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Abstract
We consider a problem which has received considerable
attention in systems literature because of its applications
to routing in delay tolerant networks and replica place-
ment in distributed storage systems. In abstract terms the
problem can be stated as follows: Given a random variable
X generated by a known product distribution over {0, 1}n
and a target value 0 ≤ θ ≤ 1, output a non-negative vec-
tor w, with ‖w‖1 ≤ 1, which maximizes the probability
of the event w ·X ≥ θ. This is a challenging non-convex
optimization problem for which even computing the value
Pr[w ·X ≥ θ] of a proposed solution vector w is #P-hard.

We provide an additive EPTAS for this problem
which, for constant-bounded product distributions, runs in
poly(n) · 2poly(1/ε) time and outputs an ε-approximately
optimal solution vector w for this problem. Our approach
is inspired by, and extends, recent structural results from
the complexity-theoretic study of linear threshold func-
tions. Furthermore, in spite of the objective function be-
ing non-smooth, we give a unicriterion PTAS while pre-
vious work for such objective functions has typically led
to a bicriterion PTAS. We believe our techniques may be
applicable to get unicriterion PTAS for other non-smooth
objective functions.
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1 Introduction
Many applications involve designing a system that will
perform well in an uncertain environment. Sources of
uncertainty include (for example) the demand when we
are designing a server, the congestion when we are de-
signing a routing protocol, and the failure of the system’s
own components when we are designing a distributed sys-
tem. Such uncertainties are often modeled as stochastic
variables, giving rise to non-linear and non-convex opti-
mization problems. In this paper, we study a non-convex
stochastic optimization problem that has received consid-
erable attention in the systems literature [JDPF05, Fal03,
LDT09, LDT10a, LDT10b, SRFS10] but has remained
poorly understood.

The main motivation for studying this problem
comes from distributed storage [DPR05, JB03, LDT09,
SRFS10]. The goal in this literature is to develop methods
for storing data among a set of faulty processors in a way
that makes it possible to recover the data in its entirety
despite processor failures. Clearly, to perform this task
we need to use some form of redundancy, as otherwise
a single processor failure could cause permanent loss of
data. In particular, this task contains as subproblems both
the choice of an error correcting code and the decision
of how to allocate the encoded data into the failure-prone
processors, resulting in an enormous design space.

An important observation that is used throughout the
literature is that these two subproblems can be decou-
pled through the use of erasure codes (see, e.g., [Lub02,
LMSS02, Mit04, Sho06]). Such codes can be used to en-
code the original data so that with high probability any
large enough subset of encoded data can be used to recon-
struct the original data. In view of this observation, we
can formulate the distributed storage problem as a much
simpler to state problem:

Suppose that our original data has size θ GB for
some 0 ≤ θ ≤ 1, and we use an erasure code to
generate 1 GB of encoded data. The goal is to allocate
the data among n failure-prone nodes so as to maximize
the probability that the original data can be recovered.
The standard formulation of the problem [DPR05, JB03,
LDT09, SRFS10] is that each node i has some known



probability 1 − pi of failing, and that these failures are
independent across different nodes. So, mathematically
our goal is to solve the following problem, which we call
Problem (P):

Input: An n-vector of probabilities p =
(p1, . . . , pn) ∈ [0, 1]n and a parameter θ ∈ [0, 1].

For i ∈ [n] let µpi be the distribution on {0, 1}
with µpi(1) = pi, and let the corresponding prod-
uct distribution over {0, 1}n be denoted by Dp =⊗n

i=1 µpi .
Output: A weight vector w = (w1, . . . , wn) ∈ IRn

≥0

satisfying ‖w‖1 ≤ 1 (such a w is said to be a feasible
solution). The goal is to maximize

Obj(w)
def
= PrX∼Dp [w ·X ≥ θ] .

A feasible solution that maximizes Obj(w) is said to
be an optimal solution. We will denote by OPT =
OPT(p, θ) the maximum value of any feasible solu-
tion.

In the above formulation wi denotes the amount of
data that we decide to store in the i-th storage node, and
Xi is the indicator random variable of the event that the
i-th storage node does not fail.

Before we proceed, we point out a connection of the
optimization problem (P) above with the class of Boolean
halfspaces or Linear Threshold Functions (LTFs) that will
be crucially exploited throughout this paper. Recall that a
Boolean function f : {0, 1}n → {0, 1} is a halfspace
if there exists a weight-vector v ∈ IRn and a threshold
t ∈ IR so that f(x) = 1 if and only if v · x ≥ t. Hence,
the objective function value Obj(w) of a feasible weight-
vector w (i.e., w ∈ IRn

≥0 with ‖w‖1 ≤ 1) can be equiv-
alently expressed as Obj(w) = PrX∼Dp

[hw,θ(X) = 1],
where hw,θ(x) = 1{x∈{0,1}n:w·x≥θ} is the halfspace with
weight-vector w and threshold θ.

We remark that, even though the feasible set is con-
tinuous, it is not difficult to show that there exists a ra-
tional optimal solution. In particular, analogous to the
linear-algebraic arguments [MTT61, Mur71, Rag88], we
can also show that there always exists an optimal solu-
tion with bit-complexity polynomially bounded in n; in
fact, one with at most O(n2 log n) bits which is best pos-
sible [Has94]. (As a corollary, the supremum is always
attained and problem (P) is well-defined.)

1.1 Previous and Related Work. Previous Work on
the Problem. The stochastic design problem (P) stated
above was formulated explicitly in the work of Jain et
al. [JDPF05]. That work was motivated by the problem
of routing in Delay Tolerant Networks [JFP04]. These
networks are characterized by a lack of consistent end-to-
end paths, due to interruptions that may be either planned

or unplanned, and selecting routing paths is considered
to be one of the most challenging problems. The authors
of [JDPF05] reduce the route selection problem to Prob-
lem (P) in a range of settings of interest, and study the
structure of the optimal partition as well as its computa-
tional complexity, albeit with inconclusive theoretical re-
sults.

One of the special cases of the problem considered
in [JDPF05] is the case where all the pi’s are equal, i.e.,
when p1 = . . . = pn = p. Even in this case, the structure
of the optimal solution is not well-understood. It is natu-
ral to expect that the optimal weight vector is obtained by
equally splitting the allowed unit of weight over a subset
of the indices, and setting the weights to be 0 on all other
indices (in other words, set w1 = w2 = . . . = wk = 1

k
and wk+1 = . . . = wn = 0, for some k). The au-
thors of [JDPF05] consider the performance of this strat-
egy for different values of p and θ, as do the papers
[LDT09, LDT10a, LDT10b]. Surprisingly, such parti-
tions are not necessarily optimal. For a counter-example,
communicated to us by R. Kleinberg [Kle06], consider
the setting where n = 5, θ = 5/12 and p = 1 − ε,
for sufficiently small ε. In this case, the allocation vec-
tor w = (1/4, 1/4, 1/6, 1/6, 1/6) performs better than
the uniform weight vector over any subset of the coordi-
nates {1, . . . , 5}. There has also been work on a related
distributed storage problem [SRFS10] that uses a slightly
different model of node failures. In this model, instead
of every node failing with probability p, a random subset
of nodes of size pn is assumed to fail. In this setting, the
conjecture that certain symmetric allocations are optimal
is related to a conjecture of Erdos [Erd65] on the maxi-
mum number of edges in a k-uniform hypergraph whose
(fractional) matching size is at most s (see [AFH+12] for
a detailed discussion of the connection).

Related Work. Stochastic optimization is an impor-
tant research area with diverse applications having its
roots in the work of Dantzig [Dan55] and Beale [Bea55]
that has been extensively studied since the 1950’s (see
e.g., [BL97] for a book on the topic). During the past
couple of decades, there has been an extensive literature
on efficient approximation algorithms for stochastic com-
binatorial optimization problems in various settings, see
e.g., [KRT97b, DGV08, BGK11, Nik10, Swa11, LD11,
LY13] and references therein.

In many of these works, one wants to select a sub-
set of (discrete independent) random variables whose
sum optimizes a certain non-linear function. For ex-
ample, the objective function of our problem (P) corre-
sponds to the threshold probability maximization prob-
lem [Nik10, LY13]. Note that, while the solution space in
the aforementioned works is typically discrete and finite
in nature, the solution space for our problem is continu-
ous. In particular, it is not always possible to discretize
the space without losing a lot in the objective function



value (see Section 1.3 for a detailed explanation of the
difficulties in our setting).

Regarding threshold probability maximization, Li
and Yuan [LY13] obtained bicriterion additive PTAS for
stochastic versions of classical combinatorial problems,
such as shortest paths, spanning trees, matchings and
knapsacks. Roughly, they obtain a bicriterion guaran-
tee because the function to be optimized does not have a
bounded Lipschitz constant. In contrast, even though the
Pr[w · X ≥ θ] function that we are optimizing does not
have a bounded Lipschitz constant, we are able to obtain
a unicriterion PTAS by exploiting new structural prop-
erties of near-optimal solutions that we establish in this
work, as described below. In terms of techniques, [LY13]
use Poisson approximation and discretization as a main
component of their results. We note that this approach is
not directly applicable in our setting, since we are dealing
with a weighted sum of Bernoulli random variables with
arbitrary real weights and we are shooting for a unicri-
terion PTAS. We view the unicriterion guarantee that we
achieve as an important contribution of the techniques in
this work.

1.2 Our results. It seems unlikely that Problem (P) can
be solved exactly in polynomial time. Note that (even for
the very special case when each pi equals 1/2) (exactly)
evaluating the objective function Obj(w) of a candidate
solutionw is #P -hard. (This follows by a straightforward
reduction from the counting version of knapsack, see e.g.,
Theorem 2.1 of [KRT97a] for a proof.) In fact, problem
(P) is easily seen to lie in NP#P , and we are not aware
of a better upper bound. We conjecture that the exact
problem is intractable, namely #P -hard.

The focus of this paper is on efficient approximation
algorithms. As our main contribution, we give an additive
EPTAS for (P) for the case that each pi is bounded away
from 0. That is, we give an algorithm that for every ε > 0,
outputs a feasible solution w such that Obj(w) is within
an additive ε of the optimal value. An informal statement
of our main result follows (see Theorem 3 for a detailed
statement):

THEOREM 1. [Main Result – informal statement] Fix any
ε > 0 and let p = (p1, . . . , pn) be any input instance such
that mini pi ≥ εΩ(1). There is a randomized algorithm
which, for any such input vector p and any input threshold
0 ≤ θ ≤ 1, runs in poly(n) ·2poly(1/ε) time and with high
probability outputs a feasible solution vector w whose
value is within an additive ε of the optimal.

