
Testing equivalence between distributions using conditional samples∗

Clément Canonne† Dana Ron‡ Rocco A. Servedio§

Abstract

We study a recently introduced framework [7, 8] for
property testing of probability distributions, by consid-
ering distribution testing algorithms that have access
to a conditional sampling oracle. This is an oracle that
takes as input a subset S ⊆ [N ] of the domain [N ] of
the unknown probability distribution D and returns a
draw from the conditional probability distribution D
restricted to S. This model allows considerable flexi-
bility in the design of distribution testing algorithms;
in particular, testing algorithms in this model can be
adaptive.

In this paper we focus on algorithms for two
fundamental distribution testing problems: testing
whether D = D∗ for an explicitly provided D∗, and
testing whether two unknown distributions D1 and
D2 are equivalent. For both problems, the sample
complexity of testing in the standard model is at least
Ω(
√
N). For the first problem we give an algorithm

in the conditional sampling model that performs only
poly(1/ε)-queries (for the given distance parameter ε)
and has no dependence on N . This improves over
the poly(logN, 1/ε)-query algorithm of [8]. For the
second, more difficult problem, we given an algorithm
whose complexity is poly(logN, 1/ε). For both problems
we also give efficient algorithms that work under the
restriction that the algorithm perform queries only
on pairs of points and provide a lower bound that is
polynomial in the upper bounds.

1 Introduction

1.1 Background: Distribution testing in the
standard model

One of the most fundamental problem paradigms in
statistics is that of inferring some information about
an unknown probability distribution D given access to
independent samples drawn from it. More than a decade
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ago, Batu et al. [3]1 initiated the study of problems
of this type from within the framework of property
testing [27, 14]. In a property testing problem there is an
unknown “massive object” that an algorithm can access
only by making a small number of “local inspections”
of the object, and the goal is to determine whether the
object has a particular property. The algorithm must
output ACCEPT if the object has the desired property
and output REJECT if the object is far from every object
with the property. (See [12, 24, 25, 13] for detailed
surveys and overviews of the broad field of property
testing; we give precise definitions tailored to our setting
in Section 2.)

In distribution property testing the “massive object”
is an unknown probability distribution D over an N -
element set, and the algorithm accesses the distribution
by drawing independent samples from it. A wide range
of different properties of probability distributions have
been investigated in this setting, and upper and lower
bounds on the number of samples required have by
now been obtained for many problems. These include
testing whether D is uniform [15, 4, 21], testing whether
D is identical to a given known distribution D∗ [2],
testing whether two distributions D1, D2 (both available
via sample access) are identical [3, 31], and testing
whether D has a monotonically increasing probability
mass function [6], as well as related problems such as
estimating the entropy of D [1, 30], and estimating its
support size [22, 31, 30]. Similar problems have also
been studied by researchers in other communities, see
e.g., [17, 20, 21].

One broad insight that has emerged from this past
decade of work is that while sublinear-sample algorithms
do exist for many distribution testing problems, the
number of samples required is in general quite large.
Even the basic problem of testing whether D is the
uniform distribution U over [N ] = {1, . . . , N} versus ε-
far from uniform requires Ω(

√
N) samples2 for constant

1There is a more recent full version of this work [4] and we

henceforth reference this recent version.
2To verify this, consider the family of all distributions that

are uniform over half of the domain, and 0 elsewhere. Each
distribution in this family is Θ(1)-far from the uniform distribution.

However, it is not possible to distinguish with sufficiently high
probability between the uniform distribution and a distribution



ε, and the other problems mentioned above have sample
complexities at least this high, and in some cases
almost linear in N [22, 31, 30]. Since such sample
complexities could be prohibitively high in real-world
settings where N can be extremely large, it is natural
to explore problem variants where it may be possible
for algorithms to succeed using fewer samples. Indeed,
researchers have studied distribution testing in settings
where the unknown distribution is guaranteed to have
some special structure, such as being monotone, k-
modal or a “k-histogram” over [N ] [5, 10, 16], or being
monotone over {0, 1}n [26] or over other posets [6],
and have obtained significantly more sample-efficient
algorithms using these additional assumptions.

1.2 The conditional sampling model

In this work we pursue a different line of investigation:
rather than restricting the class of probability distribu-
tions under consideration, we consider testing algorithms
that may use a more powerful form of access to the un-
known distribution D. This is a conditional sampling
oracle, which allows the algorithm to obtain a draw from
DS , the conditional distribution of D restricted to a
subset S of the domain (where S is specified by the
algorithm). More precisely, we have:

Definition 1. Fix a distribution D over [N ]. A COND
oracle for D, denoted CONDD, is defined as follows:
The oracle is given as input a query set S ⊆ [N ]
that has D(S) > 0. The oracle returns an element
i ∈ S, where the probability that element i is returned is
DS(i) = D(i)/D(S), independently of all previous calls
to the oracle.3

As mentioned earlier, a recent work of Chakraborty
et al. [8] introduced a very similar conditional model; we
discuss their results and how they relate to our results in
Section 1.4. For compatibility with our CONDD notation

selected randomly from this family, given a sample of size
√
N/c

(for a sufficiently large constant c > 1). This is the case because for

the uniform distribution as well as each distribution in this family,
the probability of observing the same element more than once is

very small. Conditioned on such a collision event not occurring,
the samples are distributed identically.

3Note that as described above the behavior of CONDD(S) is

undefined if D(S) = 0, i.e., the set S has zero probability under

D. While various definitional choices could be made to deal with
this, we shall assume that in such a case, the oracle (and hence
the algorithm) outputs “failure” and terminates. This will not be
a problem for us throughout this paper, as (a) our lower bounds

deal only with distributions that have D(i) > 0 for all i ∈ [N ], and

(b) in our algorithms CONDD(S) will only ever be called on sets S
which are “guaranteed” to have D(S) > 0. (More precisely, each
time an algorithm calls CONDD(S) it will either be on the set

S = [N ], or will be on a set S which contains an element i which
has been returned as the output of an earlier call to CONDD.)

we will write SAMPD to denote an oracle that takes no
input and, each time it is invoked, returns an element
from [N ] drawn according to D independently from all
previous draws. This is the sample access to D that is
used in the standard model of testing distributions, and
this is of course the same as a call to CONDD([N ]).

Motivation and Discussion. One purely theoretical
motivation for the study of the COND model is that it
may further our understanding regarding what forms
of information (beyond standard sampling) can be
helpful for testing properties of distributions. In both
learning and property testing it is generally interesting
to understand how much power algorithms can gain by
making queries, and COND queries are a natural type
of query to investigate in the context of distributions.
As we discuss in more detail below, in several of our
results we actually consider restricted versions of COND
queries that do not require the full power of obtaining
conditional samples from arbitrary sets.

A second attractive feature of the COND model is
that it enables a new level of “richness” for algorithms
that deal with probability distributions. In the standard
model where only access to SAMPD is provided, all
algorithms must necessarily be non-adaptive, with the
same initial step of simply drawing a sample of points
from SAMPD, and the difference between two algorithms
comes only from how they process their samples. In
contrast, the essence of the COND model is to allow
algorithms to adaptively determine later query sets S
based on the outcomes of earlier queries.

A natural question about the COND model is its
plausibility: are there settings in which an investigator
could actually make conditional samples from a distri-
bution of interest? We feel that the COND framework
provides a reasonable “first approximation” for scenarios
that arise in application areas (e.g., in biology or chem-
istry) where the parameters of an experiment can be
adjusted so as to restrict the range of possible outcomes.
For example, a scientist growing bacteria or yeast cells
in a controlled environment may be able to deliberately
introduce environmental factors that allow only cells
with certain desired characteristics to survive, thus re-
stricting the distribution of all experimental outcomes to
a pre-specified subset. We further note that techniques
which are broadly reminiscent of COND sampling have
long been employed in statistics and polling design under
the name of “stratified sampling” (see e.g. [32, 19]). We
thus feel that the study of distribution testing in the
COND model is well motivated both by theoretical and
practical considerations.

Given the above motivations, the central question
is whether the COND model enables significantly more
efficient algorithms than are possible in the weaker SAMP



model. Our results (see Section 1.3) show that this is
indeed the case.

Before detailing our results, we note that several
of them will in fact deal with a weaker variant of the
COND model, which we now describe. In designing
COND-model algorithms it is obviously desirable to have
algorithms that only invoke the COND oracle on query
sets S which are “simple” in some sense. Of course
there are many possible notions of “simplicity”; in this
work we consider the size of a set as a measure of its
simplicity, and consider algorithms which only query
small sets. More precisely, we consider the following
restriction of the general COND model: a PCOND (short
for “pair-cond”) oracle for D is a restricted version of
CONDD that only accepts input sets S which are either
S = [N ] (thus providing the power of a SAMPD oracle)
or S = {i, j} for some i, j ∈ [N ], i.e. sets of size two.
The PCOND oracle may be viewed as a “minimalist”
variant of COND that essentially permits an algorithm to
compare the relative weights of two items under D (and
to draw random samples from D, by setting S = [N ]).

1.3 Our results

In this early work on the COND model we focus
on the simplest (and, we think, most fundamental)
concrete problems in distribution testing: specifically,
testing whether D = D∗ for an explicitly provided
D∗, and testing whether D1 = D2 given CONDD1

and CONDD2 oracles. We give a detailed study of
these two problems in both the COND model and its
PCOND variant described above. Our results show
that the ability to do conditional sampling provides a
significant amount of power to property testers, enabling
polylog(N)-query, or even constant-query, algorithms for
these problems, both of which have sample complexities
NΩ(1) in the standard model; see Table 1.4 In what
follows dTV denotes the total variation distance, that is,

dTV (D1, D2)
def
= 1

2‖D1 −D2‖1 = 1
2

∑
i∈[N ]

|D1(i)−D2(i)|.

Testing equivalence to a known distribution. We
consider the question of testing whether D (accessible
via a PCOND or COND oracle) is equivalent to D∗,
where D∗ is an arbitrary “known” distribution over [N ]
that is explicitly provided to the testing algorithm (say
as a vector (D∗(1), . . . , D∗(N)) of probabilities). For
this “known D∗” problem, we give a CONDD algorithm
testing whether D = D∗ versus dTV(D,D∗) ≥ ε using
Õ(1/ε4) queries (independent of the size of the domain

4[7] is an extended version of this work that gives a broad range
of additional results, including both upper and lower bounds, for

several other problems and variants of the COND model. See
Table 1 of [7] for a concise overview of its results.

N). We also consider the power of PCONDD

oracles for this problem, and give a PCONDD algorithm
that uses Õ((logN)4/ε4) queries. We further show
that the (logN)Ω(1) query complexity of our PCONDD

algorithm is inherent in the problem, by proving that
any PCONDD algorithm for this problem must use
Ω(
√

log(N)/ log log(N)) queries for constant ε.

Testing equivalence between two unknown distri-
butions. We next consider the more challenging prob-
lem of testing whether two unknown distributions D1, D2

over [N ] (available via CONDD1
and CONDD2

oracles)
are identical versus ε-far. We give a poly(logN, 1/ε)
algorithm for this problem in the restricted PCOND
model, breaking the Ω

(
N2/3

)
sample lower bound in the

standard model. We also give a completely different
algorithm, using general COND queries, that achieves
an improved poly(logN, 1/ε) query complexity.

