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Abstract
This paper studies the problem of learning “low-complexity” prob-
ability distributions over the Boolean hypercube {−1, 1}n. As in
the standard PAC learning model, a learning problem in our frame-
work is defined by a class C of Boolean functions over {−1, 1}n,
but in our model the learning algorithm is given uniform random
satisfying assignments of an unknown f ∈ C and its goal is to
output a high-accuracy approximation of the uniform distribution
over f−1(1). This distribution learning problem may be viewed as
a demanding variant of standard Boolean function learning, where
the learning algorithm only receives positive examples and — more
importantly — must output a hypothesis function which has small
multiplicative error (i.e. small error relative to the size of f−1(1)).

As our main results, we show that the two most widely studied
classes of Boolean functions in computational learning theory —
linear threshold functions and DNF formulas — have efficient
distribution learning algorithms in our model. Our algorithm
for linear threshold functions runs in time poly(n, 1/ε) and our
algorithm for polynomial-size DNF runs in time quasipoly(n, 1/ε).
We obtain both these results via a general approach that combines
a broad range of technical ingredients, including the complexity-
theoretic study of approximate counting and uniform generation;
the Statistical Query model from learning theory; and hypothesis
testing techniques from statistics. A key conceptual and technical
ingredient of this approach is a new kind of algorithm which we
devise called a “densifier” and which we believe may be useful in
other contexts.

We also establish limitations on efficient learnability in our
model by showing that the existence of certain types of crypto-
graphic signature schemes imply that certain learning problems in
our framework are computationally hard. Via this connection we
show that assuming the existence of sufficiently strong unique sig-
nature schemes, there are no sub-exponential time learning algo-
rithms in our framework for intersections of two halfspaces, for
degree-2 polynomial threshold functions, or for monotone 2-CNF
formulas. Thus our positive results for distribution learning come
close to the limits of what can be achieved by efficient algorithms.

1 Introduction
The learnability of Boolean functions has been an important
research topic in theoretical computer science since Valiant’s
work [Val84] 30 years ago. The existence of a strong con-
nection between learning and complexity theory is a recur-
ring theme in this line of research, especially for the model
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of learning Boolean functions under the uniform distribution
on the hypercube. More recently – over the past decade or so
– the learnability of probability distributions has emerged as
another important topic in TCS. Much of this recent work has
been on learning various types of continuous distributions,
such as mixtures of Gaussians, over high-dimensional spaces
(see e.g., [Das99, KSV08, MV10, BS10] and many other pa-
pers); by and large research in this distribution-learning vein
does not have a “complexity-theoretic flavor.” One notable
exception was the early paper of Kearns et al. [KMR+94]
(and followup work of Naor [Nao96]). The [KMR+94] pa-
per defined a model of learning discrete distributions over
{−1, 1}m, where the distribution is viewed as being gen-
erated by an m-output, n-input circuit that is fed uniform
input strings from {−1, 1}n. The [KMR+94] paper stud-
ied how the complexity of learning such a distribution scales
with the complexity of the circuit generating the distribution.
However, as shown by [KMR+94], even very simple circuits
(depth-1 circuits of bounded fanin OR gates) can generate
distributions that are hard to learn in this model.

In this paper we revisit the problem of learning discrete
distributions over {−1, 1}n from a complexity-theoretic per-
spective which is different from [KMR+94]. While the
[KMR+94] work studies distributions that are generated by a
simple multi-output circuit as described above, here we con-
sider distributions that can be described as the uniform dis-
tribution over the satisfying assignments of a low-complexity
Boolean function. In other words, for a Boolean function
f : {−1, 1}n → {−1, 1}, we consider the distribution
Uf−1(1) which is the uniform distribution over f−1(1), the
satisfying assignments of f . Thus, in our framework, a learn-
ing problem is defined by a class C of Boolean functions over
{−1, 1}n. The unknown “target distribution” is Uf−1(1) for
an unknown f ∈ C, and the learning algorithm receives inde-
pendent draws from Uf−1(1) (i.e. independent uniform pos-
itive examples of f ). The goal of the learning algorithm is
to output a hypothesis distributionD over {−1, 1}n (or more
precisely, a sampler forD) so that the total variation distance
dTV(D,Uf−1(1)) := 1

2

∑
x∈{−1,1}n |D(x) − Uf−1(1)(x)| is

at most εwith probability 1−δ.We refer to such an algorithm
for a class C of Boolean functions as a distribution learning
algorithm for C.

1.1 Motivation and Related Work. Our learning frame-
work has some similarities to the model of “uniform-



distribution learning from positive examples only” (see e.g.
[DGL05, Den98]) since in both settings the input to the al-
gorithm is a sample of points drawn uniformly at random
from f−1(1). However, there are several important differ-
ences. One obvious difference is that in uniform-distribution
learning from positive examples the goal is to output a hy-
pothesis function h, whereas here our goal is to output a
hypothesis distribution. A more significant difference is
that the success criterion for our framework is much more
demanding than for standard uniform-distribution learning.
In uniform-distribution learning of a Boolean function f
over the hypercube {−1, 1}n, the hypothesis h must satisfy
Pr[h(x) 6= f(x)] ≤ ε, where the probability is uniform over
all 2n points in {−1, 1}n. Thus, for a given setting of the
error parameter ε, in uniform-distribution learning the con-
stant −1 function is an acceptable hypothesis for any func-
tion f that has |f−1(1)| ≤ ε2n; this essentially means that
the learning algorithm gets a free pass whenever the function
is relatively biased towards outputting −1. In contrast, in
our learning framework we measure error by the total vari-
ation distance between Uf−1(1) and the hypothesis distribu-
tion D, so no such “easy way out” is possible when |f−1(1)|
is small; indeed the hardest instances in our learning sce-
nario are often those for which f−1(1) is a very small frac-
tion of {−1, 1}n. This means that we require a hypothesis
with small multiplicative error relative to |f−1(1)|/2n rather
than the additive-error criterion that is standard in uniform-
distribution learning. We are not aware of prior theoret-
ical work on learning Boolean functions in which such a
“multiplicative-error” criterion has been employed (though
the routinely used notions of error, precision and recall in
machine learning are similar to the multiplicative-error cri-
terion used here).

(We further observe that, as detailed below, we prove
negative results in our learning model for classes such as
monotone 2-CNF formulas and degree-2 polynomial thresh-
old functions. Since efficient algorithms are known for learn-
ing these classes of functions, our negative results show that
our distribution learning model is indeed significantly more
challenging than the standard uniform-distribution Boolean
function learning model for some natural and well-studied
classes of functions.)

Concurrent (but independent) to our work, Anderson
et al. [AGR13] considered the following problem: Given
access to random samples drawn uniformly from an un-
known simplex X (i.e. an intersection of n + 1 halfspaces)
over Rn, estimate the simplex. More precisely, their task
is to output n + 1 halfspaces H1, . . ., Hn+1 such that if
X ′ = H1 ∩ . . . ∩ Hn+1, then dTV (UX ,UX′) ≤ ε. An-
derson et al. give a poly(n/ε)-time algorithm for this prob-
lem. Combining this with an efficient algorithm for sampling
from convex bodies [DFK91], we get a poly(n/ε)-time algo-
rithm that outputs a sampler for the distribution UX′ . This is

the same as our learning model for the class of intersections
of n+ 1 halfspaces, but with one crucial difference: the un-
derlying measure is the Lebesgue measure on Rn as opposed
to the uniform measure on {−1, 1}n (as it is in our case). The
distinction between these two measures is indeed a very sig-
nificant one; as we show in this paper, an analogous result
is impossible (under a cryptographic hardness assumption)
even for an intersection of two halfspaces for the uniform
measure on {−1, 1}n. Perhaps not too surprisingly, the tech-
niques of Anderson et al. (algorithmic convex geometry and
Independent Component Analysis) are rather disjoint from
the techniques in this paper.

On the hardness side, Naor [Nao96] constructed a fam-
ily F of explicit distributions such that under cryptographic
assumptions, there is no efficient learning algorithm for F .
This family F is “low-complexity” in the sense that there
is an efficient algorithm which given random samples from
an unknown distribution X ∈ F and an input x, can com-
pute Pr[X = x] to high accuracy. While our hardness re-
sults are for a different problem than that of Naor, the same
intuition underlies both the results (i.e. using some modifi-
cation of secure signature schemes). However, because our
requirements are different, we need to use a different con-
struction; in particular, our results are based on unique signa-
ture schemes whereas the construction in [Nao96] employs a
modification of NIZK based signature schemes.

We close this subsection with two motivations for the
study of our framework, one non-technical and one techni-
cal. Starting with the non-technical one, we briefly note that
learning scenarios of the sort that we consider — in which
(i) the learner is given access only to positive examples over
some discrete space, (ii) positive examples are potentially
a very sparse subset of all possible examples, and (iii) the
learner’s goal is to generate new positive examples — arise
quite naturally in a range of real-world settings. As one ex-
ample, a language learner (such as a baby or an adult learn-
ing a new language) is typically exposed only to correct ut-
terances (positive examples), which comprise a tiny fraction
of all possible vocalizations (sparsity), and successful learn-
ing essentially amounts to being able to produce new correct
utterances (positive examples).

As a more technical motivation, we note that certain spe-
cific learning results in our framework must be achieved as
a first step in order to beat the “curse of dimensionality” for
some natural continuous high-dimensional density estima-
tion problems. A “k-piece d-dimensional histogram” is a
probability distribution p over the domain [0, 1]d of the fol-
lowing sort: [0, 1]d is partitioned into k axis-aligned hyper-
rectangles R1, . . . , Rk, and the distribution p is piecewise
constant over each rectangle Ri. What is the complexity (in
terms of sample size and running time) of learning such a
distribution from random examples – standard approaches
give algorithms whose complexity is exponential in d, but is



there a way to do better? Our learning model turns out to be
highly relevant to this question; an easy reduction shows that
a special case of the k-piece d-dimensional histogram learn-
ing problem, corresponds exactly to the problem of learning
the uniform distribution over satisfying assignments of an
unknown size-k decision tree over d Boolean variables. Our
positive results for DNF, described later in this introduction,
give a dO(log(k/ε)) algorithm for this problem, and thus break
the “curse of dimensionality” for this special case of the mul-
tidimensional histogram learning problem.

1.2 Our results. We give both positive and negative re-
sults for our learning model.

Positive results: A general technique and its instantia-
tions. We begin by presenting a general technique for de-
signing learning algorithms in our model. This technique
combines approximate uniform generation and counting al-
gorithms from complexity theory, Statistical Query (SQ)
learning algorithms from computational learning theory, and
hypothesis testing techniques from statistics. A key new in-
gredient which lets us combine these disparate tools is an
algorithm called a “densifier” which we introduce and define
in Section 3. Roughly speaking, the densifier lets us prune
the entire space {−1, 1}n to a set S which (essentially) con-
tains all of f−1(1) and is not too much larger than f−1(1)
(so f−1(1) is “dense” in S). By generating approximately
uniform elements of S it is possible to run an SQ learning
algorithm and obtain a high-accuracy hypothesis for f . This
hypothesis can be used, in conjunction with an approximate
uniform generation algorithm, to obtain an efficiently sam-
plable distribution which is close to the uniform distribution
over f−1(1). (The approximate counting algorithm is needed
for technical reasons which we explain in Section 3.1.) In
Section 3 we describe this technique in detail and prove a
general result establishing its effectiveness.

In Sections 4 and 5 we give our two main positive results
which are obtained by applying this general technique to
specific classes of functions. The first of these is the class
LTF of all linear threshold functions (LTFs) over {−1, 1}n.
We prove:

THEOREM 1.1. (Informal statement) There is a
poly(n, 1/ε)-time algorithm for learning Uf−1(1) where f
is any LTF over {−1, 1}n.

Our main technical contribution here is to construct
a densifier for LTFs; we do this by carefully combining
known efficient online learning algorithms for LTFs (based
on interior-point methods for linear programming) [MT94]
with known algorithms for approximate uniform generation
and counting of satisfying assignments of LTFs.

As mentioned before, our distribution learning algo-
rithms essentially entail learning the underlying Boolean
function with a multiplicative error guarantee. Indeed, as

a by-product of our approach in the proof of Theorem 1.1,
we also get the following statement which we feel is of inde-
pendent interest:

THEOREM 1.2. (Informal statement) There is a
poly(n, 1/ε)-time algorithm which given random
samples from the distribution Uf−1(1) (for an un-
known LTF f ), outputs a hypothesis h such that
Prz∈Un [f(z) 6= h(z)] ≤ ε · |f−1(1)|/2n.

