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Abstract

This paper studies the problem of learning “low-complexity” probability distributions over the Boolean
hypercube {−1, 1}n. As in the standard PAC learning model, a learning problem in our framework is
defined by a class C of Boolean functions over {−1, 1}n, but in our model the learning algorithm is
given uniform random satisfying assignments of an unknown f ∈ C and its goal is to output a high-
accuracy approximation of the uniform distribution over f−1(1). This distribution learning problem may
be viewed as a demanding variant of standard Boolean function learning, where the learning algorithm
only receives positive examples and — more importantly — must output a hypothesis function which
has small multiplicative error (i.e. small error relative to the size of f−1(1)).

As our main results, we show that the two most widely studied classes of Boolean functions in
computational learning theory — linear threshold functions and DNF formulas — have efficient dis-
tribution learning algorithms in our model. Our algorithm for linear threshold functions runs in time
poly(n, 1/ε) and our algorithm for polynomial-size DNF runs in time quasipoly(n, 1/ε). We obtain both
these results via a general approach that combines a broad range of technical ingredients, including the
complexity-theoretic study of approximate counting and uniform generation; the Statistical Query model
from learning theory; and hypothesis testing techniques from statistics. A key conceptual and technical
ingredient of this approach is a new kind of algorithm which we devise called a “densifier” and which
we believe may be useful in other contexts.

We also establish limitations on efficient learnability in our model by showing that the existence of
certain types of cryptographic signature schemes imply that certain learning problems in our framework
are computationally hard. Via this connection we show that assuming the existence of sufficiently strong
unique signature schemes, there are no sub-exponential time learning algorithms in our framework for
intersections of two halfspaces, for degree-2 polynomial threshold functions, or for monotone 2-CNF
formulas. Thus our positive results for distribution learning come close to the limits of what can be
achieved by efficient algorithms.
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1 Introduction

The learnability of Boolean functions has been an important research topic in theoretical computer science
since Valiant’s work [Val84] 30 years ago. The existence of a strong connection between learning and
complexity theory is a recurring theme in this line of research, especially for the model of learning Boolean
functions under the uniform distribution on the hypercube. More recently – over the past decade or so –
the learnability of probability distributions has emerged as another important topic in TCS. Much of this
recent work has been on learning various types of continuous distributions, such as mixtures of Gaussians,
over high-dimensional spaces (see e.g., [Das99, KSV08, MV10, BS10] and many other papers); by and
large research in this distribution-learning vein does not have a “complexity-theoretic flavor.” One notable
exception was the early paper of Kearns et al. [KMR+94] (and followup work of Naor [Nao96]). The
[KMR+94] paper defined a model of learning discrete distributions over {−1, 1}m, where the distribution is
viewed as being generated by an m-output, n-input circuit that is fed uniform input strings from {−1, 1}n.
The [KMR+94] paper studied how the complexity of learning such a distribution scales with the complexity
of the circuit generating the distribution. However, as shown by [KMR+94], even very simple circuits
(depth-1 circuits of bounded fanin OR gates) can generate distributions that are hard to learn in this model.

In this paper we revisit the problem of learning discrete distributions over {−1, 1}n from a complexity-
theoretic perspective which is different from [KMR+94]. While the [KMR+94] work studies distributions
that are generated by a simple multi-output circuit as described above, here we consider distributions that
can be described as the uniform distribution over the satisfying assignments of a low-complexity Boolean
function. In other words, for a Boolean function f : {−1, 1}n → {−1, 1}, we consider the distribution
Uf−1(1) which is the uniform distribution over f−1(1), the satisfying assignments of f . Thus, in our frame-
work, a learning problem is defined by a class C of Boolean functions over {−1, 1}n. The unknown “target
distribution” is Uf−1(1) for an unknown f ∈ C, and the learning algorithm receives independent draws from
Uf−1(1) (i.e. independent uniform positive examples of f ). The goal of the learning algorithm is to output
a hypothesis distribution D over {−1, 1}n (or more precisely, a sampler for D) so that the total variation
distance dTV(D,Uf−1(1)) := 1

2

∑
x∈{−1,1}n |D(x) − Uf−1(1)(x)| is at most ε with probability 1 − δ. We

refer to such an algorithm for a class C of Boolean functions as a distribution learning algorithm for C.

1.1 Motivation and Related Work. Our learning framework has some similarities to the model of “uniform-
distribution learning from positive examples only” (see e.g. [DGL05, Den98]) since in both settings the
input to the algorithm is a sample of points drawn uniformly at random from f−1(1). However, there are
several important differences. One obvious difference is that in uniform-distribution learning from positive
examples the goal is to output a hypothesis function h, whereas here our goal is to output a hypothesis
distribution. A more significant difference is that the success criterion for our framework is much more
demanding than for standard uniform-distribution learning. In uniform-distribution learning of a Boolean
function f over the hypercube {−1, 1}n, the hypothesis h must satisfy Pr[h(x) 6= f(x)] ≤ ε, where the
probability is uniform over all 2n points in {−1, 1}n. Thus, for a given setting of the error parameter ε,
in uniform-distribution learning the constant −1 function is an acceptable hypothesis for any function f
that has |f−1(1)| ≤ ε2n; this essentially means that the learning algorithm gets a free pass whenever the
function is relatively biased towards outputting −1. In contrast, in our learning framework we measure
error by the total variation distance between Uf−1(1) and the hypothesis distribution D, so no such “easy
way out” is possible when |f−1(1)| is small; indeed the hardest instances in our learning scenario are often
those for which f−1(1) is a very small fraction of {−1, 1}n. This means that we require a hypothesis with
small multiplicative error relative to |f−1(1)|/2n rather than the additive-error criterion that is standard in
uniform-distribution learning. We are not aware of prior theoretical work on learning Boolean functions in
which such a “multiplicative-error” criterion has been employed (though the routinely used notions of error,
precision and recall in machine learning are similar to the multiplicative-error criterion used here).
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(We further observe that, as detailed below, we prove negative results in our learning model for classes
such as monotone 2-CNF formulas and degree-2 polynomial threshold functions. Since efficient algorithms
are known for learning these classes of functions, our negative results show that our distribution learning
model is indeed significantly more challenging than the standard uniform-distribution Boolean function
learning model for some natural and well-studied classes of functions.)

Concurrent (but independent) to our work, Anderson et al. [AGR13] considered the following problem:
Given access to random samples drawn uniformly from an unknown simplex X (i.e. an intersection of n+ 1
halfspaces) over Rn, estimate the simplex. More precisely, their task is to output n + 1 halfspaces H1, . . .,
Hn+1 such that if X ′ = H1 ∩ . . . ∩ Hn+1, then dTV (UX ,UX′) ≤ ε. Anderson et al. give a poly(n/ε)-
time algorithm for this problem. Combining this with an efficient algorithm for sampling from convex
bodies [DFK91], we get a poly(n/ε)-time algorithm that outputs a sampler for the distribution UX′ . This
is the same as our learning model for the class of intersections of n + 1 halfspaces, but with one crucial
difference: the underlying measure is the Lebesgue measure on Rn as opposed to the uniform measure on
{−1, 1}n (as it is in our case). The distinction between these two measures is indeed a very significant one;
as we show in this paper, an analogous result is impossible (under a cryptographic hardness assumption) even
for an intersection of two halfspaces for the uniform measure on {−1, 1}n. Perhaps not too surprisingly,
the techniques of Anderson et al. (algorithmic convex geometry and Independent Component Analysis) are
rather disjoint from the techniques in this paper.

On the hardness side, Naor [Nao96] constructed a familyF of explicit distributions such that under cryp-
tographic assumptions, there is no efficient learning algorithm for F . This family F is “low-complexity”
in the sense that there is an efficient algorithm which given random samples from an unknown distribution
X ∈ F and an input x, can compute Pr[X = x] to high accuracy. While our hardness results are for a dif-
ferent problem than that of Naor, the same intuition underlies both the results (i.e. using some modification
of secure signature schemes). However, because our requirements are different, we need to use a different
construction; in particular, our results are based on unique signature schemes whereas the construction in
[Nao96] employs a modification of NIZK based signature schemes.

We close this subsection with two motivations for the study of our framework, one non-technical and
one technical. Starting with the non-technical one, we briefly note that learning scenarios of the sort that we
consider — in which (i) the learner is given access only to positive examples over some discrete space, (ii)
positive examples are potentially a very sparse subset of all possible examples, and (iii) the learner’s goal is
to generate new positive examples — arise quite naturally in a range of real-world settings. As one example,
a language learner (such as a baby or an adult learning a new language) is typically exposed only to correct
utterances (positive examples), which comprise a tiny fraction of all possible vocalizations (sparsity), and
successful learning essentially amounts to being able to produce new correct utterances (positive examples).

As a more technical motivation, we note that certain specific learning results in our framework must
be achieved as a first step in order to beat the “curse of dimensionality” for some natural continuous high-
dimensional density estimation problems. A “k-piece d-dimensional histogram” is a probability distribution
p over the domain [0, 1]d of the following sort: [0, 1]d is partitioned into k axis-aligned hyper-rectangles
R1, . . . , Rk, and the distribution p is piecewise constant over each rectangle Ri. What is the complexity (in
terms of sample size and running time) of learning such a distribution from random examples – standard
approaches give algorithms whose complexity is exponential in d, but is there a way to do better? Our
learning model turns out to be highly relevant to this question; an easy reduction shows that a special case
of the k-piece d-dimensional histogram learning problem, corresponds exactly to the problem of learning
the uniform distribution over satisfying assignments of an unknown size-k decision tree over d Boolean
variables. Our positive results for DNF, described later in this introduction, give a dO(log(k/ε)) algorithm
for this problem, and thus break the “curse of dimensionality” for this special case of the multidimensional
histogram learning problem.
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1.2 Our results. We give both positive and negative results for our learning model.

Positive results: A general technique and its instantiations. We begin by presenting a general technique
for designing learning algorithms in our model. This technique combines approximate uniform generation
and counting algorithms from complexity theory, Statistical Query (SQ) learning algorithms from compu-
tational learning theory, and hypothesis testing techniques from statistics. A key new ingredient which lets
us combine these disparate tools is an algorithm called a “densifier” which we introduce and define in Sec-
tion 3. Roughly speaking, the densifier lets us prune the entire space {−1, 1}n to a set S which (essentially)
contains all of f−1(1) and is not too much larger than f−1(1) (so f−1(1) is “dense” in S). By generating ap-
proximately uniform elements of S it is possible to run an SQ learning algorithm and obtain a high-accuracy
hypothesis for f . This hypothesis can be used, in conjunction with an approximate uniform generation algo-
rithm, to obtain an efficiently samplable distribution which is close to the uniform distribution over f−1(1).
(The approximate counting algorithm is needed for technical reasons which we explain in Section 3.1.) In
Section 3 we describe this technique in detail and prove a general result establishing its effectiveness.

In Sections 4 and 5 we give our two main positive results which are obtained by applying this general
technique to specific classes of functions. The first of these is the class LTF of all linear threshold functions
(LTFs) over {−1, 1}n. We prove:

Theorem 1. (Informal statement) There is a poly(n, 1/ε)-time algorithm for learning Uf−1(1) where f is
any LTF over {−1, 1}n.

Our main technical contribution here is to construct a densifier for LTFs; we do this by carefully com-
bining known efficient online learning algorithms for LTFs (based on interior-point methods for linear pro-
gramming) [MT94] with known algorithms for approximate uniform generation and counting of satisfying
assignments of LTFs.

As mentioned before, our distribution learning algorithms essentially entail learning the underlying
Boolean function with a multiplicative error guarantee. Indeed, as a by-product of our approach in the proof
of Theorem 1, we also get the following statement which we feel is of independent interest:

Theorem 2. (Informal statement) There is a poly(n, 1/ε)-time algorithm which given random samples
from the distribution Uf−1(1) (for an unknown LTF f ), outputs a hypothesis h such that Prz∈Un [f(z) 6=
h(z)] ≤ ε · |f−1(1)|/2n.

Our second main positive result for a specific class, in Section 5, is for the well-studied class DNFn,s
of all size-s DNF formulas over n Boolean variables. Here our main technical contribution is to give
a densifier which runs in time nO(log(s/ε)) and outputs a DNF formula. A challenge here is that known
SQ algorithms for learning DNF formulas require time exponential in n1/3. To get around this, we show
that our densifier’s output DNF is an OR over nO(log(s/ε)) “metavariables” (corresponding to all possible
conjunctions that could be present in the DNF output by the densifier), and that it is possible to apply known
malicious noise tolerant SQ algorithms for learning sparse disjunctions as the SQ-learning component of
our general approach. Since efficient approximate uniform generation and approximate counting algorithms
are known [JVV86, KL83] for DNF formulas, with the above densifier and SQ learner we can carry out our
general technique, and we thereby obtain our second main positive result for a specific function class:

Theorem 3. (Informal statement) There is a nO(log(s/ε))-time algorithm for learning Uf−1(1) where f is
any s-term DNF formula over {−1, 1}n.

Similar to Theorem 2, our approach gives a learning algorithm for DNFs (over the uniform distribution on
{−1, 1}n) with a multiplicative error guarantee.

Theorem 4. (Informal statement) There is a nO(log(s/ε))-time algorithm which given random samples from
Uf−1(1) (for an unknown DNF f ), outputs a hypothesis h such that Prz∈Un [f(z) 6= h(z)] ≤ ε · |f−1(1)|/2n.
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We emphasize that our positive results for LTFs and DNFs go well beyond the standard techniques used
to learn these classes in other less demanding models. As evidence of this, observe that Theorem 2 and
Theorem 4 give learning algorithms for LTFs and DNFs with multiplicative error ε whereas all previous ap-
proaches in the learning theory literature incur an additive error. We also believe that the use of approximate
counting and approximate uniform generation algorithms is novel in this learning context (as well as the
new notion of a “densifier” which we introduce in this work) and may be of use elsewhere.

Negative results based on cryptography. We establish strong negative results for our learning model
via a connection to signature schemes from public-key cryptography. Intuitively, viewing Uf−1(1) as the
uniform distribution over signed messages, the ability to construct a high-accuracy hypothesis distribution
D given samples from Uf−1(1) implies the ability to generate new signed messages, which contradicts the
definition of a secure signature scheme. However, there are significant gaps in this rough intuition, and
getting around these gaps requires the use of more specialized machinery, namely unique signature schemes
[MRV99, Lys02]. Building on this intuition, we establish the following negative results which show that our
positive results (for LTFs and DNFs) lie quite close to the boundary of what can be efficiently learned in our
model (see Section F.1 for a precise statement):

Theorem 5. (Informal statement) Under known constructions of secure signature schemes, there is no
subexponential-time algorithm for learning Uf−1(1) where f is (i) an unknown monotone 2-CNF formula;
(ii) an unknown intersection of two halfspaces; or (iii) an unknown degree-2 polynomial threshold function.

Structure of this paper. After the preliminaries in Section 2, we present our general algorithmic technique
in Section 3. In Sections 4 and 5 we apply this technique to obtain efficient learning algorithms for LTFs
and DNFs respectively. Because of space constraints our hardness results are in Appendix F.

2 Preliminaries and Useful Tools

Notation and definitions. For n ∈ Z+, we will denote by [n] the set {1, . . . , n}. For a distribution D over
a finite setW we denote by D(x), x ∈ W , the probability mass that D assigns to point x, so D(x) ≥ 0 and∑

x∈W D(x) = 1. For S ⊆ W , we write D(S) to denote
∑

x∈S D(x). For a random variable x, we write
x ∼ D to indicate that x follows distribution D. Let D,D′ be distributions over W . The total variation
distance between D and D′ is dTV(D,D′)

def
= maxS⊆W |D(S)−D′(S)|.

We will denote by Cn, or simply C, a Boolean concept class, i.e., a class of functions mapping {−1, 1}n
to {−1, 1}. We usually consider syntactically defined classes of functions such as the class of all n-variable
linear threshold functions or the class of all n-variable s-term DNF formulas. We stress that throughout this
paper a class C is viewed as a representation class. Thus we will say that an algorithm “takes as input a
function f ∈ C” to mean that the input of the algorithm is a representation of f ∈ C.

We will use the notation Un (or simply U , when the dimension n is clear from the context) for the
uniform distribution over {−1, 1}n. Let f : {−1, 1}n → {−1, 1}. We will denote by Uf−1(1) the uniform
distribution over satisfying assignments of f . Let D be a distribution over {−1, 1}n with 0 < D(f−1(1)) <
1. We write Df,+ to denote the conditional distribution D restricted to f−1(1); so for x ∈ f−1(1) we have
Df,+(x) = D(x)/D(f−1(1)). Observe that, with this notation, we have that Uf−1(1) ≡ Uf,+.

We use familiar notions of samplers, approximate counting, and approximate uniform generation; see
Appendix A for precise definitions of these notions and of the learning model that we study.