1.3 Our techniques. Background. In recent years,
there has been a surge of research interest in concrete
complexity theory on various problems concerning halfs-
paces. These include constructions of low weight approx-
imations of halfspaces [Ser07, DS09, DDFS12], PRGs

for halfspaces [DGJ+10, MZ10], property testing al-
gorithms [MORS10] and approximate reconstruction of
halfspaces from low-degree Fourier coefficients [OS11,
DDFS12] among others.

All these results use a “structure versus random-
ness” tradeoff for halfspaces which can be described
roughly as follows: Consider the weights of a halfspace
1{x∈{0,1}n:w·x≥θ} in order of decreasing magnitude. If
the largest-magnitude weight is “small” compared to the
2-norm of the weight-vectorw, then the Berry-Esséen the-
orem (a quantitative version of the Central Limit Theo-
rem with explicit error bounds) implies that for indepen-
dent {0, 1} random variables Xi (that are not too biased
towards 0 or 1), the distribution of w · X will be well-
approximated by the Gaussian distribution with the same
mean and variance. This is a very useful statement be-
cause it implies that the discrete random variable w · X
essentially inherits several nice properties of the Gaus-
sian distribution (such as anti-concentration, strong tail
bounds, and so on). On the other hand, if the largest-
magnitude weight accounts for a significant fraction of
the 2-norm, then the weight-vector obtained by erasing
this weight has significantly smaller 2-norm, and we have
“made progress;” intuitively, after a bounded number of
steps of this sort, the 2-norm of the remaining weights will
be extremely small, so the halfspace essentially depends
only on the first few variables and should be “easy to han-
dle” for that reason. These arguments can be made quan-
titatively precise using the notion of the “critical index”
(introduced in [Ser07]; see Definition 2.2) which plays an
important role in much of the work described above.
Our Contribution. In this paper we show how tools
from the complexity-theoretic literature on halfspaces
alluded to above can be leveraged in order to make
algorithmic progress on our optimization problem (P). As
we will explain below, several non-trivial technical issues
arise in the context of problem (P) which require careful
treatment.

At a high-level, in this work we adapt and enhance
this technical machinery in order to obtain a structural
understanding of the problem, which is then combined
with algorithmic and probabilistic techniques to obtain a
PTAS. Very roughly, we proceed as follows: We partition
the space of optimal solution vectors v∗ into a constant
number of subsets, based on the value of the critical index
of v∗. For each subset we apply a (different) algorithm
which outputs a candidate (feasible) solution which is
guaranteed to be ε-optimal, assuming v∗ belongs to the
particular subset. Since at least one subset contains an
optimal solution, the best candidate solution will be ε-
approximately optimal as desired.

Of course, we need to explain how to compute a
candidate solution for each subset. A basic difficulty
comes from the fact that our problem is not combinatorial.
The space of feasible solutions is continuous and even
though one can easily argue that there exists a rational



optimal solution with polynomially many bits, a priori we
do not know anything more about its structure. We note
that a natural first approach one would think to try in this
context would be to appropriately “discretize” the weights
(e.g., by using a geometric subdivision, etc) and then
use dynamic programming to optimize in the discretized
space. However, it is far from clear how to show that
such a naive discretization works; one can easily construct
examples of weight vectors w such that “rounding” the
coefficients of w to an appropriate (inverse polynomial in
n) granularity radically changes the value of the objective
function1.

To compute an approximately optimal solution for
each case (i.e., for v∗ in a particular subset as described
above) one needs a better understanding of the structure of
the optimal solutions. The reason why “rounding” the co-
efficients may substantially change the objective function
value is because for certain weight vectors w the random
variable w ·X is very concentrated, i.e., it puts a substan-
tial fraction of its probability mass in a small interval. If
on the other hand, w ·X is sufficiently anti-concentrated,
i.e., it puts small mass on every small interval, then it is
easy to argue that “rounding” does not affect the objective
function by a lot. Known results [TV09] show that the
anti-concentration of w ·X depends strongly on the addi-
tive structure of w. While it is hopeless to show that all
feasible weight-vectors are anti-concentrated, one could
hope to show that there exists a near-optimal solution that
has good anti-concentration. Essentially, this is what we
do.

Our main structural theorem (Theorem 2) shows that,
except in degenerate cases, there always exists an optimal
solution whose “tail” has sufficiently large L1-norm com-
pared with the “head” 2. We remark that, while results
of a broadly similar flavor appear in many of these pre-
vious papers (see e.g., [Ser07, OS11, DS09]) there are a
few crucial differences. First, the previous works compare
the L2 norms of the “head” and the “tail”. Most impor-
tantly, all previous such results consist of re-expressing
the LTFs in a “nice” form (which includes changing the
value of the threshold θ). Indeed, the previous arguments
which assert the existence of these nice forms do not con-
trol the value of the threshold as its exact value is imma-
terial. In contrast, for our problem the exact threshold
in comparison to the L1-norm of the weight vector is a
crucial parameter. Our structural theorem says that ev-
ery LTF has a well-structured equivalent version in which
(1) the threshold stays exactly the same relative to the L1-
norm of the weights, and (2)L1-norm of the “tail weights”

1Moreover, we note that discretization of the space followed by
standard approaches, e.g., along the lines of [CK05], seems to inherently
lead to bicriteria guarantees.

2If the optimal weight vector only has nonzero coordinates in the
L coordinates in the “head” (think of L as a constant – it will depend
only on ε), then as we show we can find an optimal vector exactly in
poly(n) · 2poly(L) time by an enumeration-based approach.

is “large.” Our proof of this theorem is based on linear
fractional programming, which is novel in this context
of structural results for LTFs. Conceptually, our struc-
tural theorem serves as a “pre-processing” step which en-
sures that the optimal weight-vector may be assumed to
be well-structured; our algorithm crucially exploits this
nice structure of the optimal solution to efficiently find a
near-optimal solution.

2 Preliminaries
2.1 Simplifying assumptions about the problem in-
stance. It is clear that if θ = 0 or θ = 1 then it is trivial to
output an optimal solution; hence throughout the rest of
the paper we assume that 0 < θ < 1.

Without loss of generality we may make the follow-
ing assumptions about the input (p1, . . . , pn):

(A1) p1 ≥ · · · ≥ pn.

(A2) p1 < 1 − ε and all pi ∈ {ε/(4n), . . . , kε/(4n)},
where kε/(4n) is the largest integer multiple of
ε/(4n) that is less than 1 − ε. For the first claim,
note that if p1 ≥ 1 − ε then the solution w =
(1, 0, . . . , 0) has PrX∼Dp [w ·X ≥ θ] ≥ 1 − ε
and hence (1, 0, . . . , 0) is an ε-optimal solution as
desired. For the second claim, given an input vector
of arbitrary values p′ = (p′1, . . . , p

′
n) ∈ [0, 1 − ε)n,

if we round the p′i values to integer multiples of
ε/4n to obtain p = (p1, . . . , pn), then a simple
coupling argument gives that for any event S, we
have

∣∣∣PrX∼Dp
[S]−PrX∼Dp′ [S]

∣∣∣ ≤ ε/4. Hence
for our purposes, we may assume that the initial pi
values are “ε/(4n)-granular” as described above.

We further make some easy observations about op-
timal solutions that will be useful later. First, it is clear
that there exists an optimal solution w with ‖w‖1 = 1. (If
‖w‖1 < 1 then rescaling by ‖w‖1 gives a new feasible so-
lution whose value is at least as good as the original one.)
Second, by assumption (A1) there exists an optimal solu-
tion w ∈ IRn

+ that satisfies wi ≥ wi+1 for all i ∈ [n− 1].
(If wi < wi+1 it is easy to see that by swapping the two
values we obtain a solution whose value is at least as good
as the original one.)

2.2 Tools from structural analysis of LTFs: regular-
ity and the critical index.

DEFINITION 2.1. (REGULARITY) Fix any real value
τ > 0. We say that a vector w = (w1, . . . , wn) ∈ IRn

is τ -regular if maxi∈[n] |wi| ≤ τ‖w‖2. A linear form w ·x
is said to be τ -regular if w is τ -regular.

Intuitively, regularity is a helpful notion because if w
is τ -regular then the Berry-Esséen theorem can be used to
show that forX ∼ Dp, the linear form w ·X is distributed
like a Gaussian (with respect to Kolmogorov distance)



up to an error of η, where η depends on the regularity
parameter and the parameters p1, . . . , pn (see Corollary
6.1).

A key ingredient in our analysis is the notion of
the “critical index” of a linear form w · x. The critical
index was implicitly introduced and used in [Ser07] and
was explicitly used in [DS09, DGJ+10, OS11, DDFS12]
and other works. Intuitively, the critical index of w
is the first index i such that from that point on, the
vector (wi, wi+1, . . . , wn) is regular. A precise definition
follows:

DEFINITION 2.2. (CRITICAL INDEX) Given a vector
w ∈ IRn such that |w1| ≥ · · · ≥ |wn| > 0, for k ∈ [n]
we denote by σk the quantity

√∑n
i=k w

2
i . We define the

τ -critical index c(w, τ) of w as the smallest index i ∈ [n]
for which |wi| ≤ τ · σi. If this inequality does not hold
for any i ∈ [n], we define c(w, τ) =∞.

Given a problem instance p satisfying (A1) and (A2)
and a value ε, we define
(2.1)
L = min{n,Θ(1/(ε2γ2)·(1/γ)·(log 1/(εγ))·(log(1/ε))},

where γ = min{pn, 1 − p1} ≥ ε/4n. The idea behind
this choice of L is that it is the cutoff for “having a large
(εγ)/200-critical index.”

2.3 A useful structural theorem about solutions. In
Section 3 we prove that given any feasible solution, there
is another feasible solution whose value is at least as good
as the original one and which has a “heavy tail” with
respect to the L1 norm:

THEOREM 2. Fix K ∈ [n], 0 < θ < 1, and w1 ≥ · · · ≥
wn ≥ 0 such that

∑n
i=1 wi = 1. Let S = {x ∈ {0, 1}n :

w · x ≥ θ}. Then there is a vector v = (v1, . . . , vn) such
that

(a)
∑n
i=1 vi = 1 and v1 ≥ · · · ≥ vn ≥ 0;

(b) every x ∈ S has v · x ≥ θ; and

(c) either vK+1 = · · · = vn = 0 or else
∑k
i=1 vi ≤

(K + 2)(K+2)/2 ·
∑n
i=K+1 vi.

Applying Theorem 2 with K = L as defined in (2.1), we
get that there exists an optimal solution v∗ that satisfies
(a) and (b), and either v∗L+1 = · · · = v∗n = 0 or else∑L
i=1 v

∗
i ≤ (L+ 2)(L+2)/2 ·

∑n
i=L+1 v

∗
i . Throughout the

paper, we fix v∗ to be such an optimal solution vector.

