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Abstract

Boosting algorithms are procedures that “boost” low accuracy weak learning algorithms
to achieve arbitrarily high accuracy. Over the past decade boosting has been widely used in
practice and has become a major research topic in computational learning theory. In this
paper we study boosting in the presence of random classification noise, giving both positive
and negative results.

We show that a modified version of a boosting algorithm due to Mansour and McAllester
[15] can achieve accuracy arbitrarily close to the noise rate. We also give a matching lower
bound by showing that no efficient black-box boosting algorithm can boost accuracy beyond
the noise rate (assuming that one-way functions exist). Finally, we consider a variant of
the standard scenario for boosting in which the “weak learner” satisfies a slightly stronger
condition than the usual weak learning guarantee. We give an efficient algorithm in this
framework which can boost to arbitrarily high accuracy in the presence of classification
noise.
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1 Introduction

In Valiant’s Probably Approximately Correct (PAC) learning model, a successful learning al-
gorithm must be able to achieve any arbitrarily low error rate given random examples drawn
from any fixed probability distribution. In an early paper, Kearns and Valiant [13] proposed
the notion of a weak learning algorithm which need only achieve some error rate bounded away
from 1

2 , and posed the question of whether weak and strong learning are equivalent for efficient
(polynomial time) learning algorithms. Soon afterward, in a celebrated result Schapire gave
a positive answer to this question [16]. Schapire gave an efficient boosting algorithm which,
given access to any weak learning algorithm, uses the weak learner to generate a hypothesis
with arbitrarily low error. Since Schapire’s initial result boosting has become one of the biggest
successes of computational learning theory; boosting algorithms have been intensively studied
from a theoretical perspective and are widely used in practice.

The standard PAC learning model assumes that all examples received by the learner are
labeled correctly, i.e. the data has no noise. An important question, which was asked by Schapire
in his original paper [16] and by several subsequent researchers [2], is whether it is possible to
efficiently perform boosting in the presence of noise. Since real data is frequently noisy, this
question is of significant practical as well as theoretical interest.

In this paper we give a detailed study of boosting in the presence of random classification
noise. In the random classification noise model, the binary label of each example which the
learner receives is independently flipped from the true label f(x) with probability η for some
fixed 0 < η < 1

2 ; the value η is referred to as the noise rate. Random classification noise is the
most standard and widely studied noise model in learning theory. We give both positive and
negative results for boosting in this model as described below.

1.1 Our Results

We first demonstrate that decision-tree-like boosting algorithms can boost accuracy arbitrarily
close to the noise rate. In particular, we analyze a modified version of the “branching programs”
booster of Mansour and McAllester [15], which built on a boosting analysis of decision trees due
to Kearns and Mansour [11]. We refer to the boosting algorithm from [15] as the MM boosting
algorithm, and to our modified version as the MMM boosting algorithm.

We next show that in general it is not possible to boost to any error rate lower than the noise
rate using a “black-box” polynomial time boosting algorithm. This negative result assumes
only that one-way functions exist. Some computational hardness assumption is required since
in exponential time any weak learner can be boosted to arbitrary accuracy in the presence of
noise. (Draw a polynomial size noisy data set, exhaustively guess which labels are noisy, and
run a standard boosting algorithm.)

The results described above assume that the boosting algorithm has access to a weak learner
as defined by Kearns and Valiant, i.e. an algorithm which, given examples drawn from a dis-
tribution D, produces a hypothesis whose error rate relative to the target function is bounded
away from 1/2. For our second positive result we consider a slightly stronger notion of an okay
learner (precisely defined in Section 6) which produces a hypothesis whose covariance with the
target function is bounded away from 0. We show that if the MMM boosting algorithm has
access to an okay learner, then it can boost to achieve arbitrarily low error in the presence of
random classification noise.
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noise no noise

true positive example pη p(1 − η)

true negative example (1 − p)η (1 − p)(1 − η)

Table 1: Examples labeled 1 are either noisy negative examples or nonnoisy positive examples.
Thus the frequency of true positive examples among examples labeled 1 is p(1−η)

p(1−η)+(1−p)η which
is less than 1

2 if p < η < 1
2 .

1.2 Our approach

Recall that a weak learning algorithm must output a hypothesis with error at most 1
2 − γ when

given examples drawn from any distribution D. A simple but useful observation is the following:
if D is balanced between positive and negative examples then the hypothesis generated by a
weak learner provides some useful information, but if D is unbalanced then the weak learner can
output a trivial hypothesis and still satisfy the guarantee. For example, if γ = 0.1 and D puts
probability weight 0.8 on positive examples, then the identically-1 hypothesis is a legitimate
output for the weak learner. Thus the only way to ensure that a weak learner gives some
useful information is to run it on a distribution which is roughly balanced between positive and
negative examples. If the distribution D is unbalanced, then some sort of filtering or reweighting
must be performed to obtain a balanced distribution D′; all known boosting algorithms take
this approach when given a constant weak hypothesis.

The main idea behind our negative result is that in the presence of classification noise, it
can be difficult to obtain a balanced distribution D′. Consider a scenario where D puts weight
p < 1

2 on positive examples. To make the weak learner do something useful, we would like to
reweight to a balanced distribution D′. Intuitively, the best way to do this is to discard some
examples which are labeled 0. However, if p < η then even among examples which are labeled
1, less than half are true positive examples (see Table 1). Thus we cannot construct a new
distribution which forces the weak learner to do something useful, so we cannot boost to high
accuracy. In Section 5 we make these ideas precise and give a hardness proof.

For our positive results we consider a modified version of the “branching program” boost-
ing algorithm of Mansour and McAllester [15]. Our analysis exploits the fact that their scheme
causes the (possibly noisy) label of a given example to play a relatively small role in its reweight-
ing. This is in contrast with several other boosting algorithms, such as AdaBoost [6], in which a
noisy label can cause an example to receive exponentially more weight than it would otherwise
receive. We note that several researchers [3, 17] have empirically observed that standard boost-
ing algorithms such as AdaBoost can perform poorly on noisy data, and indeed it has been
suggested that this poor performance is due to AdaBoost’s tendency to construct distributions
which put a great deal of weight on a few noisy examples [3].

1.3 Related Work

The elegant Statistical Query model introduced by Kearns [10] is a model in which the learner
does not receive labeled examples but instead can obtain estimates of statistical properties
of the distribution of labeled examples. Aslam and Decatur gave an algorithm for boosting
any Statistical Query weak learner to arbitrary accuracy [1]. Since every Statistical Query
algorithm can be simulated using a noisy example oracle [10], their result seems to imply that
any Statistical Query weak learning algorithm can be boosted even with noise.

3



However, Aslam and Decatur’s result does not allow the Statistical Query weak learner to
have access to unlabeled examples from the distribution, which is sometimes considered part
of the Statistical Query model. In fact, the “unboostable” weak learning algorithm we present
in Section 5 can be viewed as a Statistical Query algorithm that requires access to unlabeled
examples. This suggests that it may be impossible, in general, to boost Statistical Query
algorithms that have access to unlabeled examples, or that Aslam and Decatur’s result may be
the strongest possible.

One of the most impressive examples of noise-tolerant learning is that of learning a noisy
half-space [2]. Their algorithm uses a special outlier-removal process that examines unlabeled
points. Thus, while their algorithm is, in the broadest sense, a Statistical Query algorithm,
Aslam and Decatur’s boosting cannot be used directly on their approach. Instead, they give a
special-case boosting approach for their problem.

In follow-up work, it has been shown that branching programs can be used to boost under
a stronger model of noise [9]. The model considered there is an arbitrary distribution over
X ×Y , where, for simplicity, say Y = {0, 1}. As in the p-concept mode [12] the goal is to learn
f(x) = E[y|x] for a random example (x, y) from the distribution, and the error of a hypothesis
h is measured by E[(h(x)− f(x))2]. It is shown that as long as one can find a hypothesis which
is positively correlated (has a positive correlation coefficient) with the target function, boosting
is possible. As an application, it is shown that the class of generalized additive models (with
monotonic link functions), popular in the statistics literature, can be learned by such boosting.

The above model of “noise” is stronger and weaker in some senses. Its strength is that the
noise is not necessarily uniform, and the hypothesis has to learn the noise as well. However,
in the case of uniform classification noise very near 1/2, the constant hypothesis h(x) = 1/2
is quite accurate and real learning only has to be done to get very small error. In contrast,
according to the standard definition of accuracy in a noisy setting, which is with respect to a
noiseless test set, this high-noise case is more difficult.

2 PAC Learning Preliminaries

Our results are for the model of PAC learning in the presence of classification noise. For a
detailed introduction to PAC learning see [14].

A concept class C is a class of Boolean functions over some instance space X. We assume
throughout that the instance space X is of dimension n, i.e. X = Rn or X = {0, 1}n, and we
are interested in algorithms whose running time is polynomial in n (and other parameters).