Hypothesis testing. Our algorithms work by generating a collection of hypothesis distributions, one of
which is close to the target distribution Uf−1(1). Thus, we need a way to select a high-accuracy hypothesis
distribution from a pool of candidate distributions which contains at least one high-accuracy hypothesis.
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This problem has been well studied, see e.g. Chapter 7 of [DL01]. We use the following result which is an
extension of Lemma C.1 of [DDS12a] (see see Appendix B for a discussion and proof):

Proposition 6. Let D be a distribution over a finite set W and Dε = {Dj}Nj=1 be a collection of N
distributions over W with the property that there exists i ∈ [N ] such that dTV(D,Di) ≤ ε. There is an
algorithm T D which is given an accuracy parameter ε, a confidence parameter δ, and is provided with
access to (i) samplers for D and Dk, for all k ∈ [N ], and (ii) a (1 + β)–approximate evaluation oracle
EVALDk(β), for all k ∈ [N ], which, on input w ∈ W , deterministically outputs a value D̃β

k (w), such that
Dk(w)/(1 + β) ≤ D̃β

k (w) ≤ (1 + β)Dk(w), where β > 0 is any parameter satisfying (1 + β)2 ≤ 1 + ε/8.
This algorithm has the following behavior: It makes m = O

(
(1/ε2) · (logN + log(1/δ))

)
draws from

D and from each Dk, k ∈ [N ], and O(m) calls to each oracle EVALDk(β), k ∈ [N ], performs O(mN2)
arithmetic operations, and with probability 1−δ outputs an index i? ∈ [N ] that satisfies dTV(D,Di?) ≤ 6ε.

3 A general technique for learning in our model

In this section we present a general technique for designing learning algorithms in our model. Our main
positive results follow this framework.

At the heart of our approach is a new type of algorithm which we call a densifier for a concept class
C. Roughly speaking, this is an algorithm which, given uniform random positive examples of an unknown
f ∈ C, constructs a set S which (essentially) contains all of f−1(1) and which is such that f−1(1) is
“dense” in S. Our main result in this section, Theorem 8, states (roughly speaking) that the existence of
(i) a computationally efficient densifier, (ii) an efficient approximate uniform generation algorithm, (iii) an
efficient approximate counting algorithm, and (iv) an efficient statistical query (SQ) learning algorithm,
together suffice to yield an efficient algorithm for our distribution learning problem.

Recall that the statistical query (SQ) learning model is a natural restriction of the PAC learning model in
which a learning algorithm is allowed to obtain estimates of statistical properties of the examples but cannot
directly access the examples themselves. Let D be a distribution over {−1, 1}n. In the SQ model [Kea98],
the learning algorithm has access to a statistical query oracle, STAT(f,D), to which it can make queries
of the form (χ, τ), where χ : {−1, 1}n × {−1, 1} → [−1, 1] is the query function and τ > 0 is the
tolerance. The oracle responds with a value v such that |Ex∼D [χ (x, f(x))]− v| ≤ τ , where f ∈ C is
the target concept. The goal of the algorithm is to output a hypothesis h : {−1, 1}n → {−1, 1} such
that Prx∼D[h(x) 6= f(x)] ≤ ε. (See Appendix A for a precise definition of Statistical Query learning.)
We sometimes write an “(ε, δ)–SQ learning algorithm” to explicitly state the accuracy parameter ε and
confidence parameter δ.

To state our main result, we introduce the notion of a densifier for a class C of Boolean functions.
Intuitively, a densifier is an algorithm which is given access to samples from Uf−1(1) (where f is an unknown
element of C) and outputs a subset S ⊆ {−1, 1}n which is such that (i) S contains “almost all” of f−1(1),
but (ii) S is “much smaller” than {−1, 1}n – small enough that f−1(1) ∩ S is (moderately) “dense” in S.

Definition 7. Fix a function γ(n, 1/ε, 1/δ) taking values in (0, 1] and a class C of n-variable Boolean
functions. An algorithm A(C,C′)

den is said to be a γ-densifier for function class C using class C′ if it has the
following behavior: For every ε, δ > 0, every 1/2n ≤ p̂ ≤ 1, and every f ∈ C, given as input ε, δ, p̂ and a set

of independent samples from Uf−1(1), the following holds: Let p
def
= Prx∼Un [f(x) = 1]. If p ≤ p̂ < (1+ε)p,

then with probability at least 1− δ, algorithm A(C,C′)
den outputs a function g ∈ C′ such that:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε, and (b) Prx∼Ug−1(1)

[f(x) = 1] ≥ γ(n, 1/ε, 1/δ).

We will sometimes write an “(ε, γ, δ)–densifier” to explicitly state the parameters in the definition.
Our main conceptual approach is summarized in the following theorem:
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Theorem 8 (General Algorithmic Approach). Let C, C′ be classes of n-variable Boolean functions. Suppose
that

• A(C,C′)
den is an (ε, γ, δ)-densifier for C using C′ running in time Tden(n, 1/ε, 1/δ).

• AC′gen is an (ε, δ)-approximate uniform generation algorithm for C′ running in time Tgen(n, 1/ε, 1/δ).

• AC′count is an (ε, δ)-approximate counting algorithm for C′ running in time Tcount(n, 1/ε, 1/δ).

• ACSQ is an (ε, δ)-SQ learning algorithm for C such that: ACSQ runs in time t1(n, 1/ε, 1/δ) , t2(n) is the
maximum time needed to evaluate any query provided to STAT(f,D), and τ(n, 1/ε) is the minimum
value of the tolerance parameter ever provided to STAT(f,D) in the course of ACSQ’s execution.

Then there exists a distribution learning algorithm AC for C. The running time of AC is polynomial
in Tden(n, 1/ε, 1/δ), 1/γ, Tgen(n, 1/ε, 1/δ), Tcount (n, 1/ε, 1/δ), t1(n, 1/ε, 1/δ), t2(n) and 1/τ(n, 1/ε)
provided that Tden(·), Tgen(·), Tcount(·), t1(·), t2(·) and τ(·) are polynomial in their input parameters.

Sketch of the algorithm. The distribution learning algorithm AC for C works in three main conceptual
steps. Let f ∈ C be the unknown target function and recall that our algorithmAC is given access to samples
from Uf−1(1).

(1) In the first step, AC runs the densifier A(C,C′)
den on a set of samples from Uf−1(1). Let g ∈ C′ be the

output function of A(C,C′)
den .

Note that by setting the input to the approximate uniform generation algorithm AC′gen to g, we obtain an
approximate sampler Cg for Ug−1(1). The output distribution D′ of this sampler is (by definition of an
approximate uniform generation algorithm, see Definition 18) supported on g−1(1) and is close to D =
Ug−1(1) in total variation distance.

(2) The second step is to run the SQ-algorithmACSQ to learn the function f ∈ C under the distribution D.
Let h be the hypothesis constructed by ACSQ.

(3) In the third and final step, the algorithm simply samples from Cg until it obtains an example x that
has h(x) = 1, and outputs this x.

Remark 9. The reader may have noticed that the above sketch does not seem to use the approximate count-
ing algorithm AC′count; we will revisit this point below.

3.1 Intuition, motivation and discussion. To motivate the high-level idea behind our algorithm, consider
a setting in which f−1(1) is only a tiny fraction (say 1/2Θ(n)) of {−1, 1}n. It is intuitively clear that we
would like to use some kind of a learning algorithm in order to come up with a good approximation of
f−1(1), but we need this approximation to be accurate at the “scale” of f−1(1) itself rather than at the scale
of all of {−1, 1}n, so we need some way to ensure that the learning algorithm’s hypothesis is accurate at this
small scale. By using a densifier to construct g such that g−1(1) is not too much larger than f−1(1), we can
use the distribution D = Ug−1(1) to run a learning algorithm and obtain a good approximation of f−1(1) at
the desired scale. (Since dTV(D,D′) is small, this implies we also learn f with respect to D′.)

To motivate our use of an SQ learning algorithm rather than a standard PAC learning algorithm, observe
that there seems to be no way to obtain correctly labeled examples distributed according to D. However,
we show that it is possible to accurately simulate statistical queries under D having access only to random
positive examples from f−1(1) and to unlabeled examples drawn from D (subject to additional technical
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caveats discussed in the appendix). We discuss the issue of how it is possible to successfully use an SQ
learner in our setting in more detail below.

Discussion and implementation issues. While the three main conceptual steps (1)-(3) of our algorithm
may (hopefully) seem quite intuitive in light of the preceding motivation, a few issues immediately arise
in thinking about how to implement these steps. The first one concerns running the SQ-algorithm ACSQ in
Step 2 to learn f under distribution D (recall that D = Ug−1(1) and is close to D′). Our algorithm AC

needs to be able to efficiently simulate ACSQ given its available information. While it would be easy to do
so given access to random labeled examples (x, f(x)), where x ∼ D, such information is not available in
our setting. To overcome this obstacle, we show (see Proposition 29) that for any samplable distribution D,
we can efficiently simulate a statistical query algorithm under D using samples from Df,+. This does not
quite solve the problem, since we only have samples from Uf−1(1). However, we show (see Claim 32) that
for our setting, i.e., for D = Ug−1(1), we can simulate a sample from Df,+ by a simple rejection sampling
procedure using samples from Uf−1(1) and query access to g.

Some more issues remain to be handled. First, the simulation of the statistical query algorithm sketched
in the previous paragraph only works under the assumption that we are given a sufficiently accurate approx-
imation b̃f of the probability Prx∼D[f(x) = 1]. (Intuitively, our approximation should be smaller than
the smallest tolerance τ provided to the statistical query oracle by the algorithm ACSQ.) Second, by Defini-
tion 7, the densifier only succeeds under the assumption that it is given in its input an (1 + ε)-multiplicative
approximation p̂ to p = Prx∈Un [f(x) = 1].

We handle these issues as follows: First, we show (see Claim 33) that, given an accurate estimate p̂ and
a “dense” function g ∈ C′, we can use the approximate counting algorithm AC′count to efficiently compute an
accurate estimate b̃f . (This is one reason why Theorem 8 requires an approximate counting algorithm for
C′.) To deal with the fact that we do not a priori have an accurate estimate p̂, we run our sketched algorithm
for all possible values of Prx∼Un [f(x) = 1] in an appropriate multiplicative “grid” of size N = O(n/ε),
covering all possible values from 1/2n to 1. We thus obtain a setD ofN candidate distributions one of which
is guaranteed to be close to the true distribution Uf−1(1) in variation distance. At this point, we would like to
apply our hypothesis testing machinery (Proposition 6) to find such a distribution. However, in order to use
Proposition 6, in addition to sample access to the candidate distributions (and the distribution being learned),
we also require a multiplicatively accurate approximate evaluation oracle to evaluate the probability mass
of any point under the candidate distributions. We show (see Lemma 43) that this is possible in our generic
setting, using properties of the densifier and the approximate counting algorithm AC′count for C′.

This concludes the overview of our approach; see Appendix C for a full proof of Theorem 8.

4 Linear Threshold Functions

In this section we apply our general framework from Section 3 to obtain a polynomial time distribution
learning algorithm for n-variable linear threshold functions over {−1, 1}n. More formally, we prove:

Theorem 10. There is an algorithm ALTF which is a poly (n, 1/ε, 1/δ)-time distribution learning algo-
rithm for the class LTFn of n-variable linear threshold functions over {−1, 1}n.

The above theorem will follow as an application of Theorem 8 for C′ = C = LTFn. As detailed in
Appendix D, the literature provides us with three of the four ingredients that our general approach requires
for LTFs – approximate uniform generation, approximate counting, and Statistical Query learning – and our
main technical contribution is giving the fourth necessary ingredient, a densifier. This is the main technical
contribution of this section and is summarized in the following theorem:
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Theorem 11. Set γ(ε, δ, n)
def
= Θ

(
δ/(n2 log n)

)
. There is an (ε, γ, δ)–densifier ALTF

den for LTFn that, for
any input parameters 0 < ε, δ, 1/2n ≤ p̂ ≤ 1, outputs a function g ∈ LTFn and runs in time poly(n, 1/ε,
log(1/δ)).

Discussion and intuition. Before we prove Theorem 11, we provide some intuition. Let f ∈ LTFn be the
unknown LTF and suppose that we would like to design an (ε, γ, δ)–densifier ALTF

den for f . That is, given
sample access to Uf−1(1), and a number p̂ satisfying p ≤ p̂ < (1 + ε)p, where p = Prx∈Un [f(x) = 1],
we would like to efficiently compute (a weights–based representation for) an LTF g : {−1, 1}n → {−1, 1}
such that the following conditions are satisfied:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε; and (b) Prx∼Un [g(x) = 1] ≤ (1/γ) ·Prx∼Un [f = 1].

(While condition (b) above appears slightly different than property (b) in our Definition 7, because of prop-
erty (a), the two statements are essentially equivalent up to a factor of 1/(1− ε) in the value of γ.)

We start by noting that it is easy to handle the case that p̂ is large. In particular, observe that if p̂ ≥ 2γ
then p = Prx∼Un [f(x) = 1] ≥ p̂/(1 + ε) ≥ p̂/2 ≥ γ, and we can just output g ≡ 1 since it satisfies both
properties of the definition. For the following intuitive discussion we will assume that p̂ ≤ 2γ.

Recall that our desired function g is an LTF, i.e., g(x) = sign(v · x− t), for some (v, t) ∈ Rn+1. Recall
also that our densifier has sample access to Uf−1(1), so it can obtain random positive examples of f , each
of which gives a linear constraint over the v, t variables. Hence a natural first approach is to attempt to
construct an appropriate linear program over these variables whose feasible solutions satisfy conditions (a)
and (b) above. We begin by analyzing this approach; while it turns out to not quite work, it will gives us
valuable intuition for our actual algorithm, which is presented further below.

Following this approach, condition (a) is relatively easy to satisfy. Indeed, consider any ε > 0 and
suppose we want to construct an LTF g = sign(v ·x− t) such that Prx∼Uf−1(1)

[g(x) = 1] ≥ 1−ε. This can
be done as follows: draw a set S+ ofN+ = Θ

(
(1/ε) · (n2 + log(1/δ))

)
samples from Uf−1(1) and consider

a linear program LP+ with variables (w, θ) ∈ Rn+1 that enforces all these examples to be positive. That is,
for each x ∈ S+, we will have an inequality w · x ≥ θ. It is clear that LP+ is feasible (any weights–based
representation for f is a feasible solution) and that it can be solved in poly(n, 1/ε, log(1/δ)) time, since it
is defined by O(N+) many linear constraints and the coefficients of the constraint matrix are in {±1}. The
following simple claim, proved in Appendix D, shows that with high probability any feasible solution of
LP+ satisfies condition (a):

Claim 12. With probability 1− δ over S+, any g ∈ LTFn consistent with S+ satisfies condition (a).

The above claim implies that with high probability any feasible solution (w∗, θ∗) to LP+ has g∗(x) =
sign(w∗ ·x−θ∗) satisfy condition (a), but an arbitrary feasible solution to LP+ is by no means guaranteed to
satisfy condition (b). (Note for example that the constant 1 function is certainly feasible for LP+.) Hence,
a natural idea is to include additional constraints in our linear program so that condition (b) is also satisfied.

Along these lines, consider the following procedure: Draw a set S−of N− = bδ/p̂c uniform unlabeled
samples from {−1, 1}n and label them negative. That is, for each sample x ∈ S−, we add the constraint
w · x < θ to our linear program. Let LP be the linear program that contains all the constraints defined
by S+ ∪ S−. It is not hard to prove that with probability at least 1 − 2δ over the sample S−, we have that
S− ⊆ f−1(−1) and hence (any weight based representation of) f is a feasible solution to LP . In fact, it is
possible to show that if γ is sufficiently small — roughly, γ ≤ δ/

(
4(n2 + log(1/δ))

)
is what is required —

then with high probability each solution to LP also satisfies condition (b). The catch, of course, is that the
above procedure is not computationally efficient because N− may be very large – if p̂ is very small, then it
is infeasible even to write down the linear program LP .
Algorithm Description. The above discussion motivates our actual densifier algorithm as follows: The
problem with the above described naive approach is that it generates (the potentially very large set) S− all
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at once at the beginning of the algorithm. Note that having a large set S− is not necessarily in and of itself
a problem, since one could potentially use the ellipsoid method to solve LP if one could obtain an efficient
separation oracle. Thus intuitively, if one had an online algorithm which would generate S− on the fly, then
one could potentially get a feasible solution to LP in polynomial time.

More concretely, our densifier ALTF
den will invoke a computationally efficient online learning algorithm

for LTFs. In particular,ALTF
den will run the online learnerALTF

online for a sequence of stages and in each stage it
will provide as counterexamples to ALTF

online, random labeled examples from a carefully chosen distribution.
These examples will be positive for the online learner’s current hypothesis, but negative for f (with high
probability). SinceALTF

online makes a small number of mistakes in the worst-case, this process is guaranteed to
terminate after a small number of stages (since in each stage we force the online learner to make a mistake).

In Appendix D.2 we formalize this intuitive discussion by giving a precise description of the algorithm
ALTF

den and proving the following theorem, which directly gives Theorem 11:

Theorem 13. Algorithm ALTF
den (Uf−1(1), ε, δ, p̂) runs in time poly (n, 1/ε, log(1/δ)). If p ≤ p̂ < (1 + ε)p

then with probability 1 − δ it outputs a vector (w, θ) such that g(x) = sign(w · x − θ) satisfies conditions
(a) and (b).

5 DNFs

In this section we apply Theorem 8 to give a quasipolynomial-time distribution learning algorithm for s-term
DNF formulas. Let DNFn,s denote the class of all s-term DNF formulas over n Boolean variables (which
for convenience we think of as 0/1 variables). Our main result of this section is:

Theorem 14. There is an algorithm ADNFn,s which is a distribution learning algorithm for the class
DNFn,s. Given input parameters ε, δ the algorithm runs in time poly

(
nlog(s/ε), log(1/δ)

)
.

Even in the standard uniform distribution learning model the fastest known running time for learning
s-term DNF formulas to accuracy ε is poly(nlog(s/ε), log(1/δ)) [Ver90, Val12]. Thus it seems likely that
obtaining a poly(n, s, 1/ε)-time algorithm would require a significant breakthrough in learning theory.

