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Abstract

This paper addresses the problem of testing whether a
Boolean-valued function f is a halfspace, i.e. a function of
the form f(x) = sgn(w · x − θ). We consider halfspaces
over the continuous domain R

n (endowed with the standard
multivariate Gaussian distribution) as well as halfspaces
over the Boolean cube {−1, 1}n (endowed with the uniform
distribution). In both cases we give an algorithm that
distinguishes halfspaces from functions that are ǫ-far from
any halfspace using only poly( 1

ǫ
) queries, independent of the

dimension n.
Two simple structural results about halfspaces are at

the heart of our approach for the Gaussian distribution:
the first gives an exact relationship between the expected
value of a halfspace f and the sum of the squares of f ’s
degree-1 Hermite coefficients, and the second shows that
any function that approximately satisfies this relationship
is close to a halfspace. We prove analogous results for the
Boolean cube {−1, 1}n (with Fourier coefficients in place
of Hermite coefficients) for balanced halfspaces in which
all degree-1 Fourier coefficients are small. Dealing with
general halfspaces over {−1, 1}n poses significant additional
complications and requires other ingredients. These include
“cross-consistency” versions of the results mentioned above
for pairs of halfspaces with the same weights but different
thresholds; new structural results relating the largest degree-
1 Fourier coefficient and the largest weight in unbalanced
halfspaces; and algorithmic techniques from recent work on
testing juntas [FKR+02].

1 Introduction

A halfspace is a function of the form f(x) = sgn(w1x1 +
· · · + wnxn − θ). Halfspaces, also known as linear
threshold functions (abbreviated LTFs throughout this
paper), are a simple yet powerful class of functions.
For decades they have played an important role in
complexity theory, optimization, and voting theory, as
well as a central role in machine learning (see e.g.
[HMP+93, Yao90, Blo62, Nov62, MP68, STC00] and
related references).

The relationship between learning and property
testing has been the subject of much recent work (see
e.g. the references cited in the survey [Ron07]). In a
typical learning setup we are given access (via queries
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or random examples) to an unknown function f from a
class C, and we are asked to produce a hypothesis that
approximates f . In contrast, in property testing we
are given query-access to an arbitrary f and we would
like to distinguish whether f is a member of C or ǫ-far
from every member of C. Though it is well known that
any proper learning algorithm can be used as a testing
algorithm1 [GGR98], testing potentially requires fewer
queries than learning (and indeed when this is the case,
a query-efficient testing algorithm can be used to check
whether f is close to C before bothering to run a more
query-intensive learning algorithm).

Several classes of Boolean functions that are of in-
terest in learning theory have recently been studied
from a testing perspective. For example, [PRS02] show
how to test dictator functions, monomials, and O(1)-
term monotone DNFs with query complexity O(1

ǫ ), and
[FKR+02] show how to test k-juntas with query com-
plexity poly(k, 1

ǫ ). Most recently, [DLM+07] gave a gen-
eral method (which incorporates ideas and techniques
from learning theory) for testing several different func-
tion classes corresponding to the property of “having
a concise representation.” These classes include size-s
decision trees, s-term DNF formulas, and s-sparse poly-
nomials; in all cases the tester of [DLM+07] makes only
poly(s, 1

ǫ ) queries, independent of n.
In this work, we consider the problem of testing

LTFs. We feel that this is a natural question to
consider, given the immense amount of research that has
been dedicated to various versions of the LTF learning
problem.2 Our main result is that LTFs can be tested
with a number of queries that is independent of n.
In proving our main result we establish a range of
new structural results about LTFs, which essentially
characterize LTFs in terms of their degree-0 and degree-

1A learning algorithm is proper if the hypothesis that it
outputs is itself a member of C.

2Since LTFs have been studied so intensively from the learning
perspective, it is natural to wonder whether the learning-based
approach of [DLM+07] can be used for testing LTFs. However,
the techniques in [DLM+07] only apply to classes of functions
that are “well-approximated by juntas,” in the sense that every
function in the class is close to depending on few variables. This
is not the case with LTFs, since some LTFs (such as the majority
function) are not at all close to depending on few variables. Thus
it seems that fundamentally different techniques are required.



1 Fourier coefficients. These results have already proved
useful in other work; indeed, structural results from
this paper play a crucial role in the recent algorithm
of [OS08] which efficiently learns any LTF given only
its degree-0 and degree-1 Fourier coefficients. As we
describe in the conclusion, we are hopeful that our
techniques will help resolve other open questions in
areas such as derandomization as well.

We start by describing our testing results in more
detail.