Our second main positive result for a specific class,
in Section 5, is for the well-studied class DNFn,s of all
size-s DNF formulas over n Boolean variables. Here our
main technical contribution is to give a densifier which
runs in time nO(log(s/ε)) and outputs a DNF formula. A
challenge here is that known SQ algorithms for learning
DNF formulas require time exponential in n1/3. To get
around this, we show that our densifier’s output DNF is
an OR over nO(log(s/ε)) “metavariables” (corresponding to
all possible conjunctions that could be present in the DNF
output by the densifier), and that it is possible to apply known
malicious noise tolerant SQ algorithms for learning sparse
disjunctions as the SQ-learning component of our general
approach. Since efficient approximate uniform generation
and approximate counting algorithms are known [JVV86,
KL83] for DNF formulas, with the above densifier and SQ
learner we can carry out our general technique, and we
thereby obtain our second main positive result for a specific
function class:

THEOREM 1.3. (Informal statement) There is a
nO(log(s/ε))-time algorithm for learning Uf−1(1) where
f is any s-term DNF formula over {−1, 1}n.

Similar to Theorem 1.2, our approach gives a learning algo-
rithm for DNFs (over the uniform distribution on {−1, 1}n)
with a multiplicative error guarantee.

THEOREM 1.4. (Informal statement) There is a
nO(log(s/ε))-time algorithm which given random samples
from Uf−1(1) (for an unknown DNF f ), outputs a hypothesis
h such that Prz∈Un [f(z) 6= h(z)] ≤ ε · |f−1(1)|/2n.

We emphasize that our positive results for LTFs and
DNFs go well beyond the standard techniques used to learn
these classes in other less demanding models. As evidence
of this, observe that Theorem 1.2 and Theorem 1.4 give
learning algorithms for LTFs and DNFs with multiplicative
error εwhereas all previous approaches in the learning theory
literature incur an additive error. We also believe that
the use of approximate counting and approximate uniform
generation algorithms is novel in this learning context (as
well as the new notion of a “densifier” which we introduce
in this work) and may be of use elsewhere.



Negative results based on cryptography. We establish
strong negative results for our learning model via a connec-
tion to signature schemes from public-key cryptography. In-
tuitively, viewing Uf−1(1) as the uniform distribution over
signed messages, the ability to construct a high-accuracy hy-
pothesis distribution D given samples from Uf−1(1) implies
the ability to generate new signed messages, which contra-
dicts the definition of a secure signature scheme. However,
there are significant gaps in this rough intuition, and getting
around these gaps requires the use of more specialized ma-
chinery, namely unique signature schemes [MRV99, Lys02].
Building on this intuition, in the full version we establish the
following negative results which show that our positive re-
sults (for LTFs and DNFs) lie quite close to the boundary of
what can be efficiently learned in our model:

THEOREM 1.5. (Informal statement) Under known con-
structions of secure signature schemes, there is no
subexponential-time algorithm for learning Uf−1(1) where f
is (i) an unknown monotone 2-CNF formula; (ii) an unknown
intersection of two halfspaces; or (iii) an unknown degree-2
polynomial threshold function.

Structure of this paper. After the preliminaries in Section 2,
we present our general algorithmic technique in Section 3. In
Sections 4 and 5 we apply this technique to obtain efficient
learning algorithms for LTFs and DNFs respectively.

2 Preliminaries and Useful Tools
Notation and definitions. For n ∈ Z+, we will denote by
[n] the set {1, . . . , n}. For a distribution D over a finite set
W we denote by D(x), x ∈ W , the probability mass that
D assigns to point x, so D(x) ≥ 0 and

∑
x∈W D(x) = 1.

For S ⊆ W , we write D(S) to denote
∑
x∈S D(x). For a

random variable x, we write x ∼ D to indicate that x follows
distribution D. Let D,D′ be distributions over W . The
total variation distance betweenD andD′ is dTV(D,D′)

def
=

maxS⊆W |D(S)−D′(S)|.
We will denote by Cn, or simply C, a Boolean concept

class, i.e., a class of functions mapping {−1, 1}n to {−1, 1}.
We usually consider syntactically defined classes of func-
tions such as the class of all n-variable linear threshold func-
tions or the class of all n-variable s-term DNF formulas. We
stress that throughout this paper a class C is viewed as a rep-
resentation class. Thus we will say that an algorithm “takes
as input a function f ∈ C” to mean that the input of the al-
gorithm is a representation of f ∈ C.

We will use the notation Un (or simply U , when the
dimension n is clear from the context) for the uniform
distribution over {−1, 1}n. Let f : {−1, 1}n → {−1, 1}.
We will denote by Uf−1(1) the uniform distribution over
satisfying assignments of f . Let D be a distribution over
{−1, 1}n with 0 < D(f−1(1)) < 1. We write Df,+ to

denote the conditional distribution D restricted to f−1(1);
so for x ∈ f−1(1) we have Df,+(x) = D(x)/D(f−1(1)).
Observe that, with this notation, we have that Uf−1(1) ≡
Uf,+.

We use familiar notions of samplers, approximate count-
ing, and approximate uniform generation; see Appendix A
for precise definitions of these notions and of the learning
model that we study.

Hypothesis testing. Our algorithms work by generating a
collection of hypothesis distributions, one of which is close
to the target distribution Uf−1(1). Thus, we need a way to
select a high-accuracy hypothesis distribution from a pool
of candidate distributions which contains at least one high-
accuracy hypothesis. This problem has been well studied,
see e.g. Chapter 7 of [DL01]. We use the following result
which is an extension of Lemma C.1 of [DDS12a] (see the
full version for a discussion and proof):

PROPOSITION 2.1. Let D be a distribution over a finite set
W and Dε = {Dj}Nj=1 be a collection of N distributions
over W with the property that there exists i ∈ [N ] such
that dTV(D,Di) ≤ ε. There is an algorithm T D which
is given an accuracy parameter ε, a confidence parameter
δ, and is provided with access to (i) samplers for D and
Dk, for all k ∈ [N ], and (ii) a (1 + β)–approximate
evaluation oracle EVALDk(β), for all k ∈ [N ], which, on
input w ∈ W , deterministically outputs a value D̃β

k (w),
such that Dk(w)/(1 + β) ≤ D̃β

k (w) ≤ (1 + β)Dk(w),
where β > 0 is any parameter satisfying (1 + β)2 ≤
1 + ε/8. This algorithm has the following behavior: It
makes m = O

(
(1/ε2) · (logN + log(1/δ))

)
draws from

D and from each Dk, k ∈ [N ], and O(m) calls to each
oracle EVALDk(β), k ∈ [N ], performsO(mN2) arithmetic
operations, and with probability 1 − δ outputs an index
i? ∈ [N ] that satisfies dTV(D,Di?) ≤ 6ε.

3 A general technique for learning in our model
In this section we present a general technique for designing
learning algorithms in our model. Our main positive results
follow this framework.

At the heart of our approach is a new type of algorithm
which we call a densifier for a concept class C. Roughly
speaking, this is an algorithm which, given uniform random
positive examples of an unknown f ∈ C, constructs a
set S which (essentially) contains all of f−1(1) and which
is such that f−1(1) is “dense” in S. Our main result in
this section, Theorem 3.1, states (roughly speaking) that
the existence of (i) a computationally efficient densifier, (ii)
an efficient approximate uniform generation algorithm, (iii)
an efficient approximate counting algorithm, and (iv) an
efficient statistical query (SQ) learning algorithm, together
suffice to yield an efficient algorithm for our distribution
learning problem.



Recall that the statistical query (SQ) learning model is
a natural restriction of the PAC learning model in which
a learning algorithm is allowed to obtain estimates of sta-
tistical properties of the examples but cannot directly ac-
cess the examples themselves. Let D be a distribution over
{−1, 1}n. In the SQ model [Kea98], the learning algo-
rithm has access to a statistical query oracle, STAT(f,D),
to which it can make queries of the form (χ, τ), where
χ : {−1, 1}n × {−1, 1} → [−1, 1] is the query function
and τ > 0 is the tolerance. The oracle responds with
a value v such that |Ex∼D [χ (x, f(x))]− v| ≤ τ , where
f ∈ C is the target concept. The goal of the algorithm is
to output a hypothesis h : {−1, 1}n → {−1, 1} such that
Prx∼D[h(x) 6= f(x)] ≤ ε. (See Appendix A for a precise
definition of Statistical Query learning.) We sometimes write
an “(ε, δ)–SQ learning algorithm” to explicitly state the ac-
curacy parameter ε and confidence parameter δ.

To state our main result, we introduce the notion of a
densifier for a class C of Boolean functions. Intuitively, a
densifier is an algorithm which is given access to samples
from Uf−1(1) (where f is an unknown element of C) and
outputs a subset S ⊆ {−1, 1}n which is such that (i)
S contains “almost all” of f−1(1), but (ii) S is “much
smaller” than {−1, 1}n – small enough that f−1(1) ∩ S is
(moderately) “dense” in S.

DEFINITION 3.1. Fix a function γ(n, 1/ε, 1/δ) taking val-
ues in (0, 1] and a class C of n-variable Boolean functions.
An algorithm A(C,C′)

den is said to be a γ-densifier for function
class C using class C′ if it has the following behavior: For
every ε, δ > 0, every 1/2n ≤ p̂ ≤ 1, and every f ∈ C,
given as input ε, δ, p̂ and a set of independent samples from

Uf−1(1), the following holds: Let p
def
= Prx∼Un [f(x) = 1].

If p ≤ p̂ < (1 + ε)p, then with probability at least 1 − δ,
algorithm A(C,C′)

den outputs a function g ∈ C′ such that:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1 − ε, and (b)

Prx∼Ug−1(1)
[f(x) = 1] ≥ γ(n, 1/ε, 1/δ).

We will sometimes write an “(ε, γ, δ)–densifier” to ex-
plicitly state the parameters in the definition.

Our main conceptual approach is summarized in the
following theorem:

THEOREM 3.1. (GENERAL ALGORITHMIC APPROACH)
Let C, C′ be classes of n-variable Boolean functions.
Suppose that

• A(C,C′)
den is an (ε, γ, δ)-densifier for C using C′ running

in time Tden(n, 1/ε, 1/δ).

• AC′gen is an (ε, δ)-approximate uniform generation algo-
rithm for C′ running in time Tgen(n, 1/ε, 1/δ).

• AC′count is an (ε, δ)-approximate counting algorithm for
C′ running in time Tcount(n, 1/ε, 1/δ).

• ACSQ is an (ε, δ)-SQ learning algorithm for C such
that: ACSQ runs in time t1(n, 1/ε, 1/δ) , t2(n) is the
maximum time needed to evaluate any query provided
to STAT(f,D), and τ(n, 1/ε) is the minimum value of
the tolerance parameter ever provided to STAT(f,D)
in the course of ACSQ’s execution.

Then there exists a distribution learning algorithmAC for C.
The running time of AC is polynomial in Tden(n, 1/ε, 1/δ),

1/γ, Tgen(n, 1/ε, 1/δ), Tcount (n, 1/ε, 1/δ), t1(n, 1/ε, 1/δ),
t2(n) and 1/τ(n, 1/ε) provided that Tden(·), Tgen(·),
Tcount(·), t1(·), t2(·) and τ(·) are polynomial in their input
parameters.

Sketch of the algorithm. The distribution learning algo-
rithm AC for C works in three main conceptual steps. Let
f ∈ C be the unknown target function and recall that our
algorithm AC is given access to samples from Uf−1(1).

(1) In the first step, AC runs the densifier A(C,C′)
den on a set

of samples from Uf−1(1). Let g ∈ C′ be the output

function of A(C,C′)
den .

Note that by setting the input to the approximate uniform
generation algorithm AC′gen to g, we obtain an approximate
sampler Cg for Ug−1(1). The output distribution D′ of this
sampler is (by definition of an approximate uniform genera-
tion algorithm, see Definition A.2) supported on g−1(1) and
is close to D = Ug−1(1) in total variation distance.

(2) The second step is to run the SQ-algorithmACSQ to learn
the function f ∈ C under the distribution D. Let h be
the hypothesis constructed by ACSQ.

(3) In the third and final step, the algorithm simply samples
fromCg until it obtains an example x that has h(x) = 1,
and outputs this x.

REMARK 3.1. The reader may have noticed that the above
sketch does not seem to use the approximate counting algo-
rithm AC′count; we will revisit this point below.

3.1 Intuition, motivation and discussion. To motivate
the high-level idea behind our algorithm, consider a setting
in which f−1(1) is only a tiny fraction (say 1/2Θ(n)) of
{−1, 1}n. It is intuitively clear that we would like to use
some kind of a learning algorithm in order to come up
with a good approximation of f−1(1), but we need this
approximation to be accurate at the “scale” of f−1(1) itself
rather than at the scale of all of {−1, 1}n, so we need some
way to ensure that the learning algorithm’s hypothesis is
accurate at this small scale. By using a densifier to construct



g such that g−1(1) is not too much larger than f−1(1), we
can use the distribution D = Ug−1(1) to run a learning
algorithm and obtain a good approximation of f−1(1) at the
desired scale. (Since dTV(D,D′) is small, this implies we
also learn f with respect to D′.)