For our application of Theorem 8 for DNFs we shall have C = DNFn,s and C′ = DNFn,t for some t
which we shall specify later. As detailed in Appendix E, the literature straightforwardly provides us with two
of the three ingredients that our general approach requires for DNF, namely approximate uniform generation
and approximate counting. As we explain below, though, some work is required for the Statistical Query
portion of our approach, and we give an entirely new algorithm for the densifier. In the rest of this section
we sketch the SQ algorithm and densifier construction and show how these ingredients are combined to give
Theorem 14; full details are provided in Appendix E.

Statistical Query learning. The fastest known algorithm in the literature for SQ learning s-term DNF
formulas under arbitrary distributions runs in time nO(n1/3 log s) · poly(1/ε) [KS04], which is much more
than our desired running time bound. However, we show that we are able to use known malicious noise
tolerant SQ learning algorithms for learning sparse disjunctions over N Boolean variables rather than DNF
formulas. In more detail, our densifier will provide us with a set of N = nO(log(s/ε)) many conjunctions
which is such that the target function f is very close to a disjunction (which we call f ′) over an unknown
subset of at most s of these N conjunctions. Thus intuitively any learning algorithm for disjunctions, run
over the “feature space” of conjunctions provided by the densifier, would succeed if the target function
were f ′, but the target function is actually f (which is not necessarily exactly a disjunction over these N
variables). Fortunately, known results on the malicious noise tolerance of specific SQ learning algorithms
imply that it is in fact possible to use these SQ algorithms to learn f to high accuracy, as we explain below.

The precise SQ learning result that we will use is the following theorem, which is a direct consequence
of, e.g., Theorems 5 and 6 of [Dec93] or alteratively of Theorems 5 and 6 of [AD98]:
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Theorem 15. (Malicious noise tolerant SQ algorithm for learning sparse disjunctions) Let CDISJ,k be the
class of all disjunctions of length at most k over N Boolean variables x1, . . . , xN . There is a distribution-
independent SQ learning algorithmADISJ

SQ for CDISJ,k that has running time t1 = poly(N, 1/ε, log(1/δ)),
uses at most t2 = poly(N) time to evaluate each query, and requires tolerance of its queries no smaller
than τ = 1/poly(k, 1/ε). The algorithm outputs a hypothesis which is a disjunction over x1, . . . , xN .

Moreover, there is a fixed polynomial `(·) such that algorithm ADISJ
SQ has the following property: Fix a

distribution D over {0, 1}N . Let f be an N -variable Boolean function which is such that Prx∼D[f ′(x) 6=
f(x)] ≤ κ, where f ′ ∈ CDISJ,k is some k-variable disjunction and κ ≤ `(ε/k) < ε/2. Then if ADISJ

SQ is
run with a STAT(f,D) oracle, with probability 1 − δ it outputs a hypothesis h such that Prx∼D[h(x) 6=
f ′(x)] ≤ ε/2, and hence Prx∼D[h(x 6= f(x)] ≤ ε.

A densifier for DNFn,s. Our main theorem giving a densifier for DNF formulas is the following:

Theorem 16. Let γ(n, s, 1/ε, 1/δ) = 1/(4n2 log(2s/`(ε/s)) log(s/δ)). Algorithm ADNFn,s
den (Uf−1(1), ε, δ, p̂)

outputs a collection S of conjunctions C1, . . . , C|S| and has the following performance guarantee: If p
def
=

Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)p, then with probability at least 1 − δ, the function g(x)
def
= ∨i∈[|S|]Ci

satisfies the following:

1. Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε; 2. Prx∼Ug−1(1)

[f(x) = 1] ≥ γ(n, s, 1/ε, 1/δ);

3. There is a DNF f ′ = Ci1∨· · ·∨Cis′ , which is a disjunction of s′ ≤ s of the conjunctionsC1, . . . , C|S|,
such that Prx∼Ug−1(1)

[f ′(x) 6= f(x)] ≤ `(ε/s), where `(·) is the polynomial from Theorem 15.

The size of S and the running time of ADNFn,s
den (Uf−1(1), ε, δ, p̂) is poly(nlog(s/ε), log(1/δ)).

With a slight abuse of terminology we may rephrase the above theorem as saying that ADNFn,s
den is a

(ε, γ, δ)-densifier for function class C = DNFn,s using class C′ = DNFn,t where t = nO(log(s/ε)).

Proof sketch of Theorem 16: Let f = T1 ∨ · · · ∨ Ts be the target s-term DNF formula, where T1, . . . , Ts
are the terms (conjunctions). The high-level idea of our densifier is quite simple: If Ti is a term which is
“reasonably likely” to be satisfied by a uniform draw of x from f−1(1), then Ti is at least “mildly likely”
to be satisfied by r = 2 log n consecutive independent draws of x from f−1(1). Such a sequence of draws
x1, . . . , xr will with high probability uniquely identify Ti. By repeating this process sufficiently many times,
with high probability we will obtain a pool C1, . . . , C|S| of conjunctions which contains all of the terms
Ti that are reasonably likely to be satisfied by a uniform draw of x from f−1(1). Theorem 16 follows
straightforwardly from this. We give detailed pseudocode for our densifier algorithm, and a full proof of
Theorem 16, in Appendix E.

We conclude this section by showing how Theorem 14 follows from the SQ algorithm and densifier
described above.

Proof of Theorem 14. The proof is essentially just an application of Theorem 8. The only twist is the use
of a SQ disjunction learning algorithm rather than a DNF learning algorithm, but the special properties of
Algorithm ADISJ

SQ let this go through without a problem.
In more detail, in Step 2(e) of AlgorithmA′C (see Section C.2), in the execution of AlgorithmASQ−SIM,

the SQ algorithm that is simulated is the algorithm ADISJ
SQ run over the feature space S of all conjunctions

that are output by Algorithm ADNFn,s
den in Step 1 of Algorithm A′C (i.e., these conjunctions play the role

of variables x1, . . . , xN for the SQ learning algorithm). Property (3) of Theorem 16 and Theorem 15
together imply that the algorithm ADISJ

SQ , run on a STAT(f,Ug−1(1)) oracle with parameters ε, δ, would
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with probability 1− δ output a hypothesis h′ satisfying Prx∼Ug−1(1)
[h′(x) 6= f(x)] ≤ ε. Hence the h that is

output byASQ−SIM in Step 2(e) of AlgorithmA′C fulfills the accuracy (with respect to f underD = Ug−1(1))
and confidence requirements, and the overall algorithm AC succeeds as claimed in Theorem 8.

Finally, combining the running time bounds of ADNFn,s
den and ADISJ

SQ with the time bounds of the other
procedures described earlier, one can straightforwardly verify that the running time of the overall algorithm
AC is poly(nlog(s/ε), log(1/δ)).
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A Preliminaries

For completeness we give precise definitions of approximate counting and approximate uniform generation
algorithms for a class of Boolean functions as well as some related notions that we require.

Definition 17 (approximate counting). Let C be a class of n-variable Boolean functions. A randomized
algorithm ACcount is an efficient approximate counting algorithm for class C, if for any ε, δ > 0 and any
f ∈ C, on input ε, δ and f ∈ C, it runs in time poly(n, 1/ε, log(1/δ)) and with probability 1 − δ outputs a
value p̂ such that

1

(1 + ε)
·Prx∼U [f(x) = 1] ≤ p̂ ≤ (1 + ε) ·Prx∼U [f(x) = 1].

Definition 18 (approximate uniform generation). Let C be a class of n-variable Boolean functions. A
randomized algorithm ACgen is an efficient approximate uniform generation algorithm for class C, if for any
ε > 0 and any f ∈ C, there is a distribution D = Df,ε supported on f−1(1) with

1

1 + ε
· 1

|f−1(1)|
≤ D(x) ≤ (1 + ε) · 1

|f−1(1)|

for each x ∈ f−1(1), such that for any δ > 0, on input ε, δ and f ∈ C, algorithm ACgen(ε, δ, f) runs in
time poly(n, 1/ε, log(1/δ)) and either outputs a point x ∈ f−1(1) that is distributed precisely according to
D = Df,ε, or outputs ⊥. Moreover the probability that it outputs ⊥ is at most δ.

We will also need the notion of a Statistical Query learning algorithm for a class C of Boolean functions.

Definition 19. Let C be a class of n-variable Boolean functions and D be a distribution over {−1, 1}n. An
SQ learning algorithm for C under D is a randomized algorithm ACSQ that for every ε, δ > 0, every target
concept f ∈ C, on input ε, δ and with access to oracle STAT(f,D) and to independent samples drawn from
D, outputs with probability 1−δ a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε.
Let t1(n, 1/ε, 1/δ) be the running time ofACSQ (assuming each oracle query is answered in unit time), t2(n)
be the maximum running time to evaluate any query provided to STAT(f,D) and τ(n, 1/ε) be the minimum
value of the tolerance parameter ever provided to STAT(f,D) in the course of ACSQ’s execution. We say
thatACSQ is efficient (and that C is efficiently SQ learnable with respect to distributionD), if t1(n, 1/ε, 1/δ)
is polynomial in n, 1/ε and 1/δ, t2(n) is polynomial in n and τ(n, 1/ε) is lower bounded by an inverse
polynomial in n and 1/ε. We call an SQ learning algorithm ACSQ for C distribution independent if ACSQ

succeeds for any distribution D. If C has an efficient distribution independent SQ learning algorithm we
say that C is efficiently SQ learnable (distribution independently).

Before we formally define our learning model, we need the notion of a sampler for a distribution:

Definition 20. Let D be a distribution over {−1, 1}n. A sampler for D is a circuit C with m = poly(n)
input bits z ∈ {−1, 1}m and n output bits x ∈ {−1, 1}n which is such that when z ∼ Um then x ∼ D. For
ε > 0, an ε-sampler for D is a sampler for some distribution D′ which has dTV(D′, D) ≤ ε.

For clarity we sometimes write “C is a 0-sampler for D” to emphasize the fact that the outputs of C(z)
are distributed exactly according to distribution D.

We are now ready to formally define the notion of a distribution learning algorithm in our model.

Definition 21. Let C be a class of n-variable Boolean functions. A randomized algorithmAC is a distribution
learning algorithm for class C, if for any ε, δ > 0 and any f ∈ C, on input ε, δ and sample access to Uf−1(1),
with probability 1− δ algorithm AC outputs an ε-sampler Cf for Uf−1(1).
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B Hypothesis testing: Proof of Proposition 6

Discussion. We note that there are certain significant differences between the current setting and the setting
of [DDS12a, DDS12b] (as well as other related works that use versions of Proposition 6). In particular,
in our setting, the set W is of size 2n, which was not the case in [DDS12a, DDS12b]. Hence, we cannot
assume the distributionsDi are given explicitly in the input. Thus Proposition 6 carefully specifies what kind
of access to these distributions is required. Proposition 6 is an extension of similar results in the previous
works; while the idea of the proof is essentially the same, the details are more involved.

Proof of Proposition 6. At a high level, the algorithm T D performs a tournament by running a “competi-
tion” Choose-HypothesisD for every pair of distinct distributions in the collection Dε. It outputs a
distribution D? ∈ Dε that was never a loser (i.e., won or achieved a draw in all its competitions). If no
such distribution exists in Dε then the algorithm outputs “failure.” We start by describing and analyzing the
competition subroutine between a pair of distributions in the collection.

Lemma 22. In the context of Proposition 6, there is an algorithm Choose-HypothesisD(Di, Dj , ε
′, δ′)

which is given access to

(i) independent samples from D and Dk, for k ∈ {i, j},

(ii) an evaluation oracle EVALDk(β), for k ∈ {i, j},

an accuracy parameter ε′ and a confidence parameter δ′, and has the following behavior: It uses m′ =

O
(

(1/ε′2) log(1/δ′)
)

samples from each ofD,Di andDj , it makesO(m′) calls to the oracles EVALDk(β),

k ∈ {i, j}, performs O(m′) arithmetic operations, and if some Dk, k ∈ {i, j}, has dTV(Dk, D) ≤ ε′ then
with probability 1− δ′ it outputs an index k? ∈ {i, j} that satisfies dTV(D,Dk?) ≤ 6ε′.

Proof. To set up the competition between Di and Dj , we consider the following subset ofW:

Hij = Hij(Di, Dj)
def
= {w ∈ W | Di(w) ≥ Dj(w)}

and the corresponding probabilities pi,j
def
= Di(Hij) and qi,j

def
= Dj(Hij). Clearly, it holds pi,j ≥ qi,j and by

definition of the total variation distance we can write dTV(Di, Dj) = pi,j − qi,j .
For the purposes of our algorithm, we would ideally want oracle access to the set Hij . Unfortunately

though, this is not possible since the evaluation oracles are only approximate. Hence, we will need to define
a more robust version of the setHij which will turn out to have similar properties. In particular, we consider
the set

Hβ
ij

def
= {w ∈ W | D̃β

i (w) ≥ D̃β
j (w)}

and the corresponding probabilities pβi,j
def
= Di(H

β
ij) and qβi,j

def
= Dj(H

β
ij). We claim that the difference

∆
def
= pβi,j − q

β
i,j is an accurate approximation to dTV(Di, Dj). In particular, we show:

Claim 23. We have
∆ ≤ dTV(Di, Dj) ≤ ∆ + ε/4. (1)

Before we proceed with the proof, we stress that (1) crucially uses our assumption that the evaluation
oracles provide a multiplicative approximation to the exact probabilities.
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Proof. To show (1) we proceed as follows: Let A = Hij ∩Hβ
ij , B = Hij ∩Hβ

ij and C = Hij ∩Hβ
ij . Then

we can write dTV(Di, Dj) = (Di −Dj)(A) + (Di −Dj)(B) and ∆ = (Di −Dj)(A) + (Di −Dj)(C).
We will show that

0 ≤ (Di −Dj)(B) ≤ ε/8 (2)

and similarly
− ε/8 ≤ (Di −Dj)(C) ≤ 0 (3)

from which the claim follows. We proceed to prove (2), the proof of (3) being very similar. Letw ∈ B. Then
Di(w) ≥ Dj(w) (since w ∈ Hij) which gives (Di − Dj)(B) ≥ 0, establishing the LHS of (2). We now

establish the RHS. For w ∈ B we also have that D̃β
i (w) < D̃β

j (w) (since w ∈ Hβ
ij). Now by the definition

of the evaluation oracles, it follows that D̃β
i (w) ≥ Di(w)

(1+β) and D̃β
j (w) ≤ (1 + β)Dj(w). Combining these

inequalities yields
Di(w) ≤ (1 + β)2Dj(w) ≤ (1 + ε/8)Dj(w)

where the second inequality follows by our choice of β. Therefore, (Di−Dj)(B) =
∑

w∈B (Di(w)−Dj(w)) ≤
(ε/8) ·Dj(B) ≤ ε/8 as desired.

Note that the probabilities pβi,j and qβi,j are not available to us explicitly. Hence, Choose-Hypothesis
requires a way to empirically estimate each of these probability values (up to a small additive accuracy).
This task can be done efficiently because we have sample access to the distributions Di, Dj and oracle
access to the set Hβ

ij thanks to the EVALDk(β) oracles. The following claim provides the details:

Claim 24. There exists a subroutine Estimate(Di, H
β
ij , γ, δ) which is given access to

(i) independent samples from Di,

(ii) an evaluation oracle EVALDk(β), for k ∈ {i, j},

an accuracy parameter γ and a confidence parameter δ, and has the following behavior: It makes m =
O
(
(1/γ2) log(1/δ)

)
draws from Di and O(m) calls to the oracles EVALDk(β), k = i, j, performs O(m)

arithmetic operations, and with probability 1− δ outputs a number p̃βi,j such that |p̃βi,j − p
β
i,j | ≤ γ.

Proof. The desired subroutine amounts to a straightforward random sampling procedure, which we include
here for the sake of completeness. We will use the following elementary fact, a simple consequence of the
additive Chernoff bound.

Fact 25. Let X be a random variable taking values in the range [−1, 1]. Then E[X] can be estimated to
within an additive ±τ , with confidence probability 1− δ, using m = Ω((1/τ2) log(1/δ)) independent sam-
ples from X . In particular, the empirical average X̂m = (1/m)

∑m
i=1Xi, where the Xi’s are independent

samples of X , satisfies Pr
[
|X̂m −E[X]| ≤ τ

]
≥ 1− δ.

We shall refer to this as “empirically estimating” the value of E[X].
Consider the indicator function I

Hβ
ij

of the set Hβ
ij , i.e., I

Hβ
ij

: W → {0, 1} with I
Hβ
ij

(x) = 1 if and

only if x ∈ Hβ
ij . It is clear that Ex∼Di

[
I
Hβ
ij

(x)
]

= Di(H
β
ij) = pβi,j . The subroutine is described in the

following pseudocode:
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Subroutine Estimate(Di, H
β
ij , γ, δ):

Input: Sample access to Di and oracle access to EVALDk(β), k = i, j.
Output: A number p̃βij such that with probability 1− δ it holds |p̃βij −Di(H

β
ij)| ≤ γ.

1. Draw m = Θ
(
(1/γ2) log(1/δ)

)
samples s = {s`}m`=1 from Di.

2. For each sample s`, ` ∈ [m]:

(a) Use the oracles EVALDi(β), EVALDj (β), to approximately evaluate Di(s`), Dj(s`).
(b) If D̃β

i (s`) ≥ D̃β
j (s`) set I

Hβ
ij

(s`) = 1, otherwise I
Hβ
ij

(s`) = 0.

3. Set p̃βij = 1
m

∑m
`=1 IHβ

ij
(s`).