Let f be a function in C, D a distribution over X, and η a value 0 ≤ η < 1
2 . A noisy example

oracle is an oracle EX(f,D, η) which works as follows: each time EX(f,D, η) is invoked, it
returns a labeled example 〈x, b〉 ∈ X × {0, 1} where x ∈ X is drawn from distribution D and b
is independently chosen to be f(x) with probability 1 − η and 1 − f(x) with probability η.

Let f ∈ C be a fixed target function. A noise-tolerant PAC learning algorithm for a concept
class C is an algorithm which has the following property: for any ε, δ > 0, any 0 ≤ η < 1

2 ,
any target function f ∈ C, and any distribution D over X, if the algorithm is given access
to EX(f,D, η) then with probability 1 − δ it outputs a hypothesis h such that Prx∈D[h(x) 6=
f(x)] < ε. We refer to Prx∈D[h(x) 6= f(x)] as the error of h under D.

A noise-tolerant weak learning algorithm is an algorithm which satisfies the PAC criterion
only for sufficiently large ε. More precisely, we have:

Definition 1 Let 0 < γ < 1
2 . A noise-tolerant γ-weak learning algorithm for a concept class C

is an algorithm A that takes inputs n, δ and is given access to a noisy example oracle O, with
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the following property. For all n, δ, if O is a noisy example oracle EX(f,D, η) where f ∈ C,
D is any distribution on {0, 1}n, and 0 ≤ η < 1

2 , then A runs in time poly(n, 1
1−2η , 1

δ ) and with

probability at least 1 − δ, A outputs a poly(n, 1
δ , 1

γ , 1
1−2η )-time evaluable hypothesis h such that

Prx∈D[h(x) 6= f(x)] ≤ 1
2 − γ.

A boosting algorithm is an algorithm which, given access to a weak learning algorithm, can
generate a hypothesis h with arbitrarily low error. More precisely, we have:

Definition 2 A black-box noise-tolerant booster is an algorithm B that is given access to an
oracle O and black-box access to an algorithm A, with the following property. For all concept
classes C, for all 0 < γ < 1

2 , for all 0 ≤ η < 1
2 , for all n, ε, δ, we have: if A is a noise-tolerant

γ-weak learning algorithm for C and O is a noisy example oracle EX(f,D, η) where f ∈ C
and D is any distribution on {0, 1}n, then BO,A runs in time poly(n, 1

ε ,
1
δ , 1

γ , 1
1−2η ) and with

probability at least 1− δ B outputs a poly(n, 1
ε ,

1
δ , 1

γ , 1
1−2η )-time evaluable hypothesis h such that

Prx∈D[h(x) 6= f(x)] ≤ ε.

We note that in both our positive and negative results, the boosting algorithm B calls the
weak learning algorithm A as a black box; B may run A using any oracle O which B is able to
provide, but B cannot “read the code” of A. Thus our negative results hold only for boosting
algorithms which operate in this black-box way. We feel that this is a minor restriction to
put on boosting algorithms since all known boosting algorithms (including the MM boosting
algorithm which we analyze) work in a black-box way – they call the weak learner and use the
hypotheses which it generates, but do not inspect the internal state of the weak learner during
its execution.

3 MM: Noise-Free Boosting

In this section we describe a particular boosting algorithm and analyze its performance in
the absence of noise (i.e. when η = 0). The algorithm we describe here is essentially the
branching program booster of Mansour and McAllester [15] (which built on ideas from Kearns
and Mansour’s paper [11]), and we henceforth refer to it as the MM boosting algorithm. Our
goal here is to set the stage for our analysis of the MMM algorithm (modified MM) in the
presence of noise, which we give in Sections 4 and 6. Our presentation and analysis of the MM
algorithm are slightly different from [15] in order to facilitate our presentation and analysis of
the MMM algorithm in Sections 4 and 6.

3.1 Preliminaries

Throughout this section we let f ∈ C be a fixed target function and D be a fixed distribution over
X. For ` ⊆ X we write D|` to denote D conditioned on x ∈ `, i.e. D|`(S) = PrD[x ∈ S | x ∈ `].
We write p` to denote PrD[f(x) = 1|x ∈ `] and p to denote PrD[f(x) = 1].

Definition 3 As in [11], the uncertainty of a distribution D is defined to be U(D) = 2
√

p(1 − p).
Let L be a partition of X into disjoint subsets (so X =

⋃
`∈L `). The uncertainty of L under D

is defined to be U(D,L) =
∑

`∈L w`u`, where u` = U(D|`) = 2
√

p`(1 − p`) is the uncertainty of
the conditional distribution D|` and w` = PrD[x ∈ `] is referred to as the weight of leaf `.

Given any partition L of X, there is a natural corresponding predictor for the target function f :
on each set ` ∈ L, we predict 1 iff p` > 1

2 . The error of this predictor under D is
∑

` w` min(p`, 1−
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p`); note that this is at most 1
2U(L,D) since min is less than geometric mean. Thus, the

uncertainty of a partition gives an upper bound on the error of the corresponding predictor.

Definition 4 The balanced distribution D̂ is an equal average of the distributions D|f−1(1) and

D|f−1(0), i.e. D̂(S) = 1
2 PrD[x ∈ S | f(x) = 1] + 1

2 PrD[x ∈ S | f(x) = 0].

Given access to a noise-free oracle EX(f,D), it is easy to simulate the noise-free oracle
EX(f, D̂); this is done by flipping a coin at random to decide whether to choose a positive or
negative example. Then wait until one receives such an example1.

For our purposes, a branching program is a rooted, directed acyclic graph in which each
leaf ` is labeled with a bit b` and each internal node v has outdegree 2 and is labeled with a
Boolean function hv. (Branching programs go by various names, such as decision graphs and
binary decision diagrams, in different communities.) Branching programs were introduced into
boosting as a generalization of decision tree learning: while decision trees are constructed by
splitting nodes, for branching programs nodes can be merged as well.

3.2 The MM Boosting Algorithm

The MM algorithm iteratively constructs a branching program in which each internal node v
is labelled with a hypothesis hv generated by the weak learner at some invocation. In such
a branching program, any instance x ∈ X determines a unique directed path from the root
to a leaf; at each internal node v the outgoing edge taken depends on the value hv(x). Thus,
the set L of leaves ` corresponds to a partition of X, and for each leaf ` we have probabilities
w` = Pr[x reaches `] and p` = Prx∈D[f(x) = 1|x reaches `]. As described above, each leaf ` is
labeled 1 if p` > 1

2 and is labeled 0 otherwise; thus a branching program naturally corresponds
to a classifier.

The MM algorithm is given below. The branching program initially consists of a single leaf.
The algorithm repeatedly performs two basic operations:

• Split a leaf (steps 2-3): The chosen leaf ` becomes an internal node which has two
new leaves as its children. The label of this new internal node is a hypothesis generated
by the weak learning algorithm when run with the oracle EX(f, D̂|`) (recall that this
distribution is obtained by first conditioning on x ∈ ` and then balancing that conditional
distribution).

• Merge two leaves (steps 6-7): The two leaves `a and `b chosen for the merge are
replaced by a single leaf `. All edges into `a and `b are redirected into `.

Intuitively, splitting a leaf should increase the accuracy of our classifier. In the MM al-
gorithm, the leaf to be split is chosen so as to maximally decrease the overall uncertainty of
the partition corresponding to the branching program. Conversely, merging two leaves should
decrease the accuracy of our classifier. However, we must do merges in order to ensure that
the branching program does not get too large; Kearns and Mansour have shown that without
merges the size of the resulting decision tree may be exponentially large [11]. The leaves to
be merged are chosen so as to minimally increase the overall uncertainty of the partition. The
condition in Line 7 ensures that we only perform merges whose cumulative uncertainty increase
is substantially less than the uncertainty decrease of the most recently performed split, and

1This may take a great deal of time if p is very close to 0 or 1, but as we will see these situations do not pose

a problem for us since we will abort the simulation after some bounded number of draws.
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thus we make progress. The final output hypothesis of the MM booster is the final branching
program.

The MM Boosting Algorithm:
Input: desired final error level ε

access to γ-weak learner A
access to noise-free example oracle EX(f,D)

Recall from the definitions: w` = PrD[x reaches leaf `], p` = PrD[f(x) = 1|x reaches `], u` =

2
√

p`(1 − p`), D|` is the distribution obtained by conditioning on x ∈ `, and D̂|` is the balanced
version of D|`.
Algorithm:

1. Start with the trivial partition L = {X}, so the branching program is a single leaf.

2. Construct candidate splits: For each leaf ` ∈ L, run the weak learning algorithm A
on the balanced distribution on this leaf (i.e. oracle EX(f, D̂|`)) to obtain leaves `0 and
`1.

3. Choose best split: Perform the split that reduces the overall uncertainty the most. Let
∆S be this reduction, so

∆S = max
`

{w`u` − w`0u`0 − w`1u`1}.

