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Abstract

Let C be a class of probability distributions over the discrete domain [n] = {1, . . . , n}. We show that
if C satisfies a rather general condition – essentially, that each distribution in C can be well-approximated
by a variable-width histogram with few bins – then there is a highly efficient (both in terms of running
time and sample complexity) algorithm that can learn any mixture of k unknown distributions from C.

We analyze several natural types of distributions over [n], including log-concave, monotone hazard
rate and unimodal distributions, and show that they have the required structural property of being well-
approximated by a histogram with few bins. Applying our general algorithm, we obtain near-optimally
efficient algorithms for all these mixture learning problems as described below. More precisely,

• Log-concave distributions: We learn any mixture of k log-concave distributions over [n] using
k · Õ(1/ε4) samples (independent of n) and running in time Õ(k log(n)/ε4) bit-operations (note
that reading a single sample from [n] takes Θ(log n) bit operations). For the special case k = 1 we
give an efficient algorithm using Õ(1/ε3) samples; this generalizes the main result of [DDS12b]
from the class of Poisson Binomial Distributions to the much broader class of all log-concave
distributions. Our upper bounds are not far from optimal since any algorithm for this learning
problem requires Ω(k/ε5/2) samples.

• Monotone hazard rate (MHR) distributions: We learn any mixture of k MHR distributions
over [n] using O(k log(n/ε)/ε4) samples and running in time Õ(k log2(n)/ε4) bit-operations.
Any algorithm for this learning problem must use Ω(k log(n)/ε3) samples.

• Unimodal distributions: We give an algorithm that learns any mixture of k unimodal distributions
over [n] using O(k log(n)/ε4) samples and running in time Õ(k log2(n)/ε4) bit-operations. Any
algorithm for this problem must use Ω(k log(n)/ε3) samples.
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1 Introduction

1.1 Background and motivation. Learning an unknown probability distribution given access to indepen-
dent samples is a classical topic with a long history in statistics and probability theory. Theoretical computer
science researchers have also been interested in these problems at least since the 1990s [KMR+94, Das99],
with an explicit focus on the computational efficiency of algorithms for learning distributions. Many works
in theoretical computer science over the past decade have focused on learning and testing various kinds
of probability distributions over high-dimensional spaces, see e.g. [Das99, FM99, DS00, AK01, VW02,
FOS05, RS05, BS10, KMV10, MV10, ACS10] and references therein. There has also been significant
recent interest in learning and testing various types of probability distributions over the discrete domain
[n] = {1, . . . , n}, see e.g. [BKR04, VV11b, VV11a, DDS12a, DDS12b].
A natural type of distribution learning problem, which is the focus of this work, is that of learning a unknown
mixture of “simple” distributions. Mixtures of distributions have received much attention in statistics [Lin95,
RW84, TSM85] and in recent years have been intensively studied in computer science as well (see many of
the papers referenced above). Given distributions p1, . . . , pk and non-negative values µ1, . . . , µk that sum
to 1, we say that p =

∑k
i=1 µipi is a k-mixture of components p1, . . . , pk with mixing weights µ1, . . . , µk.

A draw from p is obtained by choosing i ∈ [k] with probability µi and then making a draw from pi.
In this paper we work in essentially the classical “density estimation” framework [Sil86, Sco92, DL01]
which is very similar to the model considered in [KMR+94] in a theoretical computer science context. In
this framework the learning algorithm is given access to independent samples drawn from an unknown target
distribution over [n], and it must output a hypothesis distribution h over [n] such that with high probability
the total variation distance dTV (p, h) between p and h is at most ε. Thus, for learning mixture distributions,
our goal is simply to construct a high-accuracy hypothesis distribution which is very close to the mixture
distribution that generated the data. In keeping with the spirit of [KMR+94], we shall be centrally concerned
with the running time as well as the number of samples required by our algorithms that learn mixtures of
various types of discrete distributions over [n].

We focus on density estimation rather than, say, clustering or parameter estimation, for several reasons.
First, clustering samples according to which component in the mixture each sample came from is often an
impossible task unless restrictive separation assumptions are made on the components; we prefer not to make
such assumptions. Second, the classes of distributions that we are chiefly interested in (such as log-concave,
MHR and unimodal distributions) are all non-parametric classes, so it is unclear what “parameter estimation”
would even mean for these classes. Finally, even in highly restricted special cases, parameter estimation
provably requires sample complexity exponential in k, the number of components in the mixture. Moitra
and Valiant [MV10] have shown that parameter estimation for a mixture of k Gaussians inherently requires
exp(Ω(k))) samples. Their argument can be translated to the discrete setting, with translated Binomial
distributions in place of Gaussians, to provide a similar lower bound for parameter estimation of translated
Binomial mixtures. Thus, parameter estimation even for a mixture of k translated Binomial distributions
over [n] (a highly restricted special case of all the mixture classes we consider, since translated Binomial
distributions are log-concave, MHR and unimodal) requires exp(Ω(k)) samples. This rather discouraging
lower bound motivates the study of other variants of the problem of learning mixture distributions.
Returning to our density estimation framework, it is not hard to show that from an information-theoretic
perspective, learning a mixture of distributions from a class C is never much harder than learning a single
distribution from C. In Appendix A we give a simple argument which establishes the following:

Proposition 1.1. [Sample Complexity of Learning Mixtures] Let C be a class of distributions over [n]. Let
A be an algorithm which learns any unknown distribution p in C using m(n, ε) · log(1/δ) samples, i.e. with
probability 1 − δ A outputs a hypothesis h such that dTV (p, h) ≤ ε. Then there is an algorithm A′ which
uses Õ(k/ε3) ·m(n, ε/20) · log2(1/δ) samples and learns any unknown k-mixture of distributions in C to
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variation distance ε with confidence 1− δ.

While the generic algorithm A′ uses relatively few samples, it is computationally highly inefficient, with
running time exponentially higher than the runtime of algorithm A (since A′ tries all possible partitions of
its input sample into k separate subsamples). Indeed, naive approaches to learning mixture distributions run
into a “credit assignment” problem of determining which component distribution each sample point belongs
to.
As the main contributions of this paper, we (i) give a general algorithm which efficiently learns mixture
distributions over [n] provided that the component distributions satisfy a mild condition; and (ii) show that
this algorithm can be used to obtain highly efficient algorithms for natural mixture learning problems.

1.2 A general algorithm. The mild condition which we require of the component distributions in our
mixtures is essentially that each component distribution must be close to a (variable-width) histogram with
few bins. More precisely, let us say that a distribution q over [n] is (ε, t)-flat (see Section 2) if there is a
partition of [n] into t disjoint intervals I1, . . . , It such that p is ε-close (in total variation distance) to the
distribution obtained by “flattening” p within each interval Ij (i.e. by replacing p(k), for k ∈ Ij , with∑

i∈Ij p(i)/|Ij |). Our general result for learning mixture distributions is a highly efficient algorithm that
learns any k-mixture of (ε, t)-flat distributions:

Theorem 1.1 (informal statement). There is an algorithm that learns any k-mixture of (ε, t)-flat distribu-
tions over [n] to accuracy O(ε), using O(kt/ε3) samples and running in Õ(kt log(n)/ε3) bit-operations.