4. Output p̃βij .

The computational efficiency of this simple random sampling procedure follows from the fact that we
can efficiently decide membership in Hβ

ij . To do this, for a given x ∈ W , we make a query to each of the

oracles EVALDi(β), EVALDj (β) to obtain the probabilities D̃β
i (x), D̃β

j (x). We have that x ∈ Hβ
ij (or

equivalently I
Hβ
ij

(x) = 1) if and only if D̃β
i (x) ≥ D̃β

j (x). By Fact 25, applied for the random variable

I
Hβ
ij

(x), where x ∼ Di, after m = Ω((1/γ2) log(1/δ)) samples from Di we obtain a ±γ-additive estimate

to pβi,j with probability 1 − δ. For each sample, we make one query to each of the oracles, hence the total
number of oracle queries is O(m) as desired. The only non-trivial arithmetic operations are the O(m)
comparisons done in Step 2(b), and Claim 24 is proved.

Now we are ready to prove Lemma 22. The algorithm Choose-HypothesisD(Di, Dj , ε
′, δ′) per-

forming the competition between Di and Dj is the following:

Algorithm Choose-HypothesisD(Di, Dj , ε
′, δ′):

Input: Sample access to D and Dk, k = i, j, oracle access to EVALDk(β), k = i, j.

1. Set p̃βi,j =Estimate(Di, H
β
ij , ε
′/8, δ′/4) and q̃βi,j =Estimate(Dj , H

β
ij , ε
′/8, δ′/4).

2. If p̃βi,j − q̃
β
i,j ≤ 9ε′/2, declare a draw and return either i or j. Otherwise:

3. Draw m′ = Θ
(

(1/ε′2) log(1/δ′)
)

samples s′ = {s`}m
′

`=1 from D.

4. For each sample s`, ` ∈ [m′]:

(a) Use the oracles EVALDi(β), EVALDj (β) to evaluate D̃β
i (s`), D̃β

j (s`).

(b) If D̃β
i (s`) ≥ D̃β

j (s`) set I
Hβ
ij

(s`) = 1, otherwise I
Hβ
ij

(s`) = 0.

5. Set τ = 1
m′
∑m′

`=1 IHβ
ij

(s`), i.e., τ is the fraction of samples that fall inside Hβ
ij .

6. If τ > p̃βi,j −
13
8 ε
′, declare Di as winner and return i; otherwise,

7. if τ < q̃βi,j + 13
8 ε
′, declare Dj as winner and return j; otherwise,

8. declare a draw and return either i or j.

It is not hard to check that the outcome of the competition does not depend on the ordering of the pair
of distributions provided in the input; that is, on inputs (Di, Dj) and (Dj , Di) the competition outputs the
same result for a fixed set of samples {s1, . . . , sm′} drawn from D.
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The upper bounds on sample complexity, query complexity and number of arithmetic operations can
be straightforwardly verified. Hence, it remains to show correctness. By Claim 24 and a union bound,
with probability at least 1 − δ′/2, we will have that |p̃βi,j − pβi,j | ≤ ε′/8 and |q̃βi,j − qβi,j | ≤ ε′/8. In
the following, we condition on this good event. The correctness of Choose-Hypothesis is then an
immediate consequence of the following claim.

Claim 26. Suppose that dTV(D,Di) ≤ ε′. Then:

(i) If dTV(D,Dj) > 6ε′, then the probability that the competition between Di and Dj does not declare
Di as the winner is at most e−m

′ε′2/8. (Intuitively, if Dj is very far from D then it is very likely that
Di will be declared winner.)

(ii) The probability that the competition betweenDi andDj declaresDj as the winner is at most e−m
′ε′2/8.

(Intuitively, since Di is close to D, a draw with some other Dj is possible, but it is very unlikely that
Dj will be declared winner.)

Proof. Let rβ = D(Hβ
ij). The definition of the variation distance implies that |rβ − pβi,j | ≤ dTV(D,Di) ≤

ε′. Therefore, we have that |rβ − p̃βi,j | ≤ |rβ − p
β
i,j | + |p̃

β
i,j − p

β
i,j | ≤ 9ε′/8. Consider the indicator (0/1)

random variables {Z`}m
′

`=1 defined as Z` = 1 if and only if s` ∈ Hβ
ij . Clearly, τ = 1

m′
∑m′

`=1 Z` and
Es′ [τ ] = Es`∼D[Z`] = rβ . Since the Z`’s are mutually independent, it follows from the Chernoff bound that
Pr[τ ≤ rβ − ε′/2] ≤ e−m′ε′

2/8. Using |rβ − p̃βi,j | ≤ 9ε′/8. we get that Pr[τ ≤ p̃βi,j − 13ε′/8] ≤ e−m′ε′
2/8.

• For part (i): If dTV(D,Dj) > 6ε′, from the triangle inequality we get that pi,j−qi,j = dTV(Di, Dj) >

5ε′ Claim 23 implies that pβi,j − q
β
i,j > 19ε′/4 and our conditioning finally gives p̃βi,j − q̃

β
i,j > 9ε′/2.

Hence, the algorithm will go beyond Step 2, and with probability at least 1− e−m′ε′2/8, it will stop at
Step 6, declaring Di as the winner of the competition between Di and Dj .

• For part (ii): If p̃βi,j − q̃
β
i,j ≤ 9ε′/2 then the competition declares a draw, hence Dj is not the winner.

Otherwise we have p̃βi,j − q̃
β
i,j > 9ε′/2 and the argument of the previous paragraph implies that the

competition between Di and Dj will declare Dj as the winner with probability at most e−m
′ε′2/8.

This concludes the proof of Claim 26.

This completes the proof of Lemma 22.

We now proceed to describe the algorithm T D and establish Proposition 6. The algorithm performs
a tournament by running the competition Choose-HypothesisD(Di, Dj , ε, δ/(2N)) for every pair of
distinct distributions Di, Dj in the collection Dε. It outputs a distribution D? ∈ Dε that was never a loser
(i.e., won or achieved a draw in all its competitions). If no such distribution exists in Dε then the algorithm
outputs “failure.” A detailed pseudocode follows:

Algorithm T D({Dj}Nj=1, ε, δ):

Input: Sample access to D and Dk, k ∈ [N ], and oracle access to EVALDk , k ∈ [N ].

1. Draw m = Θ
(
(1/ε2)(logN + log(1/δ))

)
samples from D and each Dk, k ∈ [N ].

2. For all i, j ∈ [N ], i 6= j, run Choose-HypothesisD(Di, Dj , ε, δ/(2N)) using this sample.
3. Output an index i? such that Di? was never declared a loser, if one exists.
4. Otherwise, output “failure”.
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We now proceed to analyze the algorithm. The bounds on the sample complexity, running time and
query complexity to the evaluation oracles follow from the corresponding bounds for Choose-Hypothesis.
Hence, it suffices to show correctness. We do this below.

By definition, there exists some Di ∈ Dε such that dTV(D,Di) ≤ ε. By Claim 26, the distribution Di

never loses a competition against any other Dj ∈ Dε (so the algorithm does not output “failure”). A union
bound over all N distributions in Dε shows that with probability 1 − δ/2, the distribution D′ never loses a
competition.

We next argue that with probability at least 1 − δ/2, every distribution Dj ∈ Dε that never loses has
small variation distance from D. Fix a distribution Dj such that dTV(Dj , D) > 6ε; Claim 26(i) implies that
Dj loses to Di with probability 1 − 2e−mε

2/8 ≥ 1 − δ/(2N). A union bound yields that with probability
1− δ/2, every distribution Dj that has dTV(Dj , D) > 6ε loses some competition.

Thus, with overall probability at least 1− δ, the tournament does not output “failure” and outputs some
distribution D? such that dTV(D,D?) is at most 6ε. The proof of Proposition 6 is now complete.

Remark 27. As stated Proposition 6 assumes that algorithm T D has access to samplers for all the dis-
tributions Dk, so each call to such a sampler is guaranteed to output an element distributed according to
Dk. Let D⊥k be a distribution overW ∪ {⊥} which is such that (i) D⊥k (⊥) ≤ 1/2, and (ii) the conditional
distribution (D⊥k )W of D⊥k conditioned on not outputting ⊥ is precisely Dk. It is easy to see that the proof
of Proposition 6 extends to a setting in which T D has access to samplers for D⊥k rather than samplers for
Dk; each time a sample from Dk is required the algorithm can simply invoke the sampler for D⊥k repeatedly
until an element other than ⊥ is obtained. (The low-probability event that many repetitions are ever needed
can be “folded into” the failure probability δ.)

C General Algorithmic Approach: Proof of Theorem 8

C.1 Simulating statistical query algorithms. Our algorithm AC will need to simulate a statistical query
algorithm for C, with respect to a specific distribution D. Note, however that A only has access to uniform
positive examples of f ∈ C, i.e., samples from Uf−1(1). Hence we need to show that a statistical query
algorithm can be efficiently simulated in such a setting. To do this it suffices to show that one can efficiently
provide valid responses to queries to the statistical query oracle STAT(f,D), i.e., that one can simulate the
oracle. Assuming this can be done, the simulation algorithm ASQ−SIM is very simple: Run the statistical
query algorithm ASQ, and whenever it makes a query to STAT(f,D), simulate it. To this end, in the
following lemma we describe a procedure that simulates an SQ oracle. (Our approach here is similar to
that of earlier simulation procedures that have been given in the literature, see e.g. Denis et al. [DGL05].)

Lemma 28. Let C be a concept class over {−1, 1}n, f ∈ C, and D be a samplable distribution over
{−1, 1}n. There exists an algorithm Simulate-STATDf with the following properties: It is given access

to independent samples from Df,+, and takes as input a number b̃f ∈ [0, 1], a t(n)-time computable query
function χ : {−1, 1}n×{−1, 1} → [−1, 1], a tolerance τ and a confidence δ. It has the following behavior:
it uses m = O

(
(1/τ2) log(1/δ)

)
samples from D and Df,+, runs in time O (m · t(n)) , and if |b̃f −

Prx∼D[f(x) = 1]| ≤ τ ′, then with probability 1− δ it outputs a number v such that

|Ex∼D [χ (x, f(x))]− v| ≤ τ + τ ′. (4)

Proof. To prove the lemma, we start by rewriting the expectation in (4) as follows:

Ex∼D [χ(x, f(x))] = Ex∼Df,+ [χ(x, 1)] ·Prx∼D[f(x) = 1] + Ex∼Df,− [χ(x,−1)] ·Prx∼D[f(x) = −1].
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We also observe that

Ex∼D [χ(x,−1)] = Ex∼Df,+ [χ(x,−1)] ·Prx∼D[f(x) = 1] + Ex∼Df,− [χ(x,−1)] ·Prx∼D[f(x) = −1].

Combining the above equalities we get

Ex∼D [χ(x, f(x))] = Ex∼D [χ(x,−1)] + Ex∼Df,+ [χ(x, 1)− χ(x,−1)] ·Prx∼D[f(x) = 1]. (5)

Given the above identity, the algorithm Simulate-STATDf is very simple: We use random sampling from
D to empirically estimate the expectations Ex∼D [χ(x,−1)] (recall thatD is assumed to be a samplable dis-
tribution), and we use the independent samples fromDf,+ to empirically estimate Ex∼Df,+ [χ(x, 1)− χ(x,−1)].
Both estimates are obtained to within an additive accuracy of ±τ/2 (with confidence probability 1 − δ/2
each). We combine these estimates with our estimate b̃f for Prx∼D[f(x) = 1] in the obvious way (see
Step 2 of pseudocode below).

Subroutine Simulate-STATDf (D,Df,+,χ, τ, b̃f , δ):

Input: Independent samples from D and Df,+, query access to χ : {−1, 1}n → {−1, 1}, accuracy τ ,
b̃f ∈ [0, 1] and confidence δ.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ ′, a number v that with probability 1 − δ satisfies
|Ex∼D[χ(x, f(x))]− v| ≤ τ + τ ′.

1. Empirically estimate the values Ex∼D[χ(x,−1)] and Ex∼Df,+ [χ(x, 1)− χ(x,−1)] to within an
additive ±τ/2 with confidence probability 1− δ/2. Let Ẽ1, Ẽ2 be the corresponding estimates.

2. Output v = Ẽ1 + Ẽ2 · b̃f .

By Fact 25, we can estimate each expectation using m = Θ
(
(1/τ2) log(1/δ)

)
samples (from D, Df,+

respectively). For each such sample the estimation algorithm needs to evaluate the function χ (once for
the first expectation and twice for the second). Hence, the total number of queries to χ is O(m), i.e., the
subroutine Simulate-STATDf runs in time O(m · t(n)) as desired.

By a union bound, with probability 1− δ both estimates will be ±τ/2 accurate. The bound (4) follows
from this latter fact and (5) by a straightforward application of the triangle inequality. This completes the
proof of Lemma 28.

Given the above lemma, we can state and prove our general result for simulating SQ algorithms:

Proposition 29. Let C be a concept class and D be a samplable distribution over {−1, 1}n. Suppose there
exists an SQ-learning algorithm ASQ for C under D with the following performance: ASQ runs in time
T1 = t1(n, 1/ε, 1/δ), each query provided to STAT(f,D) can be evaluated in time T2 = t2(n), and the
minimum value of the tolerance provided to STAT(f,D) in the course of its execution is τ = τ(n, 1/ε).
Then, there exists an algorithm ASQ−SIM that is given access to

(i) independent samples from Df,+; and

(ii) a number b̃f ∈ [0, 1],

and efficiently simulates the behavior of ASQ. In particular, ASQ−SIM has the following performance guar-
antee: on input an accuracy ε and a confidence δ, it uses m = O

(
(1/τ2) · log(T1/δ) · T1

)
samples from D

and Df,+, runs in time TSQ−SIM = O (mT2), and if |b̃f −Prx∼D[f(x) = 1]| ≤ τ/2 then with probability
1− δ it outputs a hypothesis h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε.
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Proof of Proposition 29. The simulation procedure is very simple. We run the algorithmASQ by simulating
its queries using algorithm Simulate-STATDf . The algorithm is described in the following pseudocode:

Algorithm ASQ−SIM(D,Df,+, ε, b̃f , δ):

Input: Independent samples from D and Df,+, b̃f ∈ [0, 1], ε, δ > 0.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ/2, a hypothesis h that with probability 1 − δ satisfies
Prx∼D[h(x) 6= f(x)] ≤ ε.

1. Let τ = τ(n, 1/ε) be the minimum accuracy ever used in a query to STAT(f,D) during the
execution of ASQ(ε, δ/2).

2. Run the algorithm ASQ(ε, δ/2), by simulating each query to STAT(f,D) as follows:
whenever ASQ makes a query (χ, τ) to STAT(f,D), the simulation algorithm runs
Simulate-STATDf (D,Df,+,χ, τ/2, τ/2, δ/(2T1)).

3. Output the hypothesis h obtained by the simulation.

Note that we run the algorithm ASQ with confidence probability 1 − δ/2. Moreover, each query to
the STAT(f,D) oracle is simulated with confidence 1 − δ/(2T1). Since ASQ runs for at most T1 time
steps, it certainly performs at most T1 queries in total. Hence, by a union bound over these events, with
probability 1− δ/2 all answers to its queries will be accurate to within an additive ±τ/2. By the guarantee
of algorithmASQ and a union bound, with probability 1−δ, the algorithmASQ−SIM will output a hypothesis
h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤ ε. The sample complexity and running time
follow from the bounds for Simulate-STATDf . This completes the proof of Proposition 29.

Proposition 29 tells us we can efficiently simulate a statistical query algorithm for a concept class C
under a samplable distribution D if we have access to samples drawn from Df,+ (and a very accurate
estimate of Prx∼D[f(x) = 1]). In our setting, we have that D = Ug−1(1) where g ∈ C′ is the function that

is output byA(C,C′)
den . So, the two issues we must handle are (i) obtaining samples from D, and (ii) obtaining

samples from Df,+.
For (i), we note that, even though we do not have access to samples drawn exactly from D, it suffices

for our purposes to use a τ ′-sampler for D for a sufficiently small τ ′. To see this we use the following fact:

Fact 30. Let D,D′ be distributions over {−1, 1}n with dTV(D,D′) ≤ τ ′. Then for any bounded function
φ : {−1, 1}n → [−1, 1] we have that |Ex∼D[φ(x)]−Ex∼D′ [φ(x)]| ≤ 2τ ′.

Proof of Fact 30. By definition we have that |Ex∼D[φ(x)]−Ex∼D′ [φ(x)]| equals∣∣∣∣∣ ∑
x∈{−1,1}n

(
D(x)−D′(x)

)
φ(x)

∣∣∣∣∣ ≤ ∑
x∈{−1,1}n

∣∣(D(x)−D′(x)
)∣∣ |φ(x)|

≤ maxx∈{−1,1}n |φ(x)| ·
∑

x∈{−1,1}n

∣∣D(x)−D′(x)
∣∣

≤ 1 · ‖D −D′‖1 = 2dTV(D,D′) ≤ 2τ ′.

The above fact implies that the statement of Proposition 29 continuous to hold with the same parameters
if instead of a 0-sampler forD we have access to a τ ′-sampler forD, for τ ′ = τ/8. The only difference is that
in Step 1 of the subroutine Simulate-STATDf we empirically estimate the expectation Ex∼D′ [χ(x,−1)]
up to an additive ±τ/4. By Fact 30, this will be a ±(τ/4 + 2τ ′) = ±τ/2 accurate estimate for the
Ex∼D[χ(x,−1)]. That is, we have:
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Corollary 31. The statement of Proposition 29 continues to hold with the same parameters if instead of a
0-sampler for D we have access to a τ ′ = τ/8-sampler for D.

