the remaining weights have O(log n + log(1/ε))-bit representations (even after
normalization). Thus the time required to evaluate each candidate representation on
an example x is poly(1/µ)+O(n(log n+log(1/ε))) many bit operations. For each can-
didate, the empirical error rate estimate can be obtained using O(log(2poly(1/µ)/δ)/ε2)
many examples, with total failure probability δ/2 over all candidates. Thus the overall
running time required for Steps 1 and 2 is at most

2poly(1/µ) · n · (log n+ log(1/ε)) · log(1/δ)/ε2.

9Note that to construct the set H the algorithm must know the value of opt.
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Recalling that µ ≥ Ω(εΩ(1)), we can bound the runtime of Steps 1 and 2 by

2poly(1/ε) · n · log n · log(1/δ).

Thus the overall running time (including Step 0) is at most

2poly(1/ε) · n · log n · log(1/δ) + poly(1/ε) · n2 · (log n+ log(1/δ)) (10.3)

as claimed.
We now briefly explain how the assumption that B is given the value of opt can

be removed. We first observe that in the proof given above, if the value of opt used
by the algorithm is off by an additive ±O(εΩ(1)) the algorithm will still generate a
hypothesis whose final error rate is at most O(optΩ(1)) + 2ε. So if the algorithm is
not given the value of opt, it can successively try opt′ = 1/2, 1/2 −∆, 1/2 − 2∆, . . .
where ∆ = O(εΩ(1)), perform hypothesis testing on the result of each attempt, and
ultimately output the best-performing one. Since there are at most poly(1/ε) runs of
the algorithm, (10.3) is still an upper bound on the running time. This concludes the
proof of Theorem 1.8.

10.3. A fast uniform-distribution PAC learning algorithm for halfs-
paces. The usual (noise-free) uniform distribution PAC learning model corresponds
to the special case of the agnostic model in which the target function g is required to
actually be a threshold function, i.e. opt = 0. Theorem 1.8 thus immediately gives us
an algorithm that can PAC learn threshold functions in the usual (noise-free) uniform
distribution model in the stated time bound.

We observe that for constant ε the running time of this algorithm is close to opti-
mal even in this noise-free scenario. Known information-theoretic lower bounds [4, 33]
imply that any algorithm that learns threshold functions to fixed constant accu-
racy (say ε = 0.01) under the uniform distribution must use Ω(n) labeled examples;
this is true even if the algorithm is allowed to make membership queries. Thus the
information-theoretic minimum input length that is required for this problem is Ω(n2)
bits—this is very close to the O(n2 log n) bit operations our algorithm performs. As far
as we are aware, the previous fastest known approach to learning threshold functions
to constant accuracy under the uniform distribution on {−1, 1}n would require using
linear programming and require [55] at least Õ(n4.5) bit operations (more precisely,
Õ(n3.5) arithmetic operations on Õ(n)-bit operands).
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Streamlined-Test-LTF (inputs are ε > 0 and black-box access to f : {−1, 1}n →
{−1, 1})

0. Let τ = ε108.
1. Let H = {i ∈ [n] : |f̂(i)| ≥ τ2}.
2. Let Π denote the set of all 2|H| restrictions π that assign ±1 values to the

variables in H.
3. At this point there are two cases depending on whether or not the set

Π′ := {π ∈ Π : |E[fπ]| ≥ 1− ε} is at least a 1− ε fraction of Π:
(a) (The case that |Π′|/|Π| ≥ 1− ε.)

In this case, enumerate all possible length-|H| integer vectors w with
entries up to 2O(|H| log |H|) in absolute value, and also all possible
integer thresholds θ in the same range. For each pair (w, θ), check
whether sgn(w · π − θ) = sgn(E[fπ]) holds for at least a 1 − 20ε
fraction of all π ∈ Π. If this is the case for any (w, θ) pair then
ACCEPT. If it fails for all (w, θ) then REJECT.

(b) (The case that |Π′|/|Π| < 1− ε, i.e. at least an ε fraction of restric-
tions π have |E[fπ]| < 1− ε.)
In this case, pick any π∗ such that |E[fπ∗ ]| < 1− ε. Then:

i. Check that
∑
|S|=1 f̂π∗(S)4 ≤ 2τ . If this fails, REJECT.

ii. Check that |
∑
|S|=1 f̂π∗(S)2−W (E[fπ∗ ])| ≤ 2τ1/12. If this fails,

REJECT.
iii. Check that both∣∣∣∣∣∣∣

∑
|S|=1

f̂π∗(S)f̂π(S)

2

−W (E[fπ∗ ])W (E[fπ])

∣∣∣∣∣∣∣ ≤ 2τ1/12

and
∑
|S|=1 f̂π∗(S)f̂π(S) ≥ −η hold for all π ∈ Π. If this fails,

REJECT.
iv. Enumerate all possible length-|H| vectors w whose entries are in-

teger multiples of
√
τ/|H|, up to 2O(|H| log |H|)

√
ln(1/τ) in abso-

lute value, and also all possible thresholds θ with the same prop-
erties. For each pair (w, θ), check that |E[fπ]− µ(w · πi − θ)| ≤
5
√
τ holds for all π ∈ Π. If this ever happens, ACCEPT. If it

fails for all (w, θ), REJECT.