As we show in Section 1.3 below, Theorem 1.1 yields near-optimal sample complexity for a range of in-
teresting mixture learning problems, with a running time that is nearly linear in the sample size. Another
attractive feature of Theorem 1.1 is that it always outputs hypothesis distributions with a very simple struc-
ture (enabling a succinct representation), namely histograms with at most kt/ε bins.

1.3 Applications of the general approach. We apply our general approach to obtain a wide range of
learning results for mixtures of various natural and well-studied types of discrete distributions. These include
mixtures of log-concave distributions, mixtures of monotone hazard rate (MHR) distributions, and mixtures
of unimodal distributions. To do this, in each case we need a structural result stating that any distribution
of the relevant type can be well-approximated by a histogram with few bins. In some cases (unimodal
distributions) the necessary structural results were previously known, but in others (log-concave and MHR
distributions) we establish novel structural results that, combined with our general approach, yield nearly
optimal algorithms.

Log-concave distributions. Discrete log-concave distributions are essentially those distributions p that
satisfy p(k)2 ≥ p(k+ 1)p(k− 1) (see Section 4 for a precise definition). They are closely analogous to log-
concave distributions over continuous domains, and encompass a range of interesting and well-studied types
of discrete distributions, including binomial, negative binomial, geometric, hypergeometric, Poisson, Pois-
son Binomial, hyper-Poisson, Pólya-Eggenberger, and Skellam distributions (see Section 1 of [FBR11]).
In the continuous setting, log-concave distributions include include uniform, normal, exponential, logis-
tic, extreme value, Laplace, Weibull, Gamma, Chi and Chi-Squared and Beta distributions, see [BB05].
Log-concave distributions over [n] have been studied in a range of different contexts including economics,
statistics and probability theory, and algebra, combinatorics and geometry, see [An95, FBR11, Sta89] and
references therein.

Our main learning result for mixtures of discrete log-concave distributions is:

Theorem 1.2. There is an algorithm that learns any k-mixture of log-concave distributions over [n] to
variation distance ε using k · Õ(1/ε4) samples and running in Õ(k log(n)/ε4) bit-operations.
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We stress that the sample complexity above is completely independent of the domain size n. In the special
case of learning a single discrete log-concave distribution we achieve an improved sample complexity of
Õ(1/ε3) samples, with running time Õ(log(n)/ε3). This matches the sample complexity and running time
of the main result of [DDS12b], which was a specialized algorithm for learning Poisson Binomial Distri-
bution over [n]. Our new algorithm is simpler, applies to the broader class of all log-concave distributions,
has a much simpler and more self-contained analysis, and generalizes to mixtures of k distributions (at the
cost of an additional 1/ε factor in runtime and sample complexity). We note that these algorithmic results
are not far from the best possible for mixtures of log-concave distributions. We show in Section 4 that
for k ≤ n1−Ω(1) and ε ≥ 1/nΩ(1), any algorithm for learning a mixture of k log-concave distributions to
accuracy ε must use Ω(k/ε2.5) samples.

Monotone Hazard Rate (MHR) distributions. A discrete distribution p over [n] is said to have a monotone

(increasing) hazard rate if the hazard rate H(i)
def
= p(i)∑

j≥i
p(j)

is a non-decreasing function of i. It is well

known that every discrete log-concave distribution is MHR (see e.g. part (ii) of Proposition 10 of [An95]),
but MHR is a more general condition than log-concavity (for example, it is easy to check that every non-
decreasing distribution over [n] is MHR, but such distributions need not be log-concave). MHR distributions
arise frequently in mechanism design [Mye81] and reliability theory; [BMP63] is a good reference for basic
properties of these distributions.

Our main learning result for mixtures of MHR distributions is:
Theorem 1.3. There is an algorithm that learns any k-mixture of MHR distributions over [n] to variation
distance ε using O(k log(n/ε)/ε4) samples and running in Õ(k log2(n)/ε4) bit-operations.

This theorem is also nearly optimal. We show that for k ≤ n1−Ω(1) and ε ≥ 1/nΩ(1), any algorithm for
learning a mixture of k MHR distributions to accuracy ε must use Ω(k log(n)/ε3) samples.

Unimodal distributions. A distribution over [n] is said to be unimodal if its pdf is monotone non-decreasing
over [1, t] for some t ≤ n and then monotone non-increasing on [t, n]. Every log-concave distribution
is unimodal, but the MHR and unimodal conditions are easily seen to be incomparable. Many natural
types of distributions are unimodal and there has been extensive work on density estimation for unimodal
distributions and related questions [Rao69, Weg70, BKR04, Bir97, Fou97].

Our main learning result for mixtures of unimodal distributions is:
Theorem 1.4. There is an algorithm that learns any k-mixture of unimodal distributions over [n] to variation
distance ε using O(k log(n)/ε4) samples and running in Õ(k log2(n)/ε4) bit-operations.

Our approach in fact extends to learning a k-mixture of t-modal distributions (see Appendix D). The same
lower bound argument that we use for mixtures of MHR distributions also gives us that for k ≤ n1−Ω(1)

and ε ≥ 1/nΩ(1), any algorithm for learning a mixture of k unimodal distributions to accuracy ε must use
Ω(k log(n)/ε3) samples.

1.4 Related work. Log-concave distributions: Maximum likelihood estimators for both continuous [DR09,
Wal09] and discrete [FBR11] log-concave distributions have been recently studied by various authors. For
special cases of log-concave densities over R (that satisfy various restrictions on the shape of the pdf) upper
bounds on the minimax risk of estimators are known, see e.g. Exercise 15.21 of [DL01]. (We remark that
these results do not imply the k = 1 case of our log-concave mixture learning result.) Perhaps the most
relevant prior work is the recent algorithm of [DDS12b] which gives a Õ(1/ε3)-sample, Õ(log(n)/ε3)-time
algorithm for learning any Poisson Binomial Distribution over [n]. (As noted above, we match the perfor-
mance of the [DDS12b] algorithm for the broader class of all log-concave distributions, as the k = 1 case
of our log-concave mixture learning result.)
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Achlioptas and McSherry [AM05] and Kannan et al. [KSV08] gave algorithms for clustering points drawn
from a mixture of k high-dimensional log-concave distributions, under various separation assumptions on
the distance between the means of the components. We are not aware of prior work on density estimation of
mixtures of arbitrary log-concave distributions in either the continuous or the discrete setting.

MHR distributions: As noted above, MHR distributions appear frequently and play an important role in
reliability theory and in economics (to the extent that the MHR condition is considered a standard assump-
tion in these settings). Surprisingly, the problem of learning an unknown MHR distribution or mixture of
such distributions has not been explicitly considered in the statistics literature. We note that several authors
have considered the problem of estimating the hazard rate of an MHR distribution in different contexts, see
e.g. [Wan86, HW93, GJ11, Ban08].