2.4 Our approach and formal statement of the main
result. At a high level, our approach is to consider three
mutually exclusive and exhaustive cases for v∗:

• Case 1: v∗ has v∗L+1 = · · · = v∗n = 0. In this case
we say v∗ is an L-junta. (Note that if L = n then we
are in this case; hence in Cases 2 and 3 we have that
L < n.)

• Case 2: v∗ is not an L-junta and c(v∗, εγ/200) > L.
In this case we say that v∗ is of type L+ 1.

• Case 3: v∗ is not an L-junta and c(v∗, εγ/200) = K
for some K ∈ {1, . . . , L}. In this case we say that
v∗ is of type K.

We show (see Section 4) that in Case 1 it is possible to
efficiently compute an exactly optimal solution. In both
Cases 2 and 3 (see Sections 5 and 6 respectively) we
show that it is possible (using two different algorithms)
to efficiently construct a set of N ≤ poly(n, 2poly(L))
feasible solutions such that one of them (call it w′) has
Obj(w′) ≥ OPT− ε/2. Running all three procedures, we
thus obtain a set ofO(nN) = poly(n, 2poly(L)) candidate
solutions such that one of them (call it w̃) is guaranteed to
have Obj(w̃) ≥ OPT − ε/2. From this it is simple to
obtain an ε-approximate optimal solution (see Section 7).

A precise version of our main result is given below,
where by bit(θ) we denote the bit-length of θ:

THEOREM 3. [Main Result] There is a randomized algo-
rithm with the following performance guarantee: It takes
as input a vector of probabilities p = (p1, . . . , pn) sat-
isfying (A1) and (A2), a threshold value 0 < θ < 1,
and a confidence parameter 0 < δ < 1. It runs in
poly(n, 2poly(1/ε,1/γ),bit(θ)) · log(1/δ) time, where γ =
min{pn, 1−p1} ≥ ε/4n. With probability 1−δ it outputs
a feasible solution w̃ such that Obj(w̃) ≥ OPT − ε, and
an estimate Õbj(w̃) of Obj(w̃) that satisfies |Õbj(w̃) −
Obj(w̃)| ≤ ε.

3 There exist well-structured optimal solutions:
Proof of Theorem 2

Fix K ∈ [n], 0 < θ < 1, and w = (w1, . . . , wn) with
w1 ≥ w2 ≥ . . . wn ≥ 0 and

∑n
i=1 wi = 1. If wi = 0

for all i ∈ [K + 1, n] it is clear that the weight-vector w
satisfies conditions (a)-(c). So, we will henceforth assume
that WT

def
=
∑n
i=K+1 wi > 0.

We start by defining the following linear–fractional
program (LFP) over variables u1, . . . , uK and r.
(LFP) is defined by the following set of linear con-
straints:

(i) For all x ∈ S, it holds
∑K
i=1 uixi+

∑n
i=K+1 wixi ≥

r.

(ii) For all i ∈ [K − 1], ui ≥ ui+1; and uK ≥ wK+1.

The (fractional) objective function to be maximized is

f0(u1, . . . , uK , r) =
r∑K

i=1 ui +WT

.

Observe that (u1, . . . , uK , r) = (w1, . . . , wK , θ) is a
feasible solution, hence the maximum value of (LFP)
is at least θ.

We now proceed to turn (LFP) into an essen-
tially equivalent linear program (LP), using the standard



Charnes–Cooper transformation [CC62]. The linear pro-
gram (LP) has variables t, s1, . . . , sK and δ and is de-
fined by the following set of linear constraints:

(i) For all x ∈ S, it holds
∑K
i=1 sixi+

(∑n
i=K+1 wixi

)
·

t ≥ δ.

(ii) For all i ∈ [K − 1], si ≥ si+1; and sK ≥ wK+1 · t.

(iii)
∑K
i=1 si +WT · t = 1; and

(iv) t ≥ 0.

The linear objective function to be maximized is δ.
The following standard claim (see e.g., [BV04])

quantifies the relation between the two aforementioned
optimization problems:

CLAIM 3.1. The optimization problems (LFP) and
(LP) are equivalent.

Proof. Let (u∗1, . . . , u
∗
K , r

∗) be a feasible solution to
(LFP). It is straightforward to verify that the vector
(t∗, s∗1, . . . , s

∗
K , δ

∗) with

t∗ =
1∑K

i=1 u
∗
i +WT

,

s∗i = t∗u∗i , for i ∈ [K], and δ∗ = t∗r∗ is a feasible
solution to (LP) with the same objective function value.
It follows that the linear program (LP) is also feasible
with maximum value at least θ. Moreover, the maximum
value of (LP) is greater than or equal to the maximum
value of (LFP).

Conversely, if (t∗, s∗1, . . . , s
∗
K , δ

∗) is a feasible solu-
tion to (LP) with t∗ 6= 0, then (u∗1, . . . , u

∗
K , r

∗) with
u∗i = s∗i /t

∗ and r∗ = δ∗/t∗ is feasible for (LFP), with
the same objective function value

δ∗ =
r∗∑K

i=1 u
∗
i +WT

.

If (t∗, s∗1, . . . , s
∗
K , δ

∗) is a feasible solution to (LP) with
t∗ = 0 and (u∗1, . . . , u

∗
K , r

∗) is feasible to (LFP) then

(ũ1, . . . , ũK , r̃) = (u∗1, . . . , u
∗
K , r

∗) + λ(s∗1, . . . , s
∗
K , δ

∗)

is feasible to (LFP) for all λ ≥ 0. Moreover, note that

lim
λ→∞

f0(ũ1, . . . , ũK , r̃) =
δ∗∑K
i=1 s

∗
i

= δ∗.

So, we can find feasible solutions to (LFP) with ob-
jective values arbitrarily close to the objective value of
(t∗ = 0, s∗1, . . . , s

∗
K , δ

∗). Therefore, the maximum value
of (LFP) is greater than or equal to the maximum value
of (LP).

Combining the above completes the proof of the
claim.

We now proceed to analyze the linear program (LP).
We will show that there exists a feasible solution to (LP)
with properties that will be useful for us. Note that
S is by definition non-empty. In particular, the all 1’s
vector belongs to S. Hence, because of constraint (iii),
the optimal value δ∗ of (LP) is at most 1 (i.e., (LP) is
bounded). Consider a vertex v∗ = (t∗, s∗1, . . . , s

∗
K , δ

∗)
of the feasible set of (LP) maximizing the objective
function δ. Claim 3.1 and the observation that the optimal
value of (LFP) is at least θ imply that δ∗ ≥ θ. We
consider the following two cases:

[Case I: t∗ = 0.] In this case, we select the desired
vector v = (v1, . . . , vn) as follows: We set vi = s∗i for
all i ∈ [K] and vi = 0 for i ∈ [K + 1, n]. Observe
that condition (c) of the theorem statement is immediately
satisfied. For condition (a), we note that constraint (ii) of
(LP) implies that vi ≥ vi+1 for all i ∈ [n − 1], while
constraint (iii) implies that

∑n
i=1 vi =

∑K
i=1 s

∗
i = 1.

Finally, for Condition (b) note that by constraint (i) it
follows that

∑K
i=1 vixi ≥ δ∗ ≥ θ. This completes the

analysis of this case.

[Case II: t∗ 6= 0.] In this case, we show that t∗ cannot be
very close to 0. It follows from basic LP theory that the
vertex v∗ = (t∗, s∗1, . . . , s

∗
K , δ

∗) is the unique solution of
a linear systemA′ ·v∗ = b′ obtained from a subset of tight
constraints in (LP). We record the following fact:

FACT 3.1. Consider the linear program (LP):
(a) All the entries of the constraint matrix A are bounded
from above by max{1,WT }.
(b) The constant vector b has entries in {0, 1}.
(c) Any coefficient not associated with the variable t is in
{0, 1}.

As mentioned above v∗ is the unique solution of a
(K+2)×(K+2) linear systemA′·v∗ = b′, where (A′, b′)
is obtained from (A, b) by selecting a subset of the rows.
By Cramer’s rule, we have that t∗ = det(A′t)/det(A′)
where A′t is obtained by replacing the column in A′

corresponding to t∗ with the vector b′. Since A′t has
only 0, 1 entries, if det(A′t) 6= 0, then det(A′t) ≥ 1.
Since we assumed that t∗ 6= 0, we will indeed have that
det(A′t) ≥ 1. Now observe that all the columns of A′

except the one corresponding to t∗ have entries bounded
from above by 1. The column corresponding to t has all
its entries bounded from above by WT . By Hadamard’s
inequality we obtain

|det(A′)| ≤
K+2∏
i=1

‖A′i‖2 ≤ (K + 2)(K+2)/2 ·WT .

By combining the above we get

t∗ ≥ (K + 2)−(K+2)/2 · (1/WT ).

We are now ready to define the vector v =
(v1, . . . , vn). We select vi = s∗i for i ∈ [K] and vi = t∗wi



for i ∈ [K + 1, n]. It is easy to verify that v satisfies con-
ditions (a)-(c) of the theorem. Indeed, we use the fact that
v∗ = (t∗, s∗1, . . . , s

∗
K , δ

∗) is feasible for (LP).
Constraint (iii) of (LP) yields

∑n
i=1 vi =

∑K
i=1 s

∗
i +

t∗
∑n
i=K+1 wi =

∑K
i=1 s

∗
i + t∗WT = 1 as desired.

Constraint (ii) similarly implies that v1 ≥ v2 ≥ . . . vn ≥
0, which establishes condition (a).

We now proceed to establish condition (b). Let x ∈
S. We have that
n∑
i=1

vixi − θ ≥
n∑
i=1

vixi − δ∗

=

K∑
i=1

s∗i xi + t∗

(
n∑

i=K+1

wixi

)
− δ∗

≥ 0

where the last inequality uses constraint (i) of (LP).
For condition (c), since t∗ ≥ (K + 2)−(K+2)/2 ·

(1/WT ), constraint (iii) of (LP) gives

K∑
i=1

vi =

K∑
i=1

s∗i = 1− t∗WT ≤ 1− (K + 2)−(K+2)/2.

Using the fact that
∑n
i=K+1 vi = t∗WT ≥ (K +

2)−(K+2)/2, we conclude that

k∑
i=1

vi ≤ (K + 2)(K+2)/2 ·
n∑

i=K+1

vi.

This completes the proof of Theorem 2.

4 Case 1: v∗ is an L-junta
In this section we prove the following theorem.

THEOREM 4. There is a (deterministic) algorithm Find-
Optimal-Junta with the following performance guaran-
tee: The algorithm takes as input a vector of probabilities
p = (p1, . . . , pL) satisfying (A1) and (A2), a threshold
value 0 < τ < 1, and a parameter 0 ≤W ≤ 1. It runs in
poly(n, 2poly(L),bit(τ)) time and outputs a head vector
w′ ∈ IRL

≥0 such that
∑L
i=1 w

′
i ≤ W. Moreover, the vector

w′ maximizes Pr[w · X(H) ≥ τ ] over all w ∈ IRL
≥0 that

have
∑L
i=1 wi ≤W.

