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Abstra
t

Using te
hniques from learning theory, we show that any s-term DNF over n variables 
an

be 
omputed by a polynomial threshold fun
tion of degree O(n

1=3

log s). This upper bound

mat
hes, up to a logarithmi
 fa
tor, the longstanding lower bound given by Minsky and Papert

in their 1968 book Per
eptrons. As a 
onsequen
e of this upper bound we obtain the fastest

known algorithm for learning polynomial size DNF, one of the 
entral problems in 
omputational

learning theory.
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1 Introdu
tion

1.1 Polynomial Threshold Fun
tions

Let f be a Boolean fun
tion f : f0; 1g

n

! f�1; 1g and let p be a degree d polynomial in n

variables with rational 
oeÆ
ients. If the sign of p(x) equals f(x) for every x 2 f0; 1g

n

; then we

say that f is 
omputed by a polynomial threshold fun
tion of degree d. In their well known 1968

book Per
eptrons, Minsky and Papert studied some 
omputational aspe
ts of polynomial threshold

fun
tions from an Arti�
ial Intelligen
e perspe
tive [32℄. They proved, among other things, that no

polynomial threshold fun
tion of degree less than n 
an 
ompute the parity fun
tion on n variables,

and that there is a read-on
e DNF formula whi
h 
annot be 
omputed by any polynomial threshold

fun
tion of degree less than 
(n

1=3

). Sin
e then, 
omplexity theorists have used these and related

properties of polynomial threshold fun
tions to prove several important results in both 
ir
uit and

stru
tural 
omplexity [2, 3, 19℄.

In the 
omputational learning theory 
ommunity, learning a polynomial threshold fun
tion

from labeled examples has long been a 
entral problem and 
ontinues to be an a
tive area of

resear
h. A spe
ial fo
us of attention has been dire
ted toward learning polynomial threshold

fun
tions of degree 1, whi
h are known as linear threshold fun
tions. The problem of learning

a linear threshold fun
tion over f0; 1g

n


an be formulated as a linear programming problem and

thus 
an be solved in poly(n) time in both the PAC model of learning from random examples and

in the model of exa
t learning from equivalen
e queries [10, 31℄. Re�nements of the basi
 linear

programming approa
h have led to polynomial-time algorithms for PAC learning linear threshold

fun
tions in the presen
e of 
lassi�
ation noise [7, 14℄. Mu
h attention has also been given to

fast, simple heuristi
s, most notably the Winnow and Per
eptron algorithms, for learning linear

threshold fun
tions [12, 18, 25, 29, 34, 35℄.

1.2 Learning DNF

Another intensively studied problem in 
omputational learning theory, whi
h has met with less

su

ess, is the problem of learning DNF formulae. DNF are attra
tive from a learning theory

perspe
tive be
ause of their high expressive power (any Boolean fun
tion 
an be represented as

a DNF) and be
ause they seem to be a natural form of knowledge representation for humans.

Valiant �rst posed the question of whether DNF are eÆ
iently learnable in his seminal 1984 paper

introdu
ing the PAC learning model [37℄; more than �fteen years later this question is widely

regarded as one of the most important open problems in learning theory. While many partial

results have been given for restri
ted versions of the DNF learning problem (see e.g. [8, 9, 21, 23,

24, 26, 27, 33, 38, 39℄), the diÆ
ulty of the unrestri
ted DNF learning problem is eviden
ed by the

fa
t that, prior to the 
urrent work, only two algorithms were known whi
h improve on the naive

2

n

time bound [11, 36℄.

The �rst subexponential time algorithm for learning DNF was due to Bshouty [11℄, who gave an

algorithm whi
h learns any s-term DNF over n variables in time 2

O(

p

n log s log

3=2

n)

: At the heart of

Bshouty's algorithm is a stru
tural result whi
h shows that that any s-term DNF 
an be expressed

as an O(

p

n logn log s)-de
ision list; armed with this result, Bshouty uses a standard algorithm [22℄

for learning de
ision lists to obtain his DNF learning result.

Tarui and Tsukiji [36℄ gave a 
ompletely di�erent proof of a similar time bound for learning

DNF. They adapted the ma
hinery of \approximate in
lusion/ex
lusion" developed by Linial and

Nisan [28℄ to show that for any s-term DNF f and any distribution D over f0; 1g

n

; there is a


onjun
tion C of size O(

p

n log s) whi
h has jPr

x2D

[C(x) = f(x)℄ �

1

2

j = 2

�O(

p

n log n log s)

: Using

1



this result in 
onjun
tion with Freund's \boost-by-majority" algorithm [17℄, Tarui and Tsukiji

obtained an algorithm for learning s-term DNF in time 2

O(

p

n log n log s)

:

1.3 A New Approa
h: Learning DNF via Polynomial Threshold Fun
tions

In this paper we approa
h the DNF learning problem by representing a DNF formula as a low-

degree polynomial threshold fun
tion. As we observe in Se
tion 2, we 
an use known polynomial-

time algorithms for learning linear threshold fun
tions to learn polynomial threshold fun
tions of

degree d in time n

O(d)

. Thus, upper bounds on the degree of polynomial threshold fun
tions whi
h


ompute DNF translate dire
tly into bounds on the running time of a DNF learning algorithm.