Unimodal distributions: The problem of learning a single unimodal distribution is well-understood: Birgé
[Bir97] gave an efficient algorithm for learning continuous unimodal distributions (whose density is abso-
lutely bounded); his algorithm, when translated to the discrete domain [n], requires O(log(n)/ε3) samples.
This sample size is also known to be optimal (up to constant factors)[Bir87a]. In recent work, Daskalakis et
al. [DDS12a] gave an efficient algorithm to learn t-modal distributions over [n]. We remark that their result
does not imply ours, as even a mixture of two unimodal distributions over [n] may have Ω(n) modes. We
are not aware of prior work on efficiently learning mixtures of unimodal distributions.

Paper Structure. Following some preliminaries in Section 2, Section 3 presents our general framework for
learning mixtures. Sections 4 and 5 analyze the cases of log-concave and MHR mixtures respectively. Due
to space limitations, the case of unimodal mixtures, as well as most proofs are deferred to an Appendix.

2 Preliminaries and notation

We write [n] to denote the discrete domain {1, . . . , n} and [i, j] to denote the set {i, . . . , j} for i ≤ j. For
v = (v(1), . . . , v(n)) ∈ Rn we write ‖v‖1 =

∑n
i=1 |v(i)| to denote its L1-norm.

For p a probability distribution over [n] we write p(i) to denote the probability of element i ∈ [n] under p,
so p(i) ≥ 0 for all i ∈ [n] and

∑n
i=1 p(i) = 1. For S ⊆ [n] we write p(S) to denote

∑
i∈S p(i). We write

pS to denote the sub-distribution over S induced by p, i.e. pS(i) = p(i) if i ∈ S and pS(i) = 0 otherwise.
A distribution p over [n] is non-increasing (resp. non-decreasing) if p(i+ 1) ≤ p(i) (resp. p(i+ 1) ≥ p(i)),
for all i ∈ [n− 1]; p is monotone if it is either non-increasing or non-decreasing.
Let p, q be distributions over [n] with corresponding cdfs P,Q. The total variation distance between p and

q is dTV (p, q)
def
= maxS⊆[n] |p(S) − q(S)| = (1/2) · ‖p − q‖1. The Kolmogorov distance between p and q

is defined as dK(p, q)
def
= maxj∈[n] |

∑j
i=1 p(i)−

∑j
i=1 q(i)|. Note that dK(p, q) ≤ dTV (p, q).

Finally, the following notation and terminology will be useful: given m independent samples s1, . . . , sm,
drawn from distribution p : [n] → [0, 1], the empirical distribution p̂m : [n] → [0, 1] is defined as follows:
for all i ∈ [n], p̂m(i) = |{j ∈ [m] | sj = i}|/m.

Partitions, flat decompositions and refinements. Given a partition I = {I1, . . . , It} of [n] into t disjoint
intervals and a distribution p over [n], we write pflat(I) to denote the flattened distribution. This is the
distribution over [n] defined as follows: for j ∈ [t] and i ∈ Ij , pflat(I)(i) = p(Ij)/|Ij |. That is, pflat(I) is
obtained from p by averaging the weight that p assigns to each interval in I over the entire interval.

Definition 2.1 (Flat decomposition). Let p be a distribution over [n] and P be a partition of [n] into t
disjoint intervals. We say that P is a (p, ε, t)-flat decomposition of [n] if dTV (p, pflat(P)) ≤ ε. If there exists
a (p, ε, t)-flat decomposition of [n] then we say that p is (ε, t)-flat.

Let I = {I1, . . . , Is} be a partition of [n] into s disjoint intervals, and J = {J1, . . . , Jt} be a partition of
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[n] into t disjoint intervals. We say that J is a refinement of I if each interval in I is a union of intervals in
J , i.e. for every a ∈ [s] there is a subset Sa ⊆ [t] such that Ia = ∪b∈SaJb.
For I = {Ii}ri=1 and I ′ = {I ′i}si=1 two partitions of [n] into r and s intervals respectively, we say that the
common refinement of I and I ′ is the partition J of [n] into intervals obtained from I and I ′ in the obvious
way, by taking all possible nonempty intervals of the form Ii ∩ I ′j . It is clear that J is both a refinement of
I and of I ′ and that J contains at most r + s intervals.

2.1 Basic Tools. We recall some basic tools from probability.

The VC inequality. Given a family of subsets A over [n], define ‖p‖A = supA∈A |p(A)|. The VC dimen-
sion of A is the maximum size of a subset X ⊂ [n] that is shattered by A (a set X is shattered by A if for
every Y ⊆ X , some A ∈ A satisfies A ∩X = Y ).

Theorem 2.1 (VC inequality, [DL01, p.31]). Let p̂m be an empirical distribution of m samples from p. Let
A be a family of subsets of VC dimension d. Then E[‖p− p̂m‖A] ≤ O(

√
d/m).

Uniform convergence. We will also use the following uniform convergence bound:

Theorem 2.2 ([DL01, p17]). Let A be a family of subsets over [n], and p̂m be an empirical distribution of
m samples from p. Let X be the random variable ‖p− p̂‖A. Then we have Pr[X − E[X] > η] ≤ e−2mη2 .

3 Learning mixtures of (ε, t)-flat distributions

In this section we present and analyze our general algorithm for learning mixtures of (ε, t)-flat distributions.
We proceed in stages by considering three increasingly demanding learning scenarios, each of which builds
on the previous one.

3.1 First scenario: known flat decomposition. We start with the simplest scenario, in which the learning
algorithm is given a partitionP which is a (p, ε, t)-flat decomposition of [n] for the target distribution p being
learned.

Algorithm LEARN-KNOWN-DECOMPOSITION(p,P, ε, δ):
Input: sample access to unknown distribution p over [n]; (p, ε, t)-flat decomposition P of [n]; accuracy
parameter ε; confidence parameter δ

1. Draw m = O((t+ log 1/δ)/ε2) samples to obtain an empirical distribution p̂m.

2. Return (p̂m)flat(P).

Theorem 3.1. Let p be any unknown target distribution over [n] and P be any (p, ε, t)-flat decomposition of
[n]. Algorithm LEARN-KNOWN-DECOMPOSITION(p,P, ε, δ) draws O((t+ log(1/δ))/ε2) samples from p
and with probability at least 1− δ, outputs (p̂m)flat(P) such that dTV ((p̂m)flat(P), p) ≤ 2ε. Its running time
is Õ((t+ log(1/δ)) · log(n)/ε2) bit operations.

Proof. We have dTV (p, (p̂m)flat(P)) ≤ dTV (p, pflat(P)) + dTV (pflat(P), (p̂m)flat(P)). The first term on the
right-hand side is at most ε by the definition of a (p, ε, t)-flat decomposition. The second term is also at
most ε, as follows by Proposition 3.1, stated and proved below.
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Proposition 3.1. Let p be any distribution over [n] and let p̂m be an empirical distribution of m = Θ((s+
log 1/δ)/ε2) samples from p. Let P be any partition of [n] into at most s intervals. Then with probability at
least 1− δ, dTV (pflat(P), (p̂m)flat(P)) ≤ ε.