Our Results. We adopt the standard property test-
ing model, in which the testing algorithm is allowed
black-box query access to an unknown function f and
must minimize the number of times it queries f . The
algorithm must with high probability pass all functions
that are LTFs and with high probability fail all func-
tions that have distance at least ǫ from any LTF. Our
main algorithmic results are the following:

1. We first consider functions that map Rn →
{−1, 1}, where we measure the distance be-
tween functions with respect to the standard n-
dimensional Gaussian distribution. In this setting
we give a poly(1

ǫ ) query algorithm for testing LTFs
with two-sided error.

2. [Main Result.] We next consider functions that
map {−1, 1}n → {−1, 1}, where (as is standard in
property testing) we measure the distance between
functions with respect to the uniform distribution
over {−1, 1}n. In this setting we also give a poly(1

ǫ )
query algorithm for testing LTFs with two-sided
error.

Discussion. We remark that the dependence on 1
ǫ in

our bounds is only polynomial, rather than exponential
or tower-type as in some other property testing algo-
rithms. We note that in contrast to testing, any learn-
ing algorithm — even one with black-box query access
to f — must make at least Ω(n

ǫ ) queries to learn an un-
known LTF to accuracy ǫ (this follows easily from, e.g.,
the results of [KMT93]). Thus the query complexity of
learning is linear in n, while the query complexity of our
testing algorithm is independent of n.

Note that the assumption that our testing algorithm
has query access to f (as opposed to, say, access only
to random labeled examples) is necessary to achieve
a complexity independent of n. Any LTF testing
algorithm with access only to uniform random examples
(x, f(x)) for f : {−1, 1}n → {−1, 1} must use at least
Ω(log n) examples (an easy argument shows that with
fewer examples, the distribution on examples labeled
according to a truly random function is statistically
indistinguishable from the distribution on examples

labeled according to a randomly chosen variable from
{x1, . . . , xn}).

We also note that while it is slightly unusual to
consider property testing under the standard multi-
variate Gaussian distribution, our results are much
simpler to establish in this setting because the rota-
tional invariance essentially means that we can deal
with a 1-dimensional problem. We moreover observe
that it seems essentially necessary to solve the LTF
testing problem in the Gaussian domain in order to
solve the problem in the standard {−1, 1}n uniform
distribution framework; to see this, observe that an
unknown function f : {−1, 1}n → {−1, 1} to be
tested could in fact have the structure f(x1, . . . , xdm) =

f̃
(

x1+···+xm√
m

, . . . ,
x(d−1)m+1+···+xdm√

m

)
in which case the

arguments to f̃ behave very much like d independent
standard Gaussian random variables.

Characterizations and Techniques. We establish
new structural results about LTFs which essentially
characterize LTFs in terms of their degree-0 and degree-
1 Fourier coefficients. For functions mapping {−1, 1}n

to {−1, 1} it has long been known [Cho61] that any lin-
ear threshold function f is completely specified by the
n+1 parameters consisting of its degree-0 and degree-1
Fourier coefficients (also referred to as its Chow param-
eters). While this specification has been used to learn
LTFs in various contexts [BDJ+98, Gol06, Ser07, OS08],
it is not clear how it can be used to construct efficient
testers (for one thing this specification involves n + 1
parameters, and in testing we want a query complexity
independent of n). Intuitively, we get around this diffi-
culty by giving new characterizations of LTFs as those
functions that satisfy a particular relationship between
just two parameters, namely the degree-0 Fourier co-
efficient and the sum of the squared degree-1 Fourier
coefficients. Moreover, our characterizations are robust
in that if a function approximately satisfies the rela-
tionship, then it must be close to an LTF. This is what
makes the characterizations useful for testing.

We first consider functions mapping Rn to {−1, 1}
where we view Rn as endowed with the standard n-
dimensional Gaussian distribution. Our characteriza-
tion is particularly clean in this setting and illustrates
the essential approach that also underlies the much more
involved Boolean case. On one hand, it is not hard to
show that for every LTF f , the sum of the squares of
the degree-1 Hermite coefficients3 of f is equal to a par-
ticular function of the mean of f — regardless of which
LTF f is. We call this function W ; it is essentially the

3These are analogues of the Fourier coefficients for L2 functions
over R

n with respect to the Gaussian measure.



square of the “Gaussian isoperimetric” function.
Conversely, Theorem 2.1 shows that if f : Rn →

{−1, 1} is any function for which the sum of the squares
of the degree-1 Hermite coefficients is within ±ǫ3 of
W (E[f ]), then f must be O(ǫ)-close to an LTF — in fact
to an LTF whose n weights are the n degree-1 Hermite
coefficients of f. The value E[f ] can clearly be estimated
by sampling, and moreover it can be shown that a simple
approach of sampling f on pairs of correlated inputs can
be used to obtain an accurate estimate of the sum of the
squares of the degree-1 Hermite coefficients. We thus
obtain a simple and efficient test for LTFs under the
Gaussian distribution and thereby establish Result 1.
This is done in Section 2.