4. Stop if the error of the current branching program ≤ ε.

5. Set ∆M := 0.

6. Consider candidate merges: Let `a 6= `b be the two leaves which, if merged into one
leaf `, would cause the minimum increase in uncertainty. Let z be this minimum value:

z := min
`a 6=`b

{w`a
u`a

+ w`b
u`b

− w`u`}.

7. Merge if safe: If ∆M + z < ∆S/2 then

• Merge leaves `a, `b in the branching program.

• Set ∆M := ∆M + z.

• Go to step 6.

8. Otherwise, go to step 2.

3.3 Correctness and efficiency of the MM algorithm

We assume in this section that all probabilities are computed exactly by the MM algorithm. In
Section 3.4 we show that our analysis still holds if probabilities are estimated by a polynomial
amount of sampling. We also assume that the weak learning algorithm successfully finds a
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(1
2 − γ)-accurate hypothesis at each invocation, i.e. we ignore the δ probability of failure. This

failure probability can be handled with standard techniques as discussed in Section 3.4.
The following lemma corresponds to Lemma 2 in [11].

Lemma 1 Suppose for distribution D, hypothesis h satisfies Pr
D̂

[h(x) 6= f(x)] ≤ 1
2 − γ. Let L

be the partition induced by h, i.e. L = {h−1(0), h−1(1)}. Then U(L,D) ≤ (1 − 2γ2)U(D).

Proof: Without loss of generality we write

PD[f(x) = 1] = p

PD[h(x) = 1 ∧ f(x) = 1] = pa

PD[h(x) = 0 ∧ f(x) = 1] = p(1 − a)

PD[f(x) = 0] = q = (1 − p)

PD[h(x) = 1 ∧ f(x) = 0] = qb

PD[h(x) = 0 ∧ f(x) = 0] = q(1 − b)

so the error of h under D|f(x)=1 is 1 − a and under D|f(x)=0 is b. Since the error under the

balanced distribution is at most 1
2 − γ, we have 1−a+b

2 ≤ 1
2 − γ and hence a − b ≥ 2γ.

By definition, U(D) = 2
√

pq and that

U(L,D) = 2(pa + qb)

√
paqb

(pa + qb)2
+ 2(p(1 − a) + q(1 − b))

√
p(1 − a)q(1 − b)

(p(1 − a) + q(1 − b))2

= 2
√

paqb + 2
√

p(1 − a)q(1 − b)

= U(D)

(√
ab +

√
(1 − a)(1 − b)

)
.

To finish the proof, we observe that

√
ab +

√
(1 − a)(1 − b) =

1

2

√
(a + b)2 − (a − b)2 +

1

2

√
(1 − a + 1 − b)2 − (a − b)2

≤ 1

2

√
(a + b)2 − 4γ2 +

1

2

√
(2 − (a + b))2 − 4γ2

≤
√

1 − 4γ2

≤ 1 − 2γ2

where the second inequality uses the concavity of the function
√

x2 − τ .

Lemma 1 implies that as long as the MM branching program does not have too many leaves,
each split performed in line 3 gives a substantial decrease in the overall uncertainty:

Lemma 2 Suppose that the MM branching program’s partition L has L leaves before executing
step 3. Then after performing the split in step 3, the new partition L′ satisfies U(L′,D) ≤
(1 − 2γ2/L)U(L,D).

Proof: Since L has L leaves, some leaf ` must have w`u` ≥ 1
LU(L,D). If this leaf were chosen

for the split then by Lemma 1 the uncertainty u` would be multiplied by at most 1− 2γ2, and
hence the overall uncertainty U(L,D) would be multiplied by at most 1 − 2γ2/L. Since the
actual split chosen is the one which reduces overall uncertainty the most, the lemma holds.

Now we show that if the branching program has many leaves, there are merges it can perform
which do not increase uncertainty by too much.
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Lemma 3 Suppose that the MM branching program has uncertainty U = U(L,D) and L ≥
72
γ2 log 4

Uγ2 leaves. Then there are two leaves `a and `b whose merger would cause the uncertainty

to increase by at most γ2U/L, i.e. the resulting partition La,b would satisfy U(La,b,D) ≤ (1 +
γ2/L)U.

Proof: We may assume without loss of generality that there are at least L/2 leaves ` such
that p` ≤ 1

2 . (The other case, that there are at least L/2 leaves ` such that p` ≥ 1
2 follows by

symmetry.) Consider what would happen if we were to merge two such leaves `1 and `2 which
have associated weights w1 and w2 and uncertainties u1 = U(D|`1) ≤ u2 = U(D|`2). It is easily
verified that this would give a leaf ` with weight w = w1 + w2 and uncertainty u = U(D`)
satisfying u1 ≤ u ≤ u2 (this uses the fact that p1, p2 ≤ 1

2). Consequently, the increase in overall
uncertainty resulting from such a merge would be

wu − w1u1 − w2u2 ≤ w1(u2 − u1) = w1u1(
u2

u1
− 1). (1)

Now we imagine putting the uncertainties of these leaves into disjoint buckets. Consider
the L/8 intervals 


(

1 − γ2

9

)i

,

(
1 − γ2

9

)i−1



for i = 1, 2, . . . , L/8. (These buckets were used explicitly as part of the algorithm in [15] but
our presentation uses them only here in the analysis.) Since (1 − x)1/x ≤ 1/e for x ∈ (0, 1], we
have (

1 − γ2

9

)L/8

≤
(

1 − γ2

9

) 9

γ2
log 4

Uγ2

≤ γ2U

4

and hence these buckets cover at least the interval (γ2U/4, 1].
Suppose first that at least L/4 of the L/2 leaves with p` ≤ 1

2 have uncertainty u` ≤ γ2U/4.
If this is the case then there must be some such leaf with with weight w` ≤ 4/L. By Equation
(1), merging this leaf with any other leaf whose uncertainty is at most γ2U/4 results in an
increase in uncertainty of at most w`γ

2U/4 ≤ γ2U/L, which suffices to establish the lemma in
this case.

So now suppose that at least L/4 of the L/2 leaves with p` ≤ 1
2 have uncertainty u` > γ2U/4.

By the pigeon-hole principle, among these L/4 values of u` at least L/8 fall into buckets in which
they are not the unique largest value assigned to that bucket. Among these L/8 values, let `′

be the leaf with lowest w`′u`′ . Since the total uncertainty is U, we must have w`′u`′ ≤ 8U/L.
Let `′′ be a leaf which falls into the same bucket and satisfies

u`′ ≤ u`′′ ≤ u`′/(1 − γ2/9).

From Equation (1), the increase in uncertainty which would result from merging `′ and `′′ is at
most

8U

L

(
1

(1 − γ2/9)
− 1

)
=

8U

L
· γ2

9 − γ2
≤ Uγ2

L

so the lemma is proved.

Now we can establish correctness of the MM boosting algorithm:

Theorem 4 After at most 144
γ4 log 2

εγ2 log 1
2ε splits and merges, the MM algorithm will output

a hypothesis h such that PrD[h(x) 6= f(x)] ≤ ε.
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Proof: First note that since the algorithm halts as soon as the error PrD[h(x) 6= f(x)] is at
most ε, throughout its execution we have U(L,D) > 2ε (recall that the uncertainty is always
at least twice the error rate). We now show that the algorithm halts after the claimed number
of steps.

We first note that the number of leaves in the branching program whenever Step 3 is executed
is never greater than L = 72

γ2 log 2
εγ2 . To see this, note that if there are L leaves and a split is

performed, then by Lemma 2 the uncertainty U prior to the split decreases by at least 2γ2U/L.
Lemma 3 then implies that there is some merge which would increase the uncertainty by at
most γ2U/L. Thus this merge will be performed in Step 7 and there will again be at most L
leaves.

Thus by Lemma 2 and the condition in Step 7, the cumulative effect of a split and the
(possibly empty) sequence of merges which follows it before the next split is to multiply the
uncertainty by at most (1 − γ2/L). Since the uncertainty of the initial trivial partition is at
most 1, we have that immediately before the (s + 1)st split takes place the uncertainty is at

most
(
1 − γ2

L

)s
≤ e−sγ2/L. This is less than 2ε for s = L

γ2 log 1
2ε , so at most this many splits

take place. The total number of merges is clearly at most the total number of splits, so the
theorem is proved.

3.4 Approximating MM via sampling

So far we have discussed an idealized version of the MM algorithm in which all probabilities
can be computed exactly. In [15] the MM algorithm was run on a fixed sample so this exact
computation could in fact be done, but for our extension to the noisy setting it is more conve-
nient to consider a “boosting-by-filtering” version where we do not use a fixed sample. Hence
we cannot compute probabilities exactly but instead must use empirical estimates obtained by
calling EX(f,D).