Proof. By definition we have dTV (pflat(P), (p̂m)flat(P)) = (1/2)
∑

I∈P |p(I)− p̂m(I)| = |p(A)− p̂m(A)|,
where A =

⋃
{I ∈ P | p(I) > p̂m(I)}. Since P contains at most s intervals, A is a union of at most

s intervals. Consequently the above right-hand side is at most ‖p− p̂m‖As
, where As is the family of all

unions of at most s intervals over [n].1 Since the VC-dimension of As is 2s, Theorem 2.1 implies that the
considered quantity has expected value at most ε. The claimed result now follows by applying Theorem 2.2
with η = ε.

3.2 Second scenario: unknown flat distribution. The second algorithm deals with the scenario in which
the target distribution p is (ε/4, t)-flat but no flat decomposition is provided to the learner. We show that
in such a setting we can construct a (p, ε,O(t/ε))-flat decomposition P of [n], and then we can simply use
this P to run LEARN-KNOWN-DECOMPOSITION.
The basic subroutine RIGHT-INTERVAL will be useful here (and later). It takes as input an explicit descrip-
tion of a distribution q over [n], an interval J = [a, b] ⊆ [n], and a threshold τ > 0. It returns the longest
interval in [a, b] that ends at b and has mass at most τ under q. If no such interval exists then q(b) must
exceeds τ , and the subroutine simply returns the singleton interval [b, b].

Subroutine RIGHT-INTERVAL(q, J, τ):
Input: explicit description of distribution q; interval J = [a, b]; threshold τ

If q(b) > τ then set i′ = b, otherwise set i′ = min{a ≤ i ≤ b | q([i, b]) ≤ τ}. Return [i′, b].

The algorithm to construct a decomposition is given below:

Algorithm CONSTRUCT-DECOMPOSITION(p, τ, ε, δ):
Input: sample access to unknown distribution p over [n]; parameter τ ; accuracy parameter ε; confidence
parameter δ

1. Draw m = O((1/τ + log 1/δ)/ε2) samples to obtain an empirical distribution p̂m.

2. Set J = [n],P = ∅.

3. While J 6= ∅:
(a) Let I be the interval returned by RIGHT-INTERVAL(p̂m, J, τ).
(b) Add I to P and set J = J \ I .

4. Return P.

Theorem 3.2. Let C be a class of (ε/4, t)-flat distributions over [n]. Then for any p ∈ C, Algorithm CONSTRUCT-
DECOMPOSITION(p, ε/(4t), ε, δ) draws O(t/ε3 + log(1/δ)/ε2) samples from p, and with probability at
least 1 − δ outputs a (p, ε, 8t/ε)-flat decomposition P of [n]. Its running time is Õ((1/τ + log(1/δ)) ·
log(n)/ε2) bit operations.

1Formally, define A1 = {[a, b] | 1 ≤ a ≤ b ≤ n} ∪ {∅} as the collection of all intervals over [n], including the empty interval.
Then As = {I1 ∪ · · · ∪ Is | I1, . . . , Is ∈ A1}.
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To prove the above theorem we will need the following elementary fact about refinements:

Lemma 3.1 ([DDS+11, Lemma 4]). Let p be any distribution over [n] and let I = {Ii}ti=1 be a (p, ε, t)-flat
decomposition of [n]. If J = {Ji}t

′
i=1 is a refinement of I, then J is a (p, 2ε, t′)-flat decomposition of [n].

We will also use the following simple observation about the RIGHT-INTERVAL subroutine:

Observation 3.1. Suppose RIGHT-INTERVAL(q, J, τ) returns an interval I 6= J and RIGHT-INTERVAL(q, J\
I, τ) returns I ′. Then q(I) + q(I ′) > τ .

Proof of Theorem 3.2. Let τ def
= ε/(4t). By Observation 3.1, the partition P that the algorithm constructs

must contain at most 2/τ intervals. Let Q be the common refinement of P and a (p, ε/4, t)-flat decomposi-
tion of [n] (the existence of such a decomposition is guaranteed because every distribution in C is (ε/4, t)-
flat). Now note that dTV (p, pflat(P)) ≤ dTV (p, pflat(Q)) + dTV (pflat(Q), pflat(P)). SinceQ is a refinement of
the (p, ε/4, t)-flat decomposition of [n], Lemma 3.1 implies that the first term on the RHS is at most ε/2. It
remains to bound ∆ = dTV (pflat(Q), pflat(P)). Fix any interval I ∈ P and let us consider the contribution
(1/2)

∑
j∈I |pflat(Q)(j)−pflat(P)(j)| of I to ∆. If I ∈ P∩Q then the contribution to ∆ is zero; on the other

hand, if I ∈ P \ Q then the contribution to ∆ is at most p(I)/2. Thus the total contribution summed across
all I ∈ P is at most (1/2)

∑
I∈P\Q p(I). Now we observe that with probability at least 1− δ we have

(1/2)
∑

I∈P\Q
p(I) ≤ ε/4 + (1/2)

∑
I∈P\Q

p̂m(I), (1)

where the inequality follows from the fact that dTV (pflat(P), (p̂m)flat(P)) ≤ ε/4 by Proposition 3.1. If
I ∈ P \Q then I cannot be a singleton, and hence p̂m(I) ≤ τ by definition of RIGHT-INTERVAL. Finally, it
is easy to see that at most t intervals I in P do not belong to Q (because Q is the common refinement of P
and a partition of [n] into at most t intervals). Thus the second term on RHS of Eq. (1) is at most tτ = ε/4.
Hence ∆ ≤ ε/2 and the theorem is proved.

Our algorithm to learn an unknown (ε/4, t)-flat distribution is now very simple:

Algorithm LEARN-UNKNOWN-DECOMPOSITION(p, t, ε, δ):
Input: sample access to unknown distribution p over [n]; parameter t; accuracy parameter ε; confidence
parameter δ

1. Run CONSTRUCT-DECOMPOSITION(p, ε/(4t), ε, δ/2) to obtain a (p, ε, 8t/ε)-flat decomposition
P of [n].

2. Run LEARN-KNOWN-DECOMPOSITION(p,P, ε, δ/2) and return the hypothesis h that it outputs.

The following is now immediate:

Theorem 3.3. Let C be a class of (ε/4, t)-flat distributions over [n]. Then for any p ∈ C, Algorithm LEARN-
UNKNOWN-DECOMPOSITION(p, t, ε, δ) drawsO(t/ε3+log(1/δ)/ε2) samples from p, and with probability
at least 1 − δ outputs a hypothesis distribution h satisfying dTV (p, h) ≤ ε. Its running time is Õ(log(n) ·
(t/ε3 + log(1/δ)/ε2)) bit operations.
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3.3 Main result (third scenario): learning a mixture of flat distributions. We have arrived at the sce-
nario of real interest to us, namely learning an unknown mixture of k distributions each of which has an
(unknown) flat decomposition. The key to learning such distributions is the following structural result,
which says that any such mixture must itself have a flat decomposition:

Lemma 3.2. Let C be a class of (ε, t)-flat distributions over [n], and let p be any k-mixture of distributions
in C. Then p is a (2ε, kt)-flat distribution.