Viewing DNF formulae as polynomial threshold fun
tions immediately yields a new interpreta-

tion of the DNF learning algorithms of Bshouty [11℄ and Tarui and Tsukiji [36℄. Sin
e any r-de
ision

list is equivalent to a polynomial threshold fun
tion of degree r [16℄, in the language of polynomial

threshold fun
tions Bshouty's stru
tural result implies that any s-term DNF 
an be expressed as

a polynomial threshold fun
tion of degree O(

p

n logn log s): In the 
ase of Tarui/Tsukiji, it 
an

be shown as a 
orollary of their results that any s-term DNF 
an be expressed as a polynomial

threshold fun
tion of degree O(

p

n log s): Thus, ea
h of these earlier learning algorithms implies an

O(

p

n logn) upper bound on the degree of a polynomial threshold fun
tion for any polynomial-size

DNF. A substantial gap still remains, though, between these O(

p

n logn) upper bounds and the


(n

1=3

) lower bound due to Minsky and Papert.

1

1.4 Our Results

Our �rst result is the following theorem:

Theorem 1 Any s-term DNF over f0; 1g

n

in whi
h ea
h 
onjun
tion is of size at most t 
an be

expressed as a polynomial threshold fun
tion of degree O(

p

t log s):

A useful feature of Theorem 1 is that the degree bound depends on

p

t whi
h 
an be mu
h

smaller than

p

n: Close inspe
tion of the results due to Tarui/Tsukiji reveal that a similar theorem


an be derived from their analysis. An advantage of our proof (whi
h is self-
ontained and does not

use approximate in
lusion-ex
lusion or boosting) is that it highlights this dependen
e whi
h plays

a 
ru
ial role in our later results.

We then use Theorem 1 to give several new results about the degree of polynomial threshold

fun
tions whi
h 
ompute various 
lasses of Boolean formulas.

By 
ombining Theorem 1 with a de
omposition te
hnique due to Bshouty [11℄ we obtain our

main result:

Theorem 2 Any s-term DNF over f0; 1g

n


an be expressed as a polynomial threshold fun
tion of

degree O(n

1=3

log s):

Theorem 2 essentially 
loses the gap whi
h was left open by the O(

p

n log n) upper bounds impli
it

in [11, 36℄; it shows that the Minsky-Papert lower bound is in fa
t tight, up to a logarithmi
 fa
tor,

for all polynomial-size DNF. Theorem 3 also yields a 2

O(n

1=3

log

2

n)

-time algorithm for learning

polynomial-size DNF, whi
h improves on the algorithms of Bshouty and Tarui/Tsukiji and is the

fastest known algorithm for the unrestri
ted DNF learning problem.

We 
an improve upon the bounds of Theorem 2 for read-on
e DNF:

1

Beigel et al. stated in [5℄ that Minsky and Papert gave an 
(

p

n) lower bound for DNF but this was in error [4℄.
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Theorem 3 Any read-on
e DNF over f0; 1g

n


an be expressed as a polynomial threshold fun
tion

of degree O(n

1=3

log

2=3

n):

Finally, we would like (but are 
urrently unable) to prove similar upper bounds on the degree of

polynomial threshold fun
tions whi
h 
ompute arbitrary AC

0

fun
tions. As a step in this dire
tion,

we prove

Theorem 4 For d � 3; any read-on
e Boolean formula of depth d over f^;_;:g 
an be 
omputed

by a polynomial threshold fun
tion of degree

~

O(n

1�

1

3�2

d�3

):

Theorem 4 implies that the 
lass of read-on
e AC

0

formulas 
an be learned in subexponential

time.

2 Preliminaries

2.1 DNF, De
ision Lists, De
ision Trees, and Polynomial Threshold Fun
tions

A disjun
tive normal form formula or DNF is a disjun
tion T

1

_ � � � _T

s

of 
onjun
tions of Boolean

literals. An s-term DNF is one whi
h has at most s 
onjun
tions (also known as terms) and a

t-DNF is one in whi
h ea
h term is of size at most t: A DNF (or Boolean formula) is read-on
e if

it 
ontains at most one o

urren
e of ea
h variable.