Let L be as in Theorem 4. We first note that in Step 2 the algorithm need not run the
weak learning algorithm on any leaf ` which has w`u` ≤ ε

2L , since the total contribution of such
leaves to the final uncertainty will be at most ε

2 . By the analysis in Section 3.3, for each leaf

` it suffices to estimate the quantity w`u` to additive accuracy O(γ2ε
L ). This accuracy ensures

that, as in Theorem 4, before the (s + 1)st split the uncertainty is at most (1−Ω(γ2/L))s, and
that our final estimate of the uncertainty

∑
` w`u` will be off by at most O(ε).

How much time is required to estimate w`u` to a given additive accuracy? We can rewrite
w`u` as 2

√
a`b` where a` = PrD[x ∈ ` and f(x) = 1] and b` = PrD[x ∈ ` and f(x) = 0]. Tail

inequalities, such as Chernoff bounds, imply that these probabilities, and hence w`u` as well,
can be estimated to any inverse polynomial additive accuracy from a polynomial number of
calls to EX(f,D). (Note that from the above discussion, we only need to simulate EX(f, D̂|`)
in Step 2 if w`u` is Ω(ε/L), and if this is the case then we can simulate each call to EX(f, D̂|`)
in poly(L/ε) time with high probability.)

Finally, we note by a standard analysis the total failure probability of all estimates and calls
to the weak learner can be bounded by δ at little cost. We thus have:

Theorem 5 For any ε, δ > 0, if the MM boosting algorithm is run using a γ-weak learner
and a noise-free example oracle EX(f,D), then it runs for poly( 1

γ , 1
ε ,

1
δ ) time steps and with

probability 1 − δ outputs a hypothesis h satisfying PrD[h(x) 6= f(x)] ≤ ε.
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4 MMM: Boosting to the noise rate

In this section we modify the MM algorithm to obtain the MMM algorithm which can achieve
any accuracy up to the noise rate. The MMM algorithm is given access to a noise-tolerant
γ-weak learning algorithm and to a noisy example oracle EX(f,D, η) and is given a value
τ > 0; its goal is to output a hypothesis h such that PrD[h(x) 6= f(x)] ≤ η + τ. We analyze the
algorithm in terms of the true probabilities p` = PrD[f(x) = 1|x ∈ `] instead of the “noisy”
probabilities p̃` = PrD[label = 1|x ∈ `]. Since p̃` = p`(1 − η) + (1 − p`)η, we have

p` =
p̃` − η

1 − 2η
. (2)

Thus the MMM algorithm can estimate p` to within an additive error of c by estimating p̃` to
within an additive c

1−2η . We assume throughout this section that the MMM algorithm knows
the value of η. If not, we can use the following standard trick: if we could “guess” η then the
algorithm would succeed. In fact, if we could guess η to within a small error, then we would
succeed as well. This is because the algorithm would succeed with high probability if the true
distribution had our guessed amount of noise, and the two distributions with different amounts
of noise are very close (so close that no algorithm that draws a sufficiently small number of
examples can succeed on one and fail on the other). Thus, one searches through the possible
noise values, starting at small eta and gradually increasing, each time rerunning the algorithm
with the estimated η. When we reach the correct value of η, the algorithm will succeed and we
will be able to tell by our sufficiently high accuracy.

The MMM algorithm differs from the MM algorithm in the following ways:

• In Step 2 the oracle EX(f, D̂|`, η′), i.e. a noisy balanced oracle, is used to run the weak
learning algorithm, where η′ > η is some higher noise rate. (Later we will show how
to efficiently simulate EX(f, D̂, η′) given access to EX(f,D, η) and will show that η′ is
bounded away from 1

2 ; this ensures that at each stage the noise-tolerant weak learner can
construct a weak hypothesis as required.)

• For τ > 0 define Lτ to be the set of leaves ` such that min{p`, 1− p`} ≥ η + τ
2 . Each time

a leaf ` is formed, if ` /∈ Lτ then we view ` as “dead” and never consider it again for splits
or merges; so MMM only performs splits and merges on leaves in Lτ . (This ensures that
we can efficiently simulate the noisy balanced oracle. For leaves not in Lτ we may not be
able to simulate such an oracle.)

• In Step 4 the algorithm halts if PrD[h(x) 6= f(x)] ≤ η + τ.

We have the following analogue of Theorem 4:

Theorem 6 After O( 1
γ4 log 1

τγ log 1
τ ) splits and merges, the MMM algorithm will output a hy-

pothesis h such that PrD[h(x) 6= f(x)] ≤ η + τ.

Proof: The error PrD[h(x) 6= f(x)] has contributions from leaves in Lτ and not in Lτ . By
definition of Lτ the total contribution from leaves not in Lτ is at most η + τ/2. Thus it suffices
to bound the error contribution from leaves in Lτ by τ/2. The analysis establishing this bound
is very similar to that of Theorem 4 with τ/2 in place of ε. Let Uτ =

∑
`∈Lτ

w`2
√

p`(1 − p`) be
the total uncertainty of leaves in Lτ . As before, it suffices to reduce Uτ to τ . If we set Lτ = |Lτ |,
then Lemma 2 now holds with 1 − 2γ2/Lτ in place of 1 − 2γ2/L, because the leaf of largest
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uncertainty in Lτ can be split and its uncertainty reduced by a factor of 1 − 2γ2. Lemma 3
applies to the subset of leaves Lτ and the uncertainty Uτ , so as before if there are many leaves
in Lτ then merging some pair increases uncertainty by at most 1 + γ2/Lτ . Thus, by the same
argument as Theorem 4 the value Uτ will be reduced to τ in the same number of splits and
merges as in Theorem 4 for ε = τ/2.

We now show how to simulate the noisy balanced example oracle EX(f, D̂, η′) using EX(f,D, η).
Assume without loss of generality that p = PrD[f(x) = 1] ≤ 1

2 . From the discussion above we
may assume that p ≥ η + τ

2 . We filter examples from EX(f,D, η) as follows:

• Labeled 0: Reject each example labeled 0 with probability 1−2p
1−p−η , otherwise keep it.

• Labeled 1: Flip to 0 with probability (1−2p)η(1−η)
(1−η−p)(p+η−2pη) , otherwise don’t flip the label.

The idea is that the rejection balances the distribution between true positive and true negative
examples, but as a result of this balancing we now have asymmetric noise, i.e. the fraction of
negative examples that are mislabelled is greater than the fraction of positive examples that
are mislabelled. To compensate, the flipping causes an equal fraction of positive and negative
examples to be mislabelled, so we have true classification noise at a higher rate η′. We have the
following lemma:

Lemma 7 Given access to EX(f,D, η), where p = Pr[f(x) = 1] and min{p, 1− p} ≥ η + τ
2 , by

making poly( 1
τ , log 1

δ ) calls to EX(f,D, η) we can simulate a call to EX(f, D̂, η′) with probability
1 − δ, where η′ ≤ 1

2 − τ
4 .

Proof: Recall that we have access to a noisy example oracle EX(f,D, η) where D is some
distribution, 0 < η < 1

2 is the noise rate, and p = PrD[f(x) = 1] satisfies η + τ
2 ≤ p ≤ 1

2 for

some τ > 0. We show how this oracle can be used to simulate the oracle EX(f, D̂, η′). Here D̂
is the balanced version of distribution D and 0 < η′ < 1

2 is a new noise rate.
We filter examples from EX(f,D, η). For each example,

Labeled 0: Reject with probability pr = 1−2p
1−p−η , keep with probability 1 − pr = p−η

1−p−η .

Labeled 1: Flip its label with probability pf = (1−2p)η(1−η)
(1−p−η)(p+η−2pη) , don’t flip with probability

1 − pf .

We will show that this results in EX(f, D̂, η′) where η′ ≤ 1
2 − τ

4 .
In order to verify this, it suffices to check the following two things. First, with regard to

rejection,
Pr
D

[f(x) = 0 ∧ not rejected] = Pr
D

[f(x) = 1 ∧ not rejected].

This would show that at least the resulting distribution is balanced but says nothing about the
labels or apparent noise rates. The LHS above can be written as (1 − p)((1 − η)(1 − pr) + η)
because the example was negative with probability 1− p and either the example was not noisy
(probability 1 − η), thus labeled 0, and kept (probability 1 − pr), or it was noisy (probability
η) and was kept for sure. Similarly, the RHS above can be written as p(η(1− pr) + 1− η). One

can check that the above two quantities are both (1−2η)p(1−p)
1−p−η .

Second, we need to check that the noise rates on both positive and negative examples are
η′. In other words, we need to verify that,

Pr
D

[f(x) = 0 ∧ not rejected ∧ label′ = 1] = η′ Pr
D

[f(x) = 0 ∧ not rejected]

12



and

Pr
D

[f(x) = 1 ∧ not rejected ∧ label′ = 0] = η′ Pr
D

[f(x) = 1 ∧ not rejected].