Proof. Let p =
∑k

j=1 µjpj be a k-mixture of components p1, . . . , pk ∈ C. Let Pj denote the (pj , ε, t)-flat
decomposition of [n] corresponding to pj , and let P be the common refinement of P1,P2, . . . ,Pk. It is
clear that P contains at most kt intervals. By Lemma 3.1, P is a (pj , 2ε, kt)-flat decomposition for every
pj . Hence we have

dTV (p, pflat(P)) = dTV (
k∑
j=1

µjpj ,
k∑
j=1

µj(pj)
flat(P)) ≤

k∑
j=1

µjdTV (pj , (pj)
flat(P)) ≤ 2ε.

Given Lemma 3.2, the desired mixture learning algorithm follows immediately from the results of the pre-
vious subsection:

Corollary 3.1. Let C be a class of (ε/8, t)-flat distributions over [n], and let p be any k-mixture of distribu-
tions in C. Then Algorithm LEARN-UNKNOWN-DECOMPOSITION(p, kt, ε, δ) drawsO(kt/ε3+log(1/δ)/ε2)
samples from p, and with probability at least 1−δ outputs a hypothesis distribution h satisfying dTV (p, h) ≤
ε. Its running time is Õ(log(n) · (kt/ε3 + log(1/δ)/ε2)) bit operations.

4 Learning mixtures of log-concave distributions

In this section we apply our general method from Section 3 to learn log-concave distributions over [n] and
mixtures of such distributions.
Definition 4.1. A probability distribution p over [n] is said to be log-concave if it satisfies the following
conditions: (i) if 1 ≤ i < j < k ≤ n are such that p(i)p(k) > 0 then p(j) > 0; and (ii) p(k)2 ≥
p(k − 1)p(k + 1) for all k ∈ [n].

We note that while some of the literature on discrete log-concave distributions states that the definition con-
sists solely of item (ii) above, item (i) is in fact necessary as well since without it log-concave distributions
need not even be unimodal (see the discussion following Definition 2.3 of [FBR11]).
In Section 4.1 we give an efficient algorithm which constructs an (ε,O(log(1/ε)/ε))-flat decomposition of
any target log-concave distribution. Combining this with Algorithm LEARN-KNOWN-DECOMPOSITION we
obtain an Õ(1/ε3)-sample algorithm for learning a single discrete log-concave distribution, and combining
it with Corollary 3.1 we obtain a k · Õ(1/ε4)-sample algorithm for learning a k-mixture of log-concave
distributions.

4.1 Constructing a flat decomposition given samples from a log-concave distribution. We recall the
well-known fact that log-concavity implies unimodality (see e.g. [KG71]). Thus, it is useful to analyze
log-concave distributions which additionally are monotone (since a general log-concave distribution can be
viewed as consisting of two such pieces). With this motivation we give the following lemma (for the proof
see Appendix B.1):
Lemma 4.1. Let p be a distribution over [n] that is non-decreasing and log-concave on [1, b] ⊆ [n]. Let
I = [a, b] be an interval of mass p(I) = τ , and suppose that the interval J = [1, a − 1] has mass p(J) =
σ > 0. Then

p(b)/p(a) ≤ 1 + τ/σ.
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We will also use the following elementary fact:

Fact 4.1. Let p be a distribution over [n] and I ⊆ [n] be an interval such that maxi,j∈I p(i)/p(j) ≤ 1 + η.

Then the flattened sub-distribution pflat(I)(i)
def
= p(I)/|I| satisfies dTV (pI , pflat(I)) ≤ η · p(I).

We are now ready to present and analyze our algorithm DECOMPOSE-LOG-CONCAVE that draws samples
from an unknown log-concave distribution and outputs a flat decomposition. The algorithm simply runs the
general algorithm CONSTRUCT-DECOMPOSITION with an appropriate choice of parameters. However the
analysis will not go via the “generic” Theorem 3.2 (which would yield a weaker bound) but instead uses
Lemma 4.1, which is specific to log-concave distributions.

Algorithm DECOMPOSE-LOG-CONCAVE(p, ε, δ):
Input: sample access to unknown log-concave distribution p over [n]; accuracy parameter ε; confidence
parameter δ

Set τ = Θ(ε/ log(1/ε)). Run CONSTRUCT-DECOMPOSITION(p, τ, ε, δ) and return the decomposition
P that it yields.

Our main theorem in this section is the following (see Appendix B.2 for the proof).

Theorem 4.2. For any log-concave distribution p over [n], Algorithm DECOMPOSE-LOGCONCAVE(p, ε, δ)
draws O(log(1/ε)/ε3 + log(1/δ)(log(1/ε))2/ε2) samples from p and with probability at least 1 − δ con-
structs a decomposition P that is (p, ε,O(log(1/ε)/ε))-flat.

Our claimed upper bounds follow from the above theorem by using our framework of Section 3. In Ap-
pendix B.3 we give the details and also show the claimed lower bounds.

5 Learning mixtures of MHR distributions

In this section we apply our general method from Section 3 to learn monotone hazard rate (MHR) distribu-
tions over [n] and mixtures of such distributions.

Definition 5.1. Let p be a distribution supported in [n]. The hazard rate of p is the function H(i)
def
=

p(i)∑
j≥i

p(j)
; if

∑
j≥i p(j) = 0 then we say H(i) = +∞. We say that p has monotone hazard rate (MHR) if

H(i) is a non-decreasing function over [n].

It is known that every log-concave distribution over [n] is MHR but the converse is not true, as can easily be
seen from the fact that every monotone non-decreasing distribution over [n] is MHR.

In Section 5.1 we prove that every MHR distribution over [n] has an (ε,O(log(n/ε)/ε))-flat decomposi-
tion. We combine this with our general results from Section 3 to get learning results for mixtures of MHR
distributions.

5.1 Learning a single MHR distribution. Our algorithm to construct a flat decomposition of an MHR
distribution p is DECOMPOSE-MHR, given below. Note that this algorithm takes an explicit description of
p as input and does not draw any samples from p. Roughly speaking, the algorithm works by partitioning
[n] into intervals such that within each interval the value of p never deviates from its value at the leftmost
point of the interval by a multiplicative factor of more than (1 + ε/8).
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Algorithm DECOMPOSE-MHR(p, ε):

Input: explicit description of MHR distribution p over [n]; accuracy parameter ε > 0

1. Set J = [n] and set Q to be the empty set.

2. Let I be the interval returned by RIGHT-INTERVAL(p, J, ε/8), and I ′ be the interval returned by
RIGHT-INTERVAL(p, J \ I, ε/8). Set J = J \ (I ∪ I ′).

3. Set i ∈ J to be the smallest integer such that p(i) ≥ ε/(4n). If no such i exists, let I ′′ = J and
then go to Step 5. Otherwise, let I ′′ = [1, i− 1] and J = J \ I ′′.

4. While J 6= ∅:

(a) Let j ∈ J be the smallest integer such that either p(j) > (1 + ε/8)p(i) or p(j) < 1
1+ε/8p(i)

holds. If no such j exists let I ′′′ = J , otherwise, let I ′′′ = [i, j − 1].
(b) Add I ′′′ to Q, and set J = J \ I ′′′.
(c) Let i = j.