To motivate our use of an SQ learning algorithm rather
than a standard PAC learning algorithm, observe that there
seems to be no way to obtain correctly labeled examples
distributed according to D. However, we show that it
is possible to accurately simulate statistical queries under
D having access only to random positive examples from
f−1(1) and to unlabeled examples drawn from D (subject
to additional technical caveats discussed in the appendix).
We discuss the issue of how it is possible to successfully use
an SQ learner in our setting in more detail below.

Discussion and implementation issues. While the three
main conceptual steps (1)-(3) of our algorithm may (hope-
fully) seem quite intuitive in light of the preceding motiva-
tion, a few issues immediately arise in thinking about how
to implement these steps. The first one concerns running the
SQ-algorithm ACSQ in Step 2 to learn f under distribution D
(recall that D = Ug−1(1) and is close to D′). Our algorithm
AC needs to be able to efficiently simulate ACSQ given its
available information. While it would be easy to do so given
access to random labeled examples (x, f(x)), where x ∼ D,
such information is not available in our setting. To overcome
this obstacle, we show (see Proposition B.1) that for any
samplable distribution D, we can efficiently simulate a sta-
tistical query algorithm under D using samples from Df,+.
This does not quite solve the problem, since we only have
samples from Uf−1(1). However, we show (see Claim 2) that
for our setting, i.e., for D = Ug−1(1), we can simulate a
sample from Df,+ by a simple rejection sampling procedure
using samples from Uf−1(1) and query access to g.

Some more issues remain to be handled. First, the
simulation of the statistical query algorithm sketched in
the previous paragraph only works under the assumption
that we are given a sufficiently accurate approximation b̃f
of the probability Prx∼D[f(x) = 1]. (Intuitively, our
approximation should be smaller than the smallest tolerance
τ provided to the statistical query oracle by the algorithm
ACSQ.) Second, by Definition 3.1, the densifier only succeeds
under the assumption that it is given in its input an (1 + ε)-
multiplicative approximation p̂ to p = Prx∈Un [f(x) = 1].

We handle these issues as follows: First, we show (see
Claim 3) that, given an accurate estimate p̂ and a “dense”
function g ∈ C′, we can use the approximate counting
algorithm AC′count to efficiently compute an accurate esti-
mate b̃f . (This is one reason why Theorem 3.1 requires
an approximate counting algorithm for C′.) To deal with
the fact that we do not a priori have an accurate estimate
p̂, we run our sketched algorithm for all possible values of

Prx∼Un [f(x) = 1] in an appropriate multiplicative “grid” of
size N = O(n/ε), covering all possible values from 1/2n to
1. We thus obtain a set D of N candidate distributions one
of which is guaranteed to be close to the true distribution
Uf−1(1) in variation distance. At this point, we would like to
apply our hypothesis testing machinery (Proposition 2.1) to
find such a distribution. However, in order to use Proposi-
tion 2.1, in addition to sample access to the candidate distri-
butions (and the distribution being learned), we also require
a multiplicatively accurate approximate evaluation oracle to
evaluate the probability mass of any point under the candi-
date distributions. We show (see Lemma B.4) that this is
possible in our generic setting, using properties of the densi-
fier and the approximate counting algorithm AC′count for C′.

This concludes the overview of our approach; see Ap-
pendix B for a full proof of Theorem 3.1.

4 Linear Threshold Functions
In this section we apply our general framework from Sec-
tion 3 to obtain a polynomial time distribution learning
algorithm for n-variable linear threshold functions over
{−1, 1}n. More formally, we prove:

THEOREM 4.1. There is an algorithm ALTF which is a
poly (n, 1/ε, 1/δ)-time distribution learning algorithm for
the class LTFn of n-variable linear threshold functions over
{−1, 1}n.

The above theorem will follow as an application of
Theorem 3.1 for C′ = C = LTFn. As detailed in Appendix
C, the literature provides us with three of the four ingredients
that our general approach requires for LTFs – approximate
uniform generation, approximate counting, and Statistical
Query learning – and our main technical contribution is
giving the fourth necessary ingredient, a densifier. This
is the main technical contribution of this section and is
summarized in the following theorem:

THEOREM 4.2. Set γ(ε, δ, n)
def
= Θ

(
δ/(n2 log n)

)
. There

is an (ε, γ, δ)–densifier ALTF
den for LTFn that, for any input

parameters 0 < ε, δ, 1/2n ≤ p̂ ≤ 1, outputs a function
g ∈ LTFn and runs in time poly(n, 1/ε, log(1/δ)).

Discussion and intuition. Before we prove Theorem 4.2,
we provide some intuition. Let f ∈ LTFn be the unknown
LTF and suppose that we would like to design an (ε, γ, δ)–
densifier ALTF

den for f . That is, given sample access to
Uf−1(1), and a number p̂ satisfying p ≤ p̂ < (1 + ε)p, where
p = Prx∈Un [f(x) = 1], we would like to efficiently compute
(a weights–based representation for) an LTF g : {−1, 1}n →
{−1, 1} such that the following conditions are satisfied:

(a) Prx∼Uf−1(1)
[g(x) = 1] ≥ 1 − ε; and (b)

Prx∼Un [g(x) = 1] ≤ (1/γ) · Prx∼Un [f = 1].



(While condition (b) above appears slightly different than
property (b) in our Definition 3.1, because of property (a),
the two statements are essentially equivalent up to a factor of
1/(1− ε) in the value of γ.)

We start by noting that it is easy to handle the case
that p̂ is large. In particular, observe that if p̂ ≥ 2γ then
p = Prx∼Un [f(x) = 1] ≥ p̂/(1 + ε) ≥ p̂/2 ≥ γ, and
we can just output g ≡ 1 since it satisfies both properties of
the definition. For the following intuitive discussion we will
assume that p̂ ≤ 2γ.

Recall that our desired function g is an LTF, i.e., g(x) =
sign(v · x − t), for some (v, t) ∈ Rn+1. Recall also
that our densifier has sample access to Uf−1(1), so it can
obtain random positive examples of f , each of which gives
a linear constraint over the v, t variables. Hence a natural
first approach is to attempt to construct an appropriate linear
program over these variables whose feasible solutions satisfy
conditions (a) and (b) above. We begin by analyzing this
approach; while it turns out to not quite work, it will gives
us valuable intuition for our actual algorithm, which is
presented further below.

Following this approach, condition (a) is relatively easy
to satisfy. Indeed, consider any ε > 0 and suppose we
want to construct an LTF g = sign(v · x − t) such that
Prx∼Uf−1(1)

[g(x) = 1] ≥ 1 − ε. This can be done as fol-
lows: draw a set S+ of N+ = Θ

(
(1/ε) · (n2 + log(1/δ))

)
samples from Uf−1(1) and consider a linear program LP+

with variables (w, θ) ∈ Rn+1 that enforces all these exam-
ples to be positive. That is, for each x ∈ S+, we will have
an inequality w · x ≥ θ. It is clear that LP+ is feasible (any
weights–based representation for f is a feasible solution) and
that it can be solved in poly(n, 1/ε, log(1/δ)) time, since it
is defined by O(N+) many linear constraints and the coeffi-
cients of the constraint matrix are in {±1}. The following
simple claim, proved in Appendix C, shows that with high
probability any feasible solution of LP+ satisfies condition
(a):

CLAIM 1. With probability 1 − δ over S+, any g ∈ LTFn
consistent with S+ satisfies condition (a).

The above claim implies that with high probability any
feasible solution (w∗, θ∗) to LP+ has g∗(x) = sign(w∗ ·
x−θ∗) satisfy condition (a), but an arbitrary feasible solution
to LP+ is by no means guaranteed to satisfy condition (b).
(Note for example that the constant 1 function is certainly
feasible for LP+.) Hence, a natural idea is to include
additional constraints in our linear program so that condition
(b) is also satisfied.

Along these lines, consider the following procedure:
Draw a set S−of N− = bδ/p̂c uniform unlabeled samples
from {−1, 1}n and label them negative. That is, for each
sample x ∈ S−, we add the constraint w · x < θ to our
linear program. Let LP be the linear program that contains

all the constraints defined by S+ ∪ S−. It is not hard to
prove that with probability at least 1−2δ over the sample S−,
we have that S− ⊆ f−1(−1) and hence (any weight based
representation of) f is a feasible solution to LP . In fact, it
is possible to show that if γ is sufficiently small — roughly,
γ ≤ δ/

(
4(n2 + log(1/δ))

)
is what is required — then with

high probability each solution to LP also satisfies condition
(b). The catch, of course, is that the above procedure is not
computationally efficient because N− may be very large – if
p̂ is very small, then it is infeasible even to write down the
linear program LP .

Algorithm Description. The above discussion motivates
our actual densifier algorithm as follows: The problem with
the above described naive approach is that it generates (the
potentially very large set) S− all at once at the beginning
of the algorithm. Note that having a large set S− is not
necessarily in and of itself a problem, since one could
potentially use the ellipsoid method to solve LP if one could
obtain an efficient separation oracle. Thus intuitively, if one
had an online algorithm which would generate S− on the fly,
then one could potentially get a feasible solution to LP in
polynomial time.

More concretely, our densifier ALTF
den will invoke a

computationally efficient online learning algorithm for LTFs.
In particular, ALTF

den will run the online learner ALTF
online

for a sequence of stages and in each stage it will provide
as counterexamples to ALTF

online, random labeled examples
from a carefully chosen distribution. These examples will
be positive for the online learner’s current hypothesis, but
negative for f (with high probability). Since ALTF

online makes
a small number of mistakes in the worst-case, this process is
guaranteed to terminate after a small number of stages (since
in each stage we force the online learner to make a mistake).

In Appendix C.2 we formalize this intuitive discussion
by giving a precise description of the algorithm ALTF

den

and proving the following theorem, which directly gives
Theorem 4.2:

THEOREM 4.3. Algorithm ALTF
den (Uf−1(1), ε, δ, p̂) runs in

time poly (n, 1/ε, log(1/δ)). If p ≤ p̂ < (1 + ε)p then
with probability 1 − δ it outputs a vector (w, θ) such that
g(x) = sign(w · x− θ) satisfies conditions (a) and (b).

5 DNFs
In this section we apply Theorem 3.1 to give a
quasipolynomial-time distribution learning algorithm for s-
term DNF formulas. Let DNFn,s denote the class of all
s-term DNF formulas over n Boolean variables (which for
convenience we think of as 0/1 variables). Our main result
of this section is:

THEOREM 5.1. There is an algorithm ADNFn,s which is
a distribution learning algorithm for the class DNFn,s.



Given input parameters ε, δ the algorithm runs in time
poly

(
nlog(s/ε), log(1/δ)

)
.

Even in the standard uniform distribution learning
model the fastest known running time for learning s-term
DNF formulas to accuracy ε is poly(nlog(s/ε), log(1/δ))
[Ver90, Val12]. Thus it seems likely that obtaining a
poly(n, s, 1/ε)-time algorithm would require a significant
breakthrough in learning theory.

For our application of Theorem 3.1 for DNFs we shall
have C = DNFn,s and C′ = DNFn,t for some t which
we shall specify later. As detailed in Appendix D, the
literature straightforwardly provides us with two of the three
ingredients that our general approach requires for DNF,
namely approximate uniform generation and approximate
counting. As we explain below, though, some work is
required for the Statistical Query portion of our approach,
and we give an entirely new algorithm for the densifier. In the
rest of this section we sketch the SQ algorithm and densifier
construction and show how these ingredients are combined
to give Theorem 5.1; full details are provided in Appendix
D.

Statistical Query learning. The fastest known algorithm in
the literature for SQ learning s-term DNF formulas under
arbitrary distributions runs in time nO(n1/3 log s) · poly(1/ε)
[KS04], which is much more than our desired running time
bound. However, we show that we are able to use known
malicious noise tolerant SQ learning algorithms for learning
sparse disjunctions over N Boolean variables rather than
DNF formulas. In more detail, our densifier will provide us
with a set of N = nO(log(s/ε)) many conjunctions which is
such that the target function f is very close to a disjunction
(which we call f ′) over an unknown subset of at most
s of these N conjunctions. Thus intuitively any learning
algorithm for disjunctions, run over the “feature space” of
conjunctions provided by the densifier, would succeed if the
target function were f ′, but the target function is actually f
(which is not necessarily exactly a disjunction over these N
variables). Fortunately, known results on the malicious noise
tolerance of specific SQ learning algorithms imply that it is
in fact possible to use these SQ algorithms to learn f to high
accuracy, as we explain below.

The precise SQ learning result that we will use is the
following theorem, which is a direct consequence of, e.g.,
Theorems 5 and 6 of [Dec93] or alteratively of Theorems 5
and 6 of [AD98]:

THEOREM 5.2. (Malicious noise tolerant SQ algorithm for
learning sparse disjunctions) Let CDISJ,k be the class of all
disjunctions of length at most k over N Boolean variables
x1, . . . , xN . There is a distribution-independent SQ learning
algorithm ADISJ

SQ for CDISJ,k that has running time t1 =
poly(N, 1/ε, log(1/δ)), uses at most t2 = poly(N) time to

evaluate each query, and requires tolerance of its queries no
smaller than τ = 1/poly(k, 1/ε). The algorithm outputs a
hypothesis which is a disjunction over x1, . . . , xN .