In Section 3 we take a step toward handling general
LTFs over {−1, 1}n by developing an analogous char-
acterization and testing algorithm for the class of bal-
anced regular LTFs over {−1, 1}n; these are LTFs with
E[f ] = 0 for which all degree-1 Fourier coefficients are
small. The heart of this characterization is a pair of
results, Theorems 3.2 and 3.3, which give Boolean-cube
analogues of our characterization of Gaussian LTFs.
Theorem 3.2 states that the sum of the squares of the
degree-1 Fourier coefficients of any balanced regular
LTF is approximately W (0) = 2

π . Theorem 3.3 states
that any function f whose degree-1 Fourier coefficients
are all small and whose squares sum to roughly 2

π is in
fact close to an LTF — in fact, to one whose weights
are the degree-1 Fourier coefficients of f. Similar to the
Gaussian setting, we can estimate E[f ] by uniform sam-
pling and can estimate the sum of squares of degree-1
Fourier coefficients by sampling f on pairs of correlated
inputs. An additional algorithmic step is also required
here, namely checking that all the degree-1 Fourier co-
efficients of f are indeed small; it turns out that this
can be done by estimating the sum of fourth powers of
the degree-1 Fourier coefficients, which can again be ob-
tained by sampling f on (4-tuples of) correlated inputs.

The general case of testing arbitrary LTFs over
{−1, 1}n is substantially more complex and is dealt with
in Section 6 of the full version of this paper [MORS07].
We give a detailed outline of the algorithm in Section 4.
Very roughly speaking, the algorithm has three main
conceptual steps:

• First the algorithm implicitly identifies a set of
O(1) many variables that have “large” degree-
1 Fourier coefficients. Even a single such vari-
able cannot be explicitly identified using o(log n)
queries; we perform the implicit identification using
O(1) queries by adapting an algorithmic technique
from [FKR+02].

• Second, the algorithm analyzes the regular subfunc-

tions that are obtained by restricting these implic-
itly identified variables; in particular, it checks that
there is a single set of weights for the unrestricted
variables such that the different restrictions can all
be expressed as LTFs with these weights (but dif-
ferent thresholds) over the unrestricted variables.
Roughly speaking, this is done using a generalized
version of the regular LTF test that tests whether
a pair of functions are close to LTFs over the same
linear form but with different thresholds. The key
technical ingredients enabling this are Theorem 37
and 38 from the full paper, which generalize Theo-
rems 3.2 and 3.3 in two ways (to pairs of functions,
and to functions which may have nonzero expecta-
tion).

• Finally, the algorithm checks that there exists a
single set of weights for the restricted variables
that is compatible with the different biases of the
different restricted functions. If this is the case then
the overall function is close to the LTF obtained
by combining these two sets of weights for the
unrestricted and restricted variables. (Intuitively,
since there are only O(1) restricted variables there
are only O(1) possible sets of weights to check
here.)

Notation and Preliminaries. Except in Section 2,
throughout this paper f will denote a function from
{−1, 1}n to {−1, 1} (in Section 2 f will denote a
function from Rn to {−1, 1}). We say that a Boolean-
valued function g is ǫ-far from f if Pr[f(x) 6= g(x)] ≥ ǫ;
for f defined over the domain {−1, 1}n this probability
is with respect to the uniform distribution, and for f
defined over Rn the probability is with respect to the
standard n-dimensional Gaussian distribution.

A linear threshold function, or LTF, is a Boolean-
valued function of the form f(x) = sgn(w1x1 + ... +
wnxn − θ) where w1, ..., wn, θ ∈ R. The wi’s are called
weights, and θ is called the threshold. The sgn function
is 1 on arguments ≥ 0, and −1 otherwise.

We make extensive use of Fourier analysis of func-
tions f : {−1, 1}n → {−1, 1} and Hermite analysis of
functions f : Rn → {−1, 1}. We present the neces-
sary background on Fourier and Hermite analysis in Ap-
pendix A of the full paper [MORS07]

2 A Tester for LTFs over Rn

In this section we consider functions f that map Rn to
{−1, 1}, where we view Rn as endowed with the stan-
dard n-dimensional Gaussian distribution. Recall that
a draw of x from this distribution over Rn is obtained
by drawing each coordinate xi independently from the



standard one-dimensional Gaussian distribution with
mean zero and variance 1. In this section we will use
Hermite analysis on functions.