Along the way to establishing these testing results,
we develop several powerful tools for analyzing distribu-
tions in the COND and PCOND models, which we believe
may be of independent interest and utility in subsequent
work on the COND and PCOND models. These include
a procedure for approximately simulating an “evaluation
oracle”5 and a procedure for estimating the weight of
the “neighborhood” of a given point in the domain of
the distribution. (See further discussion of these tools
below.)

1.3.1 A high-level discussion of our algorithms

Our COND- and PCOND- model algorithms are adaptive,
and hence necessarily have quite a different algorithmic
flavor from distribution testing algorithms in the stan-
dard sampling model (which are of course nonadaptive).
As can be seen in the following discussion, our various
algorithms share some common themes with each other,
though each has its own unique idea/technique, which
we emphasize below.

For intuition, consider first a special case of testing
equality to a known distribution D∗ where D∗ is
the uniform distribution over [N ]. It is not hard to verify
that if a distribution D is ε-far from uniform, then the
following holds: if we select Θ(1/ε) points according to
D and select Θ(1/ε) points uniformly from [N ], then
with high constant probability we shall obtain a point x
in the first sample, and a point y in the second sample
such that D(x)/D(y) is lower bounded by (1 + Ω(ε)).
This can be detected with high constant probability by
performing Θ(1/ε2) PCONDD queries on each such pair
of points. Since when D∗ is the uniform distribution,
D(x)/D(y) = 1 for every pair of points x, y, this provides

5An EVALD oracle (evaluation oracle for D) takes as input a
point i ∈ [N ] and outputs the probability D(i) that D puts on i.



Problem Our results Standard model

Is D = D∗ for a known D∗?

CONDD Õ
(

1
ε4

)
PCONDD

Õ
(

log4N
ε4

)
Θ̃
(√

N
ε2

)
[2, 21]

Ω
(√

logN
log logN

)
Are D1, D2 (both unknown) equiv-
alent?

CONDD1,D2 Õ
(

log5N
ε4

)
Θ
(

max
(
N2/3

ε4/3
,
√
N
ε2

))
[4, 31, 9]

PCONDD1,D2 Õ
(

log6N
ε21

)
Table 1: Comparison between the COND model and the standard model for the problems studied in this paper.
The upper bounds are for testing whether the property holds (i.e. dTV = 0) versus dTV ≥ ε, and the lower bound
is for testing with ε = Θ(1).

evidence that D 6= D∗, and we can get an algorithm
for testing equality to the uniform distribution in the
PCONDD model whose complexity is poly(1/ε). While
this simple approach using PCONDD queries succeeds
with only poly(1/ε) queries when D∗ is the uniform
distribution, we show that for general distributions D∗

the query complexity of any PCONDD algorithm for
testing equality with D∗ must be (logN)Ω(1).

In order to obtain an algorithm whose complexity is
poly(1/ε) in the CONDD model we extend the basic idea
from the uniform case as follows. Rather than comparing
the relative weight of pairs of points, we compare the
relative weight of pairs in which one element is a point
and the other is a subset of points. Roughly speaking,
we show how points can be paired with subsets of points
of comparable weight (according to D∗) such that the
following holds. If D is far from D∗, then by taking
Õ(1/ε) samples from D and selecting subsets of points in
an appropriate manner (depending onD∗), we can obtain
(with high probability) a point x and a subset Y such
that D(x)/D(Y ) differs significantly from D∗(x)/D∗(Y )
and D∗(x)/D∗(Y ) is a constant (the latter is essential
for getting poly(1/ε) query complexity overall).

Returning to the PCONDD model, we show that by
sampling from both D and D∗ and allowing the number
of samples to grow with logN , with high probability we
either obtain a pair of points (x, y) such that D(x)/D(y)
differs by at least (1± Ω(ε)) from D∗(x)/D∗(y) where
D∗(x)/D∗(y) is a constant, or we detect that for some
set of points B we have that |D(B)−D∗(B)| is relatively
large.6

We next turn to the more challenging problem of
testing equality between two unknown distribu-
tions D1 and D2. In this problem we need to cope with
the fact that we no longer “have a hold” on a known
distribution. Our PCOND algorithm can be viewed as

6Here we use B for “Bucket”, as we consider a bucketing of
the points in [N ] based on their weight according to D∗. We note

that bucketing has been used extensively in the context of testing
properties of distributions, see e.g. [4, 2].

creating such a hold in the following sense. By sampling
from D1 we obtain (with high probability) a (relatively
small) set of points R that cover the distribution D1.
By “covering” we mean that except for a subset hav-
ing small weight according to D1, all points y in [N ]
have a representative r ∈ R, i.e. a point r such that
D1(y) is close to D1(r). We then show that if D2 is
far from D1, then one of the following must hold: (1)
There is relatively large weight, either according to D1

or according to D2, on points y such that for some r ∈ R
we have that D1(y) is close to D1(r) but D2(y) is not
sufficiently close to D2(r); (2) There exists a point r ∈ R
such that the set of points y for which D1(y) is close to
D1(r) has significantly different weight according to D2

as compared to D1.
A key subroutine employed by our PCOND algo-

rithm is Estimate-Neighborhood, which, given a
point x and PCOND access to D returns an estimate of
the weight of a subset of points whose probability (ac-
cording to D) is similar to that of x. The difficulty with
performing this task is due to points whose probability
is close to the “similarity threshold” that determines
the neighborhood set; our Estimate-Neighborhood
procedure surmounts this difficulty by making a ran-
dom choice of the similarity threshold. We believe
that the Estimate-Neighborhood subroutine may be
useful in further work as well; indeed [7] uses it in a
COND algorithm for estimating the distance between
two probability distributions.

Our general COND algorithm for testing the equality
of two (unknown) distributions is based on a subroutine
that estimates D(x) (to within (1±O(ε))) for a given
point x given access to CONDD. Obtaining such an
estimate for every x ∈ [N ] cannot be done efficiently
for some distributions.7 However, we show that if we

7As an extreme case consider a distribution D for which
D(1) = 1 − φ and D(2) = · · · = D(N) = φ/(N − 1) for some
very small φ (which in particular may depend on N), and for

which we are interested in estimating D(2). This requires Ω(1/φ)
queries.



allow the algorithm to output UNKNOWN on some
subset of points with total weight O(ε), then the relaxed
task can be performed using poly(logN, 1/ε) queries, by
performing a kind of randomized binary search “with
exceptions”. This relaxed version, which we refer to as
an approximate EVAL oracle, suffices for our needs in
distinguishing between the case that D1 and D2 are the
same distribution and the case in which they are far
from each other. It is possible that this procedure will
be useful for other tasks as well.

1.4 The work of Chakraborty et al. [8]

Chakraborty et al. [8] proposed essentially the same
COND model that we study, differing only in what
happens on query sets S such that D(S) = 0. In
our model such a query causes the COND oracle and
algorithm to return FAIL, while in their model such a
query returns a uniform random i ∈ S.

Related to testing equality of distributions, [8]
provides an (adaptive) algorithm for testing whether
D is equivalent to a specified distribution D∗ using
poly(log∗N, 1/ε) COND queries. Recall that we give an
algorithm for this problem that performs Õ(1/ε4) COND
queries. [8] also gives a non-adaptive algorithm for this
problem that performs poly(logN, 1/ε) COND queries.8

Testing equivalence between two unknown distributions
is not considered in [8], and the same is true for testing
in the PCOND model.

Both [8] and [7] also present additional results for
a range of other problems (problems that are largely
disjoint between the two papers) but we do not discuss
those results here.

1.5 Organization

Following some preliminaries in Section 2, in Section 3
we describe and analyze several procedures that are used
by our testing algorithms, and may be useful for other
algorithms as well. In Section 4 we present our results
for testing equivalence to a known distribution, and in
Section 5 we present our results for testing equivalence
between two unknown distributions. For each of our
algorithms, we first give a high-level discussion of the
ideas behind it.

2 Preliminaries

Throughout the paper we shall work with discrete
distributions over an N -element set whose elements are

8We note that it is only possible for them to give a non-adaptive

algorithm because their model is more permissive than ours (if a
query set S is proposed for which D(S) = 0, their model returns
a uniform random element of S while our model returns FAIL). In

our stricter model, any non-adaptive algorithm which queries a
proper subset S ( N would output FAIL on some distribution D.

denoted {1, . . . , N}; we write [N ] to denote {1, . . . , N}
and [a, b] to denote {a, . . . , b}. For a distribution D over
[N ] we write D(i) to denote the probability of i under
D, and for S ⊆ [N ] we write D(S) to denote

∑
i∈S D(i).

For S ⊆ [N ] such that D(S) > 0 we write DS to denote
the conditional distribution of D restricted to S, so

DS(i) = D(i)
D(S) for i ∈ S and DS(i) = 0 for i /∈ S.

As is standard in property testing of distributions,
throughout this work we measure the distance between
two distributions D1 and D2 using the total variation
distance:

dTV (D1, D2)
def
=

1

2
‖D1 −D2‖1

=
1

2

∑
i∈[N ]

|D1(i)−D2(i)|

= max
S⊆[N ]

|D1(S)−D2(S)|.

We may view a property P of distributions over [N ]
as a subset of all distributions over [N ] (consisting of
all distributions that have the property). The distance
from D to a property P, denoted dTV(D,P), is defined
as infD′∈P{dTV(D,D′)}.

We define testing algorithms for properties of distri-
butions over [N ] as follows:

Definition 2. Let P be a property of distributions over
[N ]. Let ORACLED be some type of oracle which provides
access to D. A q(ε,N)-query ORACLE testing algorithm
for P is an algorithm T which is given ε,N as input
parameters and oracle access to an ORACLED oracle.
For any distribution D over [N ] algorithm T makes at
most q(ε,N) calls to ORACLED, and:

• if D ∈ P then with probability at least 2/3 algorithm
T outputs ACCEPT;

• if dTV(D,P) ≥ ε then with probability at least 2/3
algorithm T outputs REJECT.

This definition can easily be extended to cover situ-
ations in which there are two “unknown” distributions
D1, D2 that are accessible via ORACLED1 and ORACLED2

oracles. In particular we shall consider algorithms for
testing whether D1 = D2 versus dTV(D1, D2) in such a
setting. We sometimes write TORACLED to indicate that
T has access to ORACLED.

In Appendix A we give a range of useful but standard
tools from probability (the data processing inequality for
total variation distance and several variants of Chernoff
bounds.).



3 Some useful procedures

In this section we describe two procedures that will
be used by our testing algorithms: Compare and
Estimate-Neighborhood. We present these tools
in increasing order of sophistication: Compare is quite
straightforward and meant to be used as a low-level
tool, while the algorithm Estimate-Neighborhood
is a more high-level subroutine. On a first pass the
reader may wish to focus on the explanatory prose and
performance guarantees of these procedures (i.e. the
statements of Lemma 1 and Lemma 2); the internal
details of the proofs are not necessary for the subsequent
sections which use these procedures.