In the above, label′ is the possibly flipped label after step 2. The first LHS can be written
as (1 − p)η(1 − pf ) because the example must have been a negative example that was noisy
and not flipped. Similarly, the second LHS above is p(η(1 − pr) + (1 − η)pf ). A tedious but

straightforward verification shows that these two quantities are both η(1−p)
(p+η−2pη) ·

(1−2η)p(1−p)
(1−p−η) .

Based on our earlier calculation that

Pr[f(x) = 0 ∧ not rejected] =
(1 − 2η)p(1 − p)

1 − p − η
,

the effective noise rate is

η′ =
η(1 − p)

p + η − 2pη
=

1

2
− p − η

2(p + η − 2pη)
.

It is straightforward to verify that η′ ≤ 1
2 − τ

4 because p − η ≥ τ
2 and p + η − 2pη < 1, so the

lemma is proved.

As in Section 3.4, to run MMM successfully we need only estimate each w`, p`, u` to inverse
polynomial accuracy. A new issue which arises is that since p` is an estimate instead of a precise
value, the filtering procedure described above to sample from EX(f, D̂|`, η′) will not perfectly
simulate this oracle, i.e. the resulting distribution may not be perfectly balanced, and the noise
rates on positive and negative examples may not be exactly equal. However, this is not a
problem since a straightforward analysis shows that the statistical difference between the true
distribution and the distribution we simulate can be made as small as any inverse polynomial (at
the expense of a corresponding polynomial increase in runtime). Thus any weak learner which
makes polynomially many draws from our simulated distribution cannot distinguish between it
and the true distribution with high probability. Since it succeeds with high probability from
the true distribution, it must succeed with high probability from the simulated distribution as
well.

We thus have:

Theorem 8 For any τ, δ > 0, if the MMM boosting algorithm is run using a noise-tolerant
γ-weak learner and a noisy source of examples, EX(f,D, η), then it runs for poly( 1

γ , 1
τ , 1

δ , 1
1−2η )

time steps and with probability 1−δ outputs a hypothesis h satisfying PrD[h(x) 6= f(x)] ≤ η+τ.

In the next section, we give a lower bound showing that, in general, it is impossible to boost
a black-box weak learner past the noise rate.

5 Boosting past the noise rate is hard

The basic approach here is that we suppose we have some distribution with a p < η fraction
of positive examples. Thus the all 0’s hypothesis is a good weak hypothesis to start. We
will describe an “unboostable” weak learner with the following property: whenever possible, it
outputs a trivial hypothesis that contains no useful information. In fact, the weak learner only
does something interesting if its sample contains a large set of unique (occuring only once in the
sample) examples that is nearly 1/2 positive. The motivation for considering this weak learner
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is that it is difficult for a booster to generate a set of examples that is nearly 1/2 positive,
because a random example that is labeled positive is still more than 1/2 likely to be a true
negative example, and thus intuitively it is hard for the booster to make the weak learner give
any useful information.

However, there is a difficulty in that the booster might conceivably be able to learn on its
own, without even using the weak learner. Thus, in order to prove that it is hard to boost past
the noise rate, we somehow need to ensure that the booster must indeed use the weak learner.

Our approach takes advantage of the fact that since a boosting algorithm must work for
any concept class, the booster does not “know” the concept class on which it is being run.2

We will consider concept classes each containing a single function; for each such concept class
there is a corresponding weak learner which knows this function (since the weak learner may be
tailored for the particular concept class being learned), but the booster does not. The overall
collection of functions (collection of concept classes) considered will be a pseudo-random family
of functions, so intuitively the booster should be unable to learn without using the weak learner.

Using this approach, we prove the following:

Theorem 9 If one-way functions exist then black-box noise-tolerant boosters do not exist.

In fact we show (Theorem 13) that for any τ > 0 it is cryptographically hard to boost to
accuracy η − τ in the presence of classification noise at rate η.

We give some more intuition for our construction. The unboostable weak learning algorithm
is as follows. Consider a target function f which has only an η−τ fraction of inputs x satisfying
f(x) = 1. Then under the uniform distribution a weak learner can output the constant-0
hypothesis; in fact the only distributions for which a weak learner must output some other
hypothesis are nonuniform ones which put weight at least 1/2 on the small set of positive
examples. Thus the only way a boosting algorithm can get anything useful out of such a weak
learner is to simulate a distribution which puts weight at least 1/2 on positive examples, and
as argued earlier this seems difficult to do since the noise rate is η.

In fact there is a hole in this argument. For example, a boosting algorithm could simulate
a distribution which puts weight 1/2 on each of two examples. If the booster is lucky and
one of the examples is positive, then the resulting distribution is balanced. Thus, in order to
design a maximally unhelpful weak learner which thwarts this boosting strategy, we have our
weak learner make a lookup table of examples which it sees many times in its sample. For each
example in the table, the weak learner’s output is the majority vote label from its occurrences
in the sample; on all other examples the weak learner outputs 0. Intuitively, this hypothesis is
sufficient to satisfy the weak learning criterion unless the data set for the weak learner contains
a large number of distinct instances many of which are true positive examples; only if this is
the case does the weak learner give up some useful information.

Now we give the actual construction. Let 0 < p < 1. Let {fs : {0, 1}|s| → {0, 1}}s∈{0,1}∗ be
a p-biased pseudorandom function family, i.e. a family of functions which are indistinguishable
from truly random p-biased functions (see Appendix A for a formal definition of p-biased pseu-
dorandom function family). For each s ∈ {0, 1}n we define a concept class Cs as follows: each
class Cs contains exactly one concept, which is fs.

2An alternative approach would instead be to assume that the boosting algorithm cannot use any information

about the particulars of the learning problem. Namely, we could assume that the boosting algorithm cannot

do anything with examples other than identify whether two are the same or different, examine their labels, and

apply the weak hypotheses to them. Under this assumption almost any concept class can be shown to have an

unboostable weak learner. In our cryptographic construction described below, we bypass this strong assumption

by instead assuming that one-way functions exist.

14



Fix 0 < γ < 1
4 . We now define an algorithm As for each concept class Cs. In the following

description the values m1, k, m2, are polynomials in n, 1
γ , 1

1−2η , 1
δ whose values will be given

later.

Algorithm As(η, γ):

1. Draw a sequence S1 of m1 examples. (Note that a given instance x ∈ {0, 1}n may occur
more than once in S1.)

2. Let T be the set of instances x ∈ {0, 1}n which occur at least k times in S1. For each
x ∈ T let bx ∈ {0, 1} be the majority vote label of all pairs 〈x, y〉 in S1 which have x as
the instance.

3. Define h1 to be the hypothesis h1(x) ≡ “if x ∈ T then output bx else output 0.”

4. Draw a sequence S2 of m2 examples. Abort and output the hypothesis h1 if there is any
instance x which occurs more than once in S2 but is not in T.

5. Let N be the number of occurrences in S2 of instances x such that x /∈ T and fs(x) = 1.
If N ≥ (1

2 − 3γ
2 )m2 then output fs, and otherwise output h1.

Note that the hypothesis h1 is quite uninformative since any algorithm with access to the
example oracle can generate this hypothesis for itself without using As. Steps 4 and 5 ensure
that the informative fs hypothesis is output only if S2 contains many distinct positive examples.

The following claim shows that As is indeed a noise-tolerant weak learning algorithm. As
before, we assume that we know the noise rate, but again this assumption can be removed.

Claim 10 As is a noise-tolerant γ-weak learning algorithm for concept class Cs.

Proof: The values m2, m1 and k are polynomials in n, 1
γ , 1

1−2η , 1
δ which will be defined later.

We first observe that As runs in polynomial time. To see this, note that As can have fs

“hard-wired” into it, and fs is efficiently evaluable, so the number N in Step 5 can be computed
exactly in polynomial time.

It remains to show that for any distribution D and any 0 < η < 1
2 , if As is run using

EX(fs,D, η) as the oracle, then with probability at least 1− δ, As outputs a hypothesis h such
that PrD[h(x) 6= fs(x)] ≤ 1

2 − γ. We use the following two lemmas which we prove later:

Lemma 11 As aborts in line 4 with probability less than δ
3 .

Lemma 12 With probability at least 1 − δ
3 , we have bx = fs(x) for every x ∈ T.