Moreover, there is a fixed polynomial `(·) such that al-
gorithm ADISJ

SQ has the following property: Fix a distri-
bution D over {0, 1}N . Let f be an N -variable Boolean
function which is such that Prx∼D[f ′(x) 6= f(x)] ≤ κ,
where f ′ ∈ CDISJ,k is some k-variable disjunction and
κ ≤ `(ε/k) < ε/2. Then ifADISJ

SQ is run with a STAT(f,D)
oracle, with probability 1− δ it outputs a hypothesis h such
that Prx∼D[h(x) 6= f ′(x)] ≤ ε/2, and hence Prx∼D[h(x 6=
f(x)] ≤ ε.

A densifier for DNFn,s. Our main theorem giving a
densifier for DNF formulas is the following:

THEOREM 5.3. Let γ(n, s, 1/ε, 1/δ) =
1/(4n2 log(2s/`(ε/s)) log(s/δ)). Algorithm
ADNFn,s

den (Uf−1(1), ε, δ, p̂) outputs a collection S of con-
junctions C1, . . . , C|S| and has the following performance

guarantee: If p
def
= Prx∼Un [f(x) = 1] ≤ p̂ < (1 + ε)p, then

with probability at least 1−δ, the function g(x)
def
= ∨i∈[|S|]Ci

satisfies the following:

1. Prx∼Uf−1(1)
[g(x) = 1] ≥ 1 − ε; 2.

Prx∼Ug−1(1)
[f(x) = 1] ≥ γ(n, s, 1/ε, 1/δ);

3. There is a DNF f ′ = Ci1 ∨ · · · ∨ Cis′ , which is a
disjunction of s′ ≤ s of the conjunctions C1, . . . , C|S|,
such that Prx∼Ug−1(1)

[f ′(x) 6= f(x)] ≤ `(ε/s), where
`(·) is the polynomial from Theorem 5.2.

The size of S and the running time of
ADNFn,s

den (Uf−1(1), ε, δ, p̂) is poly(nlog(s/ε), log(1/δ)).

With a slight abuse of terminology we may rephrase the
above theorem as saying thatADNFn,s

den is a (ε, γ, δ)-densifier
for function class C = DNFn,s using class C′ = DNFn,t
where t = nO(log(s/ε)).

Proof sketch of Theorem 5.3: Let f = T1 ∨ · · · ∨ Ts be
the target s-term DNF formula, where T1, . . . , Ts are the
terms (conjunctions). The high-level idea of our densifier
is quite simple: If Ti is a term which is “reasonably likely”
to be satisfied by a uniform draw of x from f−1(1), then
Ti is at least “mildly likely” to be satisfied by r = 2 log n
consecutive independent draws of x from f−1(1). Such
a sequence of draws x1, . . . , xr will with high probability
uniquely identify Ti. By repeating this process sufficiently
many times, with high probability we will obtain a pool
C1, . . . , C|S| of conjunctions which contains all of the terms
Ti that are reasonably likely to be satisfied by a uniform draw
of x from f−1(1). Theorem 5.3 follows straightforwardly
from this. We give detailed pseudocode for our densifier



algorithm, and a full proof of Theorem 5.3, in Appendix D.
�

We conclude this section by showing how Theorem 5.1
follows from the SQ algorithm and densifier described
above.

Proof. [Proof of Theorem 5.1] The proof is essentially
just an application of Theorem 3.1. The only twist is
the use of a SQ disjunction learning algorithm rather than
a DNF learning algorithm, but the special properties of
Algorithm ADISJ

SQ let this go through without a problem.
In more detail, in Step 2(e) of Algorithm A′C (see Sec-

tion B.2), in the execution of Algorithm ASQ−SIM, the SQ
algorithm that is simulated is the algorithm ADISJ

SQ run over
the feature space S of all conjunctions that are output by
Algorithm ADNFn,s

den in Step 1 of Algorithm A′C (i.e., these
conjunctions play the role of variables x1, . . . , xN for the
SQ learning algorithm). Property (3) of Theorem 5.3 and
Theorem 5.2 together imply that the algorithm ADISJ

SQ , run
on a STAT(f,Ug−1(1)) oracle with parameters ε, δ, would
with probability 1 − δ output a hypothesis h′ satisfying
Prx∼Ug−1(1)

[h′(x) 6= f(x)] ≤ ε. Hence the h that is out-
put by ASQ−SIM in Step 2(e) of Algorithm A′C fulfills the
accuracy (with respect to f under D = Ug−1(1)) and confi-
dence requirements, and the overall algorithm AC succeeds
as claimed in Theorem 3.1.

Finally, combining the running time bounds of
ADNFn,s

den and ADISJ
SQ with the time bounds of the other

procedures described earlier, one can straightforwardly ver-
ify that the running time of the overall algorithm AC is
poly(nlog(s/ε), log(1/δ)).
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A Preliminaries
For completeness we give precise definitions of approximate
counting and approximate uniform generation algorithms for
a class of Boolean functions as well as some related notions
that we require.

DEFINITION A.1. (APPROXIMATE COUNTING) Let C be a
class of n-variable Boolean functions. A randomized algo-
rithm ACcount is an efficient approximate counting algorithm
for class C, if for any ε, δ > 0 and any f ∈ C, on input ε, δ
and f ∈ C, it runs in time poly(n, 1/ε, log(1/δ)) and with
probability 1− δ outputs a value p̂ such that

1

(1 + ε)
· Pr
x∼U

[f(x) = 1] ≤ p̂ ≤ (1 + ε) · Pr
x∼U

[f(x) = 1].

DEFINITION A.2. (APPROXIMATE UNIFORM GENERATION)
Let C be a class of n-variable Boolean functions. A ran-
domized algorithmACgen is an efficient approximate uniform
generation algorithm for class C, if for any ε > 0 and any
f ∈ C, there is a distribution D = Df,ε supported on
f−1(1) with

1

1 + ε
· 1

|f−1(1)|
≤ D(x) ≤ (1 + ε) · 1

|f−1(1)|

for each x ∈ f−1(1), such that for any δ > 0, on
input ε, δ and f ∈ C, algorithm ACgen(ε, δ, f) runs in
time poly(n, 1/ε, log(1/δ)) and either outputs a point x ∈

f−1(1) that is distributed precisely according to D = Df,ε,
or outputs ⊥. Moreover the probability that it outputs ⊥ is
at most δ.

We will also need the notion of a Statistical Query
learning algorithm for a class C of Boolean functions.

DEFINITION A.3. Let C be a class of n-variable Boolean
functions and D be a distribution over {−1, 1}n. An SQ
learning algorithm for C under D is a randomized algorithm
ACSQ that for every ε, δ > 0, every target concept f ∈ C,
on input ε, δ and with access to oracle STAT(f,D) and to
independent samples drawn from D, outputs with probabil-
ity 1 − δ a hypothesis h : {−1, 1}n → {−1, 1} such that
Prx∼D[h(x) 6= f(x)] ≤ ε. Let t1(n, 1/ε, 1/δ) be the run-
ning time of ACSQ (assuming each oracle query is answered
in unit time), t2(n) be the maximum running time to evalu-
ate any query provided to STAT(f,D) and τ(n, 1/ε) be the
minimum value of the tolerance parameter ever provided to
STAT(f,D) in the course of ACSQ’s execution. We say that
ACSQ is efficient (and that C is efficiently SQ learnable with
respect to distribution D), if t1(n, 1/ε, 1/δ) is polynomial in
n, 1/ε and 1/δ, t2(n) is polynomial in n and τ(n, 1/ε) is
lower bounded by an inverse polynomial in n and 1/ε. We
call an SQ learning algorithm ACSQ for C distribution inde-
pendent if ACSQ succeeds for any distribution D. If C has an
efficient distribution independent SQ learning algorithm we
say that C is efficiently SQ learnable (distribution indepen-
dently).

Before we formally define our learning model, we need
the notion of a sampler for a distribution:

DEFINITION A.4. Let D be a distribution over {−1, 1}n. A
sampler for D is a circuit C with m = poly(n) input bits
z ∈ {−1, 1}m and n output bits x ∈ {−1, 1}n which is
such that when z ∼ Um then x ∼ D. For ε > 0, an ε-
sampler for D is a sampler for some distribution D′ which
has dTV(D′, D) ≤ ε.

For clarity we sometimes write “C is a 0-sampler forD”
to emphasize the fact that the outputs of C(z) are distributed
exactly according to distribution D.

We are now ready to formally define the notion of a
distribution learning algorithm in our model.

DEFINITION A.5. Let C be a class of n-variable Boolean
functions. A randomized algorithm AC is a distribution
learning algorithm for class C, if for any ε, δ > 0 and any
f ∈ C, on input ε, δ and sample access to Uf−1(1), with
probability 1− δ algorithm AC outputs an ε-sampler Cf for
Uf−1(1).



B General Algorithmic Approach: Proof of Theorem
3.1

B.1 Simulating statistical query algorithms. Our algo-
rithm AC will need to simulate a statistical query algorithm
for C, with respect to a specific distribution D. Note, how-
ever that A only has access to uniform positive examples of
f ∈ C, i.e., samples from Uf−1(1). Hence we need to show
that a statistical query algorithm can be efficiently simulated
in such a setting. To do this it suffices to show that one can
efficiently provide valid responses to queries to the statisti-
cal query oracle STAT(f,D), i.e., that one can simulate the
oracle. Assuming this can be done, the simulation algorithm
ASQ−SIM is very simple: Run the statistical query algorithm
ASQ, and whenever it makes a query to STAT(f,D), sim-
ulate it. To this end, in the following lemma we describe a
procedure that simulates an SQ oracle. (Our approach here
is similar to that of earlier simulation procedures that have
been given in the literature, see e.g. Denis et al. [DGL05].)

LEMMA B.1. Let C be a concept class over {−1, 1}n, f ∈
C, and D be a samplable distribution over {−1, 1}n. There
exists an algorithm Simulate-STATDf with the following
properties: It is given access to independent samples from
Df,+, and takes as input a number b̃f ∈ [0, 1], a t(n)-
time computable query function χ : {−1, 1}n × {−1, 1} →
[−1, 1], a tolerance τ and a confidence δ. It has the
following behavior: it uses m = O

(
(1/τ2) log(1/δ)

)
samples from D and Df,+, runs in time O (m · t(n)) , and
if |b̃f −Prx∼D[f(x) = 1]| ≤ τ ′, then with probability 1− δ
it outputs a number v such that

(B.1) |Ex∼D [χ (x, f(x))]− v| ≤ τ + τ ′.

Proof. To prove the lemma, we start by rewriting the expec-
tation in (B.1) as follows. Let β+ denote Prx∼D[f(x) = 1]
and β− denote Prx∼D[f(x) = −1]:

Ex∼D [χ(x, f(x))] = Ex∼Df,+ [χ(x, 1)] · β+

+ Ex∼Df,− [χ(x,−1)] · β−.

We also observe that

Ex∼D [χ(x,−1)] = Ex∼Df,+ [χ(x,−1)] · β+

+ Ex∼Df,− [χ(x,−1)] · β−.

Combining the above equalities we get

Ex∼D [χ(x, f(x))] = Ex∼D [χ(x,−1)](B.2)
+ Ex∼Df,+ [χ(x, 1)− χ(x,−1)] · β+.

Given the above identity, the algorithm Simulate-STATDf
is very simple: We use random sampling from D to empiri-
cally estimate the expectations Ex∼D [χ(x,−1)] (recall that
D is assumed to be a samplable distribution), and we use

the independent samples from Df,+ to empirically estimate
Ex∼Df,+ [χ(x, 1)− χ(x,−1)]. Both estimates are obtained
to within an additive accuracy of ±τ/2 (with confidence
probability 1− δ/2 each). We combine these estimates with
our estimate b̃f for Prx∼D[f(x) = 1] in the obvious way
(see Step 2 of pseudocode below).

Subroutine Simulate-STATDf (D,Df,+,χ, τ, b̃f , δ):
Input: Independent samples from D and Df,+, query
access to χ : {−1, 1}n → {−1, 1}, accuracy τ , b̃f ∈
[0, 1] and confidence δ.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ ′, a number v
that with probability 1−δ satisfies |Ex∼D[χ(x, f(x))]−
v| ≤ τ + τ ′.

1. Empirically estimate the values Ex∼D[χ(x,−1)]
and Ex∼Df,+ [χ(x, 1) − χ(x,−1)] to within an
additive±τ/2 with confidence probability 1−δ/2.
Let Ẽ1, Ẽ2 be the corresponding estimates.

2. Output v = Ẽ1 + Ẽ2 · b̃f .

It is not difficult to show that we can estimate each
expectation using m = Θ

(
(1/τ2) log(1/δ)

)
samples (from

D, Df,+ respectively). For each such sample the estimation
algorithm needs to evaluate the function χ (once for the
first expectation and twice for the second). Hence, the
total number of queries to χ is O(m), i.e., the subroutine
Simulate-STATDf runs in time O(m · t(n)) as desired.