3.1 The procedure Compare

We start by describing a procedure that estimates the
ratio between the weights of two disjoint sets of points
by performing COND queries on the union of the sets.
More precisely, it estimates the ratio (to within 1± η) if
the ratio is not too high and not too low. Otherwise, it
may output high or low, accordingly.In the special case
when each set is of size one, the queries performed are
PCOND queries.

Algorithm 1 Compare

Input: COND query access to a distribution D over
[N ], disjoint subsets X,Y ⊂ [N ], parameters η ∈ (0, 1],
K ≥ 1, and δ ∈ (0, 1/2].

1. Perform Θ
(
K log(1/δ)

η2

)
CONDD queries on the set

S = X ∪ Y , and let µ̂ be the fraction of times that
a point y ∈ Y is returned.

2. If µ̂ < 2
3 ·

1
K+1 , then return Low.

3. Else, if 1− µ̂ < 2
3 ·

1
K+1 , then return High.

4. Else return ρ = µ̂
1−µ̂ .

Lemma 1. Given as input two disjoint subsets of points
X,Y together with parameters η ∈ (0, 1], K ≥ 1,
and δ ∈ (0, 1/2], as well as COND query access to a
distribution D, the procedure Compare (Algorithm 1)

performs O
(
K log(1/δ)

η2

)
COND queries on the set X ∪ Y

and either outputs a value ρ > 0 or outputs High or
Low, and satisfies the following:

1. If D(X)/K ≤ D(Y ) ≤ K · D(X) then with
probability at least 1 − δ the procedure outputs a
value ρ ∈ [1− η, 1 + η]D(Y )/D(X);

2. If D(Y ) > K ·D(X) then with probability at least

1− δ the procedure outputs either High or a value
ρ ∈ [1− η, 1 + η]D(Y )/D(X);

3. If D(Y ) < D(X)/K then with probability at least
1 − δ the procedure outputs either Low or a value
ρ ∈ [1− η, 1 + η]D(Y )/D(X).

Proof: The bound on the number of queries performed
by the algorithm follows directly from the description
of the algorithm, and hence we turn to establish its
correctness.

Let w(X) = D(X)
D(X)+D(Y ) and let w(Y ) = D(Y )

D(X)+D(Y ) .

Observe that w(Y )
w(X) = D(Y )

D(X) and that for µ̂ as defined in

Line 1 of the algorithm, E[µ̂] = w(Y ) and E[1 − µ̂] =
w(X). Also observe that for any B ≥ 1, if D(Y ) ≥
D(X)/B, then w(Y ) ≥ 1

B+1 and if D(Y ) ≤ B ·D(X),

then w(X) ≥ 1
B+1 .

Let E1 be the event that µ̂ ∈ [1− η/3, 1 + η/3]w(Y ) and
let E2 be the event that (1− µ̂) ∈ [1−η/3, 1+η/3]w(X).
Given the number of COND queries performed on the
set X ∪ Y , by applying a multiplicative Chernoff bound
(see Theorem 3), if w(Y ) ≥ 1

4K then with probability at
least 1−δ/2 the event E1 holds, and if w(X) ≥ 1

4K , then
with probability at least 1− δ/2 the event E2 holds. We
next consider the three cases in the lemma statement.

1. If D(X)/K ≤ D(Y ) ≤ KD(X), then by the
discussion above, w(Y ) ≥ 1

K+1 , w(X) ≥ 1
K+1 ,

and with probability at least 1 − δ we have that
µ̂ ∈ [1−η/3, 1+η/3]w(Y ) and (1− µ̂) ∈ [1−η/3, 1+
η/3]w(X). Conditioned on these bounds holding,

µ̂ ≥ 1− η/3
K + 1

≥ 2

3
· 1

K + 1
and 1− µ̂ ≥ 2

3
· 1

K + 1
.

It follows that the procedure outputs a value

ρ = µ̂
1−µ̂ ∈ [1− η, 1 + η]w(Y )

w(X) as required by Item 1.

2. If D(Y ) > K ·D(X), then we consider two subcases.

(a) If D(Y ) > 3K ·D(X), then w(X) < 1
3K+1 , so

that by a multiplicative Chernoff bound (stated
in Corollary 4), with probability at least 1− δ
we have that

1− µ̂ < 1 + η/3

3K + 1
≤ 4

3
· 1

3K + 1
≤ 2

3
· 1

K + 1
,

causing the algorithm to output High. Thus
Item 2 is established for this subcase.

(b) If K · D(X) < D(Y ) ≤ 3K · D(X), then
w(X) ≥ 1

3K+1 and w(Y ) ≥ 1
2 , so that the

events E1 and E2 both hold with probability
at least 1−δ. Assume that these events in fact
hold. This implies that µ̂ ≥ 1−η/3

2 ≥ 2
3 ·

1
K+1 ,



and the algorithm either outputs High or

outputs ρ = µ̂
1−µ̂ ∈ [1−η, 1+η]w(Y )

w(X) , so Item 2

is established for this subcase as well.

3. If D(Y ) < D(X)/K, so that D(X) > K · D(Y ),
then the exact same arguments are applied as in
the previous case, just switching the roles of Y and
X and the roles of µ̂ and 1 − µ̂ so as to establish
Item 3.

We have thus established all items in the lemma.

3.2 The procedure Estimate-Neighborhood

In this subsection we describe a procedure that, given a
point x, provides an estimate of the weight of a set of
points y such that D(y) is similar to D(x). In order to
specify the behavior of the procedure more precisely, we
introduce the following notation. For a distribution D
over [N ], a point x ∈ [N ] and a parameter γ ∈ [0, 1], let

UDγ (x)
def
=
{
y ∈ [N ] :

1

1 + γ
D(x) ≤ D(y) ≤ (1+γ)D(x)

}
denote the set of points whose weight is “γ-close” to the
weight of x. If we take a sample of points distributed
according to D, then the expected fraction of these
points that belong to UDγ (x) is D(UDγ (x)). If this value
is not too small, then the actual fraction in the sample is
close to the expected value. Hence, if we could efficiently
determine for any given point y whether or not it belongs
to UDγ (x), then we could obtain a good estimate of

D(UDγ (x)). The difficulty is that it is not possible to
perform this task efficiently for “boundary” points y such
that D(y) is very close to (1 + γ)D(x) or to 1

1+γD(x).
However, for our purposes, it is not important that we
obtain the weight and size of UDγ (x) for a specific γ, but
rather it suffices to do so for γ in a given range, as stated
in the next lemma. The parameter β in the lemma is
the threshold above which we expect the algorithm to
provide an estimate of the weight, while [κ, 2κ) is the
range in which γ is permitted to lie; finally, η is the
desired (multiplicative) accuracy of the estimate, while
δ is a bound on the probability of error allowed to the
subroutine.

Lemma 2. Given as input a point x together with
parameters κ, β, η, δ ∈ (0, 1/2] as well as PCOND
query access to a distribution D, the procedure
Estimate-Neighborhood (Algorithm 2) performs

O
(

log(1/δ)·log(log(1/δ)/(βη2))
κ2η4β3δ2

)
PCOND queries and out-

puts a pair (ŵ, α) ∈ [0, 1] × [κ, 2κ) such that α is uni-

formly distributed in {κ + iθ}κ/θ−1
i=0 for θ = κηβδ

64 , and
such that the following holds:

1. If D(UDα (x)) ≥ β, then with probability at least
1− δ we have ŵ ∈ [1 − η, 1 + η] · D(UDα (x)), and
D(UDα+θ(x) \ UDα (x)) ≤ ηβ/16;

2. If D(UDα (x)) < β, then with probability at
least 1 − δ we have ŵ ≤ (1 + η) · β, and
D(UDα+θ(x) \ UDα (x)) ≤ ηβ/16.

Algorithm 2 Estimate-Neighborhood

Input: PCOND query access to a distribution D
over [N ], a point x ∈ [N ] and parameters
κ, β, η, δ ∈ (0, 1/2]

1: Set θ = κηβδ
64 and r = κ

θ = 64
ηβδ .

2: Select a value α ∈ {κ+ iθ}r−1
i=0 uniformly at random.

3: Call the SAMPD oracle Θ(log(1/δ)/(βη2)) times and
let S be the set of points obtained.

4: For each point y in S call
CompareD({x}, {y}, θ/4, 4, δ/(4|S|)) (if a point y
appears more than once in S, then Compare is
called only once on y).

5: Let ŵ be the fraction of occurrences of points
y in S for which Compare returned a value
ρ(y) ∈ [1/(1 + α+ θ/2), (1 + α+ θ/2)]. (That is, S
is viewed as a multiset.)

6: Return (ŵ, α).

Proof of Lemma 2: The number of PCOND queries
performed by Estimate-Neighborhood is the size of
S times the number of PCOND queries performed in each
call to Compare. By the setting of the parameters in the
calls to Compare, the total number of PCOND queries is

O
(

(|S|)·log |S|/δ)
θ2

)
= O

(
log(1/δ)·log(log(1/δ)//(βη2))

κ2η4β3δ2

)
. We

now turn to establishing the correctness of the procedure.
Since D and x are fixed, in what follows we shall

use the shorthand Uγ for UDγ (x). For α ∈ {κ+ iθ}r−1
i=0 ,

let ∆α
def
= Uα+θ \ Uα. We next define several “desirable”

events. In all that follows we view S as a multiset.

1. Let E1 be the event that D(∆α) ≤ 4/(δr)). Since
there are r disjoint sets ∆α for α ∈ {κ+ iθ}r−1

i=0 , the
probability that E1 occurs (taken over the uniform
choice of α) is at least 1− δ/4. From this point on
we fix α and assume E1 holds.

2. The event E2 is that |S ∩ ∆α|/|S| ≤ 8/(δr)
(that is, at most twice the upper bound
on the expected value). By applying the
multiplicative Chernoff bound using the fact
that |S| = Θ(log(1/δ)/(βη2)) = Ω(log(1/δ) · (δr)),
we have that PrS [E2] ≥ 1− δ/4.



3. The event E3 is defined as follows: If D(Uα) ≥ β,
then |S ∩ Uα|/|S| ∈ [1− η/2, 1 + η/2] ·D(Uα), and
if D(Uα) < β, then |S ∩ Uα|/|S| < (1 + η/2) · β.
Once again applying the multiplicative Chernoff
bound (for both cases) and using that fact that
|S| = Θ(log(1/δ)/(βη2)), we have that PrS [E3] ≥
1− δ/4.

4. Let E4 be the event that all calls to Compare
return an output as specified in Lemma 1. Given
the setting of the confidence parameter in the calls
to Compare we have that Pr[E4] ≥ 1− δ/4 as well.