A k-de
ision list is a list L = (T

1

; f

1

); : : : ; (T

m

; f

m

) where ea
h T

i

is a term of size at most k

and ea
h f

i

is a Boolean fun
tion on f0; 1g

n

: Given an input x 2 f0; 1g

n

the value of L(x) is f

j

(x)

where j � 1 is su
h that T

j

(x) = 1 and T

i

(x) = 0 for i < j: If T

i

(x) = 0 for all 1 � i � m then

L(x) = 1:

A k-de
ision tree is a rooted binary tree where ea
h internal node has 2 
hildren and is labeled

with a term of size at most k and ea
h leaf is labeled with a Boolean fun
tion. A de
ision tree

represents a Boolean fun
tion as follows: if the root is labeled with a term T then then to 
ompute

the value of the tree on an input x 2 f0; 1g

n

we go left from the root if T (x) = 0 and go right

if T (x) = 1: We 
ontinue in this fashion until rea
hing a leaf ` labeled with some fun
tion f

`

and

then output f

`

(x):

The rank of a de
ision tree T is de�ned indu
tively as follows:

� If T is a single leaf then rank(T ) = 0:

� If T has subtrees T

0

and T

1

then

rank(T ) =

(

max (rank(T

0

); rank(T

1

)) if rank(T

0

) 6= rank(T

1

)

rank(T

0

) + 1 otherwise.

The following lemma will be useful:

Lemma 5 [6℄ Let f be 
omputed by a 1-de
ision tree of rank r whose leaves are labeled with the

fun
tions f

1

; : : : ; f

m

: Then there is an r-de
ision list (T

1

; f

1

); : : : ; (T

m

; f

m

) whi
h is equivalent to f:

A polynomial threshold fun
tion is de�ned by a multivariate polynomial p(x

1

; : : : ; x

n

): The

output of the polynomial threshold fun
tion on input x 2 f0; 1g

n

is 1 if p(x

1

; : : : ; x

n

) � 0 and is �1

otherwise. The degree of a polynomial threshold fun
tion is simply the degree of the polynomial p.

If ea
h 
oeÆ
ient a

�

of the polynomial is an integer, then the weight of the polynomial threshold

fun
tion is

P

ja

�

j:
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2.2 Learning theory ba
kground

We 
onsider two widely studied learning models: the Probably Approximately Corre
t (PAC) model

introdu
ed by Valiant [37℄ and the model of exa
t learning from equivalen
e queries introdu
ed by

Angluin [1℄ and Littlestone [29℄. In ea
h of these models a 
on
ept 
lass C is a 
olle
tion of Boolean

fun
tions 
 : f0; 1g

n

! f�1; 1g:

In the PAC model, for Boolean fun
tions 
; h on f0; 1g

n

and D a distribution on f0; 1g

n

; we

say that h is an �-approximator for 
 under D if Pr

D

[
(x) = h(x)℄ � 1 � �: The learning algo-

rithm has a

ess to an example ora
le EX(
;D) whi
h, when queried, provides a labeled example

hx; 
(x)i where x is drawn from f0; 1g

n

a

ording to the distribution D and 
 2 C is the unknown

target 
on
ept whi
h the algorithm is trying to learn. The goal of the learner is to generate an

�-approximator for 
 under D: An algorithm A is a PAC learning algorithm for a 
on
ept 
lass C

if the following 
ondition holds: for any 
 2 C; any distribution D on f0; 1g

n

; and any 0 < �; Æ < 1,

if A is given � and Æ and has a

ess to EX(
;D); then with probability at least 1� Æ algorithm A

outputs an �-approximator for 
 under D:

In the model of exa
t learning from equivalen
e queries, learning pro
eeds in a sequen
e of

stages. In ea
h stage the learning algorithm submits an equivalen
e query (a Boolean fun
tion h)

to the tea
her. If h is equivalent to the target 
on
ept 
 then the tea
her answers \YES" and

learning halts; otherwise the tea
her sends ba
k a point x 2 f0; 1g

n

su
h that h(x) 6= 
(x): A

learning algorithm A learns 
on
ept 
lass C in time t if for all 
 2 C; algorithm A 
an exa
tly

identify the target 
 in at most t time steps, using at most t equivalen
e queries, with hypotheses h

whi
h ea
h 
an be represented with t bits and 
an be evaluated on any point x 2 f0; 1g

n

in time t:

The following fa
t is well known:

Fa
t 6 ([10, 31℄) In both the PAC model and the model of exa
t learning from equivalen
e queries,

there are algorithms whi
h learn the 
lass of linear threshold fun
tions over f0; 1g

n

in time poly(n):

The algorithms of Fa
t 6 are based on polynomial time linear programming. We will need the

following extension of Fa
t 6:

Fa
t 7 Let C be a 
lass of fun
tions ea
h of whi
h 
an be expressed as an degree-d polynomial

threshold fun
tion over f0; 1g

n

: Then in both the PAC learning model and the model of exa
t learning

from equivalen
e queries, there is a learning algorithm for C whi
h runs in time n

O(d)

:

Proof sket
h: The idea is to run a polynomial-time algorithm for learning linear threshold fun
-

tions over an expanded version of the input spa
e. Sin
e z

2

= z for z 2 f0; 1g we 
an suppose

without loss of generality that the target polynomial threshold fun
tion is a multilinear polynomial

of degree d: Su
h a polynomial threshold fun
tion 
an be viewed as a linear threshold fun
tion

over the spa
e of all multilinear monomials of degree at most d: There are N =

P

d

i=1

�

n

i

�

� n

d

su
h monomials and hen
e by Fa
t 6 we 
an learn su
h a polynomial threshold fun
tion by running

a poly(N)-time algorithm for learning linear threshold fun
tions over the domain f0; 1g