By a union bound, with probability 1− δ both estimates
will be ±τ/2 accurate. The bound (B.1) follows from this
latter fact and (B.2) by a straightforward application of the
triangle inequality. This completes the proof of Lemma B.1.

Given the above lemma, we can state and prove our
general result for simulating SQ algorithms:

PROPOSITION B.1. Let C be a concept class and D be a
samplable distribution over {−1, 1}n. Suppose there ex-
ists an SQ-learning algorithm ASQ for C under D with
the following performance: ASQ runs in time T1 =
t1(n, 1/ε, 1/δ), each query provided to STAT(f,D) can be
evaluated in time T2 = t2(n), and the minimum value of the
tolerance provided to STAT(f,D) in the course of its ex-
ecution is τ = τ(n, 1/ε). Then, there exists an algorithm
ASQ−SIM that is given access to

(i) independent samples from Df,+; and

(ii) a number b̃f ∈ [0, 1],

and efficiently simulates the behavior of ASQ. In particular,
ASQ−SIM has the following performance guarantee: on
input an accuracy ε and a confidence δ, it uses m =
O
(
(1/τ2) · log(T1/δ) · T1

)
samples fromD andDf,+, runs



in time TSQ−SIM = O (mT2), and if |b̃f − Prx∼D[f(x) =
1]| ≤ τ/2 then with probability 1− δ it outputs a hypothesis
h : {−1, 1}n → {−1, 1} such that Prx∼D[h(x) 6= f(x)] ≤
ε.

Proof. [Proof of Proposition B.1] The simulation procedure
is very simple. We run the algorithm ASQ by simulating
its queries using algorithm Simulate-STATDf . The algo-
rithm is described in the following pseudocode:

Algorithm ASQ−SIM(D,Df,+, ε, b̃f , δ):

Input: Independent samples from D and Df,+, b̃f ∈
[0, 1], ε, δ > 0.
Output: If |b̃f − Prx∼D[f(x) = 1]| ≤ τ/2, a hypothe-
sis h that with probability 1− δ satisfies Prx∼D[h(x) 6=
f(x)] ≤ ε.

1. Let τ = τ(n, 1/ε) be the minimum accuracy
ever used in a query to STAT(f,D) during the
execution of ASQ(ε, δ/2).

2. Run the algorithm ASQ(ε, δ/2), by simulat-
ing each query to STAT(f,D) as follows:
whenever ASQ makes a query (χ, τ) to
STAT(f,D), the simulation algorithm runs
Simulate-STATDf (D,Df,+,χ,

τ
2 ,

τ
2 ,

δ
(2T1) ).

3. Output the hypothesis h obtained by the simula-
tion.

Note that we run the algorithm ASQ with confi-
dence probability 1 − δ/2. Moreover, each query to
the STAT(f,D) oracle is simulated with confidence 1 −
δ/(2T1). Since ASQ runs for at most T1 time steps, it cer-
tainly performs at most T1 queries in total. Hence, by a
union bound over these events, with probability 1 − δ/2 all
answers to its queries will be accurate to within an addi-
tive ±τ/2. By the guarantee of algorithm ASQ and a union
bound, with probability 1 − δ, the algorithm ASQ−SIM will
output a hypothesis h : {−1, 1}n → {−1, 1} such that
Prx∼D[h(x) 6= f(x)] ≤ ε. The sample complexity and run-
ning time follow from the bounds for Simulate-STATDf .
This completes the proof of Proposition B.1.

Proposition B.1 tells us we can efficiently simulate a
statistical query algorithm for a concept class C under a
samplable distributionD if we have access to samples drawn
from Df,+ (and a very accurate estimate of Prx∼D[f(x) =
1]). In our setting, we have that D = Ug−1(1) where g ∈ C′

is the function that is output by A(C,C′)
den . So, the two issues

we must handle are (i) obtaining samples from D, and (ii)
obtaining samples from Df,+.

For (i), we note that, even though we do not have access
to samples drawn exactly fromD, it suffices for our purposes
to use a τ ′-sampler for D for a sufficiently small τ ′. To see
this we use the following fact:

FACT B.1. Let D,D′ be distributions over {−1, 1}n with
dTV(D,D′) ≤ τ ′. Then for any bounded function
φ : {−1, 1}n → [−1, 1] we have that |Ex∼D[φ(x)] −
Ex∼D′ [φ(x)]| ≤ 2τ ′.

Proof. [Proof of Fact B.1] By definition we have that
|Ex∼D[φ(x)]−Ex∼D′ [φ(x)]| equals∣∣∣∣∣ ∑

x∈{−1,1}n
(D(x)−D′(x))φ(x)

∣∣∣∣∣
≤

∑
x∈{−1,1}n

|(D(x)−D′(x))| |φ(x)|

≤ maxx∈{−1,1}n |φ(x)| ·
∑

x∈{−1,1}n
|D(x)−D′(x)|

≤ 1 · ‖D −D′‖1 = 2dTV(D,D′) ≤ 2τ ′.

The above fact implies that the statement of Proposi-
tion B.1 continuous to hold with the same parameters if in-
stead of a 0-sampler for D we have access to a τ ′-sampler
for D, for τ ′ = τ/8. The only difference is that in Step 1 of
the subroutine Simulate-STATDf we empirically estimate
the expectation Ex∼D′ [χ(x,−1)] up to an additive ±τ/4.
By Fact B.1, this will be a ±(τ/4 + 2τ ′) = ±τ/2 accurate
estimate for the Ex∼D[χ(x,−1)]. That is, we have:

COROLLARY B.1. The statement of Proposition B.1 con-
tinues to hold with the same parameters if instead of a 0-
sampler for D we have access to a τ ′ = τ/8-sampler for
D.

For (ii), even though we do not have access to the
distributionD = Ug−1(1) directly, we note below that we can
efficiently sample from Df,+ using samples from Uf−1(1)

together with evaluations of g (recall again that g is provided
as the output of the densifier).

CLAIM 2. Let g : {−1, 1}n → {−1, 1} be a tg(n) time
computable function such that Prx∼Uf−1(1)

[g(x) = 1]≥ ε′.
There is an efficient subroutine that is given ε′ and a circuit to
compute g as input, uses m = O((1/ε′) log(1/δ)) samples
from Uf−1(1), runs in timeO(m·tg(n)), and with probability
1 − δ outputs a sample x such that x ∼ Df,+, where
D = Ug−1(1).

Proof. [Proof of Claim 2] To simulate a sample from Df,+

we simply draw samples from Uf−1(1) until we obtain a
sample x with g(x) = 1. The following pseudocode makes
this precise:

Subroutine Get-sampleDf,+(Uf−1(1), g, ε
′, δ):

Input: Independent samples from Uf−1(1), a cir-
cuit computing g, a value ε′ > 0 such that ε′ ≤
Prx∼Uf−1(1)

[g(x) = 1] and confidence parameter δ.



Output: A point x ∈ {−1, 1}n that with probability
1− δ satisfies x ∼ Df,+.

1. Repeat the following at most m =
Θ ((1/ε′) log(1/δ)) times:

(a) Draw a sample x ∼ Uf−1(1).
(b) If the circuit for g evaluates to 1 on input x

then output x.
2. If no point x with g(x) = 1 has been obtained, halt

and output “failure.”

Since Prx∼Uf−1(1)
[g(x) = 1]≥ ε′, after repeating this

process m = Ω ((1/ε′) log(1/δ)) times, we will obtain a
satisfying assignment to g with probability at least 1 − δ.
It is clear that such a sample x is distributed according to
Df,+. For each sample we need to evaluate g once, hence
the running time follows.

Getting a good estimate b̃f of Prx∼D[f(x) = 1]. The
simulations presented above require an additively accurate
estimate b̃f of Prx∼D[f(x) = 1]. We now show that in
our context, such an estimate can be easily obtained if we
have access to a good estimate p̂ of p = Prx∈Un [f(x) = 1],
using the fact that we have an efficient approximate counting
algorithm for C′ and that D ≡ Ug−1(1) where g ∈ C′.

CLAIM 3. Let g : {−1, 1}n → {−1, 1}, g ∈ C′ be a tg(n)
time computable function, satisfying Prx∼Ug−1(1)

[f(x) =

1] ≥ γ′ and Prx∼Uf−1(1)
[g(x) = 1] ≥ 1 − ε′. Let

AC′count be an (ε, δ)-approximate counting algorithm for
C′ running in time Tcount(n, 1/ε, 1/δ). There is a pro-
cedure Estimate-Bias with the following behavior:
Estimate-Bias takes as input a value 0 < p̂ ≤ 1,
a parameter τ ′ > 0, a confidence parameter δ′, and a
representation of g ∈ C′. Estimate-Bias runs in time
O(tg · Tcount(n, 2/τ

′, 1/δ′)) and satisfies the following: if

p
def
= Prx∼Un [f(x) = 1] < p̂ ≤ (1 + ε′)p, then with proba-

bility 1− δ′ Estimate-Bias outputs a value b̃f such that
|b̃f − Prx∼D[f(x) = 1]| ≤ τ ′.

Proof. [Proof of Claim 3] The procedure
Estimate-Bias is very simple. It runs AC′count on
inputs ε? = τ ′/2, δ′, using the representation for g ∈ C′.
Let pg be the value returned by the approximate counter;
Estimate-Bias returns p̂/pg.

The claimed running time bound is obvious. To see that
the procedure is correct, first observe that by Definition A.1,
with probability 1− δ′ we have that

|g−1(1)|
2n

· 1

1 + ε?
≤ pg ≤

|g−1(1)|
2n

· (1 + ε?).

For the rest of the argument we assume that the above
inequality indeed holds. Let A denote |g−1(1)|, let B denote
|f−1(1) ∩ g−1(1)|, and let C denote |f−1(1) \ g−1(1)|, so
the true value Prx∼D[f(x) = 1] equals B

A and the above
inequality can be rephrased as A

1+ε? ≤ pg ·2
n ≤ A · (1+ ε?).

By our assumption on p̂ we have that B + C ≤ p̂ · 2n ≤
(1 + ε′)(B + C); since Prx∼Uf−1(1)

[g(x) = 1] ≥ 1 − ε′

we have C
B+C ≤ ε′ (i.e., C ≤ ε′

1−ε′ · B ); and since
Prx∼Ug−1(1)

[f(x) = 1] ≥ γ′ we have B
A ≥ γ′. Combining

these inequalities we get

1

1 + ε?
· B
A
≤ 1

1 + ε?
· B + C

A
≤ p̂

pg

≤ B

A
· (1 + ε′)(1 + ε?)

(
1 +

ε′

1− ε′

)
=

B

A
· (1 + ε?)

Hence∣∣∣∣BA − p̂

pg

∣∣∣∣ ≤ B

A

(
1 + ε? − 1

1 + ε?

)
≤ 2ε?

1 + ε?
≤ 2ε?,

where we have used B ≤ A. Recalling that ε? = τ ′/2, the
lemma is proved.

B.2 An algorithm that succeeds given the (approxi-
mate) bias of f. In this section, we present an algorithm
A′C(ε, δ, p̂) which, in addition to samples from Uf−1(1),
takes as input parameters ε, δ, p̂. The algorithm suc-
ceeds in outputting a hypothesis distribution Df satisfying
dTV(Df ,Uf−1(1)) ≤ ε if the input parameter p̂ is a mul-
tiplicatively accurate approximation to Prx∼Un [f(x) = 1].
The algorithm follows the three high-level steps previously
outlined and uses the subroutines of the previous subsection
to simulate the statistical query algorithm. Detailed pseu-
docode follows:

Algorithm A′C(Uf−1(1), ε, δ, p̂):
Input: Independent samples from Uf−1(1), accuracy
and confidence parameters ε, δ, and a value 1/2n < p̂ ≤
1.
Output: If Prx∼Un [f(x) = 1] ≤ p̂ <
(1 + ε) Prx∼Un [f(x) = 1], with probability 1 − δ
outputs an ε-sampler Cf for Uf−1(1) .

1. [Run the densifier to obtain g]
Fix ε1

def
= ε/6 and γ def

= γ(n, 1/ε1, 3/δ). Run the γ-
densifierA(C,C′)

den (ε1, δ/3, p̂) using random samples
from Uf−1(1). Let g ∈ C′ be its output.

2. [Run the SQ-learner, using the approximate
uniform generator for g, to obtain hypothesis h]



(a) Fix ε2
def
= εγ/7, τ2

def
= τ(n, 1/ε2) and

m
def
= Θ

(
(1/τ2

2 ) · log(T1/δ) · T1

)
, where

T1 = t1(n, 1/ε2, 12/δ).
(b) Run the generator AC′gen(g, τ2/8, δ/(12m))

m times and let SD ⊆ {−1, 1}n be the
multiset of samples obtained.