Assume from this point on that events E1 through E4 all
hold where this occurs with probability at least 1−δ. By
the definition of ∆α and E1 we have that D(Uα+θ\Uα) ≤
4/(δr) = ηβ/16, as required (in both items of the lemma).
Let T be the multiset of points y in S for which Compare
returned a value ρ(y) ∈ [1/(1 + α+ θ/2), (1 + α+ θ/2)]
(so that ŵ, as defined in the algorithm, equals |T |/|S|).
Note first that conditioned on E4 we have that for
every y ∈ U2κ it holds that the output of Compare
when called on {x} and {y}, denoted ρ(y), satisfies
ρ(y) ∈ [1− θ/4, 1 + θ/4](D(y)/D(x)), while for y /∈ U2κ

either Compare outputs High or Low or it outputs a
value ρ(y) ∈ [1− θ/4, 1 + θ/4](D(y)/D(x)). This implies
that if y ∈ Uα, then ρ(y) ≤ (1+α)·(1+θ/4) ≤ 1+α+θ/2
and ρ(y) ≥ (1 + α)−1 · (1− θ/4) ≥ (1 + α+ θ/2)−1, so
that S ∩ Uα) ⊆ T . On the other hand, if y /∈ Uα+θ then
either ρ(y) > (1 + α + θ) · (1 − θ/4) ≥ 1 + α + θ/2 or
ρ(y) < (1 + α + θ)−1 · (1 + θ/4) ≤ (1 + α + θ/2)−1 so
that T ⊆ S ∩ Uα+θ. Combining the two we have:

(3.1) S ∩ Uα ⊆ T ⊆ S ∩ Uα+θ .

Recalling that ŵ = |T |
|S| , the left-hand side of Equa-

tion (3.1) implies that

(3.2) ŵ ≥ |S ∩ Uα|
|S|

,

and by E1 and E2, the right-hand-side of Equation (3.1)
implies that

(3.3) ŵ ≤
|S ∩ Uα)|
|S|

+
8

δr
≤ |S ∩ Uα|

|S|
+
βη

8
.

We consider the two cases stated in the lemma:

1. If D(Uα) ≥ β, then by Equation (3.2), Equa-
tion (3.3) and (the first part of) E3, we have that
ŵ ∈ [1− η, 1 + η] ·D(Uα).

2. If D(Uα) < β, then by Equation (3.3) and (the
second part of) E3, we have that ŵ ≤ (1 + η)β.

The lemma is thus established.

4 Testing equivalence to a known distribution

In this section we present an algorithm COND-Test-
Known and prove the following theorem:

Theorem 1. COND-Test-Known is a Õ(1/ε4)-query
CONDD testing algorithm for testing equivalence to
a known distribution D∗. That is, for every pair of
distributions D,D∗ over [N ] (such that D∗ is fully
specified and there is COND query access to D), the
algorithm outputs ACCEPT with probability at least 2/3
if D = D∗ and outputs REJECT with probability at least
2/3 if dTV(D,D∗) ≥ ε.

High-level overview of the algorithm and its
analysis: First, we note that by reordering elements
of [N ] we may assume without loss of generality that
D∗(1) ≤ · · · ≤ D∗(N); this will be convenient for us.

As we show in the full version, our (logN)Ω(1)

query lower bound for PCONDD algorithms exploits the
intuition that comparing two points using the PCONDD

oracle might not provide much information (e.g. if one of
the two points was a priori “known” to be much heavier
than the other). In contrast, with a general CONDD
oracle at our disposal, we can compare a given point
j ∈ [N ] with any subset of [N ] \ {j}. Thus the following
definition will be useful:

Definition 3. (Comparable points) Fix 0 < λ ≤ 1.
A point j ∈ supp(D∗) is said to be λ-comparable if there
exists a set S ⊆ ([N ] \ {j}) such that

D∗(j) ∈ [λD∗(S), D∗(S)/λ] .

Such a set S is then said to be a λ-comparable-witness
for j (according to D∗), which is denoted S ∼=∗ j. We
say that a set T ⊆ [N ] is λ-comparable if every i ∈ T is
λ-comparable.

We stress that the notion of being λ-comparable deals
only with the known distribution D∗; this will be
important later.

Fix ε1 = Θ(ε) (we specify ε1 precisely in Equa-
tion (4.6) below). Our analysis and algorithm consider
two possible cases for the distribution D∗ (where it is
not hard to verify, and we provide an explanation subse-
quently, that one of the two cases must hold):

1. The first case is that for some i∗ ∈ [N ] we have

(4.4) D∗([i∗]) > 2ε1 but D∗([i∗ − 1]) ≤ ε1.

In this case 1 − ε1 of the total probability mass
of D∗ must lie on a set of at most 1/ε1 elements,
and in such a situation it is easy to efficiently
test whether D = D∗ using poly(1/ε) queries
(see Algorithm CONDD-Test-Known-Heavy and
Lemma 5).



2. The second case is that there exists an element
k∗ ∈ [N ] such that

(4.5) ε1 < D∗([k∗]) ≤ 2ε1 < D∗([k∗ + 1]).

This is the more challenging (and typical) case.
In this case, it can be shown that every element
j > k∗ has at least one ε1-comparable-witness
within {1, . . . , j}. In fact, we show (see Claim 3)
that either (a) {1, . . . , j − 1} is an ε1-comparable
witness for j, or (b) the set {1, . . . , j − 1} can be
partitioned into disjoint sets 9 S1, . . . , St such that
each Si, 1 ≤ i ≤ t, is a 1

2 -comparable-witness for j.
Case (a) is relatively easy to handle so we focus on
(b) in our informal description below.

The partition S1, . . . , St is useful to us for the
following reason: Suppose that dTV(D,D∗) ≥ ε. It
is not difficult to show (see Claim 4) that unless
D({1, . . . , k∗}) > 3ε1 (which can be easily detected and
provides evidence that the tester should reject), a random
sample of Θ(1/ε) draws from D will with high probability
contain a “heavy” point j > k∗, that is, a point j > k∗

such that D(j) ≥ (1+ε2)D∗(j) (where ε2 = Θ(ε)). Given
such a point j, there are two possibilities:

1. The first possibility is that a significant fraction
of the sets S1, . . . , St have D(j)/D(Si) “noticeably
different” from D∗(j)/D∗(Si). (Observe that since
each set Si is a 1

2 -comparable witness for j, it is
possible to efficiently check whether this is the case.)
If this is the case then our tester should reject since
this is evidence that D 6= D∗.

2. The second possibility is that almost every Si has
D(j)/D(Si) very close to D∗(j)/D∗(Si). If this is
the case, though, then since D(j) ≥ (1 + ε2)D∗(j)
and the union of S1, . . . , St is {1, . . . , j − 1}, it
must be the case that D({1, . . . , j}) is “significantly
larger” than D∗({1, . . . , j}). This will be revealed
by random sampling from D and thus our testing
algorithm can reject in this case as well.

Key quantities and useful claims. We define some
quantities that are used in the algorithm and its analysis.
Let

(4.6) ε1
def
=

ε

10
; ε2

def
=

ε

2
; ε3

def
=

ε

48
; ε4

def
=

ε

6
.

Claim 3. Suppose there exists an element k∗ ∈ [N ] that
satisfies Equation (4.5). Fix any j > k∗. Then

9In fact the sets are intervals (under the assumption

D∗(1) ≤ · · · ≤ D∗(n)), but that is not really important for our
arguments.

1. If D∗(j) ≥ ε1, then S1
def
= {1, . . . , j − 1} is an

ε1-comparable witness for j;

2. If D∗(j) < ε1 then the set {1, . . . , j − 1} can be
partitioned into disjoint sets S1, . . . , St such that
each Si, 1 ≤ i ≤ t, is a 1

2 -comparable-witness for j.

Proof: First consider the case that D∗(j) ≥ ε1. In this
case S1 = {1, . . . , j − 1} is an ε1-comparable witness
for j because D∗(j) ≥ ε1 ≥ ε1D

∗({1, . . . , j − 1}) and
D∗(j) ≤ 1 ≤ 1

ε1
D∗({1, . . . , k∗}) ≤ 1

ε1
D∗({1, . . . , j − 1}),

where the last inequality holds since k∗ ≤ j − 1.
Next, consider the case that D∗(j) < ε1. In this case

we build our intervals iteratively from right to left, as
follows. Let j1 = j − 1 and let j2 be the minimum index
in {0, . . . , j1 − 1} such that

D∗({j2 + 1, . . . , j1}) ≤ D∗(j).

(Observe that we must have j2 ≥ 1, be-
cause D∗({1, . . . , k∗}) > ε1 > D∗(j).) Since
D∗({j2, . . . , j1}) > D∗(j) and the function D∗(·) is
monotonically increasing, it must be the case that

1

2
D∗(j) ≤ D∗({j2 + 1, . . . , j1}) ≤ D∗(j).

Thus the interval S1
def
= {j2+1, . . . , j1} is a 1

2 -comparable
witness for j as desired.

We continue in this fashion from right to left;
i.e. if we have defined j2, . . . , jt as above and
there is an index j′ ∈ {0, . . . , jt − 1} such that
D∗({j′ + 1, . . . , jt}) > D∗(j), then we define jt+1 to be
the minimum index in {0, . . . , jt − 1} such that

D∗({jt+1 + 1, . . . , jt}) ≤ D∗(j),

and we define St to be the interval {jt+1 + 1, . . . , jt}.
The argument of the previous paragraph tells us that

(4.7)
1

2
D∗(j) ≤ D∗({jt+1 + 1, . . . , jt}) ≤ D∗(j)

and hence St is an 1
2 -comparable witness for j.

At some point, after intervals S1 = {j2 +
1, . . . , j1}, . . . , St = {jt+1 + 1, . . . , jt} have been
defined in this way, it will be the case that
there is no index j′ ∈ {0, . . . , jt − 1} such that
D∗({j′ + 1, . . . , jt}) > D∗(j). At this point there are two
possibilities: first, if jt+1+1 = 1, then S1, . . . , St give the
desired partition of {1, . . . , j − 1}. If jt+1 + 1 > 1 then
it must be the case that D∗({1, . . . , jt+1}) ≤ D∗(j). In
this case we simply add the elements {1, . . . , jt+1} to St,
i.e. we redefine St to be {1, . . . , jt}. By Equation (4.7)
we have that

1

2
D∗(j) ≤ D∗(St) ≤ 2D∗(j)



and thus St is an 1
2 -comparable witness for j as desired.

This concludes the proof.

Definition 4. (Heavy points) A point j ∈ supp(D∗)
is said to be η-heavy if D(j) ≥ (1 + η)D∗(j).

Claim 4. Suppose that dTV(D,D∗) ≥ ε and
Equation (4.5) holds. Suppose moreover that
D({1, . . . , k∗}) ≤ 4ε1. Let i1, . . . , i` be i.i.d. points
drawn from D. Then for ` = Θ(1/ε), with probability
at least 99/100 (over the i.i.d. draws of i1, . . . , i` ∼ D)
there is some point ij ∈ {i1, . . . , i`} such that ij > k∗

and ij is ε2-heavy.

Proof: Define H1 to be the set of all ε2-heavy points
and H2 to be the set of all “slightly lighter” points as
follows:

H1 = { i ∈ [N ] | D(i) ≥ (1 + ε2)D∗(i) }
H2 = { i ∈ [N ] | (1 + ε2)D∗(i) > D(i) ≥ D∗(i) }

By definition of the total variation distance, we have

ε ≤ dTV(D,D∗)

=
∑

i:D(i)≥D∗(i)

(D(i)−D∗(i))

= (D(H1)−D∗(H1)) + (D(H2)−D∗(H2))

≤ D(H1) + ((1 + ε2)D∗(H2)−D∗(H2))

= D(H1) + ε2D
∗(H2)

< D(H1) + ε2 = D(H1) +
ε

2
.