N

where

N � n

d

:

2.3 The Minsky Papert Lower Bound

It is 
lear that any depth-1 
ir
uit over f^;_;:g 
an be expressed as a linear threshold fun
tion. In


ontrast, Minsky and Papert gave a 
(n

1=3

) lower bound on the degree of any polynomial threshold

fun
tion whi
h 
omputes a parti
ular read-on
e DNF. For 
ompleteness we give their simple proof.
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Theorem 8 (Minsky & Papert [32℄) Let f = T

1

_ � � � _ T

m

be an m-term DNF over f0; 1g

n

where ea
h term T

i

is a 
onjun
tion over 4m

2

variables, ea
h variable appears in pre
isely one term,

and n = 4m

3

: Then any polynomial threshold fun
tion whi
h 
omputes f must have degree at least

m:

Proof: Let p(x

1

; : : : ; x

n

) be a polynomial of degree d su
h that for all x 2 f0; 1g

n

we have p(x) � 0

i� x satis�es f: For i = 1; : : : ;m let S

i

be the set of 4m

2

variables whi
h appears in term T

i

: It

is 
lear that for any permutations �

1

; : : : ; �

m

over a set of size 4m

2

; we have p(S

1

; : : : ; S

m

) � 0 i�

p(�

1

(S

1

); : : : ; �

m

(S

m

)) � 0: Consequently the polynomial

q(x

1

; : : : ; x

n

) =

X

�

1

;:::;�

m

p(�

1

(S

1

); : : : ; �

m

(S

m

))

is of degree at most d and has q(x

1

; : : : ; x

n

) � 0 i� x satis�es f: Sin
e q(x) is symmetri
 in the ele-

ments of ea
h set S

i

; one 
an straightforwardly show that there is a polynomial r(

P

S

1

x

j

; � � � ;

P

S

m

x

j

)

of degree at most d su
h that r(

P

S

1

x

j

; : : : ;

P

S

m

x

j

) = q(x

1

; : : : ; x

n

) for all x 2 f0; 1g

n

: It follows

from the de�nition of f that for all (a

1

; : : : ; a

m

) 2 f0; 1; : : : ; 4m

2

g

m

; we have r(a

1

; : : : ; a

m

) �

0 i� some a

i

= 4m

2

: Let s(t) be the univariate polynomial r(a

1

; : : : ; a

m

) where a

i

= 4m

2

�

(t � (2i � 1))

2

for i = 1; : : : ;m: Then the degree of s is at most 2d; and moreover we have

s(0); s(2); s(4); : : : ; s(2m) < 0 and s(1); s(3); : : : ; s(2m � 1) � 0: Consequently s has at least 2m

real zeros, so 2d � deg(s) � 2m:

3 An Optimal Bound for Representing DNF by Polynomial Thresh-

old Fun
tions

In this se
tion we prove our main result: any s-term DNF over f0; 1g

n


an be 
omputed by a

polynomial threshold fun
tion of degree O(n

1=3

log s):

3.1 Low-Degree Polynomial Threshold Fun
tions for DNF with Small Terms

We start by proving Theorem 1:

Theorem 1 Any s-term t-DNF 
an be expressed as a polynomial threshold fun
tion of degree

O(

p

t log s):

This theorem plays an important role in the proof of the main result. We dis
uss some other


onsequen
es of Theorem 1 in Se
tion 4.

Proof of Theorem 1: Let f = T

1

_ T

2

_ � � � _ T

s

be an s-term t-DNF. The arithmetization of a

Boolean literal ` is x

j

if ` = x

j

and is 1�x

j

if ` = x

j

: Let S

i

denote the sum of the arithmetizations

of the literals appearing in T

i

and let t

i

denote the number of literals in T

i

:We de�ne the polynomial

Q

i

(x) = p

�

S

i

t

i

�

where

p(y) = C

d

�

y

�

1 +

1

t

��

:

Here C

d

is the d-th Chebyshev polynomial of the �rst kind and d = d

p

te:

Consider the polynomial threshold fun
tion \P (x) � s+

1

2

" where

5



P (x) =

s

X

i=1

Q

i

(x)

log 2s

:

Sin
e C

d

is a polynomial of degree d =

p

t and S

i

is a polynomial of degree 1, this polynomial

threshold fun
tion has degree

p

t log 2s: We will show that this polynomial threshold fun
tion


omputes the DNF f exa
tly.

The following basi
 fa
ts about the Chebyshev polynomials C

d

are well known [13℄:

� jC

d

(x)j � 1 for jxj � 1 with C

d

(1) = 1;

� C

0

d

(x) � d

2

for x > 1 with C

0

d

(1) = d

2

:

These fa
ts imply that p(1) � 2 but jp(y)j � 1 for y 2 [0; 1�

1

t

℄:

Fix any element x 2 f0; 1g

n

.