For (ii), even though we do not have access to the distribution D = Ug−1(1) directly, we note below
that we can efficiently sample from Df,+ using samples from Uf−1(1) together with evaluations of g (recall
again that g is provided as the output of the densifier).

Claim 32. Let g : {−1, 1}n → {−1, 1} be a tg(n) time computable function such that Prx∼Uf−1(1)
[g(x) = 1]≥ ε′.

There is an efficient subroutine that is given ε′ and a circuit to compute g as input, usesm = O((1/ε′) log(1/δ))
samples from Uf−1(1), runs in time O(m · tg(n)), and with probability 1 − δ outputs a sample x such that
x ∼ Df,+, where D = Ug−1(1).

Proof of Claim 32. To simulate a sample from Df,+ we simply draw samples from Uf−1(1) until we obtain
a sample x with g(x) = 1. The following pseudocode makes this precise:

Subroutine Simulate-sampleDf,+(Uf−1(1), g, ε
′, δ):

Input: Independent samples from Uf−1(1), a circuit computing g, a value ε′ > 0 such that ε′ ≤
Prx∼Uf−1(1)

[g(x) = 1] and confidence parameter δ.
Output: A point x ∈ {−1, 1}n that with probability 1− δ satisfies x ∼ Df,+.

1. Repeat the following at most m = Θ ((1/ε′) log(1/δ)) times:

(a) Draw a sample x ∼ Uf−1(1).
(b) If the circuit for g evaluates to 1 on input x then output x.

2. If no point x with g(x) = 1 has been obtained, halt and output “failure.”

Since Prx∼Uf−1(1)
[g(x) = 1]≥ ε′, after repeating this process m = Ω ((1/ε′) log(1/δ)) times, we will

obtain a satisfying assignment to g with probability at least 1−δ. It is clear that such a sample x is distributed
according to Df,+. For each sample we need to evaluate g once, hence the running time follows.

Getting a good estimate b̃f of Prx∼D[f(x) = 1]. The simulations presented above require an additively
accurate estimate b̃f of Prx∼D[f(x) = 1]. We now show that in our context, such an estimate can be easily
obtained if we have access to a good estimate p̂ of p = Prx∈Un [f(x) = 1], using the fact that we have an
efficient approximate counting algorithm for C′ and that D ≡ Ug−1(1) where g ∈ C′.

Claim 33. Let g : {−1, 1}n → {−1, 1}, g ∈ C′ be a tg(n) time computable function, satisfying Prx∼Ug−1(1)
[f(x) =

1] ≥ γ′ and Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− ε′. LetAC′count be an (ε, δ)-approximate counting algorithm for C′

running in time Tcount(n, 1/ε, 1/δ). There is a procedure Estimate-Bias with the following behavior:
Estimate-Bias takes as input a value 0 < p̂ ≤ 1, a parameter τ ′ > 0, a confidence parameter δ′, and
a representation of g ∈ C′. Estimate-Bias runs in time O(tg · Tcount(n, 2/τ

′, 1/δ′)) and satisfies the

following: if p
def
= Prx∼Un [f(x) = 1] < p̂ ≤ (1 + ε′)p, then with probability 1 − δ′ Estimate-Bias

outputs a value b̃f such that |b̃f −Prx∼D[f(x) = 1]| ≤ τ ′.

Proof of Claim 33. The procedure Estimate-Bias is very simple. It runsAC′count on inputs ε? = τ ′/2, δ′,
using the representation for g ∈ C′. Let pg be the value returned by the approximate counter; Estimate-Bias
returns p̂/pg.

The claimed running time bound is obvious. To see that the procedure is correct, first observe that by
Definition 17, with probability 1− δ′ we have that

|g−1(1)|
2n

· 1

1 + ε?
≤ pg ≤

|g−1(1)|
2n

· (1 + ε?).
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For the rest of the argument we assume that the above inequality indeed holds. Let A denote |g−1(1)|,
let B denote |f−1(1) ∩ g−1(1)|, and let C denote |f−1(1) \ g−1(1)|, so the true value Prx∼D[f(x) = 1]
equals B

A and the above inequality can be rephrased as A
1+ε? ≤ pg · 2n ≤ A · (1 + ε?). By our assumption

on p̂ we have that B + C ≤ p̂ · 2n ≤ (1 + ε′)(B + C); since Prx∼Uf−1(1)
[g(x) = 1] ≥ 1 − ε′ we have

C
B+C ≤ ε′ (i.e., C ≤ ε′

1−ε′ · B ); and since Prx∼Ug−1(1)
[f(x) = 1] ≥ γ′ we have B

A ≥ γ′. Combining
these inequalities we get

1

1 + ε?
· B
A
≤ 1

1 + ε?
· B + C

A
≤ p̂

pg
≤ B

A
· (1 + ε′)(1 + ε?)

(
1 +

ε′

1− ε′

)
=
B

A
· (1 + ε?)

Hence ∣∣∣∣BA − p̂

pg

∣∣∣∣ ≤ B

A

(
1 + ε? − 1

1 + ε?

)
≤ 2ε?

1 + ε?
≤ 2ε?,

where we have used B ≤ A. Recalling that ε? = τ ′/2, the lemma is proved.

C.2 An algorithm that succeeds given the (approximate) bias of f. In this section, we present an al-
gorithm A′C(ε, δ, p̂) which, in addition to samples from Uf−1(1), takes as input parameters ε, δ, p̂. The
algorithm succeeds in outputting a hypothesis distribution Df satisfying dTV(Df ,Uf−1(1)) ≤ ε if the input
parameter p̂ is a multiplicatively accurate approximation to Prx∼Un [f(x) = 1]. The algorithm follows the
three high-level steps previously outlined and uses the subroutines of the previous subsection to simulate the
statistical query algorithm. Detailed pseudocode follows:

Algorithm A′C(Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), accuracy and confidence parameters ε, δ, and a value 1/2n <
p̂ ≤ 1.
Output: If Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)Prx∼Un [f(x) = 1], with probability 1 − δ outputs an
ε-sampler Cf for Uf−1(1) .

1. [Run the densifier to obtain g]
Fix ε1

def
= ε/6 and γ def

= γ(n, 1/ε1, 3/δ). Run the γ-densifier A(C,C′)
den (ε1, δ/3, p̂) using random

samples from Uf−1(1). Let g ∈ C′ be its output.

2. [Run the SQ-learner, using the approximate uniform generator for g, to obtain hypothesis
h]

(a) Fix ε2
def
= εγ/7, τ2

def
= τ(n, 1/ε2) and m

def
= Θ

(
(1/τ2

2 ) · log(T1/δ) · T1

)
, where T1 =

t1(n, 1/ε2, 12/δ).
(b) Run the generator AC′gen(g, τ2/8, δ/(12m)) m times and let SD ⊆ {−1, 1}n be the multiset

of samples obtained.
(c) Run Simulate-sampleDf,+(Uf−1(1), g, γ, δ/(12m))m times and let SDf,+ ⊆ {−1, 1}n

be the multiset of samples obtained.
(d) Run Estimate-Bias with parameters p̂, τ ′ = τ2/2, δ′ = δ/12 , using the representation

for g ∈ C′, and let b̃f be the value it returns.
(e) Run ASQ−SIM(SD, SDf,+ , ε2, b̃f , δ/12). Let h : {−1, 1}n → {−1, 1} be the output hy-

pothesis.
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3. [Output the sampler which does rejection sampling according to h on draws from the ap-
proximate uniform generator for g]

Output the sampler Cf which works as follows:

For i = 1 to t = Θ ((1/γ) log(1/(δε)) do:

(a) Set ε3
def
= εγ/48000.

(b) Run the generator AC′gen(g, ε3, δε/(12t)) and let x(i) be its output.

(c) If h(x(i)) = 1, output x(i).
If no x(i) with h(x(i)) = 1 has been obtained, output the default element ⊥.

Let D̂ denote the distribution over {−1, 1}n∪{⊥} for which Cf is a 0-sampler, and let D̂′ denote
the conditional distribution of D̂ restricted to {−1, 1}n (i.e., excluding ⊥).

We note that by inspection of the code forCf , we have that the distribution D̂′ is identical to (Dg,ε3)h−1(1),
whereDg,ε3 is the distribution corresponding to the output of the approximate uniform generator when called
on function g and error parameter ε3 (see Definition 18) and (Dg,ε3)h−1(1) is Dg,ε3 conditioned on h−1(1).

We have the following:

Theorem 34. Let p
def
= Prx∈Un [f(x) = 1]. Algorithm A′C(ε, δ, p̂) has the following behavior: If p ≤ p̂ <

(1 + ε)p, then with probability 1− δ the following both hold:

(i) the output Cf is a sampler for a distribution D̂ such that dTV(D̂,Uf−1(1)) ≤ ε; and

(ii) the functions h, g satisfy |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2.

The running time ofA′C is polynomial in Tden(n, 1/ε, 1/δ), Tgen(n, 1/ε, 1/δ), Tcount(n, 1/ε, 1/δ), t1(n, 1/ε, 1/δ),
t2(n), 1/τ(n, 1/ε), and 1/γ(n, 1/ε, 1/δ).

Proof. We give an intuitive explanation of the pseudocode in tandem with a proof of correctness. We argue
that Steps 1-3 of the algorithm implement the corresponding steps of our high-level description and that the
algorithm succeeds with confidence probability 1− δ.

We assume throughout the argument that indeed p̂ lies in [p, (1 + ε)p). Given this, by Definition 7 with
probability 1 − δ/3 the function g satisfies properties (a) and (b) of Definition 7, i.e., Prx∼Uf−1(1)

[g(x) =

1] ≥ 1− ε1 and Prx∼Ug−1(1)
[f(x) = 1] ≥ γ. We condition on this event (which we denote E1) going forth.

We now argue that Step 2 simulates the SQ learning algorithm ACSQ to learn the function f ∈ C under
distributionD ≡ Ug−1(1) to accuracy ε2 with confidence 1−δ/3. Note that the goal of Step (b) is to obtainm
samples from a distribution D′′ (the distribution “Dg,τ2/8” of Definition 18) such that dTV(D′′, D) ≤ τ2/8.
To achieve this, we call the approximate uniform generator for g a total of m times with failure probability
δ/(12m) for each call (i.e., each call returns ⊥ with probability at most δ/(12m)). By a union bound,
with failure probability at most δ/12, all calls to the generator are successful and we obtain a set SD of
m independent samples from D′′. Similarly, the goal of Step (c) is to obtain m samples from Df,+ and
to achieve it we call the subroutine Simulate-sampleDf,+ a total of m times with failure probability
δ/(12m) each. By Claim 32 and a union bound, with failure probability at most δ/12, this step is successful,
i.e., it gives a set SDf,+ of m independent samples from Df,+. The goal of Step (d) is to obtain a value b̃f
satisfying |b̃f − Prx∼D[f(x) = 1]| ≤ τ2/2; by Claim 33, with failure probability at most δ/12 the value
b̃f obtained in this step is as desired. Finally, Step (e) applies the simulation algorithm ASQ−SIM using the
samples SD and SDf,+ and the estimate b̃f of Prx∼D[f(x) = 1] obtained in the previous steps. Conditioning
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on Steps (b), (c) and (d) being successful Corollary 31 implies that Step (e) is successful with probability
1 − δ/12, i.e., it outputs a hypothesis h that satisfies Prx∼D[f(x) 6= h(x)] ≤ ε2. A union bound over
Steps (c), (d) and (e) completes the analysis of Step 2. For future reference, we let E2 denote the event
that the hypothesis h constructed in Step 2(e) has Prx∼D[f(x) 6= h(x)] ≤ ε2 (so we have that E2 holds
with probability at least 1 − δ/3; we additionally condition on this event going forth). We observe that
since (as we have just shown) Prx∼Ug−1(1)

[f(x) 6= h(x)] ≤ ε2 and Prx∼Ug−1(1)
[f(x) = 1] ≥ γ, we have

Prx∼Ug−1(1)
[h(x) = 1] ≥ γ − ε2 ≥ γ/2, which gives item (ii) of the theorem; so it remains to establish

item (i) and the claimed running time bound.
To establish (i), we need to prove that the output distribution D̂ of the sampler Cf is ε-close in total

variation distance to Uf−1(1). This sampler attempts to draws t samples from a distribution D′ such that
dTV(D′, D) ≤ ε3 (this is the distribution “Dg,ε3” in the notation of Definition 18) and it outputs one of
these samples that satisfies h (unless none of these samples satisfies h, in which case it outputs a default
element⊥). The desired variation distance bound follows from the next lemma for our choice of parameters:

Lemma 35. Let D̂ be the output distribution of A′C(Uf−1(1), ε, δ, p̂). If Prx∼Un [f(x) = 1] ≤ p̂ ≤ (1 +
ε)Prx∼Un [f(x) = 1], then conditioned on Events E1 and E2, we have

dTV(D̂,Uf−1(1)) ≤
ε

6
+
ε

6
+

4ε3
γ

+ ε1 +
ε2
2γ

+
ε2

γ − ε2
≤ ε

6
+
ε

6
+

ε

12000
+
ε

6
+

ε

14
+
ε

6
< ε.

Proof. Consider the distribution D′ = Dg,ε3 (see Definition 18) produced by the approximate uniform
generator in Step 3 of the algorithm. Let D′|h−1(1) denote distribution D′ restricted to h−1(1). Let S denote
the set g−1(1)∩ h−1(1). The lemma is an immediate consequence of Claims 36, 38, 39 and 40 below using
the triangle inequality (everything below is conditioned on E1 and E2).

Claim 36. dTV(D̂, D̂′) ≤ ε/6.

Proof. Recall that D̂′ is simply D̂ conditioned on not outputting ⊥.
We first claim that with probability at least 1 − δε/12 all t points drawn in Step 3 of the code for Cf

are distributed according to the distribution D′ = Dg,ε3 over g−1(1). Each of the t calls to the approximate
uniform generator has failure probability δε/(12t) (of outputting⊥ rather than a point distributed according
to D′) so by a union bound no calls fail with probability at least 1− δε/12, and thus with probability at least
1− δε/12 indeed all t samples are independently drawn from such a distribution D′.

Conditioned on this, we claim that a satisfying assignment for h is obtained within the t samples with
probability at least 1− δε/12. This can be shown as follows:

Claim 37. Let h : {−1, 1}n → {−1, 1} be the hypothesis output by ACSQ−SIM. We have

Prx∼D′ [h(x) = 1] ≥ γ/4.

Proof. First recall that, by property (b) in the definition of the densifier (Definition 7), we have Prx∼D[f(x) =
1] ≥ γ. Since dTV(D′, D) ≤ ε3, by definition we get Prx∼D′ [f(x) = 1] ≥ Prx∼D[f(x) = 1] − ε3 ≥
γ − ε3 ≥ 3γ/4. Now by the guarantee of Step 2 we have that Prx∼D[f(x) 6= h(x)] ≤ ε2. Combined with
the fact that dTV(D′, D) ≤ ε3, this implies that Prx∼D′ [f(x) 6= h(x)] ≤ ε2 + ε3 ≤ γ/2. Therefore, we
conclude that

Prx∼D′ [h(x) = 1] ≥ Prx∼D′ [f(x) = 1]−Prx∼D′ [f(x) 6= h(x)] ≥ 3γ/4− γ/2 ≥ γ/4

as desired.
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Hence, for an appropriate constant in the big-Theta specifying t, with probability at least 1 − δε/12 >
1−δ/12 some x(i) is a satisfying assignment of h. that with probability at least 1−δε/12 some x(i), i ∈ [t],
has h(x) = 1. Thus with overall failure probability at most δε/6 a draw from D̂′ is not ⊥, and consequently
we have dTV(D̂, D̂′) ≤ δε/6 ≤ ε/6.

Claim 38. dTV(D̂′, D′|h−1(1)) ≤ ε/6.

Proof. The probability that any of the t points x(1), . . . , x(t) is not drawn from D′ is at most t · δε/(12t) <
ε/12. Assuming that this does not happen, the probability that no x(i) lies in h−1(1) is at most (1−γ/4)t <
δε/12 < ε/12 by Claim 37. Assuming this does not happen, the output of a draw from D̂ is distributed
identically according to D′|h−1(1). Consequently we have that dTV(D̂,D′|h−1(1)) ≤ ε/6 as claimed.

Claim 39. dTV(D′|h−1(1),US) ≤ 4ε3/γ.

Proof. The definition of an approximate uniform generator gives us that dTV(D′,Ug−1(1)) ≤ ε3, and
Claim 37 gives that Prx∼D′ [h(x) = 1] ≥ γ/4. We now recall the fact that for any two distributions D1, D2

and any event E, writing Di|E to denote distribution Di conditioned on event E, we have

dTV(D1|E , D2|E) ≤ dTV(D1, D2)

D1(E)
.

The claim follows since Ug−1(1)|h−1(1) is equivalent to US .

Claim 40. dTV(US ,Uf−1(1)) ≤ ε1 + ε2
2γ + ε2

γ−ε2 .