So it must be the case that D(H1) ≥ ε/2 = 5ε1. Since
by assumption we have D({1, . . . , k∗}) ≤ 4ε1, it must
be the case that D(H1 \ {1, . . . , k∗}) ≥ ε1. The claim
follows from the definition of H1 and the size, `, of the
sample.

Algorithm 3 CONDD-Test-Known

Input: error parameter ε > 0; query access to CONDD
oracle; explicit description (D∗(1), . . . , D∗(N)) of
distribution D∗ satisfying D∗(1) ≤ · · · ≤ D∗(N)

1: Let i∗ be the minimum index i ∈ [N ] such that
D∗({1, . . . , i}) > 2ε1.

2: if D∗({1, . . . , i∗ − 1}) ≤ ε1 then
3: Call algorithm CONDD-Test-Known-

Heavy(ε,CONDD, D
∗, i∗) (and exit)

4: else
5: Call algorithm CONDD-Test-Known-

Main(ε,CONDD, D
∗, i∗ − 1) (and exit).

6: end if

Proof of Theorem 1: It is straightforward to verify that
the query complexity of CONDD-Test-Known-Heavy

Algorithm 4 CONDD-Test-Known-Heavy

Input: error parameter ε > 0; query access to CONDD
oracle; explicit description (D∗(1), . . . , D∗(N)) of
distribution D∗ satisfying D∗(1) ≤ · · · ≤ D∗(N);
value i∗ ∈ [N ] satisfying D∗({1, . . . , i∗ − 1}) ≤ ε1,
D∗({1, . . . , i∗}) > 2ε1

1: Call the SAMPD oracle m = Θ((log(1/ε))/ε4) times.

For each i ∈ [i∗, N ] let D̂(j) be the fraction
of the m calls to SAMPD that returned i. Let
D̂′ = 1−

∑
i∈[i∗,N ] D̂(i) be the fraction of the m

calls that returned values in {1, . . . , i∗ − 1}.
2: if either (any i ∈ [i∗, N ] has |D̂(i) −D∗(i)| > ε1

2)

or (D̂′ −D∗({1, . . . , i∗ − 1}) > ε1) then
3: output REJECT (and exit)
4: end if
5: Output ACCEPT

is Õ(1/ε4) and the query complexity of CONDD-Test-
Known-Main is also Õ(1/ε4), so the overall query
complexity of COND-Test-Known is as claimed.

By the definition of i∗ (in the first line of the
algorithm), either Equation (4.4) holds for this setting
of i∗, or Equation (4.5) holds for k∗ = i∗ − 1. To
prove correctness of the algorithm, we first deal with the
simpler case, which is that Equation (4.4) holds:

Lemma 5. Suppose that D∗ is such that
D∗({1, . . . , i∗}) > 2ε1 but D∗({1, . . . , i∗ − 1}) ≤ ε1.
Then CONDD-Test-Known-Heavy(ε,CONDD, D

∗, i∗)
returns ACCEPT with probability at least 2/3 if D = D∗

and returns REJECT with probability at least 2/3 if
dTV(D,D∗) ≥ ε.

Proof: The conditions of Lemma 5, together with the
fact that D∗(·) is monotone non-decreasing, imply that
each i ≥ i∗ has D∗(i) ≥ ε1. Thus there can be at
most 1/ε1 many values i ∈ {i∗, . . . , N}, i.e. it must be
the case that i∗ ≥ N − 1/ε1 + 1. Since the expected

value of D̂(i) (defined in Line 1 of CONDD-Test-
Known-Heavy) is precisely D(i), for any fixed value of
i ∈ {i∗, . . . , n} an additive Chernoff bound implies that

|D(i) − D̂(i)| ≤ (ε1)2 with failure probability at most
1

10(1+1/ε1) . Similarly |D̂′ −D({1, . . . , i∗ − 1})| ≤ ε1 with

failure probability at most 1
10(1+1/ε1) . A union bound

over all failure events gives that with probability at least
9/10 each value i ∈ {i∗, . . . , N} has |D(i)− D̂(i)| ≤ ε12

and additionally |D̂′ −D({1, . . . , i∗ − 1})| ≤ ε1; we refer
to this compound event as (*).

If D∗ = D, by (*) the algorithm outputs ACCEPT
with probability at least 9/10.

Now suppose that dTV(D,D∗) ≥ ε. With probability
at least 9/10 we have (*) so we suppose that indeed (*)



Algorithm 5 CONDD-Test-Known-Main

Input: error parameter ε > 0; query ac-
cess to CONDD oracle; explicit description
(D∗(1), . . . , D∗(N)) of distribution D∗ satisfying
D∗(1) ≤ · · · ≤ D∗(N); value k∗ ∈ [N ] satisfying
ε1 < D∗({1, . . . , k∗}) ≤ 2ε1 < D∗({1, . . . , k∗ + 1}))

1: Call the SAMPD oracle Θ(1/ε2) times and let

D̂({1, . . . , k∗}) denote the fraction of responses that

lie in {1, . . . , k∗}. If D̂({1, . . . , k∗}) /∈ [ ε12 ,
5ε1
2 ] then

output REJECT (and exit).
2: Call the SAMPD oracle ` = Θ(1/ε) times to obtain

points i1, . . . , i`.
3: for all j ∈ {1, . . . , `} such that ij > k∗ do
4: Call the SAMPD oracle m = Θ(log(1/ε)/ε)

times and let D̂({1, . . . , ij}) be the frac-
tion of responses that lie in {1, . . . , ij}.
If D̂({1, . . . , ij}) /∈ [1− ε3, 1 + ε3]D∗({1, . . . , ij})
then output REJECT (and exit).

5: if D∗(ij) ≥ ε1 then
6: Run Compare({ij}, {1, . . . , ij − 1}, ε216 ,

2
ε1
, 1

10` )
and let v denote its output. If

v /∈ [1− ε2
8 , 1 + ε2

8 ]
D∗({1,...,ij−1})

D∗({ij}) then out-

put REJECT (and exit).
7: else
8: Let S1, . . . , St be the partition of {1, . . . , ij −1}

such that each Si is an ε1-comparable witness
for ij , which is provided by Claim 3.

9: Select a list of h = Θ(1/ε) elements Sa1 , . . . , Sah
independently and uniformly from {S1, . . . , Sj}.

10: For each of the Sar , 1 ≤ r ≤ h, run
Compare({ij}, Sar , ε48 , 4,

1
10`h ) and let v denote

its output. If v /∈ [1 − ε4
4 , 1 + ε4

4 ]
D∗(Sar )
D∗({ij}) then

output REJECT (and exit).
11: end if
12: end for
13: Output ACCEPT.

holds. In this case we have

ε ≤ dTV(D,D∗)

=
∑
i<i∗

|D(i)−D∗(i)|+
∑
i≥i∗
|D(i)−D∗(i)|

≤
∑
i<i∗

(D(i) +D∗(i)) +
∑
i≥i∗
|D(i)−D∗(i)|

≤ D({1, . . . , i∗ − 1}) + ε1

+
∑
i≥i∗

(
|D̂(i)−D∗(i)|+ ε1

2
)

≤ D̂′ + ε1 + 2ε1 +
∑
i≥i∗

(
|D̂(i)−D∗(i)|

)

where the first inequality is by the triangle inequality, the
second is by (*) and the fact that D∗({1, . . . , i∗ − 1}) ≤
ε1, and the third inequality is by (*) and the fact that
there are at most 1/ε1 elements in {i∗, . . . , N}. Since
ε1 = ε/10, the above inequality implies that

7

10
ε ≤ D̂′ +

∑
i≥i∗

(
|D̂(i)−D∗(i)|

)
.

If any i ∈ {i∗, . . . , N} has |D̂(i) − D∗(i)| > (ε1)2 then
the algorithm outputs REJECT so we may assume that
|D̂(i)−D∗(i)| ≤ ε12 for all i. This implies that

6ε1 =
6

10
ε ≤ D̂′

but since D∗({1, . . . , i∗ − 1}) ≤ ε1 the algorithm must
REJECT.

Now we turn to the more difficult (and typical) case,
that Equation (4.5) holds (for k∗ = i∗ − 1), i.e.

ε1 < D∗({1, . . . , k∗}) ≤ 2ε1 < D∗({1, . . . , k∗ + 1}).

With the claims we have already established it is
straightforward to argue completeness:

Lemma 6. Suppose that D = D∗ and Equation (4.5)
holds. Then with probability at least 2/3 algorithm
CONDD-Test-Known-Main outputs ACCEPT.

Proof: We first observe that the expected value of the
quantity D̂({1, . . . , k∗}) defined in Line 1 is precisely
D({1, . . . , k∗}) = D∗({1, . . . , k∗}) and hence lies in
[ε1, 2ε1] by Equation (4.5). The additive Chernoff
bound implies that the probability the algorithm outputs
REJECT in Line 1 is at most 1/10. Thus we may assume
the algorithm continues to Line 2.

In any given execution of Line 4, since the expected
value of D̂({1, . . . , ij}) is precisely D({1, . . . , ij}) =
D∗({1, . . . , ij}) > ε1, a multiplicative Chernoff bound
gives that the algorithm outputs REJECT with proba-
bility at most 1/(10`). Thus the probability that the
algorithm outputs REJECT in any execution of Line 4 is
at most 1/10. We henceforth assume that the algorithm
never outputs REJECT in this step.

Fix a setting of j ∈ {1, . . . , `} such that ij > k∗.
Consider first the case that D∗(ij) ≥ ε1 so the algorithm
enters Line 6. By item (1) of Claim 3 and item (1)
of Lemma 1, we have that with probability at least
1 − 1

10` Compare outputs a value v in the range

[1 − ε2
16 , 1 + ε2

16 ]
D∗({1,...,ij−1})

D∗({ij}) (recall that D = D∗),

so the algorithm does not output REJECT in Line 6.
Now suppose that D∗(ij) < ε1 so the algorithm enters
Line 8. Fix a value 1 ≤ r ≤ h in Line 10. By Claim 3
we have that Sar is a 1

2 -comparable witness for ij . By



item (1) of Lemma 1, we have that with probability
at least 1 − 1

10`h Compare outputs a value v in the

range [1 − ε4
4 , 1 + ε4

4 ]
D∗(Sar )
D∗({ij}) (recall that D = D∗).

A union bound over all h values of r gives that the
algorithm outputs REJECT in Line 10 with probability
at most 1/(10`). So in either case, for this setting of j,
the algorithm outputs REJECT on that iteration of the
outer loop with probability at most 1/(10`). A union
bound over all ` iterations of the outer loop gives that the
algorithm outputs REJECT at any execution of Line 6
or Line 10 is at most 1/10.

Thus the overall probability that the algorithm
outputs REJECT is at most 3/10, and the lemma is
proved.