� If f(x) = 0 then in ea
h term T

i

at least one arithmetized literal takes value 0 on x: Thus for

ea
h i = 1; : : : ; s we have S

i

=t

i

� (t

i

�1)=t

i

� 1�

1

t

and hen
e ea
h jQ

i

(x)j � 1: Consequently

P (x) � s:

� If f(x) = 1 then some term T

i

must be satis�ed by x so S

i

=t

i

= 1: Consequently Q

i

(x) � 2

and hen
e Q

i

(x)

log 2s


ontributes at least 2s to P (x): Sin
e Q

i

(x)

log 2s

� �1 for all i; we have

P (x) � s+ 1:

3.2 From DNF to De
ision Trees

Let f be an arbitrary s-term DNF over n variables. As the �rst step in our 
onstru
tion of a

polynomial threshold fun
tion for f; we transform f into a 1-de
ision tree in whi
h ea
h leaf is

a DNF with small terms; this is a re�nement of a transformation given by Bshouty in [11℄. Our

original proof gave a bound on the size of the resulting de
ision tree. S. Lokam [30℄ has observed

that a slightly stronger bound 
an be obtained by 
onsidering the rank of the de
ision tree instead.

We use Lokam's approa
h in the following lemma:

Lemma 9 Let f : f0; 1g

n

! f�1; 1g be an s-term DNF. For any value 1 � t � n; f 
an be

expressed as a 1-de
ision tree T where

� ea
h leaf of T 
ontains an s-term t-DNF,

� T has rank at most (2n=t) log s+ 1.

Proof of Lemma 9: Let T

1

; : : : ; T

p

be the terms of f that have size at least t: Sin
e ea
h term T

i


ontains at least t literals, there must be some variable x

i

that o

urs (either negated or unnegated)

in at least pt=n of these terms. This variable x

i

is pla
ed in the root of the de
ision tree, and the

left and right 
hildren of x

i

will be de
ision trees for the restri
tions f j

x

i

 0

and f j

x

i

 1

respe
tively.

This 
onstru
tion is re
ursively 
arried out for ea
h of the fun
tions f j

x

i

 0

and f j

x

i

 1

; stopping

when a DNF with no terms larger than t is obtained.

It is 
lear that this re
ursive pro
edure generates some 1-de
ision tree T: Sin
e the fun
tion

obtained by �xing some subset of variables of an s-term DNF is an s-term DNF, we have that ea
h

leaf of T 
ontains an s-term t-DNF.

6



Let r(n; p) be the maximum (taken over all DNFs f on n variables with p terms having size at

least t) rank of the de
ision tree generated by the above pro
edure. We bound r(n; p) using the

following simple observation: if T

a

is a term of f whi
h 
ontains an unnegated (negated) variable

x

i

(x

i

), then the restri
tion f j

x

i

 0

(f j

x

i

 1

) 
auses the term T

a

to vanish. Sin
e the variable x

i

at the root of T o

urs in at least pt=n terms of size at least t; for at least one of the bit values

b 2 f0; 1g the restri
tion f j

x

i

 b

will be a DNF whi
h has at most p(1 �

t

2n

) terms of size at least

t: Let T

0

(T

1

) denote the subtree of T whi
h 
orresponds to the restri
tion f j

x

i

 0

(f j

x

i

 1

), and

suppose without loss of generality that f j

x

i

 0

is a s-term DNF whi
h has at most p(1�

t

2n

) terms

of size at least t: Note that rank(T

0

) � r(n� 1; p(1�

t

2n

)) and rank(T

1

) � r(n� 1; p): We 
onsider

several 
ases:

� If rank(T

0

) < rank(T

1

), then rank(T ) = rank(T

1

) and hen
e r(n; p) � r(n� 1; p):

� If rank(T

0

) > rank(T

1

), then rank(T ) = rank(T

0

) and hen
e r(n; p) � r(n� 1; p(1 �

t

2n

)):

� If rank(T

0

) = rank(T

1

), then rank(T ) = rank(T

0

) + 1 and hen
e r(n; p) � r(n � 1; p(1 �

t

2n

)) + 1:

To establish initial 
onditions for the re
urren
e relation we 
onsider the 
ase p = 1: In this 
ase

there is one term in f whi
h 
ontains more than t variables; without loss of generality we suppose

that this term is v

1

v

2

: : : v

`

: Then the 1-de
ision list

(v

1

; f j

v

1

 0

); : : : ; (v

`

; f j

v

`

 0

)

is equivalent to a rank-1 de
ision tree in whi
h ea
h leaf 
ontains an s-term t-DNF. Hen
e for any

n we have r(n; 1) = 1:

Solving this easy re
urren
e relation for r(n; p) shows that r(n; p) � (2n=t) ln p+1: Sin
e p � s

the theorem is proved.

3.3 An Optimal Bound for Representing DNF by Polynomial Threshold Fun
-

tions

Theorem 2 Let f be an s-term DNF over n variables. Then f 
an be expressed as a polynomial

threshold fun
tion of degree O(n

1=3

log s).