We will analyze an alternate algorithm A′
s in which the test in line 4 is not performed and

bx is defined to equal fs(x) for every x ∈ T . By Lemmas 11 and 12 it suffices to show that
PrD[h′(x) 6= f(x)] ≤ 1

2 − γ with probability at least 1 − δ
3 , where h′ is the hypothesis output

by A′
s. Consequently, it suffices to show that if PrD[h′

1(x) 6= f(x)] > 1
2 − γ then A′

s outputs fs

with probability 1 − δ
3 .
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To see that this condition holds, note that in line 5 of A′
s we have that S2 is a set of

independent random draws from EX(fs,D, η). (This is not true in line 5 of As since in As we
have conditioned on S containing no repeated instances which are not in T.) Thus in A′

s the
value N is an empirical estimate of PrD[x /∈ T and fs(x) = 1] obtained from m2 independent
samples. As long as m2 ≥ 2(log 3

δ )/γ2, standard Chernoff bounds tell us that with probability

at least 1 − δ
3 the fraction N/m2 differs from PrD[x /∈ T and fs(x) = 1] by at most γ

2 . Hence if

PrD[x /∈ T and fs(x) = 1] is greater than 1
2−γ we output fs with probability at least 1− δ

3 . Since
in A′

s hypothesis h′
1 is guaranteed to be right on x ∈ T, we have PrD[h′

1(x) 6= f(x)] = PrD[x /∈ T
and f(x) = 1] and the claim is proved. (Claim 10)

Proof of Lemma 11: For 1 ≤ i < j ≤ m2, call positions (i, j) in S2 a violator if the
corresponding elements are equal, i.e. xi = xj , and the number of occurrences of xi in S1 is
less than k. The algorithm aborts in Step 4 only if there is some violator (i, j). We now upper
bound the probability that any particular (i, j) is a violator.

Fix (i, j) and also fix xi. We may imagine that S1 and xj were drawn in the following way:
First a multiset S′ of m1 + 1 labeled examples was drawn from the example oracle, and then a
random element of S′ was chosen to be xj and the rest were chosen for S1. This is equivalent
to drawing xj and all examples in S1 independently from the example oracle.

Now suppose that there were t occurrences of xi in S′. If t > k, then there is no way that
(i, j) can be a violator because there will always be at least k occurrences of xi in S1. On the
other hand, the probability that xj = xi is exactly t/(m1 + 1). So if t ≤ k, the probability that
(i, j) is a violator is t/(m1 + 1) < k/m1.

By the union bound, the probability that any (i, j) is a violator is at most m2
2k/m1. This

is at most δ/3 provided that m1 ≥ 3m2
2k/δ. (Lemma 11)

Proof of Lemma 12: Fix any x ∈ T, so x occurs m ≥ k times in S1. The probability that
the majority vote of the labels corresponding to instances of x in S1 is incorrect is precisely
the probability that a coin which has probability η < 1

2 of coming up HEADS comes up
HEADS more often than TAILS in m ≥ k tosses. Using a standard Chernoff bound, as long as
k ≥ 2(log 3m1

δ )/(1− 2η)2 this probability is at most δ
3m1

, so the probability that bx 6= fs(x) for

any fixed x ∈ T is at most δ
3m1

. Since T contains at most m1 instances, a union bound finishes
the proof. (Lemma 12)

So we have seen that the above three lemmas hold as long as m2 ≥ 2(log 3
δ )/γ2, m1 ≥

3m2
2k/δ, and k ≥ 2(log 3m1

δ )/(1 − 2η)2, which is easily achieved for polynomial sized m1, m2,
and k.

5.1 Proof of Theorem 9

Let U denote the uniform distribution on {0, 1}n. Fix any noise rate 0 < η < 1
2 and any

0 < τ < η. Fix p = η − τ
2 . Let the parameter in algorithm As be γ = η−p

4(η+p−2ηp) < 1
4 . We

prove Theorem 9 by establishing the following stronger theorem, which bounds the accuracy
level that black-box boosting algorithms can achieve in the presence of noise at rate η.

Theorem 13 Let {fs} be a p-biased pseudorandom function family. Then, for random s, no
black-box boosting algorithm B, given access to EX(fs,U , η) and As, can output a hypothesis
whose error is at most η − τ. More precisely: for all polynomials Q and all polynomial time
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algorithms B, for n sufficiently large,

Pr
s∈U

[ Pr
x∈U

[h(x) 6= fs(x)] ≤ η − τ ] <
1

Q(n)

where h is the hypothesis output by B.

Theorem 13 gives a lower bound of η on the accuracy level ε which any polynomial time black
box boosting algorithm can achieve. In Section 4 we analyzed the MMM boosting algorithm
(which is black-box) and showed that it matches this lower bound: given any ε = η + τ where
τ > 0, the MMM algorithm achieves ε-accuracy in the presence of classification noise at rate η
in time polynomial in 1

τ (and the other relevant parameters). Thus the bound of Theorem 13
(and of the MMM algorithm) is the best possible.

The idea of the proof of Theorem 13 is that B will only succeed if As outputs fs at some
invocation. As above, this can only happen if S2 contains at least a (1

2 − 3γ
2 ) fraction of

distinct positive examples. Since fs is a p-biased pseudorandom function and the noise rate η
is sufficiently larger than p, such a set S2 is difficult to construct.

Before giving the proof we introduce some terminology: we say that the set S2 is foolproof
if N ≥ (1

2 − 3γ
2 )m2 and otherwise we say that S2 is foolable. We write BO,A to indicate that

B has access to the example oracle O and black-box access to the weak learning algorithm A.
We say that BO,As hits fs if at some point during its execution B invokes As and As draws
a foolproof sequence S2 in Step 4 (so if As does not abort in Step 4, it outputs hypothesis fs

in Step 5). We say that it misses if it does not hit. We say that a hypothesis h is good if
Prx∈U [h(x) 6= fs(x)] ≤ η − τ.

Theorem 13 follows immediately from the following two lemmas. Here and subsequently we
write “p.p.t.” as an abbreviation for “probabilistic polynomial time.”

Lemma 14 For all polynomials Q, all p.p.t. algorithms B, and all sufficiently large n,

Pr[BEX(fs,U ,η),As hits fs] <
1

Q(n)
.

Lemma 15 For all polynomials Q, all p.p.t. algorithms B, and all sufficiently large n,

Pr[BEX(fs,U ,η),As outputs a good h | BEX(fs,U ,η),As misses fs] <
1

Q(n)
.

5.2 Proof of Lemma 14

The idea of the proof is as follows: before hitting fs for the first time, algorithm As outputs the
hypothesis h1 from Step 4 each time it is invoked by B. However, it is not difficult to see that
B can generate this hypothesis for itself without having any access to As. Thus, prior to its
first call of As which hits fs, B might as well have access only to EX(fs,U , η). We then show
that no p.p.t. algorithm which has access only to EX(fs,U , η) can hit fs with nonnegligible
probability. Intuitively, the reason why B cannot do this is because the frequency of positive
examples is low relative to the noise rate η, so even examples 〈x, 1〉 from EX(fs,U , η) have too
low a probability of being true positive examples to be useful.

More formally, let B be any p.p.t. algorithm. We may assume that for all oracles O and
algorithms A, the algorithm BO,A makes exactly q queries to O and exactly t calls to A, where
q, t are both poly(n). For i = 1, . . . , t let Xi denote the sequence xi,1, . . . , xi,|S2| of strings which
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BEX(fs,U ,η),As provides to algorithm As in Step 3 of the ith invocation of As. Each Xi is thus a
random variable over the probability space defined by the uniform choice of s ∈ {0, 1}n and any
internal randomness of algorithm B. For succinctness, we say that Xi hits fs if Xi is foolproof
and does not cause As to abort in Step 3.

For each s ∈ {0, 1}n let Ãs be a modified version of algorithm As which always outputs h1.
Consider the following algorithm B̃ which takes access only to EX(fs,U , η) :

• Algorithm B̃EX(fs,U ,η) first simulates the execution of BEX(fs,U ,η),Ãs (note that B̃ can
simulate Ãs for itself given access to EX(fs,U , η)).

• Algorithm B̃ then chooses a uniform random value 1 ≤ ` ≤ t and outputs the sequence
X̃i of strings x̃`,1, . . . , x̃`,|S2| which BEX(fs,U ,η),Ãs provided to algorithm Ãs in Step 3 of
the `th invocation of Ãs.

Now, without loss of generality, we may assume that X̃i = Xi for all i (i.e. the random
variables X̃i and Xi are identically distributed for all i). To see this, note that at each invocation
As outputs either h1 or fs; the X̃i’s correspond to having As always output h1. But even if As

outputs fs at some call, we may assume without loss of generality that the boosting algorithm B
stores fs but continues running just as if As outputted h1 (recall that the booster can construct
such a h1 for itself using EX(fs,U , η)). For such a booster, each X̃i will be identical to the
corresponding Xi.

We thus have that

Pr[X̃` hits fs] = Pr[X` hits fs] ≥ Pr[BEX(fs,U ,η),As hits fs]/t.

This, together with the following lemma, implies Lemma 14.

Lemma 16 Pr[X̃` hits fs] < 1
Q(n) for all polynomials Q and all sufficiently large n.