Next we argue soundness:

Lemma 7. Suppose that dTV(D,D∗) ≥ ε and Equa-
tion (4.5) holds. Then with probability at least 2/3 algo-
rithm CONDD-Test-Known-Main outputs REJECT.

Proof: If D({1, . . . , k∗}) /∈ [ε1, 3ε1] then a standard
additive Chernoff bound implies that the algorithm
outputs REJECT in Line 1 with probability at least 9/10.
Thus we may assume going forward in the argument that
D({1, . . . , k∗}) ∈ [ε1, 3ε1]. As a result we may apply
Claim 4, and we have that with probability at least
99/100 there is an element ij ∈ {i1, . . . , i`} such that
ij > k∗ and ij is ε2-heavy, i.e. D(ij) ≥ (1 + ε2)D∗(ij).
We condition on this event going forward (the rest of
our analysis will deal with this specific element ij).

We now consider two cases:
Case 1: Distribution D has D({1, . . . , ij}) /∈ [1−3ε3, 1+

3ε3]D∗({1, . . . , ij}). Since the quantity D̂({1, . . . , ij}) ob-
tained in Line 4 has expected value D({1, . . . , ij}) ≥
D({1, . . . , k∗}) ≥ ε1, applying the multiplicative Cher-

noff bound implies that D̂({1, . . . , ij}) ∈ [1 − ε3, 1 +
ε3]D({1, . . . , ij}) except with failure probability at most
ε/10 ≤ 1/10. If this failure event does not occur then
since D({1, . . . , ij}) /∈ [1 − 3ε3, 1 + 3ε3]D∗({1, . . . , ij})
it must hold that D̂({1, . . . , ij}) /∈ [1 − ε3, 1 +
ε3]D∗({1, . . . , ij}) and consequently the algorithm out-
puts REJECT. Thus in Case 1 the algorithm outputs
REJECT with overall failure probability at least 89/100.
Case 2: Distribution D has D({1, . . . , ij}) ∈ [1−3ε3, 1+
3ε3]D∗({1, . . . , ij}). This case is divided into two sub-
cases depending on the value of D∗(ij).
Case 2(a): D∗(ij) ≥ ε1. In this case the algorithm
reaches Line 6. We use the following claim:

Claim 8. In Case 2(a), suppose that ij > k∗ is such
that D(ij) ≥ (1 + ε2)D∗(ij), and D({1, . . . , ij}) ∈
[1− 3ε3, 1 + 3ε3]D∗({1, . . . , ij}). Then

D({1, . . . , ij − 1})
D(ij)

≤
(

1− ε2
4

)
· D
∗({1, . . . , ij − 1})

D∗(ij)
.

Proof: To simplify notation we write

a
def
= D(ij); b

def
= D∗(ij); c

def
= D({1, . . . , ij − 1});

d
def
= D∗({1, . . . , ij − 1}) .

We have that

a ≥ (1 + ε2)b and a+ c ≤ (1 + 3ε3)(b+ d).

This gives

c ≤ (1 + 3ε3)(b+ d)− (1 + ε2)b

= (1 + 3ε3)d+ (3ε3 − ε2)b

< (1 + 3ε3)d ,

where in the last inequality we used ε2 > 3ε3. Recalling
that a ≥ (1 + ε2)b and using ε3 = ε2/24 we get

c

a
<

(1 + 3ε3)d

(1 + ε2)b
=
d

b
· 1 + ε2/8

1 + ε2
<
d

b
·
(

1− ε2
4

)
.

This proves the claim.
Applying Claim 8, we get that in Line 6 we have

D({1, . . . , ij − 1})
D(ij)

≤
(

1− ε2
4

)
· D
∗({1, . . . , ij − 1})

D∗(ij)
.

Recalling that by the premise of this case D∗(ij) ≥
ε1, by applying Claim 3 we have that {1, . . . , ij − 1}
is an ε1-comparable witness for ij . Therefore, by
Lemma 1, with probability at least 1 − 1

10` the call
to Compare({ij}, {1, . . . , ij − 1}, ε216 ,

2
ε1
, 1

10` ) in Line 6
either outputs an element of {High, Low} or outputs

a value v ≤ (1 − ε2
4 )(1 + ε2

16 )
D∗({1,...,ij−1})

D∗(ij) < (1 −
ε2
8 )

D∗({1,...,ij−1})
D∗(ij) . In either case the algorithm outputs

REJECT in Line 6, so we are done with Case 2(a).

Case 2(b): D∗(ij) < ε1. In this case the algorithm
reaches Line 10, and by item 2 of Claim 3, we have that
S1, . . . , St is a partition of {1, . . . , ij − 1} and each set
S1, . . . , St is a 1

2 -comparable witness for ij , i.e.,

for all i ∈ {1, . . . , t},(4.8)

1

2
D∗(j) ≤ D∗(Si) ≤ 2D∗(j).

We use the following lemma:

Claim 9. In Case 2(b) suppose ij > k∗ is such that
D(ij) ≥ (1 + ε2)D∗(ij) and D({1, . . . , ij}) ∈ [1− 3ε3, 1 +
3ε3]D∗({1, . . . , ij}). Then at least (ε4/8)-fraction of the
sets S1, . . . , St are such that

D(Si) ≤ (1 + ε4)D∗(Si).



Proof: The proof is by contradiction. Let ρ = 1− ε4/8
and suppose that there are w sets (without loss of
generality we call them S1, . . . , Sw) that satisfy D(Si) >
(1 + ε4)D∗(Si), where ρ′ = w

t > ρ. We first observe that
the weight of the w subsets S1, . . . , Sw under D∗, as a
fraction of D∗({1, . . . , ij − 1}), is at least

D∗(S1 ∪ · · · ∪ Sw)

D∗(S1 ∪ · · · ∪ Sw) + (t− w) · 2D∗(j)
(4.9)

≥
w
D∗(ij)

2

w
D∗(ij)

2 + (t− w) · 2D∗(j)

=
w

4t− 3w
=

ρ′

4− 3ρ′
,

where we applied the upper bound in Equation (4.8)
on Sw+1, . . . , St to obtain the first expression in Equa-
tion (4.9), and the lower bound in Equation (4.8) (to-
gether with the fact that x

x+c is an increasing function
of x for all c > 0) to obtain the inequality. This implies
that

D({1, . . . , ij − 1})(4.10)

=

w∑
i=1

D(Si) +

t∑
i=w+1

D(Si)

≥ (1 + ε4)

w∑
i=1

D∗(Si) +

t∑
i=w+1

D(Si)

≥ (1 + ε4)
ρ′

4− 3ρ′
D∗({1, . . . , ij − 1})

≥ (1 + ε4)
ρ

4− 3ρ
D∗({1, . . . , ij − 1}) .

From Equation (4.10) we have

D({1, . . . , ij})

≥ (1 + ε4)
ρ

4− 3ρ
D∗({1, . . . , ij − 1}) + (1 + ε2)D∗(ij)

≥
(

1 +
3ε4
8

)
D∗({1, . . . , ij − 1}) + (1 + ε2)D∗(ij) ,

where for the first inequality above we used D(ij) ≥
(1 + ε2)D∗(ij) and for the second inequality we used
(1 + ε4) ρ

4−3ρ ≥ 1 + 3ε4
8 . This implies that

D({1, . . . , ij}) ≥
(

1 +
3ε4
8

)
D∗({1, . . . , ij − 1})

+

(
1 +

3ε4
8

)
D∗(ij)

=

(
1 +

3ε4
8

)
D∗({1, . . . , ij})

where the inequality follows from ε2 ≥ 3ε4
8 . Since

3ε4
8 > 3ε3, though, this is a contradiction and the claim

is proved.

Applying Claim 9, and recalling that h = Θ(1/ε) =
Θ(1/ε4) sets are chosen randomly in Line 9, we have that
with probability at least 9/10 there is some r ∈ {1, . . . , h}
such that D(Sar ) ≤ (1 + ε4)D∗(Sar ). Combining this
with D(ij) ≥ (1 + ε2)D∗(ij), we get that

D(Sar )

D(ij)
≤ 1 + ε4

1 + ε2
· D
∗(Sar )

D∗(ij)
≤
(

1− ε4
2

)
· D
∗(Sar )

D∗(ij)
.

By Lemma 1, with probability at least 1 − 1
10`h the

call to Compare({ij}, Sar , ε48 , 4,
1

10`n ) in Line 10 either
outputs an element of {High,Low } or outputs a value

v ≤ (1− ε4
2 )(1 + ε4

8 )
D∗(Sar )
D∗(ij) < (1− ε4

4 )
D∗(Sar )
D∗(ij) . In either

case the algorithm outputs REJECT in Line 10, so we are
done in Case 2(b). This concludes the proof of soundness
and the proof of Theorem 1.

5 Testing equality between two unknown
distributions

In this subsection we consider the problem of testing
whether two unknown distributions D1, D2 are identical
versus ε-far, given PCOND access to these distributions.
Although this is known to require Ω

(
N2/3

)
many samples

in the standard model [4, 31], we are able to give a
poly(logN, 1/ε)-query algorithm using PCOND queries,
by taking advantage of comparisons to perform some
sort of clustering of the domain.

On a high level the algorithm works as follows. First
it obtains (with high probability) a small set of points R
such that almost every element in [N ], except possibly for
some negligible subset according to D1, has probability
weight (under D1) close to some “representative” in
R. Next, for each representative r in R it obtains an
estimate of the weight, according to D1, of a set of
points U such that D1(u) is close to D1(r) for each u
in U (i.e, r’s “neighborhood under D1”). This is done
using the procedure Estimate-Neighborhood from
Subsection 3.2). Note that these neighborhoods can be
interpreted roughly as a succinct cover of the support of
D1 into (not necessarily disjoint) sets of points, where
within each set the points have similar weight (according
to D1). Our algorithm is based on the observation that,
if D1 and D2 are far from each other, it must be the
case that one of these sets, denoted U∗, reflects it in one
of the following ways: (1) D2(U∗) differs significantly
from D1(U∗); (2) U∗ contains a subset of points V ∗ such
that D2(v) differs significantly from D2(r) for each v in
V ∗, and either D1(V ∗) is relatively large or D2(V ∗) is
relatively large. (This structural result is made precise in
Lemma 11). We thus take additional samples, both from
D1 and from D2, and compare the weight (according
to both distributions) of each point in these samples to
the representatives in R (using the procedure Compare



from Subsection 3.1). In this manner we detect (with
high probability) that either (1) or (2) holds.

We begin by formalizing the notion of a cover
discussed above:

Definition 5. (Weight-Cover) Given a distribution
D on [N ] and a parameter ε1 > 0, we say that a point
i ∈ [N ] is ε1-covered by a set R = {r1, . . . , rt} ⊆ [N ]
if there exists a point rj ∈ R such that D(i) ∈ [1/(1 +
ε1), 1 + ε1]D(rj). Let the set of points in [N ] that are
ε1-covered by R be denoted by CDε1 (R). We say that R
is an (ε1, ε2)-cover for D if D([N ] \ CDε1 (R)) ≤ ε2.