Proof: From Lemma 9 and Theorem 1, we know that f 
an be expressed as a 1-de
ision tree T of

rank (2n=t) ln s+1 where ea
h leaf 
ontains a polynomial threshold fun
tion of degree O(

p

t log s)

(the value of t will be �xed later). From Lemma 5 we know that this de
ision tree T 
an be

expressed as an r-de
ision list where r = (2n=t) ln s + 1 and ea
h output of the de
ision list is a

polynomial threshold fun
tion of degree O(

p

t log s): Call this de
ision list L:

Let C

1

; : : : ; C

R

be the 
onjun
tions 
ontained in the su

essive nodes of L and let P

1

(x); : : : ; P

R

(x)

be the 
orresponding polynomials for the asso
iated polynomial threshold fun
tions at the outputs,

i.e. the polynomial threshold fun
tion 
orresponding to the j-th 
onjun
tion C

j


omputes the fun
-

tion \P

j

(x) � 0:" If P

j

(x) = 0 for some x 2 f0; 1g

n

then we 
an repla
e P

j

(x) by P

j

(x)+Æ=2; where

Æ = minf�P

j

(x) : x 2 f0; 1g

n

and P

j

(x) < 0g; without 
hanging the fun
tion 
omputed by the

polynomial threshold fun
tion. Now by s
aling ea
h P

j

by an appropriate multipli
ative fa
tor we


an suppose without loss of generality that for ea
h j = 1; : : : ; R we have min

x2f0;1g

n jP

j

(x)j � 1:

Consider the polynomial

Q(x) = A

1

~

C

1

(x)P

1

(x) +A

2

~

C

2

(x)P

2

(x) + � � �+A

R

~

C

R

(x)P

R

(x): (1)

7



Here

~

C

j

is the zero/one valued polynomial whi
h 
orresponds to the monomial C

j

(e.g. if C

j

is

x

3

x

4

x

5

then

~

C

j

(x) is x

3

(1�x

4

)x

5

). Ea
h value A

j

is a positive 
onstant 
hosen so as to satisfy the

following 
onditions:

A

R

= 1;

A

R�1

> max

x2f0;1g

n

jA

R

~

C

R

(x)P

R

(x)j;

.

.

.

A

j

> max

x2f0;1g

n

jA

j+1

~

C

j+1

(x)P

j+1

(x) + � � �+A

R

~

C

R

(x)P

R

(x)j:

.

.

.

A

1

> max

x2f0;1g

n

jA

2

~

C

2

(x)P

2

(x) + � � �+A

R

~

C

R

(x)P

R

(x)j:

Then the polynomial threshold fun
tion \Q(x) � 0" 
omputes exa
tly the same fun
tion as the

de
ision list L: To see this, �x an input x 2 f0; 1g

n

: If j is the index of the �rst 
onjun
tion C

j

whi
h is satis�ed by x; then

~

C

1

(x) =

~

C

2

(x) = � � � =

~

C

j�1

(x) = 0; so the only terms of (1) whi
h

make a nonzero 
ontribution to Q are A

i

~

C

i

(x)P

i

(x) for i � j: Sin
e

~

C

j

(x) = 1 and jP

j

(x)j � 1; the


hoi
e of A

j

ensures that the sign of Q(x) will be the same as the sign of P

j

(x):

The degree of the polynomial Q(x) is at most (2n=t) ln s+ 1 +O(

p

t log s): If we take t = n

2=3

then this value is O(n

1=3

log s):

Applying Fa
t 7 gives our main DNF learning result:

Corollary 10 The 
lass of polynomial-size DNF 
an be learned (in both the PAC model and the

model of exa
t learning from equivalen
e queries) in time 2

O(n

1=3

log

2

n)

:

Remark: Several algorithms are known [7, 14℄ for PAC learning linear threshold fun
tions over

f0; 1g

n

in the presen
e of 
lassi�
ation noise in time poly(n): It follows that our time bounds for

learning DNF 
ontinue to hold in the presen
e of 
lassi�
ation noise.

Corollary 11 The 
(n

1=3

) lower bound given by Minsky and Papert for the degree of a polynomial

threshold fun
tion required to 
ompute a polynomial size DNF is tight up to a logarithmi
 fa
tor.

4 Dis
ussion

Sin
e t � n in Theorem 1, Fa
t 7 implies that there is a linear-programming based algorithm for

PAC learning DNF whi
h takes 2

O(

p

n log n log s)

time steps. Tarui and Tsukiji gave an identi
al time

bound for a di�erent algorithm based on hypothesis boosting using 
onjun
tions. In this se
tion we

note that the proof of Theorem 1 gives an upper bound on the weight of the resulting polynomial

threshold fun
tion. This observation 
an be used to prove 
orre
tness of the Tarui/Tsukiji boosting-

based algorithm and to show that simpler algorithms su
h as Winnow or Per
eptron 
an be used

to learn

~

O(

p

n) degree polynomial threshold fun
tions whi
h 
ompute a DNF (instead of boosting

algorithms or algorithms for solving linear programs).