Proof of Lemma 16: Let f be a Boolean function from {0, 1}n to {0, 1}. Consider the following
algorithm D which takes access to an oracle for f and outputs a single bit:

• Df first simulates the execution of B̃EX(f,U ,η). Df simulates each call to EX(f,U , η) by
choosing a uniform random x ∈ {0, 1}n, calling f to obtain f(x), and flipping this bit

with probability η. Let Ỹ i denote the sequence of strings which BEX(f,U ,η),Ãs (which is
simulated by B̃EX(f,U ,η)) provided to algorithm Ãs in Step 3 of its ith invocation of Ãs.

• Let 1 ≤ ` ≤ t be the value selected by B̃EX(f,U ,η). If Ỹ ` hits f (meaning that there are at
least N ≥ (1

2 − 3γ
2 )m2 uniquely occurring instances in Ỹ ` such that f(x) = 1), then Df

outputs 1. Otherwise it outputs 0.

Looking over the algorithm, one sees that D is a p.p.t. algorithm. The following claim plays
a crucial role in our argument. (Appendix A defines Fn,p, a p-biased pseudorandom family of
functions.)

Claim 17 Suppose that f is a random function drawn from Fn,p. Then for all polynomials Q
and all sufficiently large n, we have Pr[Df outputs 1] < 1/Q(n).

Proof: In order for Ỹ ` to hit f, algorithm B̃ must construct a sequence of m2 instances in
{0, 1}n which contains N ≥ (1

2 −
3γ
2 )m2 distinct instances with f(x) = 1. Since B̃ makes at most

polynomially many calls to EX(f,U , η), we have that with probability exponentially close to
1, B̃ never receives the same instance more than once from EX(f,U , η). Thus we may assume
that after it has made all its oracle calls to f , there are three types of instances x ∈ {0, 1}n for
B̃:
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• Instances x such that B̃ received 〈x, 1〉 from a call of EX(f,U , η). For such an x, either
f(x) = 1 and the label was not flipped by D or f(x) = 0 and the label was flipped by D.

Hence for such an x we have that f(x) = 1 with probability p(1−η)
p(1−η)+(1−p)η .

• Instances x such that B̃ received 〈x, 0〉 from a call of EX(f,U , η). For such an x, either
f(x) = 0 and the label was not flipped by D or f(x) = 1 and the label was flipped by D.
Hence for such an x we have that f(x) = 1 with probability pη

(1−p)(1−η)+pη .

• Instances x such that B̃ never received an example 〈x, b〉. In this case we have that
f(x) = 1 with probability p.

We will use the following fact:

Fact 18 max{ p(1−η)
p(1−η)+(1−p)η , pη

(1−p)(1−η)+pη , p} = 1
2 − 2γ.

Proof: Recall that 0 < γ = η−p
4(η+p−2ηp) < 1

4 , 0 < η < 1
2 , and p = η − τ

2 . We thus have

p = η(1−4γ)
1+4γ(1−2η) .

We first show that p < 1
2 −2γ. Substituting for p, multiplying both sides by 2 and rearrang-

ing, this inequality becomes (1 − 16γ2)(1 − 2η) > 0 which is clearly true.

Now we show that p(1−η)
p(1−η)+(1−p)η = 1

2 − 2γ. This follows from substituting for p and simpli-
fying the left side.

Finally we show that pη
(1−p)(1−η)+pη < 1

2 − 2γ. Substituting for p, multiplying both sides by

2 and rearranging, this inequality becomes (1−16γ2)(1−2η)
1+4γ−8γη > 0 which is clearly true. (Fact

18)

Thus, regardless of how B̃ selects instances of these three types for the sequence of length
m2, the probability that there are at least (1

2 − 3γ
2 )m2 distinct instances with f(x) = 1 is at

most the probability that a (1
2 − 2γ)-biased coin comes up HEADS at least (1

2 − 3γ
2 )m2 times

in m2 flips. As long as m2 = Ω(n/γ2), standard Chernoff bounds guarantee this probability to
be 1/2Ω(n), and the claim is proved. (Claim 17)

By the definition of p-biased pseudorandomness and Claim 17, we have that if f is a p-biased
pseudorandom function fs where s is uniformly chosen in {0, 1}n, then for all polynomials
Q and all sufficiently large n we have Pr[Dfs outputs 1] < 1/Q(n) as well. However, it is
straightforward to verify from the construction of algorithm D that Pr[Dfs outputs 1] is precisely
Pr[X̃` hits fs]. This proves the lemma. (Lemma 16)

5.3 Proof of Lemma 15

The intuition here is that by conditioning on the event that BEX(fs,U ,η),As misses fs, B might as
well have access only to EX(fs,U , η). Since fs is a p-biased pseudorandom function, though, no
p.p.t. algorithm can output a good hypothesis (i.e. learn fs to high accuracy), since otherwise it
would be possible for a p.p.t. algorithm to learn a random function from Fn,p to high accuracy
which is absurd.

More formally, let B be any p.p.t. algorithm. Consider the following algorithm C̃ which takes
access only to EX(fs,U , η): algorithm C̃EX(fs,U ,η) simulates the execution of BEX(fs,U ,η),Ãs and

outputs the hypothesis h which BEX(fs,U ,η),Ãs outputs. (Note that C̃ can simulate Ãs for itself
given access to EX(fs,U , η).)

The following two lemmas together imply Lemma 15:
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Lemma 19 For all sufficiently large n, we have

Pr[C̃EX(fs,U ,η) outputs a good h] > Pr[BEX(fs,U ,η),As outputs a good h | BEX(fs,U ,η),As misses fs]/2.

Lemma 20 Pr[C̃EX(fs,U ,η) outputs a good h] < 1
Q(n) for all polynomials Q and all large enough

n.

Proof of Lemma 19: We have

Pr[C̃EX(fs,U ,η) outputs a good h] = Pr[BEX(fs,U ,η),Ãs outputs a good h]

≥ Pr[BEX(fs,U ,η),Ãs outputs a good h & BEX(fs,U ,η),Ãs misses fs]

= Pr[BEX(fs,U ,η),Ãs outputs a good h | BEX(fs,U ,η),Ãs misses fs] ·
Pr[BEX(fs,U ,η),Ãs misses fs]

> Pr[BEX(fs,U ,η),Ãs outputs a good h | BEX(fs,U ,η),Ãs misses fs]/2

where the last inequality holds for all sufficiently large n by Lemma 14. (Recall that BEX(fs,U ,η),As

can simulate BEX(fs,U ,η),Ãs , so we have Pr[BEX(fs,U ,η),As misses fs] ≤ Pr[BEX(fs,U ,η),Ãs misses

fs].) Let TRANS(BEX(fs,U ,η),As) (TRANS(BEX(fs,U ,η),Ãs) respectively) denote a complete
transcript of algorithm B’s execution using EX(fs,U , η) and weak learning algorithm AS (Ãs

respectively). TRANS(BEX(fs,U ,η),As) and TRANS(BEX(fs,U ,η),Ãs) are both random variables
over the probability space defined by choosing s, making random draws to EX(fs,U , η), and
any internal randomness of B. Induction shows that the two conditional random variables

TRANS(BEX(fs,U ,η),AS ) |( BEX(fs,U ,η),As misses fs)

and
TRANS(BEX(fs,U ,η),ÃS ) |( BEX(fs,U ,η),Ãs misses fs)

are identically distributed. This implies that

Pr[BEX(fs,U ,η),As outputs a good h | BEX(fs,U ,η),As misses fs] =

Pr[BEX(fs,U ,η),Ãs outputs a good h | BEX(fs,U ,η),Ãs misses fs]

which combined with the previous inequality proves the lemma.

Proof of Lemma 20: Let f be a Boolean function from {0, 1}n to {0, 1}. Consider the following
algorithm E which takes access to an oracle for f and outputs a single bit:

• Ef first simulates the execution of C̃EX(f,U ,η). Like algorithm Df in the previous subsec-
tion, Ef simulates each call to EX(f,U , η) by choosing a uniform random x ∈ {0, 1}n,
calling f to obtain f(x), and flipping this bit with probability η. Let hf be the hypothesis
which C̃EX(f,U ,η) outputs.

• Ef then selects n independent uniform random n-bit strings z1, . . . , zn ∈ {0, 1}n. Ef

computes µ which is the fraction of these strings which have hf (zi) = f(zi). Ef outputs
0 if µ < 1 − p+η−τ

2 and outputs 1 if µ ≥ 1 − p+η−τ
2 .