5. Return P = Q∪ {I, I ′, I ′′}.

Our first lemma for the analysis of DECOMPOSE-MHR states that MHR distributions satisfy a condition
that is similar to being monotone non-decreasing (see Appendix C.1 for the proof):

Lemma 5.1. Let p be an MHR distribution over [n]. Let I = [a, b] ⊂ [n] be an interval, and R = [b+ 1, n]

be the elements to the right of I . Let η def
= p(I)/p(R). Then p(b+ 1) ≥ 1

1+ηp(a).

Let Q = {I1, I2, . . . , I|Q|}, with Ii = [ai, bi], 1 ≤ i ≤ |Q|, where ai < ai+1. Let Q′ = {Ii ∈ Q : p(ai) >
p(ai+1)} and Q′′ = {Ii ∈ Q : p(ai) ≤ p(ai+1)}. Thus Q′ consists of those intervals I in Q which are such
that the following interval’s initial value is significantly smaller than the initial value of I , and Q′′ consists
of those I ∈ Q for which the following interval’s initial value is significantly larger than the initial value of
I . We also denote Ri = [ai+1, n]. For convenience, we also let a|Q|+1 = b|Q| + 1.

We first bound the “total multiplicative decrease in p” across all intervals in Q′ (proof in Appendix C.2):

Lemma 5.2. We have
∏
Ii∈Q′

p(ai)
p(ai+1) ≤

8
ε .

At this point we can bound the number of intervals produced by DECOMPOSE-MHR:

Lemma 5.3. Step 4 of Algorithm DECOMPOSE-MHR adds at most O(log(n/ε)/ε) intervals to Q.

Proof. We first bound the number of intervals in Q′. Let the intervals in Q′ be I ′1, I
′
2, . . . I

′
|Q′|, where

I ′j = [a′j , b
′
j ] and a′1 > a′2 > · · · > a′|Q′|. Observation 3.1 implies that the total probability mass p(I ∪ I ′) is

at least ε/8. Hence, p([b′1 + 1, n]) is at least ε/8 and we have p(R′1) ≥ ε/8. For j ≥ 1 it holds

p(R′j) ≥ (ε/8) (1 + ε/8)j−1 . (2)

Consequently the number of intervals in Q′ is bounded by O(log(1/ε)/ε).

Now we bound the number of intervals in Q′′. We consider the value of
∏
Ii∈Q

p(ai+1)
p(ai)

:

p(a|Q|+1)

p(a1)
=

∏
Ii∈Q

p(ai+1)

p(ai)
=

∏
Ii∈Q′′

p(ai+1)

p(ai)
·

∏
Ii∈Q′

p(ai+1)

p(ai)
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Since p(a|Q|+1) ≤ 1 and p(a1) ≥ ε/(4n), the above is at most 4n/ε; using Lemma 5.2, we get that∏
Ii∈Q′′

p(ai+1)

p(ai)
≤ (4n/ε) · (8/ε) = (32n/ε2).

On the other hand, for every Ii ∈ Q′′ we have that p(ai+1)
p(ai)

≥ (1 + ε/8). Consequently there can be at most
O((1/ε) log(n/ε)) intervals in Q′′, and the proof is complete.

It remains only to show that P is actually a flat decomposition of p:

Theorem 5.1. Algorithm DECOMPOSE-MHR outputs a partition P of [n] that is (p, ε, log(n/ε)/ε))-flat.

The proof is deferred to Appendix C.3. In Appendix C.4 we give the formal statements by applying our
framework and explain the lower bounds.

6 Conclusions and future work

This work introduces a simple general approach to learn mixtures of “structured” distributions over discrete
domains. We illustrate the usefulness of our approach by showing it yields nearly optimal algorithms for
learning mixtures of three natural and well-studied classes (log-concave, MHR and unimodal). In the process
we also establish novel structural properties of these classes.

Are there any other natural distribution classes for which our general framework is applicable? We suspect
so. At the technical level, the linear dependence on the parameters k and t in the sample complexity of
Theorem 1.1 is optimal (up to constant factors). It would be interesting to improve the dependence on 1/ε
from cubic down to quadratic (which would be best possible) with an efficient algorithm.
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A Proof of Proposition 1.1

At a high level, the algorithm A′ works by drawing a large set of samples from the target mixture and trying
all possible ways of partitioning the sample into k disjoint subsamples. For each partition of the sample
it runs algorithm A over each subsample and combines the resulting hypothesis distributions (guessing the
mixture weights) to obtain a hypothesis mixture distribution. Finally, a “hypothesis testing” procedure is
used to identify a high-accuracy hypothesis from the collection of all hypotheses distributions obtained in
this way.

More precisely, let p denote the unknown target k-mixture of distributions from C. Algorithm A′ works as
follows:

1. Draw a sample S of M = Õ(k/ε) ·m(n, ε/20) · log(5k/δ) samples from p.

2. For each possible way of partitioning S into k disjoint subsamples S̄ = (S1, . . . , Sk) such that each
|Si| ≥ m(n, ε/20) · log(5k/δ), run algorithm A a total of k times, using Si as the input sample
for the i-th run, to obtain hypothesis distributions hS̄1 , . . . , h

S̄
k . For each vector µ = (µ1, . . . , µk) of

non-negative mixing weights that sum to 1 and satisfy µi = (integer)·ε/(20k), let hS̄µ be the mixture
distribution

∑k
i=1 µih

S̄
i .

3. Draw M ′ = O(M log k + k log(k/ε)) · log(5/δ)/ε2 samples from p and use them to run the “hy-
pothesis testing” routine described in Lemma 11 of [DDS12b] over all hypotheses hS̄µ obtained in the
previous step. Output the hypothesis distribution that this routine outputs.

We now proceed with the analysis of the algorithm. Let p =
∑k

i=1 κipi denote the target k-mixture, where
κ1, . . . , κk are the mixing weights and p1, . . . , pk are the components. Without loss of generality we may
assume that i = 1, . . . , ` are the components such that the mixing weights κ1, . . . , κ` are at least ε/(20k).
A standard “balls in bins” analysis (see [NS60]) implies that with probability at least 1 − δ/5 the sample
S contains at least m(n, ε/20) · log(5k/δ) draws from each component p1, . . . , p`; we assume going forth
that this is indeed the case. Thus there will be some partition S̄ = (S1, . . . , Sk) which is such that each
Si with 1 ≤ i ≤ ` consists entirely of samples drawn from the component pi. For this S̄, we have that
with failure probability at most (δ/(5k)) · k ≤ δ/5, each hypothesis distribution hS̄i for 1 ≤ i ≤ ` satisfies
dTV (pi, h

S̄
i ) ≤ ε/20. Now let µ? denote the vector of hypothesis mixing weights (as described in Step 2)

that has |µ?i − κi| ≤ ε/(20k) for all i = 1, . . . , k. It is not difficult to show that the hypothesis mixture
distribution h? = hS̄µ? satisfies dTV (h?, p) ≤ 3ε/20 < ε/6, where ε/20 comes from the errors dTV (pi, h

S̄
i )

for i ≤ `, ε/20 comes from the inaccuracy in the mixing weights, and ε/20 comes from the (at most k)
components pj with j > ` that each have mixing weight at most ε/(20k).