Proof. The proof requires a careful combination of the properties of the function g constructed by the
densifier and the guarantee of the SQ algorithm. Recall that S = g−1(1) ∩ h−1(1). We consider the set
S′ = g−1(1) ∩ f−1(1). By the triangle inequality, we can bound the desired variation distance as follows:

dTV(US ,Uf−1(1)) ≤ dTV(Uf−1(1),US′) + dTV(US′ ,US). (6)

We will bound from above each term of the RHS in turn. To proceed we need an expression for the total
variation distance between the uniform distribution on two finite sets. The following fact is obtained by
straightforward calculation:

Fact 41. LetA,B be subsets of a finite setW and UA, UB be the uniform distributions onA, B respectively.
Then,

dTV(UA,UB) = (1/2) · |A ∩B|
|A|

+ (1/2) · |B ∩A|
|B|

+ (1/2) · |A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ . (7)

To bound the first term of the RHS of (6) we apply the above fact for A = f−1(1) and B = S′. Note that in
this case B ⊆ A, hence the second term of (7) is zero. Regarding the first term, note that

|A ∩B|
|A|

=
|f−1(1) ∩ g−1(1)|
|f−1(1)|

≤ ε1,

where the inequality follows from Property (a) of the densifier definition. Similarly, for the third term we
can write

|A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = |B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = 1− |B|
|A|

= 1− |f
−1(1) ∩ g−1(1)|
|f−1(1)|

≤ ε1,
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where the inequality also follows from Property (a) of the densifier definition. We therefore conclude that
dTV(Uf−1(1),US′) ≤ ε1.

We now proceed to bound the second term of the RHS of (6) by applying Fact 41 for A = S′ and
B = S. It turns out that bounding the individual terms of (7) is trickier in this case. For the first term we
have:

|A ∩B|
|A|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|f−1(1) ∩ g−1(1)|
=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|g−1(1)|
· |g−1(1)|
|f−1(1) ∩ g−1(1)|

≤ ε2
γ
,

where the last inequality follows from the guarantee of the SQ learning algorithm and Property (b) of the
densifier definition. For the second term we have

|B ∩A|
|B|

=
|f−1(1) ∩ g−1(1) ∩ h−1(1)|

|g−1(1) ∩ h−1(1)|
.

To analyze this term we recall that by the guarantee of the SQ algorithm it follows that the numerator satisfies
|f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ ε2 · |g−1(1)|. From the same guarantee we also get |f−1(1) ∩ g−1(1) ∩
h−1(1)| ≤ ε2 · |g−1(1)|. Now, Property (b) of the densifier definition gives |f−1(1)∩g−1(1)| ≥ γ · |g−1(1)|.
Combing these two inequalities implies that

|g−1(1) ∩ h−1(1)| ≥ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≥ (γ − ε2) · |g−1(1)|.

In conclusion, the second term is upper bounded by (1/2) · ε2
γ−ε2 .

For the third term, we can write

|A ∩B| ·
∣∣∣∣ 1

|A|
− 1

|B|

∣∣∣∣ = |f−1(1) ∩ g−1(1) ∩ h−1(1)| ·
∣∣∣∣ 1

|f−1(1) ∩ g−1(1)|
− 1

|g−1(1) ∩ h−1(1)|

∣∣∣∣ .
To analyze these term we relate the cardinalities of these sets. In particular, we can write

|f−1(1) ∩ g−1(1)| = |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ |f−1(1) ∩ g−1(1) ∩ h−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2 · |g−1(1)|

≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2
γ
· |f−1(1) ∩ g−1(1)|

where the last inequlity is Property (b) of the densifier defintion. Therefore, we obtain

(1− ε2
γ

) · |f−1(1) ∩ g−1(1)| ≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ |f−1(1) ∩ g−1(1)|.

Similarly, we have

|g−1(1) ∩ h−1(1)| = |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ |f−1(1) ∩ g−1(1) ∩ h−1(1)|
≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2 · |g−1(1)|

≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)|+ ε2
γ − ε2

· |g−1(1) ∩ h−1(1)|

and therefore

(1− ε2
γ − ε2

) · |g−1(1) ∩ h−1(1)| ≤ |f−1(1) ∩ g−1(1) ∩ h−1(1)| ≤ |g−1(1) ∩ h−1(1)|.

The above imply that the third term is bounded by (1/2) · ε2
γ−ε2 . This completes the proof of the claim.

With Lemma 35 established, to finish the proof of Theorem 34 it remains only to establish the claimed
running time bound. This follows from a straightforward (but somewhat tedious) verification, using the
running time bounds established in Lemma 28, Proposition 29, Corollary 31, Claim 32 and Claim 33.
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C.3 Getting from A′C to AC: An approximate evaluation oracle. Recall that the algorithm A′C from
the previous subsection is only guaranteed (with high probability) to output a sampler for a hypothesis
distribution D̂ that is statistically close to the target distribution Uf−1(1) if it is given an input parameter p̂

satisfying p ≤ p̂ < (1+ε)p, where p def
= Prx∈Un [f(x) = 1]. Given this, a natural idea is to runA′C a total of

k = O(n/ε) times, using “guesses” for p̂ that increase multiplicatively as powers of 1 + ε, starting at 1/2n

(the smallest possible value) and going up to 1. This yields hypothesis distributions D̂1, . . . , D̂k where D̂i

is the distribution obtained by setting p̂ to p̂i
def
= (1 + ε)i−1/2n. With such distributions in hand, an obvious

approach is to use the “hypothesis testing” machinery of Section 2 to identify a high-accuracy D̂i from this
collection. This is indeed the path we follow, but some care is needed to make the approach go through; we
present the detailed argument below.

Recall that as described in Proposition 6, the hypothesis testing algorithm requires the following:

1. independent samples from the target distribution Uf−1(1) (this is not a problem since such samples are
available in our framework);

2. independent samples from D̂i for each i (also not a problem since the i-th run of algorithmA′C outputs
a sampler for distribution D̂i; and

3. a (1 +O(ε))-approximate evaluation oracle EVALD̂i for each distribution D̂i.

In this subsection we show how to construct item (3) above, the approximate evaluation oracle. In more
detail, we first describe a randomized procedure Check which is applied to the output of each execution of
A′C (across all k different settings of the input parameter p̂i). We show that with high probability the “right”
value p̂i∗ (the one which satisfies p ≤ p̂i∗ < (1 + ε)p) will pass the procedure Check. Then we show
that for each value p̂i∗ that passed the check a simple deterministic algorithm gives the desired approximate
evaluation oracle for D̂i.

We proceed to describe the Check procedure and characterize its performance.

Algorithm Check(g, h, δ′, ε) :

Input: functions g and h as described in Lemma 42, a confidence parameter δ′, and an accuracy param-
eter ε
Output: If |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2, with probability 1 − δ′ outputs a pair (α, κ) such that
|α−|h−1(1)∩g−1(1)|/|g−1(1)|| ≤ µ · |h−1(1)∩g−1(1)|/|g−1(1)| and |g

−1(1)|
1+τ ≤ κ ≤ (1+τ)|g−1(1)|,

where µ = τ = ε/40000.

1. Samplem = O(log(2/δ′)/(γµ2)) points x1, . . . , xm fromAC′gen(g, γ/4, δ′/(2m)). If any xj = ⊥
halt and output “failure.”

2. Let α be (1/m) times the number of points xj that have h(x) = 1.

3. Call AC′count(τ, δ
′/2) on g and set κ to 2n times the value it returns.

Lemma 42. Fix i ∈ [k]. Consider a sequence of k runs of A′C where in the i-th run it is given p̂i
def
=

(1 + ε)i−1/2n as its input parameter. Let gi be the function in C′ constructed by A′C in Step 1 of its i-th
run and hi be the hypothesis function constructed by A′C in Step 2(e) of its i-th run. Suppose Check is
given as input gi, hi, a confidence parameter δ′, and an accuracy parameter ε′. Then it either outputs “no”
or a pair (αi, κi) ∈ [0, 1] × [0, 2n+1], and satisfies the following performance guarantee: If |h−1

i (1) ∩
g−1
i (1)|/|g−1

i (1)| ≥ γ/2 then with probability at least 1− δ′ Check outputs a pair (αi, κi) such that∣∣∣∣αi − |h−1
i (1) ∩ g−1

i (1)|
|g−1
i (1)|

∣∣∣∣ ≤ µ · |h−1
i (1) ∩ g−1

i (1)|
|g−1
i (1)|

(8)
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and
|g−1
i (1)|
1 + τ

≤ κi ≤ (1 + τ)|g−1
i (1)|, (9)

where µ = τ = ε/40000.

Proof. Suppose that i is such that |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2. Recall from Definition 18 that each

point xj drawn fromAC′gen(gi, γ/4, δ
′/(2m)) in Step 1 is with probability 1− δ′/(2m) distributed according

to Dgi,γ/4; by a union bound we have that with probability at least 1 − δ′/2 all m points are distributed
this way (and thus none of them are ⊥). We condition on this going forward. Definition 18 implies that
dTV(Dgi,γ/4,Ug−1

i (1)) ≤ γ/4; together with the assumption that |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2, this

implies that each xj independently has proability at least γ/4 of having h(x) = 1. Consequently, by the
choice of m in Step 1, a standard multiplicative Chernoff bound implies that∣∣∣∣αi − |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h−1(1) ∩ g−1(1)|
|g−1(1)|

with failure probability at most δ′/4, giving (8).
Finally, Definition 17 gives that (9) holds with failure probability at most δ′/4. This concludes the

proof.

Next we show how a high-accuracy estimate αi of |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| yields a deterministic

approximate evaluation oracle for D̂′i.

Lemma 43. Algorithm Simulate-Approx-Eval (which is deterministic) takes as input a value α ∈
[0, 1], a string x ∈ {−1, 1}n, a parameter κ, (a circuit for) h : {−1, 1}n → {−1, 1}, and (a representation
for) g : {−1, 1}n → {−1, 1}, g ∈ C′, where h, g are obtained from a run of A′C . Suppose that∣∣∣∣α− |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h−1(1) ∩ g−1(1)|
|g−1(1)|

and
|g−1(1)|

1 + τ
≤ κ ≤ (1 + τ)|g−1(1)|

where µ = τ = ε/40000. Then Simulate-Approx-Eval outputs a value ρ such that

D̂′(x)

1 + β
≤ ρ ≤ (1 + β)D̂′(x), (10)

where β = ε/192, D̂ is the output distribution constructed in Step 3 of the run of AC that produced h, g,
and D̂′ is D̂ conditioned on {−1, 1}n (excluding ⊥).

Proof. The Simulate-Approx-Eval procedure is very simple. Given an input x ∈ {−1, 1}n it evalu-
ates both g and h on x, and if either evaluates to−1 it returns the value 0. If both evaluate to 1 then it returns
the value 1/(κα).

For the correctness proof, note first that it is easy to see from the definition of the sampler Cf (Step 3
of A′C) and Definition 18 (recall that the approximate uniform generator AC′gen(g) only outputs strings that
satisfy g) that if x ∈ {−1, 1}n, x /∈ h−1(1) ∩ g−1(1) then D̂ has zero probability of outputting x, so
Simulate-Approx-Eval behaves appropriately in this case.

Now suppose that h(x) = g(x) = 1. We first show that the value 1/(κα) is multiplicatively close
to 1/|h−1(1) ∩ g−1(1)|. Let us write A to denote |g−1(1)| and B to denote |h−1(1) ∩ g−1(1)|. With this
notation we have

∣∣α− B
A

∣∣ ≤ µ · BA and A
1+τ ≤ κ ≤ (1 + τ)A. Consequently, we have

B(1− µ− τ) ≤ B · 1− µ
1 + τ

=
B

A
(1− µ) · A

1 + τ
≤ κα ≤ B

A
(1 + µ) · (1 + τ)A ≤ B(1 + 2µ+ 2τ),
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and hence
1

B
· 1

1 + 2µ+ 2τ
≤ 1

κα
≤ 1

B
· 1

1− µ− τ
. (11)

Now consider any x ∈ h−1(1) ∩ g−1(1). By Definition 18 we have that

1

1 + ε3
· 1

|g−1(1)|
≤ Dg,ε3(x) ≤ (1 + ε3) · 1

|g−1(1)|
.

Since a draw from D̂′ is obtained by taking a draw from Dg,ε3 and conditioning on it lying in h−1(1), it
follows that we have

1

1 + ε3
· 1

B
≤ D̂′(x) ≤ (1 + ε3) · 1

B
.

Combining this with (11) and recalling that µ = τ = ε
40000 and ε3 = εγ

48000 , we get (10) as desired.

C.4 The final algorithm: Proof of Theorem 8. Finally we are ready to give the distribution learning
algorithm AC for C and compete the proof of Theorem 8.

Algorithm AC(Uf−1(1), ε, δ)

Input: Independent samples from Uf−1(1), accuracy and confidence parameters ε, δ.
Output: With probability 1− δ outputs an ε-sampler Cf for Uf−1(1) .

1. For i = 1 to k = O(n/ε):

(a) Set p̂i
def
= (1 + ε)i−1/2n.

(b) RunA′C(Uf−1(1), ε/12, δ/3, p̂i). Let gi ∈ C′ be the function constructed in Step 1, hi be the
hypothesis function constructed in Step 2(e), and (Cf )i be the sampler for distribution D̂i

constructed in Step 3.
(c) Run Check(gi, hi, δ/3, ε). If it returns a pair (αi, κi) then add i to the set S (initially

empty).

2. Run the hypothesis testing procedure T Uf−1(1) over the set {D̂′i}i∈S of hypothesis distributions,
using accuracy parameter ε/12 and confidence parameter δ/3. Here T Uf−1(1) is given access to
Uf−1(1), uses the samplers (Cf )i to generate draws from distributions D̂′i (see Remark 27), and
uses the procedure Simulate-Approx-Eval(αi, κi, hi, gi) for the (1 + ε/192)-approximate
evaluation oracle EVALD̂′i

for D̂′i. Let i? ∈ S be the index of the distribution that it returns.

3. Output the sampler (Cf )i? .

Proof of Theorem 8: Let p ≡ Prx∈Un [f(x) = 1] denote the true fraction of satisfying assignments for f
in {−1, 1}n. Let i∗ be the element of [k] such that p ≤ p̂i∗ < (1 + ε/6)p. By Theorem 34, with probability
at least 1− δ/3 we have that both

(i) (Cf )i∗ is a sampler for a distribution D̂i∗ such that dTV(D̂i∗ ,Uf−1(1)) ≤ ε/6; and

(ii) |h−1
i∗ (1) ∩ g−1

i∗ (1)|/|g−1
i∗ (1)| ≥ γ/2.

We condition on these two events holding. By Lemma 42, with probability at least 1−δ/3 the procedure
Check outputs a value αi∗ such that∣∣∣∣αi∗ − |h−1

i∗ (1) ∩ g−1
i∗ (1)|

|g−1
i∗ (1)|

∣∣∣∣ ≤ µ · |h−1
i∗ (1) ∩ g−1

i∗ (1)|
|g−1
i∗ (1)|
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for µ = ε/40000.We condition on this event holding. Now Lemma 43 implies that Simulate-Approx-Eval((Cf )i∗)
meets the requirements of a (1 + β)-approximate evaluation oracle for EVALD̂′

i∗
from Proposition 6, for

β = ε
192 . Hence by Proposition 6 (or more precisely by Remark 27) with probability at least 1 − δ/3 the

index i? that T Uf−1(1) returns is such that D̂′i? is an ε/2-sampler for Uf−1(1) as desired.
As in the proof of Theorem 34, the claimed running time bound is a straightforward consequence of the

various running time bounds established for all the procedures called by AC . This concludes the proof of
our general positive result, Theorem 8.

D Details from Section 4: Linear Threshold Functions

D.1 Tools from the literature. We first record two efficient algorithms for approximate uniform genera-
tion and approximate counting for LTFn, due to Dyer [Dye03]:

Theorem 44. There is an algorithm ALTF
gen that on input (a weights–based representation of) an arbitrary

h ∈ LTFn and a confidence parameter δ > 0, runs in time poly(n, log(1/δ)) and with probability 1 − δ
outputs a point x such that x ∼ Uh−1(1).

Theorem 45. There is an algorithm ALTF
count that on input (a weights–based representation of) an arbitrary

h ∈ LTFn, an accuracy parameter ε > 0 and a confidence parameter δ > 0, runs in time poly(n, 1/ε, log(1/δ))
and outputs p̂ ∈ [0, 1] that with probability 1− δ satisfies p̂ ∈ [1− ε, 1 + ε] ·Prx∼Un [h(x) = 1].

We also need an efficient SQ learning algorithm for halfpaces. This is provided to us by a result of Blum
et. al. [BFKV97]:

Theorem 46. There is a distribution-independent SQ learning algorithmALTF
SQ for LTFn that has running

time t1 = poly(n, 1/ε, log(1/δ)), uses at most t2 = poly(n) time to evaluate each query, and requires
tolerance of its queries no smaller than τ = 1/poly(n, 1/ε).

Proof of Claim 12: Consider an LTF g and suppose that it does not satisfy condition (a), i.e., Prx∼Un [g(x) =
−1|f(x) = 1] > ε. Since each sample x ∈ S+ is uniformly distributed in f−1(1), the probability it does not
“hit” the set g−1(−1)∩f−1(1) is at most 1−ε. The probability that no sample in S+ hits g−1(−1)∩f−1(1) is
thus at most (1−ε)N+ ≤ δ/2n2

. Recalling that there exist at most 2n
2

distinct LTFs over {−1, 1}n [Mur71],
it follows by a union bound that the probability there exists an LTF that does not satisfy condition (a) is at
most δ as desired.