The following lemma says that a small sample of
points drawn from D gives a cover with high probability:

Lemma 10. Let D be any distribution over [N ]. Given
any fixed c > 0, there exists a constant c′ > 0 such
that with probability at least 99/100, a sample R of

size m = c′ log(N/ε)
ε2 · log

(
log(N/ε)

ε

)
drawn according to

distribution D is an (ε/c, ε/c)-cover for D.

Proof: Let t denote dln(2cN/ε)· cεe. We define t “buckets”
of points with similar weight under D as follows: for
i = 0, 1, . . . , t− 1, define Bi ⊆ [N ] to be

Bi
def
=

{
x ∈ [N ] :

1

(1 + ε/c)i+1
< D(x) ≤ 1

(1 + ε/c)i

}
.

Let L be the set of points x which are not in any of
B0, . . . , Bt−1 (because D(x) is too small); since every
point in L has D(x) < ε

2cN , one can see that D(L) ≤ ε
2c .

It is easy to see that if the sample R contains a
point from a bucket Bj then every point y ∈ Bj is
ε
c -covered by R. We say that bucket Bi is insignificant
if D(Bi) ≤ ε

2ct ; otherwise bucket Bi is significant. It is
clear that the total weight under D of all insignificant
buckets is at most ε/2c. Thus if we can show that for
the claimed sample size, with probability at least 99/100
every significant bucket has at least one of its points in
R, we will have established the lemma.

This is a simple probabilistic calculation: fix any
significant bucket Bj . The probability that m random
draws from D all miss Bj is at most (1− ε

2ct )
m, which is

at most 1
100t for a suitable (absolute constant) choice of

c′. Thus a union bound over all (at most t) significant
buckets gives that with probability at least 99/100, no
significant bucket is missed by R.

The next lemma formalizes the sense in which some
“neighborhood” of a point in a cover must “witness” the
fact that D1 and D2 are far from each other:

Lemma 11. Suppose dTV(D1, D2) ≥ ε, and let
R = {r1, . . . , rt} be an (ε̃, ε̃)-cover for D1 where

ε̃ ≤ ε/100. Then, there exists j ∈ [t] such that at least
one of the following conditions holds for every α ∈ [ε̃, 2ε̃]:

1. D1(UD1
α (rj)) ≥ ε̃

t and D2(UD1
α (rj)) /∈ [1 −

ε̃, 1 + ε̃]D1(UD1
α (rj)), or D1(UD1

α (rj)) < ε̃
t and

D2(UD1
α (rj)) >

2ε̃
t ;

2. D1(UD1
α (rj)) ≥ ε̃

t , and at least an
ε̃-fraction of the points i in UD1

α (rj) satisfy
D2(i)
D2(rj) /∈ [1/(1 + α+ ε̃), 1 + α+ ε̃];

3. D1(UD1
α (rj)) ≥ ε̃

t , and the total weight accord-
ing to D2 of the points i in UD1

α (rj) for which
D2(i)
D2(rj) /∈ [1/(1 + α+ ε̃), 1 + α+ ε̃] is at least ε̃2

t .

Proof: Without loss of generality, we can assume that
ε ≤ 1/4. Suppose, contrary to the claim, that for each rj

there exists αj ∈ [ε̃, 2ε̃] such that if we let Uj
def
= UD1

αj
(rj),

then the following holds:

1. If D1(Uj) <
ε̃
t , then D2(Uj) ≤ 2ε̃

t ;

2. If D1(Uj) ≥ ε̃
t , then:

(a) D2(Uj) ∈ [1− ε̃, 1 + ε̃]D1(Uj);

(b) Less than an ε̃-fraction of the points y in Uj
satisfy D2(y)

D2(rj) /∈ [1/(1 + αj + ε̃), 1 + αj + ε̃];

(c) The total weight according to D2

of the points y in Uj for which
D2(y)
D2(rj) /∈ [1/(1 + αj + ε̃), 1 + αj + ε̃] is at

most ε̃2

t ;

We show that in such a case dTV(D1, D2) < ε, contrary
to the premise of the claim.

Consider each point rj ∈ R such that
D1(Uj) ≥ ε̃

t . By the foregoing discussion (point 2(a)),
D2(Uj) ∈ [1− ε̃, 1 + ε̃]D1(Uj). By the definition of Uj
(and since αj ≤ 2ε̃),

D1(rj) ∈ [1/(1 + 2ε̃), 1 + 2ε̃]
D1(Uj)

|Uj |
.

Turning to bound D2(rj), on one hand (by 2(b))

D2(Uj) =
∑
y∈Uj

D2(y) ≥ ε̃|Uj | · 0 + (1− ε̃)|Uj | ·
D2(rj)

1 + 3ε̃
,

and so

D2(rj) ≤
(1 + 3ε̃)D2(Uj)

(1− ε̃) |Uj |
≤ (1 + 6ε̃)

D1(Uj)

|Uj |
.

On the other hand (by 2(c)),

D2(Uj) =
∑
y∈Uj

D2(y) ≤ ε̃2

t
+ |Uj | · (1 + 3ε̃)D2(rj) ,



and so

D2(rj) ≥ D2(Uj)− ε̃2/t
(1 + 3ε̃) |Uj |

≥ (1− ε̃)D1(Uj)− ε̃D1(Uj)

(1 + 3ε̃) |Uj |

≥ (1− 5ε̃)
D1(Uj)

|Uj |
.

Therefore, for each such rj we have

(5.11) D2(rj) ∈ [1− 8ε̃, 1 + 10ε̃]D1(rj) .

Let C
def
=
⋃t
j=1 Uj . We next partition the points in C

so that each point i ∈ C is assigned to some rj(i) such
that i ∈ Uj(i). We define the following “bad” subsets of
points in [N ]:

1. B1
def
= [N ] \ C, so that D1(B1) ≤ ε̃ (we later bound

D2(B1));

2. B2
def
=
{
i ∈ C : D1(Uj(i)) < ε̃/t

}
, so in particular

D1(B2) ≤ ε̃ and D2(B2) ≤ 2ε̃;

3. B3
def
= {i ∈ C \B2 : D2(i) /∈ [1/(1 + 3ε̃),

1 + 3ε̃]D2(rj(i))
}

, so that D1(B3) ≤ 2ε̃ and
D2(B3) ≤ ε̃2.

Let B
def
= B1∪B2∪B3. Observe that for each i ∈ [N ]\B

we have that

D2(i) ∈ [1/(1 + 3ε̃), 1 + 3ε̃]D2(rj(i))(5.12)

⊂ [1− 15ε̃, 1 + 15ε̃]D1(rj(i))

⊂ [1− 23ε̃, 1 + 23ε̃]D1(i) ,

where the first containment follows from the fact that
i /∈ B, the second follows from Equation (5.11), and the
third from the fact that i ∈ Uj(i). In order to complete
the proof we need a bound on D2(B1), which we obtain
next.

D2(B1) = 1−D2([N ] \B1) ≤ 1−D2([N ] \B)

≤ 1− (1− 23ε̃)D1([N ] \B)

≤ 1− (1− 23ε̃)(1− 4ε̃) ≤ 27ε̃ .

Therefore,

dTV(D1, D2) =
1

2

N∑
i=1

|D1(i)−D2(i)|

≤ 1

2

(
D1(B) +D2(B) +

∑
i/∈B

23ε̃D1(i)
)

< ε ,

and we have reached a contradiction.

Algorithm 6 Algorithm PCONDD1,D2-Test-Equality-
Unknown
Input: PCOND query access to distributions D1 and
D2 and a parameter ε.

1. Set ε̃ = ε/100. Draw a sample R of size t =

Θ̃
(

logN
ε2

)
from D1.

2. For each rj ∈ R:

(a) Call Estimate-NeighborhoodD1
on rj with

κ = ε̃, η = ε̃
8 , β = ε̃

2t , δ = 1
100t and let the

output be denoted by (ŵ
(1)
j , αj).

(b) Set θ = κηβδ/64 = Θ̃(ε7/ log2N) and draw
a sample S1 from D1, of size s1 = Θ

(
t
ε2

)
=

Θ̃
(

logN
ε4

)
. and a sample S2 from D2, of size

s2 = Θ
(
t log t
ε3

)
= Θ̃

(
logN
ε5

)
.

(c) For each point i ∈ S1 ∪ S2 call
CompareD1({rj}, {i}, θ/4, 4, 1/(200t(s1 +
s2))) and CompareD2

({rj}, {i}, θ/4, 4, 1/(200t(s1+

s2))), and let the outputs be denoted ρ
(1)
rj (i)

and ρ
(2)
rj (i), respectively (where in particular

these outputs may be High or Low).

(d) Let ŵ
(2)
j be the fraction of occurrences of i ∈ S2

such that ρ
(1)
rj (i) ∈ [1/(1 + αj + θ/2), 1 + αj +

θ/2].

(e) If ( ŵ
(1)
j ≤ 3

4
ε̃
t and ŵ

(2)
j > 3

2
ε̃
t ) or ( ŵ

(1)
j > 3

4
ε̃
t

and ŵ
(2)
j /ŵ

(1)
j /∈ [1−ε̃/2, 1+ε̃/2] ), then output

REJECT.

(f) If there exists i ∈ S1 ∪ S2 such that ρ
(1)
rj (i) ∈

[1/(αj + ε̃/2), 1 + αj + ε̃/2] and ρ
(2)
rj (i) /∈

[1/(αj + 3ε̃/2), 1 + αj + 3ε̃/2], then output
REJECT.

3. Output ACCEPT.

Theorem 2. If D1 = D2 then with probability at least
2/3 Algorithm PCOND-Test-Equality-Unknown re-
turns ACCEPT, and if dTV(D1, D2) ≥ ε, then with prob-
ability at least 2/3 Algorithm PCOND-Test-Equality-
Unknown returns REJECT. The number of PCOND

queries performed by the algorithm is Õ
(

log6N
ε21

)
.

Proof: The number of queries performed by the al-
gorithm is the sum of: (1) t times the number of
queries performed in each execution of Estimate-
Neighborhood (in Line 2-a) and (2) t · (s1 + s2) =
O(t · s2) times the number of queries performed



in each execution of Compare (in Line 2-c). By
Lemma 2 (and the settings of the parameters in the
calls to Estimate-Neighborhood), the first term

is O
(
t · log(1/δ)·log(log(1/δ)/(βη2))

κ2η4β3δ2

)
= Õ

(
log6N
ε19

)
, and by

Lemma 1 (and the settings of the parameters in the calls

to Compare), the second term is O
(
t · s2 · log(t·s2)

θ2

)
=

Õ
(

log6N
ε21

)
, so that we get the bound stated in the theo-

rem.
We now turn to establishing the correctness of the

algorithm. We shall use the shorthand Uj for UD1
αj

(rj),

and U ′j for UD1

αj+θ(rj). We consider the following
“desirable” events.

1. The event E1 is that the sample R is a (ε̃, ε̃)-weight-
cover for D1 (for ε̃ = ε/100). By Lemma 10 (and
an appropriate constant in the Θ(·) notation for the
size of R), the probability that E1 holds is at least
99/100.

2. The event E2 is that all calls to Estimate-
Neighborhood are as specified by Lemma 2. By
the setting of the confidence parameter in the calls
to the procedure, the event E2 holds with probabil-
ity at least 99/100.