Thus we have established that there is at least one hypothesis distribution h? among the hS̄µ’s that has
dTV (p, h?) ≤ ε/6. There are at most N = kM · (20k/ε)k hypotheses hS̄µ generated in Step 2, so the
algorithm of Lemma 11 of [DDS12b] requires O(logN) log(5/δ)/ε2 ≤ M ′ samples, and with probability
at least 1 − δ/5 it outputs a hypothesis distribution h that has dTV (p, h) ≤ ε. The overall probability of
outputting an ε-accurate hypothesis is at least 1− δ, and the proposition is proved.
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B Omitted Details from Section 4

B.1 Proof of Lemma 4.1. Let s def
= |I| = b − a + 1 be the length of I . We decompose J into intervals

J1, . . . , Jt of length s, starting from the right. More precisely, Jj
def
= I − js = [a − js, b − js] for

1 ≤ j ≤ t def
= d(a−1)/se. The leftmost interval Jt may contain non-positive integers; for this reason define

p(i)
def
= 0 for non-positive i (the new distribution is still log-concave). Also define J0

def
= I = [a, b]. Let

λ
def
= p(b)/p(a). We claim that

p(i− s) ≤ (1/λ) · p(i) (3)

for 1 ≤ i ≤ b. Eq. (3) holds for i = b, since p(b − s) ≤ p(a) by the non-decreasing property. The general
case i ≤ b follows by induction and using the fact that the ratio p(i− 1)/p(i) is non-decreasing in i for any
log-concave distribution (an immediate consequence of the definition of log-concavity).

It is easy to see that Eq. (3) implies
p(Jj+1) ≤ (1/λ) · p(Jj)

for 0 ≤ j ≤ t. Since the intervals have geometrically decreasing mass, this implies that

σ =
∑

1≤j≤t
p(Jj) ≤ p(I)

∑
j≥1

λ−j =
τ

λ− 1
.

Rearranging yields the desired inequality.

B.2 Proof of Theorem 4.2. We first note that the number of intervals in P is at most 2/τ by Observation
3.1; this will be useful below. We may also assume that dK(p, p̂m) ≤ τ , where p̂m is the empirical distri-
bution obtained in Step 1 of CONSTRUCT-DECOMPOSITION; this inequality holds with probability at least
1− δ, as follows by a combined application of Theorems 2.1 and 2.2. Since p is log-concave, it is unimodal.
Let i0 be a mode of p.

Let PL = {I ∈ P | I ⊂ [1, i0 − 1]} be the collection of intervals to the left of i0. We now bound the

contribution of intervals in PL to ∆
def
= dTV (p, pflat(P)). Let I1, . . . , ItL be the intervals in PL listed from

left to right. Let Jj = ∪j′<jIj′ be the union of intervals to the left of Ij . If Ij is a singleton, its contribution
to ∆ is zero. Otherwise,

p(Ij) ≤ p̂m(Ij) + τ ≤ 2τ

by the τ -closeness of p and p̂m in Kolmogorov distance and the definition of RIGHT-INTERVAL. Also, by
Observation 3.1, p̂m(Jj) ≥ b(j − 1)/2cτ ≥ ((j − 1)/2− 1)τ , and hence

p(Jj) ≥ p̂m(Jj)− τ ≥ τ(j − 5)/2,

again by closeness in Kolmogorov distance.

Since p is non-decreasing on [1, i0 − 1], we have

‖pIj − pflat(Ij)‖1 ≤
8

j − 5
τ

for j > 5, by Lemma 4.1 and Fact 4.1, using the upper and lower bounds on p(Ij) and p(Jj) respectively.
Consequently, ‖pIj − pflat(Ij)‖1 ≤ O(τ/j) for all j ∈ [tL]. Summing this inequality, we get∑

j≤tL
‖pI − pflat(Ij)‖1 ≤

∑
j≤tL

O(τ/j) = O(τ log(1/τ)).

The right-hand side is at most ε/2 by our choice of τ (with an appropriate constant in big-theta).
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Similarly, let PR = {I ∈ P | I ⊂ [i0 + 1, n]} be the collection of intervals to the right of i0. An
identical analysis (using the obvious analogue of Lemma 4.1 for non-increasing log-concave distributions
on [i0 + 1, n]) shows that the contribution of intervals in PR to ∆ is at most ε/2.

Finally, let I0 ∈ P be the interval containing i0. If I0 is a singleton, it does not contribute to ∆. Otherwise,
p̂m(I0) ≤ τ and p(I0) ≤ 2τ , hence the contribution of I0 to ∆ is at most 2τ .

Combining all three cases, ‖p− pflat(P)‖1 ≤ ε/2 + ε/2 + 2τ ≤ 2ε. Hence dTV(p, pflat(P)) ≤ ε as was to be
shown.

B.3 Formal Theorem Statements. It is clear that we can learn any unknown log-concave distribution by
running Algorithm DECOMPOSE-LOG-CONCAVE(p, ε, δ/2) to obtain a decomposition P and then Algo-
rithm LEARN-KNOWN-DECOMPOSITION(p, P, ε, δ/2) to obtain a hypothesis distribution h:

Corollary B.1. Given sample access to a log-concave distribution p over [n], there is an algorithm LEARN-
LOG-CONCAVE(p, ε, δ) that uses O(log(1/δ) log(1/ε)/ε3) samples from p and with probability at least
1−δ outputs a distribution h such that dTV (p, h) ≤ ε. Its running time is Õ(log(n) · (1/ε3 +log(1/δ)/ε2))
bit operations.

Theorem 4.2 of course implies that every log-concave distribution p is (ε,O(log(1/ε)/ε))-flat. We may
thus apply Corollary 3.1 and obtain our main learning result for k-mixtures of log-concave distributions:

Corollary B.2 (see Theorem 1.2). Let p be any k-mixture of log-concave distributions over [n]. There is
an algorithm LEARN-LOG-CONCAVE-MIXTURE(p, k, ε, δ) that draws O(k log(1/ε)/ε4 + log(1/δ)/ε2)
samples from p and with probability at least 1 − δ outputs a distribution h such that dTV (p, h) ≤ ε. Its
running time is Õ(log(n) · (k log(1/ε)/ε4 + log(1/δ)/ε2)) bit operations.

Lower bounds. It is shown in [DL01, Lemma 15.1] that learning a continuous distribution whose density
is bounded and convex over [0, 1] to accuracy ε requires Ω((1/ε)5/2) samples. An easy adaptation of this
argument implies the same result for a bounded concave density over [0, 1]. By an appropriate discretization
procedure, one can show that learning a discrete concave density over [n] requires Ω((1/ε)5/2) samples for
all ε ≥ 1/nΩ(1). Since a discrete concave distribution is also log-concave, the same lower bound holds for
this case too. For the case of k-mixtures, we may consider a uniform mixture of k component distributions
where the i-th distribution in the mixture is supported on [1 + (i − 1)n/k, in/k] and is log-concave on its
support. It is clear that each component distribution is log-concave over [n], and it is not difficult to see that
in order to learn such a mixture to accuracy ε, at least 9/10 of the component distributions must be learned
to total variation distance at most 10ε. We thus get that for k ≤ n1−Ω(1) and ε ≥ 1/nΩ(1), any algorithm for
learning a mixture of k log-concave distributions to accuracy ε must use Ω(kε−5/2) samples.