(c) Run Get-sampleDf,+(Uf−1(1), g, γ,
δ

12m )
m times and let SDf,+ ⊆ {−1, 1}n be the
multiset of samples obtained.

(d) Run Estimate-Bias with parameters p̂,
τ ′ = τ2/2, δ′ = δ/12 , using the represen-
tation for g ∈ C′, and let b̃f be the value it
returns.

(e) Run ASQ−SIM(SD, SDf,+ , ε2, b̃f , δ/12). Let
h : {−1, 1}n → {−1, 1} be the output
hypothesis.

3. [Output the sampler which does rejection sam-
pling according to h on draws from the approx-
imate uniform generator for g]
Output the sampler Cf which works as follows:

For i = 1 to t = Θ ((1/γ) log(1/(δε)) do:

(a) Set ε3
def
= εγ/48000.

(b) Run the generator AC′gen(g, ε3, δε/(12t)).

(c) Let x(i) be its output.

(d) If h(x(i)) = 1, output x(i).

(e) If no x(i) with h(x(i)) = 1 has been obtained,
output the default element ⊥.

Let D̂ denote the distribution over {−1, 1}n∪{⊥}
for which Cf is a 0-sampler, and let D̂′ denote the
conditional distribution of D̂ restricted to {−1, 1}n
(i.e., excluding ⊥).

We note that by inspection of the code for Cf , we
have that the distribution D̂′ is identical to (Dg,ε3)h−1(1),
where Dg,ε3 is the distribution corresponding to the out-
put of the approximate uniform generator when called on
function g and error parameter ε3 (see Definition A.2) and
(Dg,ε3)h−1(1) is Dg,ε3 conditioned on h−1(1).

We have the following:

THEOREM B.1. Let p
def
= Prx∈Un [f(x) = 1]. Algorithm

A′C(ε, δ, p̂) has the following behavior: If p ≤ p̂ < (1 + ε)p,
then with probability 1− δ the following both hold:

(i) the output Cf is a sampler for a distribution D̂ such
that dTV(D̂,Uf−1(1)) ≤ ε; and

(ii) the functions h, g satisfy |h−1(1)∩g−1(1)|/|g−1(1)| ≥
γ/2.

The running time ofA′C is polynomial in Tden(n, 1/ε, 1/δ),
Tgen(n, 1/ε, 1/δ), Tcount(n, 1/ε, 1/δ), t1(n, 1/ε, 1/δ),
t2(n), 1/τ(n, 1/ε), and 1/γ(n, 1/ε, 1/δ).

Proof. We give an intuitive explanation of the pseudocode in
tandem with a proof of correctness. We argue that Steps 1-3
of the algorithm implement the corresponding steps of our
high-level description and that the algorithm succeeds with
confidence probability 1− δ.

We assume throughout the argument that indeed p̂ lies in
[p, (1 + ε)p). Given this, by Definition 3.1 with probability
1 − δ/3 the function g satisfies properties (a) and (b) of
Definition 3.1, i.e., Prx∼Uf−1(1)

[g(x) = 1] ≥ 1 − ε1 and
Prx∼Ug−1(1)

[f(x) = 1] ≥ γ. We condition on this event
(which we denote E1) going forth.

We now argue that Step 2 simulates the SQ learning al-
gorithm ACSQ to learn the function f ∈ C under distribution
D ≡ Ug−1(1) to accuracy ε2 with confidence 1 − δ/3. Note
that the goal of Step (b) is to obtain m samples from a dis-
tribution D′′ (the distribution “Dg,τ2/8” of Definition A.2)
such that dTV(D′′, D) ≤ τ2/8. To achieve this, we call
the approximate uniform generator for g a total of m times
with failure probability δ/(12m) for each call (i.e., each call
returns ⊥ with probability at most δ/(12m)). By a union
bound, with failure probability at most δ/12, all calls to the
generator are successful and we obtain a set SD of m inde-
pendent samples from D′′. Similarly, the goal of Step (c)
is to obtain m samples from Df,+ and to achieve it we call
the subroutine Get-sampleDf,+ a total of m times with
failure probability δ/(12m) each. By Claim 2 and a union
bound, with failure probability at most δ/12, this step is suc-
cessful, i.e., it gives a set SDf,+ of m independent samples
from Df,+. The goal of Step (d) is to obtain a value b̃f sat-
isfying |b̃f − Prx∼D[f(x) = 1]| ≤ τ2/2; by Claim 3, with
failure probability at most δ/12 the value b̃f obtained in this
step is as desired. Finally, Step (e) applies the simulation
algorithm ASQ−SIM using the samples SD and SDf,+ and
the estimate b̃f of Prx∼D[f(x) = 1] obtained in the pre-
vious steps. Conditioning on Steps (b), (c) and (d) being
successful Corollary B.1 implies that Step (e) is successful
with probability 1− δ/12, i.e., it outputs a hypothesis h that
satisfies Prx∼D[f(x) 6= h(x)] ≤ ε2. A union bound over
Steps (c), (d) and (e) completes the analysis of Step 2. For
future reference, we letE2 denote the event that the hypothe-
sis h constructed in Step 2(e) has Prx∼D[f(x) 6= h(x)] ≤ ε2
(so we have that E2 holds with probability at least 1 − δ/3;
we additionally condition on this event going forth). We ob-
serve that since (as we have just shown) Prx∼Ug−1(1)

[f(x) 6=
h(x)] ≤ ε2 and Prx∼Ug−1(1)

[f(x) = 1] ≥ γ, we have
Prx∼Ug−1(1)

[h(x) = 1] ≥ γ − ε2 ≥ γ/2, which gives item



(ii) of the theorem; so it remains to establish item (i) and the
claimed running time bound.

To establish (i), we need to prove that the output dis-
tribution D̂ of the sampler Cf is ε-close in total variation
distance to Uf−1(1). This sampler attempts to draws t sam-
ples from a distribution D′ such that dTV(D′, D) ≤ ε3 (this
is the distribution “Dg,ε3” in the notation of Definition A.2)
and it outputs one of these samples that satisfies h (unless
none of these samples satisfies h, in which case it outputs
a default element ⊥). The desired variation distance bound
follows from the next lemma for our choice of parameters:

LEMMA B.2. Let D̂ be the output distribution of
A′C(Uf−1(1), ε, δ, p̂). If Prx∼Un [f(x) = 1] ≤ p̂ ≤
(1 + ε) Prx∼Un [f(x) = 1], then conditioned on Events E1

and E2, we have

dTV(D̂,Uf−1(1)) ≤ ε

6
+
ε

6
+

4ε3
γ

+ ε1 +
ε2
2γ

+
ε2

γ − ε2
≤ ε

6
+
ε

6
+

ε

12000
+
ε

6
+

ε

14
+
ε

6
< ε.

Proof. Consider the distribution D′ = Dg,ε3 (see Defini-
tion A.2) produced by the approximate uniform generator in
Step 3 of the algorithm. LetD′|h−1(1) denote distributionD′

restricted to h−1(1). Let S denote the set g−1(1) ∩ h−1(1).
The lemma is an immediate consequence of Claims 4, 6, 7
and 8 below using the triangle inequality (everything below
is conditioned on E1 and E2).

CLAIM 4. dTV(D̂, D̂′) ≤ ε/6.

Proof. Recall that D̂′ is simply D̂ conditioned on not out-
putting ⊥.

We first claim that with probability at least 1− δε/12 all
t points drawn in Step 3 of the code for Cf are distributed
according to the distribution D′ = Dg,ε3 over g−1(1). Each
of the t calls to the approximate uniform generator has failure
probability δε/(12t) (of outputting ⊥ rather than a point
distributed according toD′) so by a union bound no calls fail
with probability at least 1− δε/12, and thus with probability
at least 1 − δε/12 indeed all t samples are independently
drawn from such a distribution D′.

Conditioned on this, we claim that a satisfying assign-
ment for h is obtained within the t samples with probability
at least 1− δε/12. This can be shown as follows:

CLAIM 5. Let h : {−1, 1}n → {−1, 1} be the hypothesis
output by ACSQ−SIM. We have

Pr
x∼D′

[h(x) = 1] ≥ γ/4.

Proof. First recall that, by property (b) in the definition
of the densifier (Definition 3.1), we have Prx∼D[f(x) =
1] ≥ γ. Since dTV(D′, D) ≤ ε3, by definition we get

Prx∼D′ [f(x) = 1] ≥ Prx∼D[f(x) = 1] − ε3 ≥ γ −
ε3 ≥ 3γ/4. Now by the guarantee of Step 2 we have that
Prx∼D[f(x) 6= h(x)] ≤ ε2. Combined with the fact that
dTV(D′, D) ≤ ε3, this implies that Prx∼D′ [f(x) 6= h(x)] ≤
ε2 + ε3 ≤ γ/2. Therefore, we conclude that

Pr
x∼D′

[h(x) = 1]

≥ Pr
x∼D′

[f(x) = 1]− Pr
x∼D′

[f(x) 6= h(x)]

≥ 3γ/4− γ/2 ≥ γ/4

as desired.

Hence, for an appropriate constant in the big-Theta
specifying t, with probability at least 1 − δε/12 > 1 −
δ/12 some x(i) is a satisfying assignment of h. that with
probability at least 1 − δε/12 some x(i), i ∈ [t], has
h(x) = 1. Thus with overall failure probability at most
δε/6 a draw from D̂′ is not ⊥, and consequently we have
dTV(D̂, D̂′) ≤ δε/6 ≤ ε/6.

CLAIM 6. dTV(D̂′, D′|h−1(1)) ≤ ε/6.

Proof. The probability that any of the t points x(1), . . . , x(t)

is not drawn from D′ is at most t · δε/(12t) < ε/12.
Assuming that this does not happen, the probability that no
x(i) lies in h−1(1) is at most (1 − γ/4)t < δε/12 < ε/12
by Claim 5. Assuming this does not happen, the output
of a draw from D̂ is distributed identically according to
D′|h−1(1). Consequently we have that dTV(D̂,D′|h−1(1)) ≤
ε/6 as claimed.

CLAIM 7. dTV(D′|h−1(1),US) ≤ 4ε3/γ.

Proof. The definition of an approximate uniform generator
gives us that dTV(D′,Ug−1(1)) ≤ ε3, and Claim 5 gives that
Prx∼D′ [h(x) = 1] ≥ γ/4. We now recall the fact that for
any two distributions D1, D2 and any event E, writing Di|E
to denote distribution Di conditioned on event E, we have

dTV(D1|E , D2|E) ≤ dTV(D1, D2)

D1(E)
.

The claim follows since Ug−1(1)|h−1(1) is equivalent to US .

CLAIM 8. dTV(US ,Uf−1(1)) ≤ ε1 + ε2
2γ + ε2

γ−ε2 .

The proof of this claim is deferred to the full version.
With Lemma B.2 established, to finish the proof of The-

orem B.1 it remains only to establish the claimed running
time bound. This follows from a straightforward (but some-
what tedious) verification, using the running time bounds
established in Lemma B.1, Proposition B.1, Corollary B.1,
Claim 2 and Claim 3.



B.3 Getting from A′C to AC: An approximate evalua-
tion oracle. Recall that the algorithm A′C from the previ-
ous subsection is only guaranteed (with high probability) to
output a sampler for a hypothesis distribution D̂ that is sta-
tistically close to the target distribution Uf−1(1) if it is given
an input parameter p̂ satisfying p ≤ p̂ < (1 + ε)p, where
p

def
= Prx∈Un [f(x) = 1]. Given this, a natural idea is to

run A′C a total of k = O(n/ε) times, using “guesses” for
p̂ that increase multiplicatively as powers of 1 + ε, starting
at 1/2n (the smallest possible value) and going up to 1. This
yields hypothesis distributions D̂1, . . . , D̂k where D̂i is the
distribution obtained by setting p̂ to p̂i

def
= (1 + ε)i−1/2n.

With such distributions in hand, an obvious approach is to
use the “hypothesis testing” machinery of Section 2 to iden-
tify a high-accuracy D̂i from this collection. This is indeed
the path we follow, but some care is needed to make the ap-
proach go through; we present the detailed argument below.

Recall that as described in Proposition 2.1, the hypothe-
sis testing algorithm requires the following:

1. independent samples from the target distribution
Uf−1(1) (this is not a problem since such samples are
available in our framework);

2. independent samples from D̂i for each i (also not a
problem since the i-th run of algorithm A′C outputs a
sampler for distribution D̂i; and

3. a (1 + O(ε))-approximate evaluation oracle EVALD̂i
for each distribution D̂i.

In this subsection we show how to construct item (3)
above, the approximate evaluation oracle. In more detail,
we first describe a randomized procedure Check which is
applied to the output of each execution of A′C (across all k
different settings of the input parameter p̂i). We show that
with high probability the “right” value p̂i∗ (the one which
satisfies p ≤ p̂i∗ < (1+ε)p) will pass the procedure Check.
Then we show that for each value p̂i∗ that passed the check a
simple deterministic algorithm gives the desired approximate
evaluation oracle for D̂i.