Note that Theorem 4 is somewhat more general than
we need in order to establish the desired result in Case
1; this is because Find-Optimal-Junta will also be used
as a component of the algorithm for Case 2. As a direct
corollary of Theorem 4 we get that Find-Optimal-Junta
finds an optimal solution in Case 1:

COROLLARY 4.1. If v∗ is an L-junta, then Find-
Optimal-Junta((p1, . . . , pL), θ, 1) outputs a vector w′ =
(w′1, . . . , w

′
L) such that (w′,0n−L) ∈ IRn

≥0 is an optimal
solution, i.e., Obj((w′,0n−L)) = OPT.

Algorithm Find-Optimal-Junta:

Input: vector of probabilities (p1, . . . , pL); thresh-
old 0 < τ < 1; parameter W > 0
Output: vector w′ ∈ IRL

≥0 that maximizes Pr[w ·
X(H) ≥ τ ] over all w ∈ IRL

≥0 that have
∑L
i=1 wi ≤

W

1. Let S be the set of all 2Θ(L2) sets S ⊆ {0, 1}L
such that S = {x ∈ {0, 1}L : u · x ≥ c} for
some u ∈ IRL, c ∈ IR.

2. For each S ∈ S , check whether the following
linear program over variables w1, . . . , wL is
feasible and if so let w(S) ∈ IRL be a feasible
solution:

For all x ∈ S,w · x ≥ τ ; w1, · · · , wL ≥ 0;

w1 + · · ·+ wL ≤W.

3. For each w(S) obtained in the previous step,
compute Pr[w(S) · X(H) ≥ τ ] and output the
vector w(S) for which this is the largest.

This case is rather simple. Procedure Find-Optimal-
Junta outputs a vector w′ = (w′1, . . . , w

′
L) that maxi-

mizes the desired probability over all non-negative vec-
tors whose coordinates sum to at most W . This is done in
a straightforward way, using linear programming and an
exhaustive enumeration of all linear threshold functions
that depend only on the first L variables.

We now proceed with the proof of Theorem 4. We
first give the simple running time analysis. It is well
known (see e.g., [Cho61]) that, as claimed in Step 1 of
Find-Optimal-Junta, there are 2Θ(L2) distinct Boolean
functions over {0, 1}L that can be represented as halfs-
paces u · x ≥ c. It is also well known (see [MTT61]) that
for every S ∈ S , there is a vector u = (u1, . . . , uL) and
a threshold c such that S = {x ∈ {0, 1}L : u · x ≥ c}
where each ui and c is an integer of absolute value at most
2Θ(L logL). Thus it is possible to enumerate over all ele-
ments S ∈ S in 2Θ(L2 logL) time. Since for each fixed S
the linear program in Step 2 has O(2L) constraints over L
variables, the claimed running time bound follows.

The correctness argument is equally simple. There
must be some S ∈ S which is precisely the set of those
x ∈ {0, 1}L that maximizes PrX∼µp1×···×µpL

[w·X ≥ τ ]

over all w ∈ IRL
≥0 that have

∑L
i=1 wi ≤ W. Step 2 will

identify a feasible solution for this S, and hence the vector
w′ = (w′1, . . . , w

′
L) that Find-Optimal-Junta outputs

will achieve this maximum probability. This concludes
the proof of Theorem 4.



5 Case 2: v∗ is type L+ 1

Recall that in Case 2 the optimal solution v∗ is not an
L-junta, so it satisfies

∑L
i=1 v

∗
i ≤ (L + 2)(L+2)/2 ·∑n

i=L+1 v
∗
i , and c(v∗, ε) > L. For this case we prove

the following theorem:

THEOREM 5. There is a (deterministic) algorithm Find-
Near-Opt-Large-CI with the following performance
guarantee: The algorithm takes as input a vector of
probabilities p = (p1, . . . , pn) satisfying (A1) and
(A2) and a threshold value 0 < θ < 1. It runs in
poly(n, 2poly(L),bit(θ)) time and outputs a set of N ≤
poly(n, 2poly(L)) many feasible solutions. If v∗ is of type
L+ 1 then one of the feasible solutions w′ that it outputs
satisfies Obj(w′) ≥ OPT− ε/2.

5.1 Useful probabilistic tools and notation. Anti-
concentration. We say that a real-valued random variable
Z is ε-anti-concentrated at radius δ if for every interval of
radius δ, Z lands in that interval with probability at most
ε, i.e.,

for all t ∈ IR, Pr[|Z − t| ≤ δ] ≤ ε.

We will use the following simple result, which says that
anti-concentration of a linear form under a product dis-
tribution can only improve by adding more independent
coordinates:

LEMMA 5.1. Fix (q1, . . . , qn) ∈ [0, 1]n and let
⊗n

i=1 µqi
denote the corresponding product distribution over
{0, 1}n. Fix any weight-vector w(k) ∈ IRk and suppose
that the random variable w(k) · X(k), where X(k) ∼⊗k

i=1 µqi , is ε-anti-concentrated at radius δ. Then for
any w(n−k) ∈ IRn−k, the random variable w · X , where
w = (w(k), w(n−k)) and X ∼

⊗n
i=1 µqi is also ε-anti-

concentrated at radius δ.

Notation. Much of our analysis in this section will deal
separately with the coordinates 1, . . . , L and the coordi-
nates L + 1, . . . , n; hence the following terminology and
notation will be convenient. For an n-dimensional vector
w ∈ IRn, in this section we refer to (w1, . . . , wL) as the
“head” of w and we write w(H) to denote this vector; sim-
ilarly we write w(T ) to denote the “tail” (wL+1, . . . , wn)
of w. We sometimes refer to a vector in IRL as a “head
vector” and to a vector in IRn−L as a “tail vector.” In a
random variable w(H) ·X(H) the randomness is over the
draw of X(H) ∼

⊗L
i=1 µpi , and similarly for a random

variable w(T ) · X(T ) the randomness is over the draw of
X(T ) ∼

⊗n
i=L+1 µpi .

5.2 The algorithm and its analysis. Case 2 is more
involved than Case 1. We first explain some of the
analysis that motivates our approach (Lemmas 5.2 and
5.3 below) and then explain how the algorithm works (see
Steps 1 and 2 of Find-Near-Opt-Large-CI).

Let us say that a vector w = (w1, . . . , wn) ∈
IRn has a κ-granular tail if the following condi-
tion holds (throughout the rest of Section 5, κ =
poly(1/n, 1/2poly(L)); we will specify its value more pre-
cisely later):

• [w = (w1, . . . , wn) has a κ-granular tail]: For
L + 1 ≤ i ≤ n, each coordinate wi is an integer
multiple of κ.

The first stage of our analysis is to show (assuming that
v∗ is type L + 1) that there is a feasible solution such
that both the head and tail have some useful properties:
the tail weights are granular and the tail random variable
is sharply concentrated around its mean, while the head
gives a high-quality solution to a problem with a related
threshold (see condition (3) below):

LEMMA 5.2. Suppose v∗ is type L + 1. Then there is a
feasible solution w′ = (w′1, . . . , w

′
n) ∈ IRn

≥0 such that
w′1 ≥ · · · ≥ w′n ≥ 0 which satisfies the following:

1. The vector w′ has a κ-granular tail. Hence for

M
def
= poly(1/κ), there are non-negative integers

A′, B′, C ′ ≤ M such that
∑n
i=L+1(w′i)

2 = A′κ2,∑n
i=L+1 w

′
ipi = B′κ(ε/(4n)), and

∑n
i=L+1 w

′
i =

C ′κ.

2. Let µ′ denote E[w′(T ) · X(T )], i.e., µ′ =
B′κ(ε/(4n)). The random variable w′(T ) · X(T ) is
strongly concentrated around its mean:
(5.2)
Pr[|w′(T )·X(T )−µ′| ≥

√
A′ · ln(200/ε)·κ] ≤ ε/100.

3. The head random variable w′(H) ·X(H) satisfies

(5.3)
L∑
i=1

w′i ≤ 1− C ′κ and

Pr[w′(H) ·X(H) ≥ θ−µ′+
√
A′ · ln(200/ε) ·κ] ≥

OPT− ε/40.

Next, our analysis shows that for any vector w′′ with
a κ-granular tail which matches the A′, B′, C ′ values
from above, the value of its overall solution is essentially
determined by the value that its head random variable
w′′(H) ·X(H) achieves for the related-threshold problem.
More precisely, let us say that a triple of non-negative inte-
gers (A,B,C) with A,B,C ≤M is a conceivable triple.
We say that a conceivable triple (A,B,C) is achievable
if there exists a vector (uL+1, . . . , un) ∈ IRn−L

≥0 whose
coordinates are non-negative integer multiples of κ such
that

∑n
i=L+1(ui)

2 = Aκ2,
∑n
i=L+1 uipi = Bκ(ε/(4n)),

and
∑n
i=L+1 ui = Cκ, and we say that such a vector

(uL+1, . . . , un) achieves the triple (A,B,C).



LEMMA 5.3. As above suppose that v∗ is type L+ 1. Let
w′, A′, B′, C ′ be as described in Lemma 5.2.

Let w′′ = (w′′1 , . . . , w
′′
L, w

′′
L+1, . . . , w

′′
n) be any vec-

tor with a κ-granular tail whose n − L tail coordinates
(w′′L+1, . . . , w

′′
n) achieve the triple (A′, B′, C ′). Then like

w′(T ) ·X(T ), the random variablew′′(T ) ·X(T ) is strongly
concentrated around its mean:
(5.4)
Pr[|w′′(T ) ·X(T )−µ′| ≥

√
A′ · ln(200/ε) · κ] ≤ ε/100,

and hence

(5.5) Pr[w′′ ·X ≥ θ] ≥

Pr[w′′(H) ·X(H) ≥ θ−µ′+
√
A′ · ln(200/ε)·κ]−ε/100.

Intuitively, these two lemmas are useful because they
allow us to “decouple” the problem of finding an n-
dimensional solution vector w into two pieces, finding a
head-vector and a tail-vector. For the tail, these lemmas
say that it is enough to search over the (polynomially
many) conceivable triples (A,B,C); if we can identify
the achievable triples from within the conceivable triples,
and for each achievable triple construct any κ-granular tail
vector that achieves it, then this is essentially as good as
finding the actual tail vector of w′. For the right triple
(A′, B′, C ′) given by Lemma 5.2, all that remains is to
come up with a vector of head coordinates that yields a
high-value solution to the related-threshold problem (note
that part (3) of Lemma 5.2 establishes that indeed such
a head-vector must exist). This is highly reminiscent
of Case 1, and indeed we can apply machinery (the
Find-Optimal-Junta procedure) from that case for this
purpose. These lemmas thus motivate the two main steps
of the algorithm, Steps 1 and 2, which we describe below.