The d-th Chebyshev polynomialC

d

(x) =

P

d

i=0

a

i

x

i

has all integer 
oeÆ
ients with ea
h ja

i

j � 2

d

[13℄. By inspe
tion of the proof of Theorem 1 we obtain

8



Corollary 12 Any s-term t-DNF 
an be expressed as a polynomial threshold fun
tion of degree

O(

p

t log s) and weight t

O(

p

t log s)

:

Using this 
orollary we obtain an easy proof of one of the main theorems from [36℄, des
ribed

in Se
tion 1.2, whi
h asserts that for any DNF f and any probability distribution D there exists

some short 
onjun
tion whi
h is noti
eably 
orrelated with f under D: We use a simple lemma due

to Goldmann, Hastad and Razborov ([20℄ Lemma 4) whi
h states that if a fun
tion f over f0; 1g

n


an be expressed as a majority of at most W �1-valued fun
tions (possibly with repetitions) drawn

from a set H; then for any distribution D over f0; 1g

n

there is some fun
tion h 2 H su
h that

jPr

x2D

[h(x) = f(x)℄�

1

2

j �

1

W

: In our setting we take H to be the set of all 
onjun
tions of length

O(

p

t log s) and their negations. There is a 
lear 
orresponden
e between polynomial threshold

fun
tions with integer 
oeÆ
ients and depth-2 
ir
uits with a MAJORITY gate at the root and

(possibly negated) AND gates at depth 1. Corollary 12 gives the required bound on W; and we

obtain

Corollary 13 Given any s-term t-DNF f and any distribution D over f0; 1g

n

; there is a 
onjun
-

tion C of size at most O(

p

t log s) su
h that jPr

x2D

[C(x) = f(x)℄�

1

2

j = 2

�O(

p

t log t log s)

:

Taking t = n gives Tarui and Tsukiji's Theorem 1.1, whi
h immediately implies the existen
e of a

boosting-based algorithm for learning DNF in time 2

~

O(n

1=2

)

:

Finally, we observe that the weight bound given in Corollary 12 implies that we do not need to

solve linear programs (or even to use boosting algorithms) in order to learn polynomial-sized DNF

in time 2

~

O(

p

n)

: If f is a polynomial threshold fun
tion of degree 1 and weight W over the domain

f0; 1g

N

; then either the Per
eptron algorithm or the Winnow algorithm 
an be used to learn f

in poly(N;W ) time steps [25, 29℄. As in Fa
t 7, we 
an view an degree-d polynomial threshold

fun
tion over f0; 1g

n

as a degree-1 polynomial threshold fun
tion over f0; 1g

n

d

; and thus we 
an in

fa
t use either the Per
eptron or Winnow algorithm to learn s-term DNF in time 2

O(

p

n log n log s)

:

5 Low-Degree Polynomial Threshold Fun
tions for Read-On
e DNF

As seen in Se
tion 2.3 the Minsky-Papert 
(n

1=3

) lower bound on polynomial threshold fun
tion

degree for polynomial size DNF is proved using a read-on
e DNF. Sin
e any read-on
e DNF 
an

have at most n terms, Theorem 2 implies that any read-on
e DNF 
an be expressed as a polynomial

threshold fun
tion of degree O(n

1=3

log n): Here we give a slightly better bound:

Theorem 3 Any read-on
e DNF over variables x

1

; : : : ; x

n


an be expressed as a polynomial thresh-

old fun
tion of degree O(n

1=3

log

2=3

n):

To prove Theorem 3 we use the following sharper version of Lemma 9:

Lemma 14 Let f : f0; 1g

n

! f�1; 1g be a read-on
e DNF. For any value 1 � t � n; f 
an be

expressed as a 1-de
ision tree T where ea
h leaf of T 
ontains a read-on
e t-DNF and T has rank

at most n=t:

Proof of Lemma 14: Let T

1

; : : : ; T

p

be the terms of f that have size at least t: We use the same

de
omposition pro
edure as in Lemma 9, and we let r(n; p) be the maximum (taken over all read-

on
e DNFs f on n variables with p terms having size at least t) rank of the de
ision tree generated

by the de
omposition pro
edure. Sin
e ea
h variable o

urs in at most one term, the re
urren
e

whi
h we obtain in this setting is r(n; p) � r(n � 1; p � 1) + 1: As before the initial 
ondition is

9



r(n; 1) = 1 for all n; and thus r(n; p) � p: Sin
e f is read-on
e we have that p � n=t; and the

lemma is proved. (Lemma 14)

Proof of Theorem 3: Let f be a s-term read-on
e DNF over f0; 1g

n

: Lemma 14, Theorem 1

and Lemma 5 together imply that f is 
omputed by a (n=t)-de
ision list where ea
h output of the

de
ision list is a polynomial threshold fun
tion of degree O(

p

t log s): As in the proof of Theorem

2 there is a polynomial threshold fun
tion for f whi
h is of degree n=t + O(

p

t log s): Sin
e f is

read-on
e s is at most n; and taking t = n

2=3

= log

2=3

n proves the theorem. (Theorem 3)