D.2 Proof of Theorem 13 We start by recalling the notion of online learning for a class C of Boolean
functions. In the online model, learning proceeds in a sequence of stages. In each stage the learning
algorithm is given an unlabeled example x ∈ {−1, 1}n and is asked to predict the value f(x), where f ∈ C
is the unknown target concept. After the learning algorithm makes its prediction, it is given the correct value
of f(x). The goal of the learner is to identify f while minimizing the total number of mistakes. We say that
an online algorithm learns class C with mistake bound M if it makes at most M mistakes on any sequence
of examples consistent with some f ∈ C. Our densifier makes essential use of a computationally efficient
online learning algorithm for the class of linear threshold functions by Maass and Turan [MT94]:
Theorem 47. There exists a poly(n) time deterministic online learning algorithm ALTF

online for the class

LTFn with mistake bound M(n)
def
= Θ(n2 log n). In particular, at every stage of its execution, the current

hypothesis maintained by ALTF
online is a (weights–based representation of an) LTF that is consistent with all

labeled examples received so far.
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We note that ALTF
online works by reducing online learning of LTFs to a convex optimization problem;

however, our densifier will use algorithm ALTF
online as a black box.

We now proceed with a more detailed description of our densifier followed by pseudocode and a proof of
correctness. As previously mentioned, the basic idea is to execute the online learner to learn f while cleverly
providing counterexamples to it in each stage of its execution. Our algorithm starts by samplingN+ samples
from Uf−1(1) and making sure that these are classified correctly by the online learner. This step guarantees
that our final solution will satisfy condition (a) of the densifier. Let h ∈ LTFn be the current hypothesis at
the end of this process. If h satisfies condition (b) (we can efficiently decide this by using our approximate
counter for LTFn), we output h and terminate the algorithm. Otherwise, we use our approximate uniform
generator to construct a uniform satisfying assignment x ∈ Uh−1(1) and we label it negative, i.e., we give the
labeled example (x,−1) as a counterexample to the online learner. Since h does not satisfy condition (b),
i.e., it has “many” satisfying assignments, it follows that with high probability (roughly, at least 1− γ) over
the choice of x ∈ Uh−1(1), the point x output by the generator will indeed be negative for f . We continue
this process for a number of stages. If all counterexamples thus generated are indeed consistent with f (this
happens with probability roughly 1 − γ ·M , where M = M(n) = Θ(n2 log n) is an upper bound on the
number of stages), after at most M stages we have either found a hypothesis h satisfying condition (b) or
the online learner terminates. In the latter case, the current hypothesis of the online learner is identical to f ,
as follows from Theorem 47. (Note that the above argument puts an upper bound of O(δ/M) on the value
of γ.) Detailed pseudocode follows:

Algorithm ALTF
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters ε, δ > 0, and a value 1/2n ≤ p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1+ ε)p, with probability 1− δ outputs a function g ∈ LTFn satisfying conditions
(a) and (b).

1. Draw a set S+ of N+ = Θ
(
(1/ε) · (n2 + log(1/δ))

)
examples from Uf−1(1).

2. Initialize i = 0 and set M def
= Θ(n2 log n).

While (i ≤M) do the following:

(a) Execute the i-th stage of ALTF
online and let h(i) ∈ LTFn be its current hypothesis.

(b) If there exists x ∈ S+ with h(i)(x) = −1 do the following:

• Give the labeled example (x, 1) as a counterexample to ALTF
online.

• Set i = i+ 1 and go to Step 2.
(c) Run ALTF

count(h
(i), ε, δ/(4M)) and let p̂i be its output.

(d) Set γ def
= δ/(16M). If p̂i ≤ p̂/

(
γ · (1 + ε)2

)
then output h(i);

(e) otherwise, do the following:
• Run ALTF

gen (h(i), δ/(4M)) and let x(i) be its output.
• Give the point (x(i),−1) as a counterexample to ALTF

online.
• Set i = i+ 1 and go to Step 2.

3. Output the current hypothesis h(i) of ALTF
online.

Proof. First note that by Claim 12, with probability at least 1−δ/4 over S+ any LTF consistent with S+ will
satisfy condition (a). We will condition on this event and also on the event that each call to the approximate
counting algorithm and to the approximate uniform generator is successful. Since Step 2 involves at most
M iterations, by a union bound, with probability at least 1− δ/4 all calls to ALTF

count will be successful, i.e.,
for all i we will have that pi/(1 + ε) ≤ p̂i ≤ (1 + ε) · pi, where pi = Prx∈Un [h(i)(x) = 1]. Similarly,
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with failure probability at most δ/4, all points x(i) constructed by ALTF
gen will be uniformly random over

(h(i))−1(1). Hence, with failure probability at most 3δ/4 all three conditions will be satisfied.
Conditioning on the above events, if the algorithm outputs a hypothesis h(i) in Step 2(d), this hypothesis

will certainly satisfy condition (b), since pi ≤ (1 + ε)p̂i ≤ p̂/
(
γ · (1 + ε)

)
≤ p/γ. In this case, the algorithm

succeeds with probability at least 1 − 3δ/4. It remains to show that if the algorithm returns a hypothesis
in Step 3, it will be successful with probability at least 1 − δ. To see this, observe that if no execution of
Step 2(e) generates a point x(i) with f(x(i)) = 1, all the counterexamples given to ALTF

online are consistent
with f . Therefore, by Theorem 47, the hypothesis of Step 3 will be identical to f , which trivially satisfies
both conditions.

We claim that with overall probability at least 1 − δ/4 all executions of Step 2(e) generate points x(i)

with f(x(i)) = −1. Indeed, fix an execution of Step 2(e). Since p̂i > p̂/
(
(1 + ε)2 · γ

)
, it follows that

p ≤ (4γ)pi. Hence, with probability at least 1− 4γ a uniform point x(i) ∼ U(hi)−1(1) is a negative example
for f , i.e., x(i) ∈ f−1(−1). By a union bound over all stages, our claim holds except with failure probability
4γ ·M = δ/4, as desired. This completes the proof of correctness.

It remains to analyze the running time. Note that Step 2 is repeated at most M = O(n2 log n) times.
Each iteration involves (i) one round of the online learner ALTF

online (this takes poly(n) time by Theorem 47),
(ii) one call of ALTF

count (this takes poly(n, 1/ε, log(1/δ)) time by Theorem 45), and (iii) one call to ALTF
gen

(this takes poly(n, 1/ε, log(1/δ)) time by Theorem 44). This completes the proof of Theorem 13.

Discussion. As mentioned before, the algorithm ALTF
den is the most important technical contribution of this

section and hence it is instructive to understand, at a high level, the ingredients which are combined to
construct a densifier. Let C be a class of Boolean functions and Cn consist of functions in C over n variables.
While we do not formalize it here, one can modify the proof of Theorem 13, mutatis mutandis, to show
that Cn has a (ε, γ, δ)-densifier ACden with running time T (n) (where ε, γ and δ are 1/poly(n) and T (n) is
poly(n)) provided that the following conditions hold:

(i) Cn has an (ε, δ)-approximate counting algorithm and an (ε, δ)-approximate uniform generation algo-
rithm both of which run in time poly(n, 1/ε, 1/δ);

(ii) There is an online learning algorithm ACOL for C with a poly(n) running time and poly(n) mistake
bound.

It will be interesting to see if there are other interesting classes of functions for which this framework gives
an “automatic” construction of densifiers.

E Proof of Theorem 14: DNF

E.1 Tools from the literature for DNF. Karp, Luby and Madras [KLM89] have given approximate uni-
form generation and approximate counting algorithms for DNF formulas. (We note that [JVV86] give an
efficient algorithm that with high probability outputs an exactly uniform satisfying assignment for DNFs.)

Theorem 48. (Approximate uniform generation for DNFs, [KLM89]) There is an approximate uniform
generation algorithm ADNFn,t

gen for the class DNFn,t that runs in time poly(n, t, 1/ε, log(1/δ)).

Theorem 49. (Approximate counting for DNFs, [KLM89]) There is an approximate counting algorithm
ADNFn,t

gen for the class DNFn,t that runs in time poly(n, t, 1/ε, log(1/δ)).
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Algorithm ADNFn,s
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters ε, δ > 0, and a value 1/2n < p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1 + ε)p, with probability 1 − δ outputs a set S of conjunctions C1, . . . , C|S| as
described in Theorem 16

1. Initialize set S to ∅. Let `(·) be the polynomial from Theorem 15.
2. For i = 1 to M = 2n2 log(2s/`(ε/s)) log(s/δ), repeat the following:

(a) Draw r = 2 log n satisfying assignments x1, . . . , xr from Uf−1(1).
(b) Let Ci be the AND of all literals that take the same value in all r strings x1, . . . , xr (note Ci

may be the empty conjunction). We say Ci is a candidate term.
(c) If the candidate term Ci satisfies Prx∼Un [Ci(x) = 1] ≤ p̂ then add Ci to the set S.

3. Output S.

E.2 Proof of Theorem 16 The following crucial claim makes the intuition described in the proof sketch
of Theorem 16 precise:

Claim 50. Suppose Tj is a term in f such that Prx∼Uf−1(1)
[Tj(x) = 1] ≥ `(ε/s)/(2s). Then with probabil-

ity at least 1−δ/s, term Tj is a candidate term at some iteration of Step 2 of AlgorithmADNFn,s
den (Uf−1(1), ε, δ, p̂).

Proof. Fix a given iteration i of the loop in Step 2. With probability at least

(`(ε/s)/(2s))2 logn = (1/n)2 log(2s/`(ε/s)),

all 2 log n points x1, . . . , x2 logn satisfy Tj ; let us call this event E, and condition on E taking place.
We claim that conditioned on E, the points x1, . . . , x2 logn are independent uniform samples drawn from
T−1
j (1). (To see this, observe that each xi is an independent sample chosen uniformly at random from
f−1(1) ∩ T−1

j ; but f−1(1) ∩ T−1
j (1) is identical to T−1

j (1).) Given that x1, . . . , x2 logn are independent
uniform samples drawn from T−1

j (1), the probability that any literal which is not present in Tj is contained
in Ci (i.e., is satisfied by all 2 log n points) is at most 2n/n2 ≤ 1/2. So with overall probability at least

1
2n2 log(2s/`(ε/s)) , the term Tj is a candidate term at iteration i. Consequently Tj is a candidate term at some
iteration with probability at least 1− δ/s, by the choice of M = 2n2 log(2s/`(ε/s)) log(s/δ).

Now we are ready to prove Theorem 16:

Proof of Theorem 16. The claimed running time bound of ADNFn,s
den is easily verified, so it remains only to

establish (1)-(3). Fix p̂ such that p ≤ p̂ < (1 + ε)p where p = Prx∼Un [f(x) = 1].
Consider any fixed term Tj of f such that Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). By Claim 50 we
have that with probability at least 1 − δ/s, term Tj is a candidate term at some iteration of Step 2 of the
algorithm. We claim that in step (c) of this iteration the term Tj will in fact be added to S. This is because
by assumption we have

Prx∼Un [Tj(x) = 1] ≤ Prx∼Un [f(x) = 1] = p ≤ p̂.

So by a union bound, with probability at least 1− δ every term Tj in f such that Prx∼Uf−1(1)
[Tj(x) = 1] ≥

`(ε/s)/(2s) is added to S.
Let L be the set of those terms Tj in f that have Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). Let f ′ be the
DNF obtained by taking the OR of all terms in L. By a union bound over the (at most s) terms that are in
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f but not in f ′, we have Prx∼Uf−1(1)
[f ′(x) = 1] ≥ 1 − `(ε/s)/2. Since g (as defined in Theorem 16 has

g(x) = 1 whenever f ′(x) = 1, it follows that Prx∼Uf−1(1)
[g(x) = 1] ≥ 1− `(ε/s)/2 ≥ 1− ε, giving item

(1) of the theorem.
For item (2), since f(x) = 1 whenever f ′(x) = 1, we have Prx∼Ug−1(1)

[f(x) = 1] ≥ Prx∼Ug−1(1)
[f ′(x) =

1]. Every x such that f ′(x) = 1 also has g(x) = 1 so to lower bound Prx∼Ug−1(1)
[f ′(x) = 1] it is enough to

upper bound the number of points in g−1(1) and lower bound the number of points in f ′−1(1). Since each
Ci that is added to S is satisfied by at most p̂2n ≤ (1+ ε)p2n points, we have that |g−1(1)| ≤ (1+ ε)pM2n.
Since at least 1− ε of the points that satisfy f also satisfy f ′, we have that |f ′−1(1)| ≥ p(1− ε)2n. Thus we
have Prx∼Ug−1(1)

[f ′(x) = 1] ≥ p(1− ε)/((1 + ε)pM) = 1−ε
1+ε ·

1
M > 1

2M , giving (2).
Finally, for (3) we have that f(x) 6= f ′(x) only on those inputs that have f(x) = 1 but f ′(x) = 0

(because some term outside of L is satisfied by x and no term in L is satisfied by x). Even if all such
inputs x lie in g−1(1) (the worst case), there can be at most (`(ε/s)/2)p2n such inputs, and we know that
|g−1(1)| ≥ |f−1(1)| ≥ p(1 − ε)2n. So we have Prx∼Ug−1(1)

[f(x) 6= f ′(x)] ≤ `(ε/s)/2
1−ε ≤ `(ε/s), and we

have (3) as desired.

F Cryptographic hardness of distribution learning

In this section, we will prove hardness results for distribution learning of specific classes C of Boolean
functions. As is standard in computational learning theory, our hardness results are based on cryptographic
hardness assumptions. The hardness assumptions we use are well studied assumptions in cryptography such
as the strong RSA assumption and the Decisional Diffie-Hellman problem.

F.1 Hardness results based on signature schemes. In this subsection we prove a general theorem, The-
orem 56, which relates the hardness of distribution learning to the existence of certain secure signature
schemes in cryptography. Roughly speaking, Theorem 56 says that if secure signature schemes exist, then
the distribution learning problem is computationally hard for any class C which is Levin-reducible from
CIRCUIT-SAT. We will use this general result to establish hardness of distribution learning for several
natural classes of functions, including 3-CNF formulas, intersections of two halfspaces, and degree-2 poly-
nomial threshold functions (PTFs).

We begin by recalling the definition of public key signature schemes. For an extensive treatment of
signature schemes, see [Gol04]. For simplicity, and since it suffices for our purposes, we only consider
schemes with deterministic verification algorithms.

Definition 51. A signature scheme is a triple (G,S, V ) of polynomial-time algorithms with the following
properties :

• (Key generation algorithm)G is a randomized algorithm which on input 1n produces a pair (pk, sk)
(note that the sizes of both pk and sk are polynomial in n).

• (Signing algorithm) S is a randomized algorithm which takes as input a messagem from the message
spaceM, a secret key sk and randomness r∈ {0, 1}n, and outputs a signature σ = S(m, sk, r).

• (Verification algorithm) V is a deterministic algorithm such that V (m, pk, σ) = 1 for every σ =
S(m, sk, r).

For the rest of this paper, we will only consider the so-called unique signature schemes (which are
defined below). While it is possible to prove our theorems using somewhat more general signature schemes,
we choose unique signature schemes to simplify the exposition.
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Definition 52. A signature scheme (G,S, V ) is said to be a unique signature scheme if for every choice of
(pk, sk) and m ∈M, there is a unique σm such that V (m, pk, σm) = 1. In this case, the signing algorithm
S is deterministic.

From now on, whenever we refer to signature schemes, we will mean unique signature schemes. We
next define the standard notion of existential unforgeability under Random Message Attack (RMA).

Definition 53. A signature scheme (G,S, V ) is said to be (t, ε)-RMA secure if the following holds: Let
(pk, sk)← G(1n). Let (m1, . . . ,mt) be chosen uniformly at random fromM. Let σi ← S(mi, sk). Then,
for any probabilistic algorithm A running in time t,

Pr
(pk,sk),(m1,...,mt),(σ1,...,σt)

[A(pk,m1, . . . ,mt, σ1, . . . , σt) = (m′, σ′)] ≤ ε

where V (m′, pk, σ′) = 1 and m′ 6= mi for all i = 1, . . . , t.

Next we need to formally define the notion of hardness of distribution learning for a class C:

Definition 54. Let C be a class of n-variable Boolean functions. C is said to be (t(n), ε, δ)-hard for dis-
tribution learning if there is no algorithm A running in time t(n) which is an (ε, δ) distribution learning
algorithm for C.

Finally, we will also need the definition of an invertible Levin reduction:

Definition 55. A binary relation R is said to reduce to another binary relation R′ by a time-t invertible
Levin reduction if there are three algorithms α, β and γ, each running in time t(n) on instances of length
n, with the following property:

• For every (x, y) ∈ R, it holds that (α(x), β(x, y)) ∈ R′;

• For every (α(x), z) ∈ R′, it holds that (x, γ(α(x), z)) ∈ R.

Furthermore, the functions β and γ are injective maps with the property that γ(α(x), β(x, y)) = y.

Note that for any class of functions C, we can define the binary relation RC as follows : (f, x) ∈ RC if and
only if f(x) = 1 and f ∈ C. In this section, whenever we say that there is an invertible Levin reduction from
class C1 to class C2, we mean that there is an invertible Levin reduction between the corresponding binary
relations RC1 and RC2 .

F.1.1 A general hardness result based on signature schemes. We now state and prove our main theorem
relating signature schemes to hardness of distribution learning:

Theorem 56. Let (G,S, V ) be a (t, ε)-RMA secure signature scheme. Let C be a class of n-variable Boolean
functions such that there is a Levin reduction from CIRCUIT-SAT to C running in time t′(n). Let κ1 and κ2

be such that κ1 ≤ 1 − 2 · t′(n)/|M|, κ2 ≤ 1 and ε ≤ (1 − κ1)(1 − κ2)/4. If t1(·) is a time function such
that 2t1(t′(n)) ≤ t(n), then C is (t1(n), κ1, κ2)-hard for distribution learning.