While there are only polynomially many conceivable
triples, it is a nontrivial task to identify whether any
given conceivable triple is achievable (note that there are
exponentially many different vectors (uL+1, . . . , un) that
might achieve a given triple). However, this does turn out
to be a feasible task; Algorithm Construct-Achievable-
Tails, called in Step 1 of Find-Near-Opt-Large-CI, is
an efficient algorithm (based on dynamic programming)
which searches across all conceivable triples (A,B,C)
and identifies those which are achievable. For each triple
that is found to be achievable, Construct-Achievable-
Tails constructs a κ-granular tail which achieves it. We
have the following lemma:

LEMMA 5.4. There is a (deterministic) algorithm
Construct-Achievable-Tails that outputs a list consist-
ing precisely of all the achievable (A,B,C) triples, and
for each achievable triple it outputs a corresponding tail
vector (w′′L+1, . . . , w

′′
n) that achieves it. The algorithm

runs in time poly(n, 1/κ) = poly(1/κ).

Finally, for each achievable triple (A,B,C) and corre-
sponding tail vector (w′′L+1, . . . , w

′′
n) that is generated

by Construct-Achievable-Tails, the procedure Find-
Optimal-Junta is used to find a setting of the head co-
ordinates that yields a high-quality solution.

Algorithm Find-Near-Opt-Large-CI:

Input: probability vector p = (p1, . . . , pn) satisfy-
ing (A1) and (A2); parameter 0 < θ < 1
Output: if v∗ is type L+ 1, a set FEAS of feasible
solutionsw such that one of them satisfies Obj(w) ≥
OPT− ε/2

1. Run Algorithm Construct-Achievable-Tails to
obtain a list T of all achievable triples
(A,B,C) and, for each one, a tail vector u =
(uL+1, . . . , un) that achieves it.

2. For each triple (A,B,C) in T and its associated
tail vector u = (uL+1, . . . , un):

• Run Find-Optimal-Junta((p1, . . . , pL),
θ − Bκε/(4n) + κ ·

√
ln(200/ε) ·A, 1−

Cκ) to obtain a head (u1, . . . , uL).

• Add the concatenated vector
(u1, . . . , uL, uL+1, . . . , un) to the set
FEAS (initially empty) of feasible
solutions that will be returned.

3. Return the set FEAS of feasible solutions con-
structed as described above.

We prove the aforementioned lemmas in the next
subsection. We conclude this subsection by showing how
Theorem 5 follows from these lemmas.

Proof of Theorem 5 given Lemmas 5.2, 5.3, and 5.4:
The claimed running time bound is immediate from in-
spection of Find-Near-Opt-Large-CI, Lemma 5.4 (to
bound the running time of Construct-Achievable-Tails)
and Theorem 4 (to bound the running time of Find-
Optimal-Junta).

To prove correctness, suppose that v∗ is of type
L + 1. One of the achievable triples that is listed
by Construct-Achievable-Tails will be the (A′, B′, C ′)
triple that is achieved by the tail (w′L+1, . . . , w

′
n) of the

vector w′ = (w′1, . . . , w
′
n) whose existence is asserted

by Lemma 5.2. By Lemma 5.4, Construct-Achievable-
Tails outputs this (A′, B′, C ′) along with a corresponding
tail vector (w′′L+1, . . . , w

′′
n) that achieves it; by Lemma

5.3, any combination u = (u1, . . . , uL, w
′′
L+1, . . . , w

′′
n)

of a head vector with this tail vector will have Obj(u) ≥
Pr[u(H) ·X(H) ≥ θ−µ′+κ ·

√
ln(200/ε) ·A′]− ε/100.

Lemma 5.2 ensures that there exists some head vector
w′(H) that has

∑L
i=1 w

′
i ≤ 1 − C ′κ and Pr[w′(H) ·

X(H) ≥ θ − µ′ + κ ·
√

ln(200/ε) ·A′] ≥ OPT −
ε/40, so when Find-Optimal-Junta is called with in-



put parameters ((p1, . . . , pL), θ − B′κ(ε/(4n)) + κ ·√
ln(200/ε) ·A′, 1−C ′κ), by Theorem 4 it will construct

a head u(H) = (u1, . . . , uL) with u1, . . . , uL ≥ 0, u1 +
· · ·+uL ≤ 1−C ′κ which is such that Pr[u(H) ·X(H) ≥
θ−µ′+κ·

√
ln(200/ε) ·A′] ≥ OPT−ε/40, and hence the

resulting overall vector u = (u1, . . . , uL, w
′′
L+1, . . . , w

′′
n)

is a feasible solution which has Pr[u ·X ≥ θ] ≥ OPT−
7ε/200. This concludes the proof of Theorem 5 (modulo
the proofs of Lemmas 5.2, 5.3, and 5.4).

5.3 Proof of Lemmas 5.2, 5.3, and 5.4.

5.3.1 Proof of Lemma 5.2. Recall from Equation (2.1)
that L = min{n,Θ(1/(ε2γ2) · (1/γ) · (log 1/(εγ)) ·
(log(1/ε))}; since we are in Case 2, we have that L =
Θ(1/(ε2γ2) · (1/γ) · (log 1/(εγ)) · (log(1/ε)). Since the
εγ/200-critical index of v∗ is at least L, Lemma 5.5
of [DGJ+10] gives us that there is a subsequence of
weights v∗i1 , . . . , v

∗
is

with is < L and s ≥ t/γ, where

t
def
= ln(2002/ε3γ), such that v∗ij+1

≤ v∗ij/3 for all
j = 1, . . . , s − 1. Given this, Claim 5.7 of [DGJ+10]
implies that for any two points x 6= x′ ∈ {0, 1}s, we have

(5.6)

∣∣∣∣∣
s∑
`=1

v∗i`xi` −
s∑
`=1

v∗i`x
′
i`

∣∣∣∣∣ ≥ v∗is
2
.

(We note that both Lemma 5.5 and Claim 5.7 are
simple results with proofs of a few lines.) Equation
(5.6) clearly implies that for every ν ∈ IR there is
at most one x ∈ {0, 1}s such that

∑s
`=1 v

∗
i`
xi` =

ν; recalling the definition of γ, we further have that
Pr(Xi1

,...,Xis )∼⊗s
j=1µpij

[∑s
`=1 v

∗
i`
Xi` = ν

]
≤ (1− γ)s

for every ν ∈ IR. Together with (5.6), this gives that for
every ν ∈ IR and every integer k ≥ 0, we have

Pr(Xi1 ,...,Xis )∼⊗s
j=1µpij

[
|
s∑̀
=1

v∗i`Xi` − ν| ≤ kv∗is/2
]

≤ (2k + 1)(1− γ)s ≤ (2k + 1)e−t

= (2k + 1)ε3γ/2002.

By independence, using Lemma 5.1 we get that this anti-
concentration extends to the linear form over all of the
first L coordinates, and hence we get that for all ν ∈ R,
(5.7)
Pr
[∣∣∣(v∗)(H)X(H) − ν

∣∣∣ ≤ kv∗is/2] ≤ (2k+1)ε3γ/2002.

Now, recall that we are in Case 2 and hence
∑
j>L v

∗
j ≥

1/((L+ 2)(L+2)/2 + 1). Since v∗is ≥ vj for all j > L, we
have that v∗is ≥ 1/(n((L + 2)(L+2)/2 + 1)). Hence (5.7)
yields that for all ν ∈ R,
(5.8)
Pr
[∣∣∣(v∗)(H) ·X(H) − ν

∣∣∣ ≤ k/(2n((L+ 2)(L+2)/2 + 1))
]

≤ (2k + 1)ε3γ/2002.

We now turn from analyzing the head of v∗ to analyz-
ing the tail. Recalling again that the εγ/200-critical index
of v∗ is greater than L, another application of Lemma
5.5 of [DGJ+10] gives that σ2

L(v∗)
def
=
∑
j>L(v∗j )2 ≤

2002(v∗is)2/(ε2γ2). The expected value of (v∗)(T ) ·X(T )

is µ =
∑
j>L v

∗
j pj ; an additive Hoeffding bound gives

that for r > 0,

Pr[|(v∗)(T ) ·X(T ) − µ| ≥ r · σL(v∗)] ≤ 2e−r
2

.

Fixing r =
√

ln(200/ε), as a consequence of the above
we get that

Pr[(v∗)(T ) ·X(T ) ≥ µ+
√

ln(200/ε) · σL(v∗)]

≤ 2e− ln(200/ε) = ε/100.

Since OPT = Pr[v∗ ·X ≥ θ], we get that

Pr[(v∗)(H) ·X(H) ≥ θ − µ−
√

ln(200/ε) · σL(v∗)]

≥ OPT− ε/100.

Combining with (5.7), we get that

(5.9) Pr[(v∗)(H) ·X(H) ≥ θ−µ+
√

ln(200/ε)·σL(v∗)]

≥ OPT− ε/50.

We are now ready to define the vector w′. Its head
coordinates are the same as v∗, i.e., for 1 ≤ i ≤ L we
have w′i = v∗i . We define the quantity

κ = 1/(n2((L+ 2)(L+2)/2 + 1)).

For L + 1 ≤ i ≤ n, the tail coordinates w′i of w′

are obtained by rounding v∗i down to the nearest integer
multiple of κ. It is immediate from this definition that part
(1) of the lemma holds, i.e., w′ has a κ-granular tail and
there are non-negative integers A,B,C ≤M as specified
in part (1). Since

∑n
i=1 w

′
i ≤

∑n
i=1 v

∗
i = 1, it must be

the case that
∑L
i=1 w

′
i ≤ 1 − C ′κ, giving the first part of

Equation (5.3).
Write µ′ to denote E[w′(T ) ·X(T )] =

∑
j>L w

′
jpj =

B′κ(ε/(4n)). Define σ2
L(w)

def
=
∑
j>L(w′j)

2. By an
application of the Hoeffding bound, we get that (w′)(T ) ·
X(T ) is concentrated around its mean µ′. More precisely,

Pr[|(w′)(T ) ·X(T ) − µ′| ≥
√

ln(200/ε) · σL(w)]

≤ 2e− ln(200/ε) ≤ ε/100,

giving part (2) of Lemma 5.2. Note that σ2
L(w) ≤

σ2
L(v∗) ≤ 2002(v∗is)2/(ε2γ2).