3. The event E3 is that all calls to the procedure
Compare are as specified by Lemma 1. By the
setting of the confidence parameter in the calls to
the procedure, the event E3 holds with probability
at least 99/100.

4. The event E4 is that D2(U ′j \ Uj) ≤ ηβ/16 =

ε̃2/(256t) for each j. If D2 = D1 then this
event follows from E2. Otherwise, it holds with
probability at least 99/100 by the setting of θ and
the choice of αj (as shown in the proof of Lemma 2
in the analysis of the event E1 there ).

5. The event E5 is defined as follows. For each j,
if D2(Uj) ≥ ε̃/(4t), then |S2 ∩ Uj |/|S2| ∈ [1 −
ε̃/10, 1 + ε̃/10]D2(Uj), and if D2(Uj) < ε̃/(4t) then
|S2 ∩ Uj |/|S2| < (1 + ε̃/10)ε̃/(4t). This event holds
with probability at least 99/100 by applying a
multiplicative Chernoff bound in the first case, and
Corollary 4 in the second.

6. The event E6 is that for each j we have |S2 ∩
(U ′j \ Uj)|/|S2| ≤ ε̃2/(128t). Conditioned on E4,
the event E6 holds with probability at least 99/100
by applying Corollary 4.

From this point on we assume that events E1−E6 all
hold. Note that in particular this implies the following:

1. By E2, for every j:

• If D1(Uj) ≥ β = ε̃/(2t), then ŵ
(1)
j ∈ [1 − η, 1 +

η]D1(Uj) = [1− ε̃/8, 1 + ε̃/8]D1(Uj).

• If D1(Uj) < ε̃/(2t), then ŵ
(1)
j ≤ (1 + ε̃/8)(ε̃/(2t)).

2. By E3, for every j and for each point i ∈ S1 ∪ S2:

• If i ∈ Uj , then ρ
(1)
rj (i) ∈ [1/(1+αj+ θ

2 ), 1+αj+ θ
2 ].

• If i /∈ U ′j , then ρ
(1)
rj (i) /∈ [1/(1+αj+ θ

2 ), 1+αj+ θ
2 ].

3. By the previous item and E4–E6:

• If D2(Uj) ≥ ε̃/(4t), then ŵ
(2)
j ≥ (1− ε̃/10)D2(Uj)

and ŵ
(2)
j ≤ (1 + ε̃/10)D2(Uj) + ε̃2/(128t) ≤

(1 + ε̃/8)D2(Uj).

• If D2(Uj) < ε̃/(4t) then ŵ
(2)
j ≤ (1+ ε̃/10)ε̃/(4t)+

ε̃2/(128t) ≤ (1 + ε̃/4)(ε̃/(4t)).

Completeness. Assume D1 and D2 are the same
distribution D. For each j, if D(Uj) ≥ ε̃/t, then by

the foregoing discussion, ŵ
(1)
j ≥ (1 − ε̃/8)D(Uj) >

3ε̃/(4t) and ŵ
(2)
j /ŵ

(1)
j ∈ [(1 − ε̃/8)2, (1 + ε̃/8)2] ⊂

[1− ε̃/2, 1 + ε̃/2], so that the algorithm does not reject
in Line 2-e. Otherwise (i.e., D(Uj) < ε̃/t), we
consider two subcases. Either D(Uj) ≤ ε̃/(2t), in which

case ŵ
(1)
j ≤ 3ε̃/(4t), or ε̃/(2t) < D(Uj) < ε̃/t, and then

ŵ
(1)
j ∈ [1 − ε̃/8, 1 + ε̃/8]D1(Uj). Since in both cases

ŵ
(2)
j ≤ (1+ ε̃/8)D(Uj) ≤ 3ε̃/(2t), the algorithm does not

reject in Line 2-e. By E3, the algorithm does not reject
in Line 2-f either. We next turn to establish soundness.

Soundness. Assume dTV(D1, D2) ≥ ε. By applying
Lemma 11 on R (and using E1), there exists an index
j for which one of the items in the lemma holds. We
denote this index by j∗, and consider the three items in
the lemma.

1. If Item 1 holds, then we consider its two cases:

(a) In the first case, D1(Uj∗) ≥ ε̃/t andD2(Uj ∗) /∈
[1 − ε̃, 1 + ε̃]D1(Uj∗). Due to the lower

bound on D1(Uj∗) we have that ŵ
(1)
j∗ ∈ [1 −

ε̃/8, 1 + ε̃/8]D1(Uj∗), so that in particular

ŵ
(1)
j∗ > 3ε̃/(4t). As for ŵ

(2)
j∗ , either ŵ

(2)
j∗ <

(1− ε̃)(1 + ε̃/8)D1(Uj∗) (this holds both when
D2(Uj∗) ≥ ε̃/(4t) and when D2(Uj∗) < ε̃/(4t))

or ŵ
(2)
j∗ > (1 + ε̃)(1− ε̃/10)D1(Uj∗). In either

(sub)case ŵ
(2)
j∗ /ŵ

(1)
j∗ /∈ [1− ε̃/2, 1+ ε̃/2], causing

the algorithm to reject in (the second part of )
Line 2-e.



(b) In the second case, D1(Uj∗) < ε̃/t and
D2(Uj∗) > 2ε̃/t. Due to the lower bound

on D2(Uj∗) we have that ŵ
(2)
j∗ ≥ (1 −

ε̃/10)D2(Uj∗) > (1 − ε̃/10)(2ε̃/t), so that in

particular ŵ
(2)
j∗ > (3ε̃/(2t)). As for ŵ

(1)
j∗ , if

D1(Uj∗) ≤ ε̃/(2t), then ŵ
(1)
j∗ ≤ 3ε̃/(4t), caus-

ing the algorithm to reject in (the first part
of) Line 2-e. If ε̃/(2t) < D1(Uj∗) ≤ ε̃/t, then

ŵ
(1)
j∗ ∈ [1−ε̃/8, 1+ε̃/8]D1(Uj∗) ≤ (1+ε̃/8)(ε̃/t),

so that ŵ
(2)
j∗ /ŵ

(1)
j∗ ≥

(1−ε̃/10)(2ε̃/t)
(1+ε̃/8)ε̃/t > (1 + ε̃/2),

causing the algorithm to reject in (either the
first or second part of) Line 2-e.

2. If Item 2 holds, then by the choice of the size
of S1, which is Θ(t/ε̃2), with probability at least
99/100, the sample S1 will contain a point i for

which D2(i)
D2(rj∗ ) /∈ [1/(1 + αj∗ + ε̃), 1 + αj∗ + ε̃], and

by E3 this will be detected in Line 2-f.

3. Similarly, if Item 3 holds, then by the choice of
the size of S2, with probability at least 99/100,
the sample S2 will contain a point i for which
D2(i)
D2(rj∗ ) /∈ [1/(1 + αj∗ + ε̃), 1 + αj∗ + ε̃], and by E3

this will be detected in Line 2-f.

The theorem is thus established.
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A Useful tools from probability

On several occasions we will use the data processing
inequality for variation distance. This fundamental result
says that for any two distributions D, D′, applying any
(possibly randomized) function to D and D′ can never
increase their statistical distance; see e.g. part (iv) of
Lemma 2 of [23] for a proof of this lemma.

Lemma 12. ( Data Processing Inequality for TV)
Let D, D′ be two distributions over a domain Ω. Fix
any randomized function10 F on Ω, and let F (D) be the
distribution such that a draw from F (D) is obtained by
drawing independently x from D and f from F and then
outputting f(x) (likewise for F (D′)). Then we have

dTV(F (D), F (D′)) ≤ dTV(D,D′).

We next give several variants of Chernoff bounds
(see e.g. Chapter 4 of [18]).

Theorem 3. Let Y1, . . . , Ym be m independent random
variables that take on values in [0, 1], where E[Yi] = pi,
and

∑m
i=1 pi = P . For any γ ∈ (0, 1] we have

(additive) Pr

[
m∑
i=1

Yi > P + γm

]
≤ exp(−2γ2m)

(A.1)

Pr

[
m∑
i=1

Yi < P − γm

]
≤ exp(−2γ2m)

(multiplicative) Pr

[
m∑
i=1

Yi > (1 + γ)P

]
< exp(−γ2P/3)

(A.2)

and

(multiplicative) Pr

[
m∑
i=1

Yi < (1− γ)P

]
< exp(−γ2P/2).

(A.3)

10Which can be seen as a distribution over functions over Ω.

The bound in Equation (A.2) is derived from the follow-
ing more general bound, which holds from any γ > 0:

(A.4) Pr

[
m∑
i=1

Yi > (1 + γ)P

]
≤
(

eγ

(1 + γ)1+γ

)P
,

and which also implies that for any B > 2eP ,

(A.5) Pr

[
m∑
i=1

Yi > B

]
≤ 2−B .

The following extension of the multiplicative bound
is useful when we only have upper and/or lower bounds
on P (see Exercise 1.1 of [11]):

Corollary 4. In the setting of Theorem 3 suppose that
PL ≤ P ≤ PH . Then for any γ ∈ (0, 1], we have

Pr

[
m∑
i=1

Yi > (1 + γ)PH

]
< exp(−γ2PH/3)(A.6)

Pr

[
m∑
i=1

Yi < (1− γ)PL

]
< exp(−γ2PL/2)(A.7)

We will also use the following corollary of Theorem 3:

Corollary 5. Let 0 ≤ w1, . . . , wm ∈ R be such that
wi ≤ κ for all i ∈ [m] where κ ∈ (0, 1]. Let
X1, . . . , Xm be i.i.d. Bernoulli random variables with
Pr[Xi = 1] = 1/2 for all i, and let X =

∑m
i=1 wiXi and

W =
∑m
i=1 wi. For any γ ∈ (0, 1],

Pr

[
X > (1 + γ)

W

2

]
< exp

(
−γ2W

6κ

)
and

Pr

[
X < (1− γ)

W

2

]
< exp

(
−γ2W

4κ

)
,

and for any B > e ·W ,

Pr[X > B] < 2−B/κ .

Proof: Let w′i = wi/κ (so that w′i ∈ [0, 1]), let W ′ =∑m
i=1 w

′
i = W/κ, and for each i ∈ [m] let Yi = w′iXi, so

that Yi takes on values in [0, 1] and E[Yi] = w′i/2. Let
X ′ =

∑m
i=1 w

′
iXi =

∑m
i=1 Yi, so that E[X ′] = W ′/2. By

the definitions of W ′ and X ′ and by Equation (A.2), for
any γ ∈ (0, 1],

Pr

[
X > (1 + γ)

W

2

]
= Pr

[
X ′ > (1 + γ)

W ′

2

]
< exp

(
−γ2W

′

6

)
= exp

(
−γ2W

6κ

)
,



and similarly by Equation (A.3)

Pr

[
X < (1− γ)

W

2

]
< exp

(
−γ2W

4κ

)
.

For B > e ·W = 2e ·W/2 we apply Equation (A.5) and
get

Pr [X > B] = Pr [X ′ > B/κ] < 2−B/κ,

as claimed.
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