We proceed to describe the Check procedure and char-
acterize its performance.

Algorithm Check(g, h, δ′, ε) :

Input: functions g and h as described in Lemma B.3, a
confidence parameter δ′, and an accuracy parameter ε
Output: If |h−1(1) ∩ g−1(1)|/|g−1(1)| ≥ γ/2, with
probability 1 − δ′ outputs a pair (α, κ) such that
|α − |h−1(1) ∩ g−1(1)|/|g−1(1)|| ≤ µ · |h−1(1) ∩
g−1(1)|/|g−1(1)| and |g

−1(1)|
1+τ ≤ κ ≤ (1 + τ)|g−1(1)|,

where µ = τ = ε/40000.

1. Sample m = O(log(2/δ′)/(γµ2)) points
x1, . . . , xm from AC′gen(g, γ/4, δ′/(2m)). If any
xj = ⊥ halt and output “failure.”

2. Let α be (1/m) times the number of points xj that
have h(x) = 1.

3. Call AC′count(τ, δ
′/2) on g and set κ to 2n times the

value it returns.

LEMMA B.3. Fix i ∈ [k]. Consider a sequence of k runs of

A′C where in the i-th run it is given p̂i
def
= (1+ε)i−1/2n as its

input parameter. Let gi be the function in C′ constructed by
A′C in Step 1 of its i-th run and hi be the hypothesis function
constructed by A′C in Step 2(e) of its i-th run. Suppose
Check is given as input gi, hi, a confidence parameter δ′,
and an accuracy parameter ε′. Then it either outputs “no” or
a pair (αi, κi) ∈ [0, 1]×[0, 2n+1], and satisfies the following
performance guarantee: If |h−1

i (1) ∩ g−1
i (1)|/|g−1

i (1)| ≥
γ/2 then with probability at least 1 − δ′ Check outputs a
pair (αi, κi) such that

(B.3)
∣∣∣∣αi − |h−1

i (1) ∩ g−1
i (1)|

|g−1
i (1)|

∣∣∣∣ ≤ µ · |h−1
i (1) ∩ g−1

i (1)|
|g−1
i (1)|

and

(B.4)
|g−1
i (1)|
1 + τ

≤ κi ≤ (1 + τ)|g−1
i (1)|,

where µ = τ = ε/40000.

Proof. Suppose that i is such that |h−1
i (1) ∩

g−1
i (1)|/|g−1

i (1)| ≥ γ/2. Recall from Definition A.2
that each point xj drawn from AC′gen(gi, γ/4, δ

′/(2m))
in Step 1 is with probability 1 − δ′/(2m) distributed
according to Dgi,γ/4; by a union bound we have that
with probability at least 1 − δ′/2 all m points are dis-
tributed this way (and thus none of them are ⊥). We
condition on this going forward. Definition A.2 implies that
dTV(Dgi,γ/4,Ug−1

i (1)) ≤ γ/4; together with the assumption

that |h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| ≥ γ/2, this implies that

each xj independently has proability at least γ/4 of having
h(x) = 1. Consequently, by the choice of m in Step 1, a
standard multiplicative Chernoff bound implies that∣∣∣∣αi − |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h−1(1) ∩ g−1(1)|
|g−1(1)|

with failure probability at most δ′/4, giving (B.3).
Finally, Definition A.1 gives that (B.4) holds with failure

probability at most δ′/4. This concludes the proof.

Next we show how a high-accuracy estimate αi of
|h−1
i (1) ∩ g−1

i (1)|/|g−1
i (1)| yields a deterministic approx-

imate evaluation oracle for D̂′i.



LEMMA B.4. Algorithm Simulate-Approx-Eval
(which is deterministic) takes as input a value α ∈ [0, 1],
a string x ∈ {−1, 1}n, a parameter κ, (a circuit for)
h : {−1, 1}n → {−1, 1}, and (a representation for)
g : {−1, 1}n → {−1, 1}, g ∈ C′, where h, g are obtained
from a run of A′C . Suppose that∣∣∣∣α− |h−1(1) ∩ g−1(1)|

|g−1(1)|

∣∣∣∣ ≤ µ · |h−1(1) ∩ g−1(1)|
|g−1(1)|

and
|g−1(1)|

1 + τ
≤ κ ≤ (1 + τ)|g−1(1)|,

where µ = τ = ε/40000. Then
Simulate-Approx-Eval outputs a value ρ such
that

(B.5)
D̂′(x)

1 + β
≤ ρ ≤ (1 + β)D̂′(x),

where β = ε/192, D̂ is the output distribution constructed
in Step 3 of the run of AC that produced h, g, and D̂′ is D̂
conditioned on {−1, 1}n (excluding ⊥).

Proof. The Simulate-Approx-Eval procedure is very
simple. Given an input x ∈ {−1, 1}n it evaluates both g and
h on x, and if either evaluates to −1 it returns the value 0. If
both evaluate to 1 then it returns the value 1/(κα).

For the correctness proof, note first that it is easy to
see from the definition of the sampler Cf (Step 3 of A′C)
and Definition A.2 (recall that the approximate uniform
generator AC′gen(g) only outputs strings that satisfy g) that
if x ∈ {−1, 1}n, x /∈ h−1(1) ∩ g−1(1) then D̂ has zero
probability of outputting x, so Simulate-Approx-Eval
behaves appropriately in this case.

Now suppose that h(x) = g(x) = 1. We first show that
the value 1/(κα) is multiplicatively close to 1/|h−1(1) ∩
g−1(1)|. Let us write A to denote |g−1(1)| and B to denote
|h−1(1) ∩ g−1(1)|. With this notation we have

∣∣α− B
A

∣∣ ≤
µ · BA and A

1+τ ≤ κ ≤ (1 + τ)A. Consequently, we have

B(1− µ− τ) ≤ B · 1− µ
1 + τ

=
B

A
(1− µ) · A

1 + τ

≤ κα ≤ B

A
(1 + µ) · (1 + τ)A ≤ B(1 + 2µ+ 2τ),

and hence

(B.6)
1

B
· 1

1 + 2µ+ 2τ
≤ 1

κα
≤ 1

B
· 1

1− µ− τ
.

Now consider any x ∈ h−1(1) ∩ g−1(1). By Definition A.2
we have that

1

1 + ε3
· 1

|g−1(1)|
≤ Dg,ε3(x) ≤ (1 + ε3) · 1

|g−1(1)|
.

Since a draw from D̂′ is obtained by taking a draw from
Dg,ε3 and conditioning on it lying in h−1(1), it follows that
we have 1

1+ε3
· 1
B ≤ D̂′(x) ≤ (1 + ε3) · 1

B . Combining this
with (B.6) and recalling that µ = τ = ε

40000 and ε3 = εγ
48000 ,

we get (B.5) as desired.

B.4 The final algorithm: Proof of Theorem 3.1. Finally
we are ready to give the distribution learning algorithm AC
for C and compete the proof of Theorem 3.1.

Algorithm AC(Uf−1(1), ε, δ)

Input: Independent samples from Uf−1(1), accuracy
and confidence parameters ε, δ.
Output: With probability 1 − δ outputs an ε-sampler
Cf for Uf−1(1) .

1. For i = 1 to k = O(n/ε):

(a) Set p̂i
def
= (1 + ε)i−1/2n.

(b) Run A′C(Uf−1(1), ε/12, δ/3, p̂i). Let gi ∈
C′ be the function constructed in Step 1,
hi be the hypothesis function constructed
in Step 2(e), and (Cf )i be the sampler for
distribution D̂i constructed in Step 3.

(c) Run Check(gi, hi, δ/3, ε). If it returns a pair
(αi, κi) then add i to the set S (initially
empty).

2. Run the hypothesis testing procedure T Uf−1(1)

over the set {D̂′i}i∈S of hypothesis distributions,
using accuracy parameter ε/12 and confidence
parameter δ/3. Here T Uf−1(1) is given access
to Uf−1(1), uses the samplers (Cf )i to generate
draws from distributions D̂′i, and uses the proce-
dure Simulate-Approx-Eval(αi, κi, hi, gi)
for the (1 + ε/192)-approximate evaluation oracle
EVALD̂′i

for D̂′i. Let i? ∈ S be the index of the
distribution that it returns.

3. Output the sampler (Cf )i? .

Proof of Theorem 3.1: Let p ≡ Prx∈Un [f(x) = 1] denote
the true fraction of satisfying assignments for f in {−1, 1}n.
Let i∗ be the element of [k] such that p ≤ p̂i∗ < (1 + ε/6)p.
By Theorem B.1, with probability at least 1 − δ/3 we have
that both

(i) (Cf )i∗ is a sampler for a distribution D̂i∗ such that
dTV(D̂i∗ ,Uf−1(1)) ≤ ε/6; and

(ii) |h−1
i∗ (1) ∩ g−1

i∗ (1)|/|g−1
i∗ (1)| ≥ γ/2.

We condition on these two events holding. By
Lemma B.3, with probability at least 1 − δ/3 the procedure



Check outputs a value αi∗ such that∣∣∣∣αi∗ − |h−1
i∗ (1) ∩ g−1

i∗ (1)|
|g−1
i∗ (1)|

∣∣∣∣ ≤ µ · |h−1
i∗ (1) ∩ g−1

i∗ (1)|
|g−1
i∗ (1)|

for µ = ε/40000. We condition on this
event holding. Now Lemma B.4 implies that
Simulate-Approx-Eval((Cf )i∗) meets the re-
quirements of a (1 + β)-approximate evaluation oracle for
EVALD̂′

i∗
from Proposition 2.1, for β = ε

192 . Hence by
Proposition 2.1 with probability at least 1 − δ/3 the index
i? that T Uf−1(1) returns is such that D̂′i? is an ε/2-sampler
for Uf−1(1) as desired.

As in the proof of Theorem B.1, the claimed running
time bound is a straightforward consequence of the various
running time bounds established for all the procedures called
by AC . This concludes the proof of our general positive
result, Theorem 3.1. �

C Details from Section 4: Linear Threshold Functions
C.1 Tools from the literature. We first record two effi-
cient algorithms for approximate uniform generation and ap-
proximate counting for LTFn, due to Dyer [Dye03]:

THEOREM C.1. There is an algorithm ALTF
gen that on in-

put (a weights–based representation of) an arbitrary h ∈
LTFn and a confidence parameter δ > 0, runs in time
poly(n, log(1/δ)) and with probability 1− δ outputs a point
x such that x ∼ Uh−1(1).

THEOREM C.2. There is an algorithm ALTF
count that on input

(a weights–based representation of) an arbitrary h ∈ LTFn,
an accuracy parameter ε > 0 and a confidence parameter
δ > 0, runs in time poly(n, 1/ε, log(1/δ)) and outputs
p̂ ∈ [0, 1] that with probability 1− δ satisfies p̂ ∈ [1− ε, 1 +
ε] · Prx∼Un [h(x) = 1].

We also need an efficient SQ learning algorithm for half-
paces. This is provided to us by a result of Blum
et. al. [BFKV97]:
THEOREM C.3. There is a distribution-independent SQ
learning algorithm ALTF

SQ for LTFn that has running time
t1 = poly(n, 1/ε, log(1/δ)), uses at most t2 = poly(n) time
to evaluate each query, and requires tolerance of its queries
no smaller than τ = 1/poly(n, 1/ε).

Proof of Claim 1: Consider an LTF g and suppose that
it does not satisfy condition (a), i.e., Prx∼Un [g(x) =
−1|f(x) = 1] > ε. Since each sample x ∈ S+ is uni-
formly distributed in f−1(1), the probability it does not “hit”
the set g−1(−1) ∩ f−1(1) is at most 1 − ε. The probability
that no sample in S+ hits g−1(−1) ∩ f−1(1) is thus at most
(1 − ε)N+ ≤ δ/2n

2

. Recalling that there exist at most 2n
2

distinct LTFs over {−1, 1}n [Mur71], it follows by a union
bound that the probability there exists an LTF that does not
satisfy condition (a) is at most δ as desired. �

C.2 Proof of Theorem 4.3 We start by recalling the no-
tion of online learning for a class C of Boolean functions. In
the online model, learning proceeds in a sequence of stages.
In each stage the learning algorithm is given an unlabeled
example x ∈ {−1, 1}n and is asked to predict the value
f(x), where f ∈ C is the unknown target concept. After
the learning algorithm makes its prediction, it is given the
correct value of f(x). The goal of the learner is to identify f
while minimizing the total number of mistakes. We say that
an online algorithm learns class C with mistake bound M if
it makes at most M mistakes on any sequence of examples
consistent with some f ∈ C. Our densifier makes essential
use of a computationally efficient online learning algorithm
for the class of linear threshold functions by Maass and Tu-
ran [MT94]:
THEOREM C.4. There exists a poly(n) time deterministic
online learning algorithm ALTF

online for the class LTFn with

mistake bound M(n)
def
= Θ(n2 log n). In particular, at every

stage of its execution, the current hypothesis maintained by
ALTF

online is a (weights–based representation of an) LTF that is
consistent with all labeled examples received so far.