It remains only to establish the second part of Equa-
tion (5.3). Equation (5.9) almost gives us this – it falls
short only in having µ in place of µ′ in the lower bound for
(w′)(H)·X(H) (recall that (v∗)(H) is identical to (w′)(H)).
To get around this we use the anti-concentration property
of the head that was established in (5.8) above. Since



|µ − µ′| ≤ nκ = 1/(n((L + 2)(L+2)/2 + 1)), Equation
(5.8) gives that

Pr[(w′)(H) ·X(H) ∈ [θ − µ+
√

ln(200/ε) · σL(w),

θ − µ′ +
√

ln(200/ε) · σL(w)]] ≤ ε/200

and combining this with (5.9) gives

Pr[(w′)(H) ·X(H) ≥ θ − µ′ +
√

ln(200/ε) · σL(w)]

≥ OPT− 5ε/200,

the desired second part of Equation (5.3). This concludes
the proof of Lemma 5.2.

5.3.2 Proof of Lemma 5.3. Since by assumption the
tail of w′′ achieves the triple (A′, B′, C ′), we have that
the mean E[(w′′)(T ) · X(T )] equals B′κ(ε/(4n)) and
thus is the same as µ′, the mean of (w′)(T ) · X(T )].
Since

∑
j>L(w′′j )2 =

∑
j>L(w′j)

2, just as was the case
for w′ we get that a Hoeffding bound gives the desired
concentration bound,

Pr[|w′′(T ) ·X(T )−µ′| ≥ κ ·
√

ln(200/ε) ·A′] ≤ ε/100.

Thus, we have established Equation (5.4).
Equation (5.4) implies that w′′(T ) ·X(T ) < µ′ − κ ·√

ln(200/ε) ·A′ with probability at most ε/100. Since
w′′(H) · X(H) ≥ θ − µ′ + κ ·

√
ln(200/ε) ·A′ and

w′′(T ) ·X(T ) ≥ µ′ − κ ·
√

ln(200/ε) ·A′ together imply
thatw′′·X ≥ θ, we thus get Equation (5.5), and the lemma
is proved.

5.3.3 Proof of Lemma 5.4. The algorithm Construct-
Achievable-Tails is based on dynamic programming. Let
w = (wL+1, . . . , wn) be a tail weight vector such that
each wi is a non-negative integer multiple of κ. We define
the quantities

A(w) =
∑
i>L

(wi)
2/κ2; B(w) =

∑
i>L

wipi/(κε/(4n));

C(w) =
∑
i>L

wi/κ.

Recalling Assumption (A2), we see that each of
A(w), B(w), C(w) is a non-negative integer bounded by
poly(1/κ).

For each conceivable triple (A,B,C) and for every
t ∈ {L+ 1, . . . , n}, we create a sub-problem in which the
goal is to determine whether there is a choice of weights
wL+1, . . . , wt (each of which is a non-negative integer
multiple of κ, with all other weights wt+1, . . . , wn set to
0) such that A(w) = A,B(w) = B, and C(w) = C.
Such a choice of weights wL+1, . . . , wt exists if and only
if there is a nonnegative-integer-multiple-of-κ choice of

wt for which there is a nonnegative-integer-multiple-of-
κ choice of weights wL+1, . . . , wt−1 (with all subsequent
weights set to 0) such thatA(w) = A−(wt)

2/κ,B(w) =
B − wtpt/(κε/(4n)), and C(w) = C − wt/κ.

Thus, given the set of all triples that are achievable
with only weightswL+1, . . . , wt−1 allowed to be nonzero,
it is straightforward to efficiently (in poly(1/κ) time)
identify the set of all triples that are achievable with only
weights wL+1, . . . , wt allowed to be nonzero. This is be-
cause for a given candidate (conceivable) triple (A,B,C),
one can check over all possible values of wt (that are in-
teger multiples of κ and upper bounded by 1) whether
the triple (A− (wt)

2/κ,B−wtpt/(κε/(4n)), C−wt/κ)
is achievable with only weights wL+1, . . . , wt−1 allowed
to be nonzero. Since there are only O(1/κ) choices of
the weight wt and the overall number of sub-problems
in this dynamic program is bounded by poly(n, 1/κ) =
poly(1/κ), the overall entire dynamic program runs in
poly(1/κ) time. This concludes the proof of Lemma 5.4.

6 Case 3: v∗ is type K for some 1 ≤ K ≤ L
Recall that in Case 3 the optimal solution v∗ is not an
L-junta, so it satisfies

∑L
i=1 v

∗
i ≤ (L + 2)(L+2)/2 ·∑n

i=L+1 v
∗
i , and c(v∗, ε) = K for some 1 ≤ K ≤ L.

For this case we prove the following theorem:

THEOREM 6. There is a randomized algorithm Find-
Near-Opt-Small-CI with the following performance
guarantee: The algorithm takes as input a vector of prob-
abilities p = (p1, . . . , pn) satisfying (A1) and (A2), a
threshold value 0 < θ < 1, a value 1 ≤ K ≤ L,
and a confidence parameter 0 < δ < 1. It runs in
poly(n, 2poly(L),bit(θ)) · log(1/δ) time and outputs a set
of N ≤ poly(n, 2poly(L)) many feasible solutions. If v∗

is of type K then with probability 1− δ one of the feasible
solutionsw that it outputs satisfies Obj(w) ≥ OPT−ε/2.

6.1 Useful probabilistic tools and notation.
Kolmogorov distance. For X,Y two real-valued

random variables we say the Kolmogorov distance
dK(X,Y ) between X and Y is dK(X,Y )

def
=

supt∈IR |Pr[X ≤ t]−Pr[Y ≤ t]|.
Remark. If w is an optimal solution of problem (P) and
the random variables w · X,w′ · X have Kolmogorov
distance at most ε then Obj(w′) ≥ OPT− ε.

We recall the following useful elementary fact about
Kolmogorov distance:

FACT 6.1. Let X,Y, Z be real-valued random variables
such that X is independent of Y and independent of Z.
Then we have that dK(X + Y,X + Z) ≤ dK(Y,Z).

The Dvoretsky-Kiefer-Wolfowitz (DKW) inequality is a
considerably more sophisticated fact about Kolmogorov
distance that will also be useful. Given m independent
samples t1, . . . , tm drawn from a real-valued random
variable X , the empirical distribution X̂m is defined as



the real-valued random variable which is uniform over
the multiset {t1, . . . , tm}. The DKW inequality states that
for m = Ω((1/ε2) · ln(1/δ)), with probability 1 − δ

the empirical distribution X̂m will be ε-close to p in
Kolmogorov distance:

THEOREM 7. ([DKW56, MAS90]) For all ε > 0
and any real-valued random variable X , we have
Pr[dK(p, p̂m) > ε] ≤ 2e−2mε2 .

We will also require a corollary of the Berry-Esséen
theorem (see e.g., [Fel68]). We begin by recalling the
theorem:

THEOREM 8. (Berry-Esséen) Let X1, . . . , Xn be a se-
quence of independent random variables satisfying
E[Xi] = 0 for all i,

∑
iE[X2

i ] = σ2, and
∑
iE[|Xi|3] =

ρ3. Let S = X1 + · · ·+Xn and let F denote the cumula-
tive distribution function (cdf) of S. Then

sup
x
|F (x)− Φσ(x)| ≤ Cρ3/σ

3,

where Φσ is the cdf of a N(0, σ2) Gaussian random
variable (with mean zero and variance σ2), and C is a
universal constant. [Shi86] has shown that one can take
C = .7915.

COROLLARY 6.1. Let X = (X1, . . . , Xn) ∼ Dp and
suppose that mini∈[n]{pi, 1− pi} ≥ γ > 0. Let w ∈ IRn

be τ -regular. Let Z be the random variable w · X and
define µ = E[w ·X] =

∑n
i=1 wipi, σ

2 = Var[w ·X] =∑n
i=1 w

2
i · pi(1− pi). Then dK(Z,N(µ, σ2)) ≤ η where

η = τ/γ.

Proof. Define the random variable Yi = wi(Xi − pi),
so E[Yi] = 0. It suffices to show that the random
variable Y =

∑n
i=1 wiYi has dK(Y,N(0, σ2)). We have∑

iE[Y 2
i ] = σ2 =

∑n
i=1 w

2
i pi(1− pi) and

E[|yi|3] = w3
i

(
pi · (1− pi)3 + (1− pi) · (pi)3

)
= w3

i pi(1− pi) · (p2
i + (1− pi)2), so

n∑
i=1

E[|Yi|3] =

n∑
i=1

w3
i pi(1− pi)(p2

i + (1− pi)2)

≤
n∑
i=1

w3
i pi(1− pi).

The Berry-Esséen theorem thus gives

dK(Y,N(0, σ2)) ≤
∑n
i=1 w

3
i pi(1− pi)

(
∑n
i=1 w

2
i pi(1− pi))

3/2

≤ n
max
i=1
|wi| ·

∑n
i=1 w

2
i pi(1− pi)

(
∑n
i=1 w

2
i pi(1− pi))

3/2

=
n

max
i=1
|wi| ·

1

σ
.

Recalling that (by regularity) we have maxi wi ≤
τ
√∑

i w
2
i , and that by definition of γ and σ we have

σ ≥ γ
√∑

i w
2
i , we get that maxni=1 |wi| · 1

σ ≤ τ/γ as
desired.

Finally, we recall the well-known fact that an
N(µ, σ2) Gaussian is ε-anti-concentrated at radius εσ
(this follows directly from the fact that the pdf of an
N(µ, σ2) Gaussian is given by 1

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
).

Notation. In this section our analysis will deal separately
with the coordinates 1, . . . ,K and the coordinates K +
1, . . . , n, so we use the following notational conventions.
For an n-dimensional vector w ∈ IRn, in this section
we refer to (w1, . . . , wK−1) as the “head” of w and we
write w(H) to denote this vector; similarly we write w(T )

to denote the “tail” (wK , . . . , wn) of w. We sometimes
refer to a vector in IRK−1 as a “head vector” and to
a vector in IRn−K+1 as a “tail vector.” In a random
variable w(H) · X(H) the randomness is over the draw
of X(H) ∼

⊗K−1
i=1 µpi , and similarly for the random

variable w(T ) · X(T ) the randomness is over the draw of
X(T ) ∼

⊗n
i=K µpi .