It is not difficult to see that E is a p.p.t. algorithm. We have:

Claim 21 Suppose that f is a random function drawn from Fn,p. Then for all polynomials Q
and all sufficiently large n we have Pr[Ef outputs 1] < 1/Q(n).
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Proof of Claim 21: Since C̃EX(f,U ,η) makes at most poly(n) many calls to EX(f,U , η), with
probability 1 − 1/2Ω(n) no string zi selected in the last step of Ef was previously seen by Ef

in its simulation of C̃EX(f,U ,η); so we assume that this is indeed the case. Since f is a p-biased
random function, for each zi the probability that hf agrees with f on zi is at most 1− p (recall
that p < 1

2). Thus the probability that Ef outputs 1 is at most the probability that a (1 − p)-
biased coin comes up HEADS at least (1 − p+η−τ

2 )n times in n tosses. Using Chernoff bounds

this is at most 1/2Ω(n) (recall that η − τ < p are fixed relative to n so p − (η − τ) = Θ(1)), so
the claim is proved. (Claim 21)

Now we suppose that f is a p-biased pseudorandom function fs where s is uniformly chosen in
{0, 1}n. By the definition of p-biased pseudorandomness and Claim 21, for all polynomials Q and
all sufficiently large n we have that Pr[Efs outputs 1] < 1/Q(n) as well. Let α = Pr[C̃EX(fs,U ,η)

outputs a good h], and recall that a good h is an h such that Pr[h(x) 6= fs(x)] ≤ η − τ.
Consequently, with probability α, we have that each zi chosen by Efs satisfies hfs

(zi) = fs(z
i)

with probability at least 1− (η− τ). Hence with probability α we have that Efs outputs 1 with
probability at least µ, where µ is the probability that a (1 − (η − τ))-biased coin outputs at
least (1− p+η−τ

2 )n HEADS in n tosses. As before, Chernoff bounds imply that µ ≥ 1−1/2Ω(n),

so consequently Pr[Efs outputs 1] ≥ α(1 − 1/2Ω(n)). This proves the claim. (Lemma 20)
As a remark, we note that the algorithm As is a weak learner for noise rate η and can

be modified in a straightforward manner to handle larger noise rates (simply by taking the
majority of more examples).

6 Boosting an okay learner to arbitrary accuracy

In this section we present an alternate notion of weak learning, called okay learning, and show
that the MMM algorithm can be used to efficiently boost any okay learner to arbitrary accuracy
in the presence of noise.

To motivate our definition of okay learning, we note that the standard definition of weak
learning has some counterintuitive consequences. Consider a scenario in which the target con-
cept f(x) is the Boolean conjunction x1 ∧ x2 ∧ x3 and our hypothesis h(x) is ¬x1 ∧ ¬x2 ∧ ¬x3.
Under the uniform distribution we have Pr[f(x) 6= h(x)] = 1/4 and hence h is a valid output
for a standard weak learner. This is slightly odd since in fact f(x) and h(x) are negatively cor-
related in a statistical sense, so in some sense a learner which outputs h as a weak hypothesis
for f would be a disappointment.

Recall that the balanced distribution D̂ is obtained by reweighting D so that Pr
D̂

[f(x) =
1] = Pr

D̂
[f(x) = 0] = 1/2. We define the balanced error of a hypothesis h to be

Pr
D̂

[f(x) 6= h(x)] =
1

2
Pr
D

[f(x) 6= h(x) | f(x) = 1] +
1

2
Pr
D

[f(x) 6= h(x) | f(x) = 0]. (3)

Similarly, a noise tolerant γ-okay learner is an algorithm which, given access to EX(f,D, η),
outputs a hypothesis h such that Pr

D̂
[h(x) 6= f(x)] ≤ 1

2 − γ. The running time is allowed to be

polynomial in n, 1
1−2η , 1

δ , 1
γ , 1

PrD[f(x)=1] and 1
PrD[f(x)=0] .

While this definition may seem artificially chosen to make our guarantees work, it is actually
fairly natural. One observation is that having balanced error ≤ γ is equivalent to

Cov(h, f) ≥ 2γCov(f, f),
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where, Cov(f, h) = ED[f(x)h(x)] − ED[f(x)]ED[h(x)] is the covariance of f and h. So it is a
guarantee that the covariance is positive (equivalently correlation is positive). Another con-
sequence is that PrD[h(x) = 1|f(x) = 1] > PrD[h(x) = 1]. In the absence of noise, an okay
learning algorithm can be converted to a weak learning algorithm and vice versa. In the presence
of noise, an okay learner can be converted to a weak learner.

Given access to a noise tolerant okay learner, we modify the MM algorithm in the following
ways:

• As before we calculate p` according to (2).

• In Step 2 we run the noise-tolerant γ-okay learner using the unbalanced conditional dis-
tribution EX(f,D|`, η).

As in the MM algorithm we boost until we obtain an h which satisfies PrD[h(x) 6= f(x)] ≤ ε.
We obtain:

Theorem 22 For any ε, δ > 0, if the above boosting algorithm is run using a noise-tolerant γ-
okay learner and a noisy example oracle EX(f,D, η), then it runs for at most poly( 1

γ , 1
ε ,

1
δ , 1

1−2η )
time steps and with probability 1 − δ outputs a hypothesis h satisfying PrD[h(x) 6= f(x)] ≤ ε.

Proof: The analysis for boosting a noise-tolerant γ-okay learner is identical to the original
noise-free MM analysis. Each hypothesis generated by our noise-tolerant γ-okay learner using
an oracle EX(f,D, η) satisfies Pr

D̂
[h(x) 6= f(x)] ≤ 1

2 − γ which is exactly the condition that
was used in our noise-free analysis.

We note that an okay learner is equivalent to simply a learner that satisfies Mansour and
McAllester notion of “index reduction hypothesis” [15], namely assuming that the algorithm
makes progress each step. However, we follow the original spirit of boosting as a method of
increasing weak (or okay) to strong. Further work [9], studies in detail these types of okay
learners (and even weaker learners), giving such learners for simple and advanced problems.

7 Conclusions

We have given matching upper and lower bounds for boosting in the presence of classification
noise. Intuitively, the key to our positive results for the MM algorithm is that changing the
label of any example does not change its weight by very much. This property also holds for the
earlier decision tree boosting algorithm analyzed by Kearns and Mansour [11], but as mentioned
earlier the size of the decision tree could be exponential in 1

γ . While the MM algorithm gives

a substantial improvement, the O( 1
γ4 ) hypothesis size of the MM algorithm is still larger than

the O( 1
γ2 ) which other boosting algorithms such as AdaBoost achieve.

Finally, we have defined a noise-tolerant okay learner which can be boosted to arbitrary
accuracy in the presence of noise. We hope this will be an aid to designing provably noise-
tolerant strong learners, just as the concept of boosting weak learning makes it easier to design
provably strong learners.

Follow-up work [9] has extended the analysis of branching program boosting algorithms
to different models of noise (probabilistic concepts [12] more similar to statistical regression),
giving another theoretical interpretation of noisy boosting.
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A p-biased pseudorandom function families

Let `(·) be a polynomial. Recall from [7] that a pseudorandom function family is a collection
of functions {fs : {0, 1}|s| → {0, 1}`(|s|)}s∈{0,1}∗ with the following two properties:

• (efficient evaluation) There is a deterministic algorithm which, given an n-bit seed s and
an n-bit input x, runs in time poly(n) and outputs fs(x).

• (pseudorandomness) For all polynomials Q, all probabilistic polynomial time oracle algo-
rithms M, and all sufficiently large n, we have

∣∣∣∣∣ Pr
F∈Fn

[MF (1n) outputs 1] − Pr
s∈{0,1}n

[Mfs(1n) outputs 1]

∣∣∣∣∣ <
1

Q(n)
.

where Fn is the set of all 2`(n)2n
functions which map {0, 1}n to {0, 1}`(n) (and hence

F ∈ Fn is a truly random function).

It is well known [7, 8] that pseudorandom function families exist if and only if one-way functions
exist.

For 0 < p < 1, we define a p-biased pseudorandom function family to be a family of functions
{fs : {0, 1}|s| → {0, 1}}s∈{0,1}∗ which satisfies the usual “efficient evaluation” property and the
following “p-biased pseudorandomness” property:

• (p-biased pseudorandomness) For all polynomials Q, all probabilistic polynomial time
oracle algorithms M, and all sufficiently large n, we have

∣∣∣∣∣ Pr
F∈Fn,p

[MF (1n) outputs 1] − Pr
s∈{0,1}n

[Mfs(1n) outputs 1]

∣∣∣∣∣ <
1

Q(n)
.

where Fn,p is the distribution over functions from {0, 1}n to {0, 1} such that each function

F has weight p|F
−1(1)|(1−p)|F

−1(0)|. Equivalently, drawing a function F ∈ Fn,p is done by
tossing a p-biased coin for each x ∈ {0, 1}n to determine F (x).

We use the fact that for any 0 < p < 1, if one-way functions exist then p-biased pseudoran-
dom function families exist. To see this, consider a pseudorandom function family {fs} in which
`(n) = n. Let {f ′

s} be a family of binary-valued functions defined as follows: f ′
s(x) = 1 if fs(x)

is one of the first dp2ne lexicographically ordered strings in {0, 1}n, and f ′
s(x) = 0 otherwise. It

is straightforward to verify that {f ′
s} is a p-biased pseudorandom function family.
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