C Omitted Details from Section 5

C.1 Proof of Lemma 5.1. If p(b + 1) > p(a) then p(b + 1) ≥ 1
1+ηp(a) holds directly, so for the rest of

the proof we may assume that p(b+ 1) ≤ p(a).

By the definition of the MHR condition we have p(a)
p([a+1,n]) ≤

p(b+1)
p([b+2,n]) and hence we have

p([a, n])

p(a)
≥ p([b+ 1, n])

p(b+ 1)
.

Thus
p(b+ 1) ≥ p([b+ 1, n])

p([a, n])
p(a) =

1

1 + η
p(a)

as desired.
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C.2 Proof of Lemma 5.2. Observation 3.1 implies that the total probability mass p(I ∪ I ′) on intervals I
and I ′ is at least ε/8. We thus have∏

Ii∈Q′

p(ai)

p(ai+1)
≤

∏
Ii∈Q′

p(Ii) + p(Ri)

p(Ri)
≤

∏
Ii∈Q

p(Ii) + p(Ri)

p(Ri)
=
p(I1) + p(R1)

p(R|Q|)
≤ 1

ε/8
,

where the first inequality follows from Lemma 5.1, the second inequality is self-evident, the equality follows
from the telescoping product, and the final inequality is because p(I ∪ I ′) ≥ ε/8.

C.3 Proof of Theorem 5.1. Lemma 5.3 shows that P contains at most O(log(n/ε)/ε) intervals, so it
remains only to argue that dTV (p, pflat(P)) ≤ ε.
We first consider the two rightmost intervals I and I ′. If |I| = 1 then clearly dTV (pI , pflat(I)) = 0, and if
|I| > 1 then p(I) ≤ ε

8 and consequently dTV (pI , pflat(I)) ≤ ε/8. Identical reasoning applies to I ′. For the
leftmost interval I ′′, we have that p(I ′′) ≤ ε

4 , so dTV (pI
′′
, pflat(I′′)) ≤ ε/4. Thus, so far we have shown that

the contribution to dTV (p, pflat(P)) from I ∪ I ′ ∪ I ′′ is at most ε/2.

Now for each interval I ′′′ in Q, we have

max
i,j∈I′′′

p(i)

p(j)
≤ (1 + ε/8)2 = 1 + ε/4 + ε2/64.

Since the total probability mass on intervals I and I ′ is at least ε/8 by Observation 3.1, the total probability
mass on intervals in Q is at most 1 − ε/8. An easy calculation using Observation 4.1 shows that the total
contribution to dTV (p, pflat(P)) from intervals in Q is at most ε/4, and the theorem is proved.

C.4 Formal Theorem Statements. Applying Corollary 3.1, we get our main learning result for mixtures
of MHR distributions:

Corollary C.1 (see Theorem 1.3). Let p be any k-mixture of MHR distributions over [n]. There is an
algorithm LEARN-MHR-MIXTURE(p, k, ε, δ) that draws O(k log(n/ε)/ε4 + log(1/δ)/ε2) samples from
p and with probability at least 1 − δ outputs a distribution h such that dTV (p, h) ≤ ε. Its running time is
Õ((log n)2 · (k log(1/ε)/ε4 + log(1/δ)/ε2)) bit operations.

Lower bounds. Birgé [Bir87a] showed that for ε ≥ 1/nΩ(1), any algorithm for learning a monotone
distribution over [n] to accuracy ε must use Ω(log(n)/ε3) samples. We may consider a uniform mixture
of k component distributions where the i-th distribution in the mixture is supported on and monotone non-
decreasing over [1 + (i − 1)n/k, in/k]. Each component distribution is MHR, and it is not difficult to see
that in order to learn such a mixture to accuracy ε at least 9/10 of the component distributions must be
learned to total variation distance at most 10ε. We thus get that for k ≤ n1−Ω(1) and ε ≥ 1/nΩ(1), any
algorithm for learning a mixture of k MHR distributions to accuracy ε must use Ω(k log(n)/ε3) samples.

D Learning mixtures of unimodal and t-modal distributions

In this section we apply our general method from Section 3 to learn mixtures of unimodal (and, more
generally, t-modal) distributions over [n]. Here our task is quite easy because of a result of L. Birgé [Bir87b]
which essentially provides us with the desired flat decompositions. 2

We begin by defining unimodal and t-modal distributions over [n]:
2We note that Birgé’s structural result was obtained as part of an efficient learning algorithm for monotone distributions; Birgé

subsequently gave an efficient learning algorithm for unimodal distributions [Bir97]. However, we are not aware of work prior to
ours on learning mixtures of unimodal or t-modal distributions.
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Definition D.1. A distribution p over [n] is unimodal if there exists i ∈ [n] such that p is non-decreasing
over [1, i] and non-increasing over [i, n]. For t > 1, distribution p over [n] is t-modal if there is a partition
of [n] into t intervals I1, . . . , It such that the conditional distributions pI1 , . . . , pIt are each unimodal.

By adapting a construction of Birgé (proved in [Bir87b] for distributions over the continuous real line) to
the discrete domain [n], Daskalakis et al. [DDS+11] established the following:

Theorem D.1 ([DDS+11, Theorem 5]). Let p be any monotone distribution (either non-increasing or non-
decreasing) over [n]. Then p is (ε,O(log(n)/ε))-flat.

We note that it can be shown (using the same construction that is used in the Ω(log(n)/ε3) sample com-
plexity lower bound of [Bir87a] for learning monotone distributions) that O(log(n)/ε) is the best possible
bound for the number of intervals required in Theoorem D.1.

An immediate consequence of Theorem D.1 is that any unimodal distribution over [n] is (ε,O(log(n)/ε))-
flat, and any t-modal distribution over [n] is (ε,O(t · log(n)/ε))-flat. Using Corollary 3.1 we thus obtain
the following results for learning mixtures of unimodal or t-modal distributions:

Corollary D.1 (see Theorem 1.4). For any t ≥ 1, let p be any k-mixture of t-modal distributions over
[n]. There is an algorithm LEARN-MULTI-MODAL-MIXTURE(p, k, t, ε, δ) that draws O(kt log(n)/ε4 +
log(1/δ)/ε2) samples from p and with probability at least 1−δ outputs a distribution h such that dTV (p, h) ≤
ε. Its running time is Õ(log(n) · (kt log(n)/ε4 + log(1/δ)/ε2)) bit operations.

Lower bounds. The lower bound arguments we gave for mixtures of MHR distributions (which are based
on Birgé’s lower bounds for learning monotone distributions) apply unchanged for mixtures of unimodal
distributions, since every distribution which is supported on and monotone non-decreasing over [1 + (i −
1)n/k, in/k] is unimodal over [n].
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