We additionally modify some of the terminology
from Section 5 dealing with granular vectors and achiev-
able triples. Fix κ = poly(1/n, 1/2poly(L)) (we give
a more precise value of κ later). We say that a vector
w = (w1, . . . , wn) ∈ IRn has a κ-granular tail if each co-
ordinate wi, K ≤ i ≤ n, is an integer multiple of κ. It is
easy to see that for any vector w ∈ IRn

≤0 with
∑n
i=1 wi ≤

1 that has a κ-granular tail, for M def
= poly(1/κ) there

must exist non-negative integers A,B,C ≤ M such that
E[w(T ) ·X(T )] =

∑n
i=K wipi = Aκ(ε/(4n)), Var[w(T ) ·

X(T )] =
∑n
i=K w

2
i pi(1 − pi) = Bκ2(ε/(4n))2, and∑n

i=K wi = C ′κ. We say that a triple of non-negative
integers (A,B,C) with A,B,C ≤ M is a conceiv-
able triple. We say that a conceivable triple (A,B,C)
is ε′-regular achievable if there exists an ε′-regular vec-
tor u(T ) = (uK+1, . . . , un) ∈ IRn−K+1

≥0 whose coordi-
nates are non-negative integer multiples of κ such that
E[u(T ) · X(T )] = Aκ(ε/(4n)), Var[u(T ) · X(T )] =
Bκ2(ε/(4n))2, and

∑n
i=K ui = Cκ, and we say that such

a vector (uL+1, . . . , un) achieves the triple (A,B,C).

Algorithm Find-Near-Opt-Small-CI:

Input: probability vector p = (p1, . . . , pn) satisfy-
ing (A1) and (A2); parameter 0 < θ < 1; parameter
1 ≤ K ≤ L; confidence parameter 0 < δ < 1
Output: if v∗ is type K, a set FEAS of feasible
solutionsw such that one of them satisfies Obj(w) ≥
OPT− ε/2

1. Run Algorithm Construct-Achievable-
Regular-Tails(εγ/100) to obtain a list T



of all triples (A,B,C) that are achieved by
some εγ/100-regular tail vector and, and,
for each one, an εγ/100-regular tail vector
u = (uL+1, . . . , un) that achieves it.

2. For each triple (A,B,C) in T and its associated
tail vector u = (uK , . . . , un),

• Run Find-Approximately-Best-Head
(uK , . . . , un, ε/200, δ/(2|T |)) to obtain a
head vector (u1, . . . , uK−1)

• Add the concatenated vector
(u1, . . . , uK−1, uK , . . . , un) to the
set FEAS (initially empty) of feasible
solutions that will be returned.

3. Return the set FEAS of feasible solutions con-
structed as described above.

6.2 The algorithm and an intuitive explanation of its
performance. Similar to Case 2, the high level idea of
this case is to decouple the problem of finding a good
solution into two pieces, namely finding a good tail and
finding a good head. However, in Case 2 the anti-
concentration of the head random variable (see Equation
(5.8)) played an essential role; in contrast, here in Case 3
the fact that the tail random variable is close to a Gaussian
will play the key role. At a high level, the analysis for this
case proceeds as follows.

First, using the facts that the vector (v∗K , . . . , v
∗
n) is

εγ/200-regular and that
∑L
i=1 v

∗
i ≤ (L + 2)(L+2)/2 ·∑n

i=L+1 v
∗
i , we get that the tail random variable (v∗)(T ) ·

X(T ) is O(ε)-close to a Gaussian N(µ, σ2) in Kol-
mogorov distance, where the variance σ2 is “not too
small” (see Lemma 6.1). Next, we argue that for any head
vector (w′)(H) = (w′1, . . . , w

′
K−1), there exists a tail vec-

tor (w′)(T ) = (w′K , . . . , w
′
n), obtained by rounding the

tail coordinates v∗K , . . . , v
∗
n down to some not-too-small

granularity κ, which is “nice” (i.e., regular and with not-
too-small variance) and which gives a solution of almost
equal quality to what would be obtained by having the ac-
tual (v∗K , . . . , v

∗
n) as the tail weights (see Lemma 6.2). We

then strengthen this by showing that for any head vector,
any tail vector which is regular and has the right mean
and variance similarly gives a solution of almost equal
quality to what would be obtained by having the actual
(v∗K , . . . , v

∗
n) as the tail weights (see Lemma 6.3). This

motivates the Construct-Achievable-Regular-Tails pro-
cedure (called in Step 1); it uses dynamic programming to
efficiently search across all conceivable triples and iden-
tify precisely those that are achieved by some εγ/100-
regular κ-granular tail vector (and for each achievable
triple, identify a tail vector (uK , . . . , un) that achieves it).

Intuitively, at this point the algorithm has identified a

polynomial-sized collection of tail vectors one of which
“is good” (does almost as well as the optimal tail vector
(v∗K , . . . , v

∗
n) if it were paired with the optimal head

vector). It remains to show that it is possible to find a
high-quality head vector and that combining such a head
vector with this “good” tail vector yields an overall high-
quality solution. We do this, and conclude the proof of
Theorem 6, in Section 6.4.

6.3 Good tails exist and can be found efficiently:
Proofs of Lemmas 6.1 – 6.3 and analysis of Construct-
Achievable-Regular-Tails. Let

(6.10) µ
def
= E[(v∗)(T ) ·X(T )] =

n∑
i=K

v∗i pi and

σ2 def
= Var[(v∗)(T ) ·X(T )] =

n∑
i=K

(v∗i )2pi(1− pi).

LEMMA 6.1. Suppose v∗ is type K. Then dK((v∗)(T ) ·
X(T ), N(µ, σ2)) ≤ ε/200, and σ ≥ γ

((L+2)(L+2)/2+1)n
.

Proof. Since v∗ is type K, we have that (v∗)(T ) is
εγ/200-regular, and hence Corollary 6.1 gives that
dK((v∗)(T ) ·X(T ), N(µ, σ2)) ≤ ε/200.

For the lower bound on σ, we observe that since
K ≤ L,

∑L
i=1 v

∗
i ≤ (L + 2)(L+2)/2

∑n
i=L+1 v

∗
i , and∑n

i=1 v
∗
i = 1, we have

v∗K+· · ·+v∗n ≥ v∗L+1+· · ·+v∗n ≥
1

((L+ 2)(L+2)/2 + 1)
.

Hence Cauchy-Schwarz implies that√√√√ n∑
i=K

(v∗i )2 ≥ 1

((L+ 2)(L+2)/2 + 1)(n−K)

≥ 1

((L+ 2)(L+2)/2 + 1)n

so

σ =

√√√√ n∑
i=K

(v∗i )2pi(1− pi) ≥
γ

((L+ 2)(L+2)/2 + 1)n
.

We now define the value of κ to be

κ =
εγ2

200((L+ 2)(L+2)/2 + 1)2n3
.

LEMMA 6.2. As above suppose v∗ is type K. Let w′ ∈
IRn
≥0 be a feasible solution which is such that for K ≤

i ≤ n, the value w′i is obtained from v∗i by rounding down
to the nearest integer multiple of κ. Then

1. The vector (w′)(T ) = (w′K , . . . , w
′
n) is εγ/100-

regular;



2. The variance (σ′)2 def
= Var[(w′)(T ) ·X(T )] is at least

1
2σ

2 ≥ 1
2 ·

γ2

((L+2)(L+2)/2+1)2n2 ; and

3. Obj(w′) ≥ Obj(w′1, . . . , w
′
K−1, v

∗
K , . . . , v

∗
n) −

ε/40.

Proof. We start by lower bounding (σ′)2 as follows.
Since each w′i, K ≤ i ≤ n, is less than v∗i by at most
κ, we have that

∑n
i=K(w′i)

2 is less than
∑n
i=K(v∗i )2 by

at most 2κn and hence

σ2 − (σ′)2 ≤ 2κn · n
max
i=K

pi(1− pi)

≤ κn

2

<
1

2
· γ2

((L+ 2)(L+2)/2 + 1)2n2

≤ 1

2
· σ2

so (σ′)2 ≥ 1
2σ

2, giving (2). Part (1) follows easily from
(2) and the fact that w′i ≤ v∗i for K ≤ i ≤ n.

For part (3) we use the fact that the tail w′(T ) ·
X(T ) is anti-concentrated (since, by regularity, it is
close to a Gaussian). In more detail, fix an outcome
(y1, . . . , yK−1) ∈ {0, 1}K−1 for the head bits. Since∑n
i=K w

′
iyi ≥

∑n
i=K v

∗
i yi − κn for all (yK , . . . , yn) ∈

{0, 1}n−k+1, we have

Pr

[
K−1∑
j=1

w′jyj + (v∗i )(T ) ·X(T ) ≥ θ

]
−

Pr

[
K−1∑
j=1

w′jyj + (w′)(T ) ·X(T ) ≥ θ

]
≤

Pr
[
(w′)(T ) ·X(T ) ∈ [θ −

K−1∑
j=1

w′jyj − κn,(6.11)

θ −
K−1∑
j=1

w′jyj ]
]
.

Since by (1) we know that (w′)(T ) is εγ/100-regular,
Corollary 6.1 gives us that

dK

(
(w′)(T ) ·X(T ), N

(
E[(w′)(T ) ·X(T )], (σ′)2

))
≤ ε/100.

Since κn/2 ≤ εσ′/200, as noted after Lemma 5.1 a
random variable Z ∼ N(E[(w′)(T ) · X(T )], (σ′)2) has
Pr[Z ∈ I] ≤ ε/200 for any interval I of length κn.
Hence (6.12) is at most ε

100 + ε
100 + ε

200 = ε
40 . Since

this holds for each fixed (y1, . . . , yK−1) ∈ {0, 1}K−1,
we get (3).

LEMMA 6.3. As above suppose v∗ is type K.
Fix (w′′)(T ) = (w′′K , . . . , w

′′
n) ∈ IRn−K+1

≥0

to be any εγ/100-regular tail vector such that

µ′′
def
= E[(w′′)(T ) ·X(T )] equals µ′

def
= E[(w′)(T ) ·X(T )],

and (σ′′)2 def
= Var[(w′′)(T ) · X(T )] equals (σ′)2

(see part (2) of Lemma 6.2). Then for any
head vector (w′′)(H) = (w′′1 , . . . , w

′′
K−1), we

have that Obj((w′′1 , . . . , w
′′
K−1, w

′′
K , . . . , w

′′
n)) ≥

Obj(w′′1 , . . . , w
′′
K−1, v

∗
K , . . . , v

∗
n)− ε/40.

Proof. The proof is identical to part (3) of Lemma 6.2.

Having established the existence of a “good” tail
(the vector (w′)(T ) from Lemma 6.2), we now argue
that Construct-Achievable-Regular-Tails can efficiently
construct a list containing some such good tail vector.
Lemma 6.3 ensures that finding any such good tail vector
is as good as finding the actual tail vector (w′)(T ) obtained
from (v∗)(T ) by rounding down as described in Lemma
6.2.

LEMMA 6.4. There is a (deterministic) algorithm
Construct-Achievable-Regular-Tails(ε′) that, given
input parameters ε′ and K, outputs a list consisting pre-
cisely of all the ε′-regular achievable (A,B,C) triples,
and for each achievable triple it outputs a corresponding
tail vector (w′′K , . . . , w

′′
n) that achieves it. The algorithm

runs in time poly(n, 1/κ) = poly(1/κ).