We note that ALTF
online works by reducing online learning

of LTFs to a convex optimization problem; however, our
densifier will use algorithm ALTF

online as a black box.
We now proceed with a more detailed description of our

densifier followed by pseudocode and a proof of correctness.
As previously mentioned, the basic idea is to execute the on-
line learner to learn f while cleverly providing counterexam-
ples to it in each stage of its execution. Our algorithm starts
by sampling N+ samples from Uf−1(1) and making sure that
these are classified correctly by the online learner. This step
guarantees that our final solution will satisfy condition (a)
of the densifier. Let h ∈ LTFn be the current hypothesis
at the end of this process. If h satisfies condition (b) (we
can efficiently decide this by using our approximate counter
for LTFn), we output h and terminate the algorithm. Oth-
erwise, we use our approximate uniform generator to con-
struct a uniform satisfying assignment x ∈ Uh−1(1) and we
label it negative, i.e., we give the labeled example (x,−1) as
a counterexample to the online learner. Since h does not sat-
isfy condition (b), i.e., it has “many” satisfying assignments,
it follows that with high probability (roughly, at least 1− γ)
over the choice of x ∈ Uh−1(1), the point x output by the gen-
erator will indeed be negative for f . We continue this process
for a number of stages. If all counterexamples thus generated
are indeed consistent with f (this happens with probability
roughly 1 − γ · M , where M = M(n) = Θ(n2 log n) is
an upper bound on the number of stages), after at most M
stages we have either found a hypothesis h satisfying condi-
tion (b) or the online learner terminates. In the latter case,
the current hypothesis of the online learner is identical to f ,
as follows from Theorem C.4. (Note that the above argument
puts an upper bound of O(δ/M) on the value of γ.) Detailed



pseudocode follows:

Algorithm ALTF
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters
ε, δ > 0, and a value 1/2n ≤ p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1 + ε)p, with probability 1 − δ
outputs a function g ∈ LTFn satisfying conditions (a)
and (b).

1. Draw a set S+ of N+ =
Θ
(
(1/ε) · (n2 + log(1/δ))

)
examples from

Uf−1(1).

2. Initialize i = 0 and set M def
= Θ(n2 log n).

While (i ≤M) do the following:

(a) Execute the i-th stage of ALTF
online and let

h(i) ∈ LTFn be its current hypothesis.
(b) If there exists x ∈ S+ with h(i)(x) = −1 do

the following:

• Give the labeled example (x, 1) as a
counterexample to ALTF

online.
• Set i = i+ 1 and go to Step 2.

(c) Run ALTF
count(h

(i), ε, δ/(4M)) and let p̂i be its
output.

(d) Set γ def
= δ/(16M). If p̂i ≤ p̂/

(
γ · (1 + ε)2

)
then output h(i);

(e) otherwise, do the following:
• RunALTF

gen (h(i), δ/(4M)) and let x(i) be
its output.
• Give the point (x(i),−1) as a counterex-

ample to ALTF
online.

• Set i = i+ 1 and go to Step 2.
3. Output the current hypothesis h(i) of ALTF

online.

Proof. First note that by Claim 1, with probability at least
1 − δ/4 over S+ any LTF consistent with S+ will satisfy
condition (a). We will condition on this event and also on the
event that each call to the approximate counting algorithm
and to the approximate uniform generator is successful.
Since Step 2 involves at most M iterations, by a union
bound, with probability at least 1 − δ/4 all calls to ALTF

count

will be successful, i.e., for all iwe will have that pi/(1+ε) ≤
p̂i ≤ (1 + ε) · pi, where pi = Prx∈Un [h(i)(x) = 1].
Similarly, with failure probability at most δ/4, all points
x(i) constructed by ALTF

gen will be uniformly random over
(h(i))−1(1). Hence, with failure probability at most 3δ/4 all
three conditions will be satisfied.

Conditioning on the above events, if the algorithm out-
puts a hypothesis h(i) in Step 2(d), this hypothesis will
certainly satisfy condition (b), since pi ≤ (1 + ε)p̂i ≤
p̂/
(
γ · (1 + ε)

)
≤ p/γ. In this case, the algorithm succeeds

with probability at least 1− 3δ/4. It remains to show that if

the algorithm returns a hypothesis in Step 3, it will be suc-
cessful with probability at least 1 − δ. To see this, observe
that if no execution of Step 2(e) generates a point x(i) with
f(x(i)) = 1, all the counterexamples given to ALTF

online are
consistent with f . Therefore, by Theorem C.4, the hypoth-
esis of Step 3 will be identical to f , which trivially satisfies
both conditions.

We claim that with overall probability at least 1−δ/4 all
executions of Step 2(e) generate points x(i) with f(x(i)) =
−1. Indeed, fix an execution of Step 2(e). Since p̂i >
p̂/
(
(1 + ε)2 · γ

)
, it follows that p ≤ (4γ)pi. Hence, with

probability at least 1− 4γ a uniform point x(i) ∼ U(hi)−1(1)

is a negative example for f , i.e., x(i) ∈ f−1(−1). By a union
bound over all stages, our claim holds except with failure
probability 4γ ·M = δ/4, as desired. This completes the
proof of correctness.

It remains to analyze the running time. Note that Step 2
is repeated at most M = O(n2 log n) times. Each iteration
involves (i) one round of the online learnerALTF

online (this takes
poly(n) time by Theorem C.4), (ii) one call of ALTF

count (this
takes poly(n, 1/ε, log(1/δ)) time by Theorem C.2), and (iii)
one call to ALTF

gen (this takes poly(n, 1/ε, log(1/δ)) time by
Theorem C.1). This completes the proof of Theorem 4.3.

Discussion. As mentioned before, the algorithm ALTF
den is

the most important technical contribution of this section and
hence it is instructive to understand, at a high level, the
ingredients which are combined to construct a densifier. Let
C be a class of Boolean functions and Cn consist of functions
in C over n variables. While we do not formalize it here, one
can modify the proof of Theorem 4.3, mutatis mutandis, to
show that Cn has a (ε, γ, δ)-densifierACden with running time
T (n) (where ε, γ and δ are 1/poly(n) and T (n) is poly(n))
provided that the following conditions hold:

(i) Cn has an (ε, δ)-approximate counting algorithm and an
(ε, δ)-approximate uniform generation algorithm both
of which run in time poly(n, 1/ε, 1/δ);

(ii) There is an online learning algorithm ACOL for C with a
poly(n) running time and poly(n) mistake bound.

It will be interesting to see if there are other interesting
classes of functions for which this framework gives an
“automatic” construction of densifiers.

D Proof of Theorem 5.1: DNF
D.1 Tools from the literature for DNF. Karp, Luby and
Madras [KLM89] have given approximate uniform genera-
tion and approximate counting algorithms for DNF formu-
las. (We note that [JVV86] give an efficient algorithm that
with high probability outputs an exactly uniform satisfying
assignment for DNFs.)



THEOREM D.1. (Approximate uniform generation for
DNFs, [KLM89]) There is an approximate uniform genera-
tion algorithm ADNFn,t

gen for the class DNFn,t that runs in
time poly(n, t, 1/ε, log(1/δ)).

THEOREM D.2. (Approximate counting for DNFs,
[KLM89]) There is an approximate counting algo-
rithm ADNFn,t

gen for the class DNFn,t that runs in time
poly(n, t, 1/ε, log(1/δ)).

Algorithm ADNFn,s
den (Uf−1(1), ε, δ, p̂):

Input: Independent samples from Uf−1(1), parameters
ε, δ > 0, and a value 1/2n < p̂ ≤ 1.
Output: If p ≤ p̂ ≤ (1 + ε)p, with probability
1 − δ outputs a set S of conjunctions C1, . . . , C|S| as
described in Theorem 5.3

1. Initialize set S to ∅. Let `(·) be the polynomial
from Theorem 5.2.

2. For i = 1 to M = 2n2 log(2s/`(ε/s)) log(s/δ),
repeat the following:

(a) Draw r = 2 log n satisfying assignments
x1, . . . , xr from Uf−1(1).

(b) Let Ci be the AND of all literals that take the
same value in all r strings x1, . . . , xr (note
Ci may be the empty conjunction). We say
Ci is a candidate term.

(c) If the candidate term Ci satisfies
Prx∼Un [Ci(x) = 1] ≤ p̂ then add Ci
to the set S.

3. Output S.

D.2 Proof of Theorem 5.3 The following crucial claim
makes the intuition described in the proof sketch of Theorem
5.3 precise:

CLAIM 9. Suppose Tj is a term in f such that
Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). Then with proba-
bility at least 1 − δ/s, term Tj is a candidate term at some
iteration of Step 2 of Algorithm ADNFn,s

den (Uf−1(1), ε, δ, p̂).

Proof. Fix a given iteration i of the loop in Step 2. With
probability at least

(`(ε/s)/(2s))2 logn = (1/n)2 log(2s/`(ε/s)),

all 2 log n points x1, . . . , x2 logn satisfy Tj ; let us call this
event E, and condition on E taking place. We claim that
conditioned onE, the points x1, . . . , x2 logn are independent
uniform samples drawn from T−1

j (1). (To see this, observe
that each xi is an independent sample chosen uniformly at
random from f−1(1) ∩ T−1

j ; but f−1(1) ∩ T−1
j (1) is iden-

tical to T−1
j (1).) Given that x1, . . . , x2 logn are independent

uniform samples drawn from T−1
j (1), the probability that

any literal which is not present in Tj is contained in Ci (i.e.,
is satisfied by all 2 log n points) is at most 2n/n2 ≤ 1/2. So
with overall probability at least 1

2n2 log(2s/`(ε/s)) , the term Tj
is a candidate term at iteration i. Consequently Tj is a candi-
date term at some iteration with probability at least 1− δ/s,
by the choice of M = 2n2 log(2s/`(ε/s)) log(s/δ).

Now we are ready to prove Theorem 5.3:

Proof. [Proof of Theorem 5.3] The claimed running time
bound of ADNFn,s

den is easily verified, so it remains only to
establish (1)-(3). Fix p̂ such that p ≤ p̂ < (1 + ε)p where
p = Prx∼Un [f(x) = 1].

Consider any fixed term Tj of f such that
Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). By Claim 9
we have that with probability at least 1 − δ/s, term Tj is a
candidate term at some iteration of Step 2 of the algorithm.
We claim that in step (c) of this iteration the term Tj will in
fact be added to S. This is because by assumption we have

Pr
x∼Un

[Tj(x) = 1] ≤ Pr
x∼Un

[f(x) = 1] = p ≤ p̂.

So by a union bound, with probability at least 1 − δ ev-
ery term Tj in f such that Prx∼Uf−1(1)

[Tj(x) = 1] ≥
`(ε/s)/(2s) is added to S.

Let L be the set of those terms Tj in f that have
Prx∼Uf−1(1)

[Tj(x) = 1] ≥ `(ε/s)/(2s). Let f ′ be the DNF
obtained by taking the OR of all terms in L. By a union
bound over the (at most s) terms that are in f but not in f ′,
we have Prx∼Uf−1(1)

[f ′(x) = 1] ≥ 1−`(ε/s)/2. Since g (as
defined in Theorem 5.3 has g(x) = 1 whenever f ′(x) = 1, it
follows that Prx∼Uf−1(1)

[g(x) = 1] ≥ 1− `(ε/s)/2 ≥ 1− ε,
giving item (1) of the theorem.

For item (2), since f(x) = 1 whenever f ′(x) = 1, we
have Prx∼Ug−1(1)

[f(x) = 1] ≥ Prx∼Ug−1(1)
[f ′(x) = 1].

Every x such that f ′(x) = 1 also has g(x) = 1 so to
lower bound Prx∼Ug−1(1)

[f ′(x) = 1] it is enough to upper
bound the number of points in g−1(1) and lower bound the
number of points in f ′−1(1). Since each Ci that is added
to S is satisfied by at most p̂2n ≤ (1 + ε)p2n points, we
have that |g−1(1)| ≤ (1 + ε)pM2n. Since at least 1 − ε
of the points that satisfy f also satisfy f ′, we have that
|f ′−1(1)| ≥ p(1− ε)2n. Thus we have Prx∼Ug−1(1)

[f ′(x) =

1] ≥ p(1− ε)/((1 + ε)pM) = 1−ε
1+ε ·

1
M > 1

2M , giving (2).
Finally, for (3) we have that f(x) 6= f ′(x) only on those

inputs that have f(x) = 1 but f ′(x) = 0 (because some term
outside of L is satisfied by x and no term in L is satisfied
by x). Even if all such inputs x lie in g−1(1) (the worst
case), there can be at most (`(ε/s)/2)p2n such inputs, and
we know that |g−1(1)| ≥ |f−1(1)| ≥ p(1 − ε)2n. So we
have Prx∼Ug−1(1)

[f(x) 6= f ′(x)] ≤ `(ε/s)/2
1−ε ≤ `(ε/s), and

we have (3) as desired.