The idea of the proof is simple: Suppose there were an efficient distribution learning algorithm for C.
Because of the invertible Levin reduction from CIRCUIT-SAT to C, there is a signature scheme for which
the verification algorithm (using any given public key) corresponds to a function in C. The signed messages
(m1, σ1), . . . , (mt, σt) correspond to points from Uf−1(1) where f ∈ C. Now the existence of an efficient
distribution learning algorithm for C (i.e. an algorithm which, given points from Uf−1(1), can generate more
such points) translates into an algorithm which, given a sample of signed messages, can generate a new
signed message. But this violates the existential unforgeability under RMA of the signature scheme. We
now proceed to the formal proof.
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Proof. Assume towards a contradiction that there is a distribution learning algorithm A which runs in time
t1 such that with probability 1 − κ2, the output distribution is κ1-close to the target distribution. We will
now use algorithm A to construct an adversary which breaks the signature scheme for key pairs (pk, sk).

Towards this, fix a key pair (pk, sk) and consider the function Vpk : M× {0, 1}∗ → {0, 1} defined
as Vpk(m,σ) = V (m, pk, σ). Clearly, Vpk is an instance of CIRCUIT-SAT (i.e. Vpk is computed by a
satisfiable polynomial-size Boolean circuit). Since there is an invertible Levin reduction from CIRCUIT-
SAT to C, given pk, the adversary in time t′(n) can compute Φpk ∈ C with the following properties (let β
and γ be the corresponding algorithms in the definition of the Levin reduction):

• For every (m,σ) such that Vpk(m,σ) = 1, Φpk(β(Vpk, (m,σ))) = 1.

• For every x such that Φpk(x) = 1, Vpk(γ(Φpk, x)) = 1.

Let m ∈ M be a randomly chosen message and let σm be the corresponding signature. It is obvious that
β(Vpk, (m,σm)) has the same distribution as a randomly chosen element from Φ−1

pk (1). Recall that the ad-

versary receives random message-signature pairs {(mi, σi)}t
′(n)
i=1 . Define xi = β(Vpk, (mi, σmi)). Observe

that x1, . . . , xt′(n) are distributed exactly as t′(n) random elements from Φ−1
pk (1). Also, the instances xi are

of length bounded by t′(n). We run the algorithm A on the inputs x1, . . . , xt′(n). Note that the total running
time of this procedure is bounded by t(n). Let the output of the algorithm be a sampler S. Now, we run the
sampler S and apply the map β to its output. Observe that the total running time is bounded by 2t(n).

Now observe that with probability 1 − κ2, the output distribution of the sampler is κ1 close to being
uniform on Φ−1

pk (1). For this sampler, when we apply the map β to its output, we obtain a valid message-

signature pair (m′, σm′) with probability 1 − κ1. Furthermore, m′ is distinct from all {mi}t
′(n)
i=1 with prob-

ability 1 − t′(n)/|M|. Thus, the adversary succeeds in breaking the security of the signature scheme with
probability 1− κ1 − t′(n)/|M|.

Thus, with overall probability (1−κ1)(1−κ2)/4 ≥ ε, the adversary succeeds in producing z = g(m,σ)
such that ∀i ∈ [t′],mi 6= m. Applying the map γ on (Φpk, z), the adversary gets the pair (m,σ). Also, note
that the total running time of the adversary is t1(t′(n)) + t′(n) ≤ 2t1(t′(n)) ≤ t(n) which contradicts the
(t, ε)-RMA security of the signature scheme.

F.1.2 A specific hardness assumption. At this point, we consider a particular instantiation of a unique
signature scheme from the literature which meets our requirements. There are many other assumptions
under which such signature schemes can be constructed (as we remark shortly). To state our cryptographic
assumption, we need the following notation: PRIMESk is the set of k-bit prime numbers. RSAk is the set of
all products of two primes of length b(k − 1)/2c. The following cryptographic assumption (a slight variant
of the standard RSA assumption) appears in [MRV99].

Assumption 1. The RSA′ s(k) assumption: Fix any m ∈ RSAk and let x ∈U Z∗m and p ∈U PRIMESk+1.
Let A be any probabilistic algorithm running in time s(k). Then,

Pr(x,p)[A(m,x, p) = y and yp = x (mod m)] ≤ 1

s(k)
.

As mentioned in [MRV99], given the present state of computational number theory, it is plausible to
conjecture the RSA′ s(k) assumption for s(k) = 2k

δ
for some absolute constant δ > 0. For the sake of

conciseness, for the rest of this section we write “Assumption 1 holds true” to mean that Assumption 1
holds true with s(k) = 2n

δ
for some fixed constant δ > 0. (We note, though, that all our hardness results

go through giving superpolynomial hardness using only s(k) = kω(1).) Micali et al. [MRV99] give a
construction of a unique signature scheme using Assumption 1:
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Theorem 57. If Assumption 1 holds true, then there is a (t = 2n
δ
, ε = 1/t)-RMA secure unique signature

scheme (G,S, V ).

Remark 58. It is important to note here that there are other constructions of unique signature schemes
known in literature. For example, Lysyanskaya [Lys02] constructed a unique signature scheme using a
strong version of the Diffie–Hellman assumption. Similarly, Hohenberger and Waters [HW10] constructed
a unique signature scheme using a variant of the Diffie–Hellman assumption on bilinear groups.

Instantiating Theorem 56 with the signature scheme from Theorem 57, we obtain the following corol-
lary:

Corollary 59. Suppose that Assumption 1 holds true. Then the following holds : Let C be a function class
such that there is a polynomial time (nk-time) invertible Levin reduction from CIRCUIT-SAT to C. Then C
is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for distribution learning for some constant c > 0 (depending only on the

“δ” in Assumption 1 and on k).

F.1.3 Hardness results for specific function classes whose satisfiability problem is NP-complete. In
this subsection we use Corollary 59 to prove distribution learning hardness results for specific function
classes C for which there are invertible Levin reductions from CIRCUIT-SAT to C.

Fact 60. There is a polynomial time invertible Levin reduction from CIRCUIT-SAT to 3-CNF-SAT.

As a corollary, we have the following result.

Corollary 61. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that the class
3-CNF is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for distribution learning.

Corollary 61 is interesting in light of the well known fact that the class of all 3-CNF formulas is effi-
ciently PAC learnable from uniform random examples (in fact under any distribution). The next theorem
can be proven by following the standard reduction from CIRCUIT-SAT to SUBSET-SUM.

Theorem 62. If Assumption 1 holds true, then there exists an absolute constant c > 0 such that C = {all
intersections of two halfspaces over n Boolean variables} is (2n

c
, 1− 2−n

c
, 1− 2−n

c
)-hard for distribution

learning.

F.1.4 A hardness result where the satisfiability problem is in P . The last two hardness results have
been for classes C of NP-complete languages. As Theorem 56 requires a reduction from CIRCUIT-SAT to
C, this theorem cannot be directly used to prove hardness for classes C which are not NP-hard. We next
give an extension of Theorem 56 which can apply to classes C for which the satisfiability problem is in P .
Using this result we will show hardness of distribution learning for MONOTONE-2-CNF-SAT. We begin
by defining by a notion of invertible one-many reductions that we will need.

Definition 63. CIRCUIT-SAT is said to have an η-almost invertible one-many reduction to a function class
C if the following conditions hold:

• There is a polynomial time computable function f such that given an instance Φ of CIRCUIT-SAT
(i.e. Φ is a satisfiable circuit), Ψ = f(Φ) is an instance of C (i.e. Ψ ∈ C and Ψ is satisfiable).

• Fix any instance Φ of CIRCUIT-SAT and let A = Ψ−1(1) denote the set of satisfying assignments of
Ψ. Then A can be partitioned into sets A1 and A2 such that |A2|/|A| ≤ η and there is an efficiently
computable function g : A1 → Φ−1(1) such that g(x) is a satisfying assignment of Φ for every
x ∈ A1.
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• For every y which is a satisfying assignment of Φ, the number of pre-images of y under g is exactly
the same, and the uniform distribution over g−1(y) is polynomial time samplable.

We next state the following simple claim which will be helpful later.

Claim 64. Suppose there is an η-almost invertible one-many reduction from CIRCUIT-SAT to C. Let f and
g be the functions from Definition 63. Let Φ be an instance of CIRCUIT-SAT and let Ψ = f(Φ) be the
corresponding instance of C. Define distributions D1 and D2 as follows :

• A draw from D1 is obtained by choosing y uniformly at random from Φ−1(1) and then outputting z
uniformly at random from g−1(y).

• A draw from D2 is obtained by choosing z′ uniformly at random from Ψ−1(1).

Then we have dTV (D1, D2) ≤ η.

Proof. This is an immediate consequence of the fact that D1 is uniform over the setA1 while D2 is uniform
over the set A (from Definition 63).

We next have the following extension of Corollary 59.

Theorem 65. Suppose that Assumption 1 holds true. Then if C is a function class such that there is an
η-almost invertible one-many reduction (for η = 2−Ω(n)) from CIRCUIT-SAT to C, then C is (2n

c
, 1 −

2−n
c
, 1− 2−n

c
)-hard for distribution learning for some absolute constant c > 0.

Proof. The proof is similar to the proof of Corollary 59. Assume towards a contradiction that there is a
distribution learning algorithm A for C which runs in time t1 such that with probability 1 − κ2, the output
distribution is κ1-close to the target distribution. (We will set t1, κ1 and κ2 later to 2n

c
, 1 − 2−n

c
and

1− 2−n
c

respectively.)
Let (G,S, V ) be the RMA-secure signature scheme constructed in Theorem 57. Note that (G,S, V ) is

a (T, ε)-RMA secure signature scheme where T = 2n
δ
, ε = 1/T and |M| = 2n

µ
for constant δ, µ > 0.

Let (pk, sk) be a choice of key pair. We will us A to contradict the security of (G,S, V ). Towards this,
consider the function Vpk :M× {0, 1}∗ → {0, 1} defined as Vpk(m,σ) = V (m, pk, σ). Clearly, Vpk is an
instance of CIRCUIT-SAT. Consider the η-invertible one-many reduction from CIRCUIT-SAT to C. Let α
and β have the same meaning as in Definition 63. Let Ψ = α(Vpk) and let A, A1 and A2 have the same
meaning as in Definition 63. The adversary receives message-signature pairs (m1, σ1) . . . (mt1 , σt1) where
m1, . . . ,mt1 are chosen independently at random fromM. For any i, (mi, σi) is a satisfying assignment of
Vpk. By definition, in time t2 = t1 · poly(n), the adversary can sample (z1, . . . , zt1) such that z1, . . . , zt1
are independent and zi ∼ Uβ−1(mi,σi). Note that this means that each zi is an independent sample from
A1 and |zi| = poly(n). Note that (z1, . . . , zt1) is a t1-fold product distribution such that if D′ denotes the
distribution of zi, then by Claim 64, dTV (D′,UΨ−1(1)) ≤ η. Hence, if D is the distribution of (z1, . . . , zt1),
then dTV (D,U tΨ−1(1)) ≤ t1η.

Hence, the adversary can now run Arec on the samples z1, . . . , zt1 and as long as 1 − κ2 − t1η ≥
(1 − κ2)/2, succeeds in producing a sampler with probability (1 − κ2)/2 whose output distribution (call
it Z) is κ1 close to the distribution UΨ−1(1). Note that as η = 2−Ω(n), for any c > 0, t1 = 2n

c
and

κ2 = 1− 2−n
c

satisfies this condition. Hence, we get that dTV (Z,D′) ≤ κ1 + η. Now, observe that

Prρ∈D′ [β(ρ) = (m,σ) and m 6= mi] = 1− t1
|M|

.

The above uses the fact that every element in the range of β has the same number of pre-images. This of
course implies that
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Prρ∈Z [β(ρ) = (m,σ) and m 6= mi] ≥ 1− t1
|M|

− (κ1 + η).

Again as long as κ1 ≤ 1− 2(η + t1/|M|), the adversary succeeds in getting a valid message signature
pair (m,σ) with m 6= mi for any 1 ≤ i ≤ t1 with probability (1 − κ1)/2. Again, we can ensure κ1 ≤
1 − 2(η + t1/|M|) by choosing c sufficiently small compared to µ. The total probability of success is
(1 − κ1)(1 − κ2)/4 and the total running time is t1(poly(n)) + poly(n). Again if c is sufficiently small
compared to µ and δ, then the total running time is at most t1(poly(n)) + poly(n) < T and the success
probability is at least (1− κ1)(1− κ2)/4 > ε, resulting in a contradiction.

We now demonstrate a polynomial time η-invertible one-many reduction from CIRCUIT-SAT to MONOTONE-
2-CNF-SAT for η = 2−Ω(n). The reduction uses the “blow-up” idea used to prove hardness of approximate
counting for MONOTONE-2-CNF-SAT in [JVV86]. We will closely follow the instantiation of this tech-
nique in [Wat12].

Lemma 66. There is a polynomial time η-almost invertible one-many reduction from CIRCUIT-SAT to
MONOTONE-2-CNF-SAT where η = 2−Ω(n).

Proof. We begin by noting the following simple fact.

Fact 67. If there is a polynomial time invertible Levin reduction from CIRCUIT-SAT to a class C1 and an
η-almost invertible one-many reduction from C1 to C2, then there is a polynomial time η-almost invertible
one-many reduction from CIRCUIT-SAT to C2.

Since there is an invertible Levin reduction from CIRCUIT-SAT to 3-CNF-SAT, by virtue of Fact 67,
it suffices to demonstrate a polynomial time η-almost invertible one-many reduction from 3-CNF-SAT to
MONOTONE-2-CNF-SAT. To do this, we first construct an instance of VERTEX-COVER from the 3-
CNF-SAT instance. Let Φ =

∧
m
i=1Φi be the instance of 3-CNF-SAT. Construct an instance of VERTEX-

COVER by introducing seven vertices for each clause Φi (one corresponding to every satisfying assignment
of Φi). Now, put an edge between any two vertices of this graph if the corresponding assignments to the
variables of Φ conflict on some variable. We call this graph G. We observe the following properties of this
graph :

• G has exactly 7m vertices.

• Every vertex cover of G has size at least 6m.

• There is an efficiently computable and invertible injection ` between the satisfying assignments of
Φ and the vertex covers of G of size 6m. To get the vertex cover corresponding to a satisfying
assignment, for every clause Φi, include the six vertices in the vertex cover which conflict with the
satisfying assignment.

We next do the blow-up construction. We create a new graph G′ by replacing every vertex of G with a
cloud of 10m vertices, and for every edge inGwe create a complete bipartite graph between the correspond-
ing clouds in G′. Clearly, the size of the graph G′ is polynomial in the size of the 3-CNF-SAT formula. We
define a map g1 between vertex covers of G′ and vertex covers of G as follows : Let S′ be a vertex cover of
G′. We define the set S = g1(S′) in the following way. For every vertex v in the graph G, if all the vertices
in the corresponding cloud in G′ are in S′, then include v ∈ S, else do not include v in S. It is easy to
observe that g1 maps vertex covers of G′ to vertex covers of G. It is also easy to observe that a vertex cover
of G of size s has (210m − 1)7m−s pre-images under g1.
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Now, observe that we can construct a MONOTONE-2-CNF-SAT formula Ψ which has a variable cor-
responding to every vertex in G′ and every subset S′ of G′ corresponds to a truth assignment yS′ to Ψ such
that Ψ(yS′) = 1 if and only if S′ is a vertex cover of G′. Because of this correspondence, we can construct
a map g′1 which maps satisfying assignments of Ψ to vertex covers of G. Further, a vertex cover of size s in
graph G has (210m − 1)7m−s pre-images under g′1. Since the total number of vertex covers of G of size s is
at most

(
7m
s

)
, the total number of satisfying assignments of Ψ which map to vertex covers of G of size more

than 6m can be bounded by :

7m∑
s=6m+1

(
7m

s

)
· (210m − 1)7m−s ≤ m ·

(
7m

6m+ 1

)
· (210m − 1)m−1 ≤ (210m − 1)m · 27m

210m − 1

On the other hand, since Φ has at least one satisfying assignment, hence G has at least one vertex cover
of size 6m and hence the total number of satisfying assignments of Ψ which map to vertex covers of G
of size 6m is at least (210m − 1)m. Thus, if we let A denote the set of satisfying assignments of Ψ and
A1 be the set of satisfying assignment of Ψ which map to vertex covers of G of size exactly 6m (under
g1), then |A1|/|A| ≥ 1 − 2−Ω(n). Next, notice that we can define the map g mapping A1 to the satisfying
assignments of Φ in the following manner : g(x) = `−1(g1(x)). It is easy to see that this map satisfies all
the requirements of the map g from Definition 63 which concludes the proof.

Combining Lemma 66 with Theorem 65, we have the following corollary.

Corollary 68. If Assumption 1 holds true, then MONOTONE-2-CNF-SAT is (2n
c
, 1 − 2−n

c
, 1 − 2−n

c
)

hard for distribution learning for some absolute constant c > 0.

As a consequence of the above result, we also get hardness of distribution learning of degree-2 poly-
nomial threshold functions (PTFs); these are functions of the form sign(q(x)) where q(x) is a degree-2
multilinear polynomial over {0, 1}n.

Corollary 69. If Assumption 1 holds true, then the class of all n-variable degree-2 polynomial threshold
functions is (2n

c
, 1− 2−n

c
, 1− 2−n

c
) hard for distribution learning for some absolute constant c > 0.

Proof. This follows immediately from the fact that every monotone 2-CNF formula can be expressed as a
degree-2 PTF. To see this, note that if Φ =

∧m
i=1(xi1 ∨ xi2) where each xij is a 0/1 variable, then Φ(x) is

true if and only if
∑m

i=1 xi1 + xi2 − xi1 · xi2 ≥ m. This finishes the proof.
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