Proof. Similar to the earlier Construct-Achievable-Tails
algorithm, the main idea is to use dynamic programming;
however the details are somewhat different, chiefly be-
cause of the need to ensure regularity (and also because
the numerical quantities involved are somewhat different
from before).

Let w = (wK , . . . , wn) be a tail weight vector such
that each wi is a non-negative integer multiple of κ. We
define the quantities

A(w) =

n∑
i=K

wipi/(κε/(4n));

B(w) =

n∑
i=K

w2
i pi(1− pi)/(κ2(ε/(4n))2);

C(w) =

n∑
i=K

wi/κ; D(w) =

n∑
i=K

w2
i /κ

2;

E(w) =
n

max
i=K

wi/κ.

Recalling Assumption (A2), we see that each of
A(w), B(w), C(w), D(w), E(w) is a non-negative inte-
ger. We say that a quintuple (A,B,C,D,E) is conceiv-
able if all values are non-negative integers at most M .

For each conceivable quintuple (A,B,C,D,E) and
for every t ∈ {K, . . . , n}, we create a sub-problem
in which the goal is to determine whether there is a
choice of weights wK , . . . , wt (each of which is a non-
negative integer multiple of κ, with all other weights
wt+1, . . . , wn set to 0) such that A(w) = A, B(w) = B,



C(w) = C, D(w) = D and E(w) = E. Such a
choice of weights wK , . . . , wt exists if and only if there
is a nonnegative-integer-multiple-of-κ choice of wt for
which there is a nonnegative-integer-multiple-of-κ choice
of weightswK , . . . , wt−1 (with all subsequent weights set
to 0) such that A(w) = A − wtpt/(κε/(4n)), B(w) =
B − w2

t pt(1 − pt)/(κ2(ε/(4n))2), C(w) = C − wt/κ,
D(w) = D − w2

t /κ
2, and E = max{E(w), wt/κ}.

Thus, given the set of all quintuples that are achiev-
able with only weights wK , . . . , wt−1 allowed to be
nonzero, it is straightforward to efficiently (in poly(1/κ)
time) identify the set of all quintuples that are achiev-
able with only weightswK , . . . , wt allowed to be nonzero.
Since there are only O(1/κ) choices of the weight wt and
the overall number of sub-problems in this dynamic pro-
gram is bounded by poly(n, 1/κ) = poly(1/κ), the over-
all entire dynamic program runs in poly(1/κ) time.

Once the set of all achievable quintuples has
been obtained, it is straightforward for each quintuple
(A,B,C,D,E) to determine whether or not it is ε′-
regular (by computing E/

√
D and comparing against ε′).

Having identified the set of all ε′-regular quintuples, it is
easy to output a list consisting of all the ε′-regular achiev-
able (A,B,C) triples (and from the dynamic program it
is easy to maintain a tail vector achieving the triple in the
usual way). This concludes the proof of Lemma 6.4.

6.4 Finding a good head vector: The Find-
Approximately-Best-Head procedure and the proof of
Theorem 6. By Lemma 6.4 the Construct-Achievable-
Regular-Tails procedure generates a tail vector (w′′)(T )

that matches the mean, variance and L1-norm of the
(w′)(T ) vector whose existence is asserted by Lemma 6.2.
In the rest of this section we consider the execution of
Find-Approximately-Best-Head when it is run on this
tail vector (w′′)(T ) as input.

By the DKW inequality (Theorem 7), with high
probability the random variable R has dK(R, (w′′)(T ) ·
X(T )) ≤ ε/200; we henceforth assume that this is indeed
the case. Fact 6.1 implies that dK((v∗)(H) · X(H) +
R, (v∗)(H) · X(H) + (w′′)(T ) · X(T )) ≤ ε/200. Since
Obj(v∗1 , . . . , v

∗
K−1, w

′′
K , . . . , w

′′
n) ≥ OPT − ε/40 by

Lemma 6.3, we get that Pr[(v∗)(H) ·X(H) + R ≥ θ] ≥
OPT− 6ε/200.

By Lemma 6.5, the Find-Best-Head procedure re-
turns a head vector u(H) = (u1, . . . , uK−1) such that
Pr[u(H) · X(H) + R ≥ θ] ≥ Pr[(v∗)(H) + R ≥ θ], so
Pr[u(H) ·X(H) +R ≥ θ] ≥ OPT− 6ε/200. Now recall-
ing that dK(R, (w′′)(T ) · X(T )) ≤ ε/200, applying Fact
6.1 again gives us that dK(u(H) ·X(H) +R, u(H) ·X(H) +
(w′′)(T ) ·X(T )) ≤ ε/200. Hence it must be the case that
Pr[u(H) ·X(H) +(w′′)(T ) ·X(T ) ≥ θ] ≥ OPT−7ε/200.
Since u1 + · · ·+ uk−1 + w′′k + · · ·+ w′′n ≤ 1 by Lemma
6.5, this vector is a near-optimal feasible solution. This
concludes the proof of Theorem 6, modulo the proof of
Lemma 6.5.

Algorithm Find-Approximately-Best-Head:

Input: vector of tail weights (uK , . . . , un) with
uK + · · ·+ un ≤ 1; parameters ε′, δ′

Output: if v∗ is type K, with probability 1 −
δ′ a head vector such that Pr[u · X ≥ θ] ≥
Pr[(u′1, . . . , u

′
K−1, uK , . . . , un) · X ≥ θ] − ε′ for

all (u′1, . . . , u
′
K−1) ∈ IRK−1

≥0 such that u′1 + · · · +
u′K−1 + uk + · · ·+ un ≤ 1

1. Sample m = Θ(log(1/δ′)/(ε′)2) points
t1, . . . , tm from the random variable
(uK , . . . , un) · X(T ). Let R be the ran-
dom variable which is uniform over the multiset
{t1, . . . , tm}.

2. Run Algorithm Find-Best-Head(t1, . . . , tm,1−∑n
j=K uj ,K) and return the head vector

(u1, . . . , uK−1) that it returns.

Algorithm Find-Best-Head:

Input: points t1, . . . , tm, weight value 0 ≤ W ≤ 1,
parameter K
Output: Returns the non-negative head vector
u(H) = (u1, . . . , uK−1) that maximizes Pr[u(H) ·
X(H) + R ≥ θ] subject to u1 + · · · + uK−1 ≤ W ,
where R is the random variable that is uniform over
multiset {t1, . . . , tm}

1. Let S be the set of all 2Θ(K2) sets S ⊆
{0, 1}K−1 such that S = {x ∈ {0, 1}K−1 :
u · x ≥ c} for some u ∈ IRK−1, c ∈ IR.

2. For each S = (S1, . . . , Sm) ∈ Sm, check
whether the following linear program over vari-
ables w1, . . . , wK−1 is feasible and if so let
w(S) ∈ IRL be a feasible solution:

(a) For each i ∈ [m] and each x ∈ Si,
w · x+ ti ≥ θ;

(b) w1, · · · , wK−1 ≥ 0;

(c) w1 + · · ·+ wK−1 ≤W .

3. For each w(S) obtained in the previous step,
compute Pr[w(S) ·X(H) + R ≥ θ] and output
the vector w(S) for which this is the largest.

LEMMA 6.5. The (deterministic) algorithm Find-Best-
Head runs in time 2poly(m,K) and outputs a vector
u(H) = (u1, . . . , uK−1) ∈ IRK−1

≥0 with ‖u(H)‖1 ≤ W

which is such that for every (u′)(H) ∈ IRK−1
≥0 with

‖(u′)(H)‖1 ≤ W, we have Pr[u(H) · X(H) + R] ≥



Pr[(u′) ·X(H) +R].

Proof. The claimed running time bound follows easily
from the fact that |S| = 2Θ(mK2) (note that the running
time of the linear program and the time required to
explicitly compute the probabilities in Step 3 are both
dominated by the enumeration over all elements of Sm.).

The correctness argument is similar to the proof of
Theorem 4. As in that proof, S consists of all possible sets
of satisfying assignments to a (K−1)-variable halfspace.
The optimal head vector that maximizes Pr[u(H) ·X(H)+
R ≥ θ] subject to u1 + · · · + uK−1 ≤ W must be
such that there is some S = (S1, . . . , Sm) ∈ Sm such
that for 1 ≤ i ≤ m, Si is precisely the set of those
x ∈ {0, 1}L for which u(H) · x + ti ≥ θ. By searching
over all S = (S1, . . . , Sm) ∈ Sm in Step 2, the algorithm
will encounter this S and will construct a feasible head
vector for it. Such a feasible head vector will be identified
as maximizing the probability in Step 3, and hence Find-
Best-Head will indeed output an optimal head vector as
claimed. This concludes the proof of Theorem 4.

7 Putting it together: proof of Theorem 3
In this section we prove Theorem 3 using Theorems 4, 5
and 6.

The overall algorithm works as follows. First,
it runs Find-Optimal-Junta((p1, . . . , pL), θ, 1) to ob-
tain a feasible solution wjunta. Next, for each
K = 1, . . . , L it runs Algorithm Find-Near-Opt-Small-
CI((p1, . . . , pn), θ,K, δ/(2L)) to obtain a set FEAS(K)

of feasible solutions. Finally, it runs Algorithm Find-
Near-Opt-Large-CI((p1, . . . , pn), θ) to obtain a final set
FEAS(L+1) of feasible solutions. It is easy to see from
Theorems 4, 5 and 6 that the running time of the overall
algorithm is as claimed.

Let ALL denote the union of the sets {wjunta},
FEAS(1), . . . , FEAS(L) and FEAS(L+1). Since v∗

must fall in either Case 1, Case 2 or Case 3, Theo-
rems 4, 5 and 6 together guarantee that ALL is a set of
poly(n, 2poly(L)) many feasible solutions that with prob-
ability at least 1− δ/2 contains a feasible solution w with
Obj(w) ≥ OPT− ε/2.

Next, we sample m = Θ((1/ε)2 · (log |ALL|/δ))
points independently from Dp. For each feasible solution
w ∈ ALL we use these m points to obtain an empiri-
cal estimate Õbj(w) of Obj(w) (recall that Obj(w) =

PrX∼Dp
[w ·X ≥ θ]), i.e., we set Õbj(w) to be the frac-

tion of the m points that satisfy w ·X ≥ θ. A straightfor-
ward Chernoff bound implies that with probability at least
1− δ/2, for each w we have |Õbj(w)−Obj(w)| ≤ ε/4.

Finally, we output the vector w∗ ∈ ALL that maxi-
mizes Õbj(w) (breaking ties arbitrarily), together with the
value Õbj(w). With overall probability at least 1− δ this
w∗ has Obj(w∗) ≥ OPT−3ε/4 and |Õbj(w)−OPT| ≤ ε
as desired. This proves Theorem 3.
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