By the arguments given in Se
tion 2, we immediately have

Corollary 15 The 
lass of read-on
e DNF 
an be learned (in both the PAC model and the model

of exa
t learning from equivalen
e queries) in time 2

O(n

1=3

log

5=3

n)

:

Remark: Standard redu
tions are known in learning theory whi
h redu
e the problem of PAC

learning DNF to that of PAC learning read-on
e DNF. We note that applying these redu
tions here

does not yield a 2

~

O(n

1=3

)

-time algorithm for learning arbitrary polynomial-size DNF. The redu
tions

work by 
onverting a DNF with p(n) total o

urren
es of variables to a read-on
e DNF over p(n)

variables, and thus if used in 
onjun
tion with our theorem would yield a 2

~

O(p(n)

1=3

)

-time algorithm

for learning su
h a DNF.

6 Future Work

Many dire
tions remain for further resear
h. From a learning theory perspe
tive, an obvious goal is

to 
onstru
t learning algorithms for DNF whi
h have even lower time 
omplexity than the algorithm

of this paper. The Minsky-Papert lower bound implies that our time bounds are essentially optimal

for algorithms whi
h work by learning polynomial threshold fun
tions. It would be interesting to


lose the remaining gap between the Minsky-Papert 
(n

1=3

) lower bound and our O(n

1=3

logn)

upper bound on the degree of polynomial threshold fun
tions for polynomial-size DNF.

Another goal is to establish a bound on polynomial threshold fun
tion weight to go along with

our degree bound from Theorem 3. Is every polynomial-size DNF 
omputed by a polynomial

threshold fun
tion of degree

~

O(n

1=3

) and weight 2

~

O(n

1=3

)

? As in Se
tion 4, an aÆrmative answer

to this question would mean that the Per
eptron or Winnow algorithm 
ould be used instead of a

linear programming based algorithm.

From a 
ir
uit 
omplexity perspe
tive, an interesting goal is to obtain results analogous to our

upper bound (and to the Minsky-Papert lower bound) for polynomial-size 
ir
uits of depth greater

than 2. What upper and lower bounds 
an be established for the degree of polynomial threshold

fun
tions whi
h 
ompute arbitrary AC

0

fun
tions? As a step towards answering this question, we

show how the te
hniques of this paper 
an be used to obtain a nontrivial upper bound on the degree

of polynomial threshold fun
tions for read-on
e AC

0

fun
tions:

Theorem 4 For d � 2; any read-on
e Boolean formula of depth d over f^;_;:g 
an be 
omputed

by a polynomial threshold fun
tion of degree O(n

1�

1

3�2

d�3

log

1

3�2

d�3

n):

Proof: The proof is by indu
tion on d: The base 
ase d = 2 is supplied by Theorem 3. We suppose

that the theorem holds for d = 2; : : : ; k � 1 and prove it for d = k:

Let f be a depth-k read-on
e formula. We say that a term is a gate at the bottom level of f

together with the literals that feed into it. Sin
e f is read-on
e there 
an be at most n=t terms of

size greater than t: We apply the de
omposition pro
edure des
ribed in the proof of Lemma 9 to

10



transform f into a 1-de
ision tree whose leaves ea
h 
ontain a depth-k read-on
e formula in whi
h

ea
h term is of size at most t: As in Lemma 14 this de
ision tree is of rank at most n=t:

In ea
h leaf of this tree, we repla
e ea
h term with a new \dummy" variable that appears only

on
e. We thus obtain a de
ision tree of rank n=t whose leaves ea
h 
ontain a read-on
e formula

of depth k � 1 over these dummy variables. By the indu
tion hypothesis, ea
h su
h formula is

equivalent to a polynomial threshold fun
tion of degree O(n

1�

1

3�2

k�4

log

1

3�2

k�4

n) whi
h is de�ned

over the dummy variables des
ribed above.

In ea
h su
h polynomial threshold fun
tion, we now repla
e ea
h dummy variable with a real-

valued polynomial over the original variables whi
h interpolates pre
isely the Boolean fun
tion


omputed by the original term. Sin
e ea
h term was of size at most t; ea
h su
h polynomial is

of degree at most t: Consequently the fun
tion 
omputed at ea
h leaf of the de
ision tree is a

polynomial threshold fun
tion of degree O(tn

1�

1

3�2

k�4

log

1

3�2

k�4

n):

As in the proof of Theorem 3, our original fun
tion f 
an now be expressed as a polynomial

threshold fun
tion of degree

n

t

+O(tn

1�

1

3�2

k�4

log

1

3�2

k�4

n):

Taking t = n

1

3�2

k�3

= log

1

3�2

k�3

n proves the theorem.

Corollary 16 The 
lass of read-on
e AC

0

fun
tions 
an be learned in subexponential time.
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