Gaussian LTF facts. Let f : Rn → {−1, 1} be an
LTF, f(x) = sgn(w·x−θ), and assume by normalization
that ‖w‖ = 1. Now the n-dimensional Gaussian
distribution is spherically symmetric, as is the class of
LTFs. Thus there is a sense in which all LTFs with
a given threshold θ are “the same” in the Gaussian
setting. (This is very much untrue in the discrete setting
of {−1, 1}n.) We can thus derive Hermite-analytic facts
about all LTFs by studying one particular LTF; say,
f(x) = sgn(e1 · x − θ). In this case, the picture is
essentially 1-dimensional; i.e., we can think of simply
h : R → {−1, 1} defined by h(x) = sgn(x − θ), where x
is a single standard Gaussian. The only parameter now
is θ ∈ R. Let us give some simple definitions and facts
concerning this function:

Definition 2.1. Let hθ : R → {−1, 1} be the function
of one Gaussian random variable x given by hθ(x) =
sgn(x − θ). We write φ for the p.d.f. of a standard

Gaussian; i.e., φ(t) = 1√
2π

e−t2/2.

1. We define the function µ : R ∪ {±∞} → [−1, 1]

by µ(θ) = ĥθ(0) = E[hθ]. Explicitly, µ(θ) =
−1 + 2

∫ ∞
θ

φ. Note that µ is a monotone strictly
decreasing function, and it follows that µ is invert-
ible.

2. We have that ĥθ(1) = E[hθ(x)x] = 2φ(θ) (by an
easy explicit calculation). We define the function
W : [−1, 1] → [0, 2/π] by W (ν) = (2φ(µ−1(ν)))2.
Equivalently, W is defined so that W (E[hθ]) =

ĥθ(1)2; i.e., W tells us what the squared degree-1
Hermite coefficient should be, given the mean. We
remark that W is a function symmetric about 0,
with a peak at W (0) = 2

π .

Proposition 2.1. 1. If x denotes a standard Gaus-
sian random variable, then E[|x − θ|] = 2φ(θ) −
θµ(θ).

2. |µ′| ≤
√

2/π everywhere, and |W ′| < 1 everywhere.

3. If |ν| = 1 − η then W (ν) = Θ(η2 log(1/η)).

Proof. The first statement is because both equal
E[hθ(x)(x − θ)]. The bound on µ’s derivative holds
because µ′ = −2φ. The bound on W ’s derivative
is because W ′(ν) = 4φ(θ)θ, where θ = µ−1(ν), and
this expression is maximized at θ = ±1, where it is
.96788 . . . < 1. Finally, the last statement follows ul-
timately from the fact that 1 − µ(θ) ∼ 2φ(θ)/|θ| for
|θ| ≥ 1.

Having understood the degree-0 and degree-1 Her-
mite coefficients for the “1-dimensional” LTF f : Rn →
{−1, 1} given by f(x) = sgn(x1−θ), we can immediately
derive analogues for general LTFs:

Proposition 2.2. Let f : Rn → {−1, 1} be the LTF
f(x) = sgn(w · x − θ), where w ∈ Rn. By scaling,
assume that ‖w‖ = 1. Then:

1. f̂(0) = E[f ] = µ(θ)

2. f̂(ei) =
√

W (E[f ])wi.

3.
∑n

i=1 f̂(ei)
2 = W (E[f ]).

Proof. The third statement follows from the second,
which we will prove. The first statement is left to
the reader. We have f̂(ei) = Ex[sgn(w · x − θ)xi].
Now w · x is distributed as a standard 1-dimensional
Gaussian. Further, w·x and xi are jointly Gaussian with
covariance E[(w · x)xi] = wi. Hence (w · x, xi) has the
same distribution as (y, wiy +

√
1 − w2

i · z) where y and
z are independent standard 1-dimensional Gaussians.
Thus

E
x
[sgn(w · x − θ)x1]

= E[sgn(y − θ)(wiy +
√

1 − w2
i · z)]

= wiĥθ(1) + E[sgn(y − θ)
√

1 − w2
i · z]

= wi

√
W (E[hθ]) + 0

=
√

W (E[f ])wi,

as desired.

The second item in the above proposition leads us
to an interesting observation: if f(x) = sgn(w1x1 +
· · · + wnxn − θ) is any LTF, then its vector of degree-1

Hermite coefficients, (f̂(e1), . . . , f̂(en)), is parallel to its
vector of weights, (w1, . . . , wn).

The tester. We now give a simple algorithm and prove
that it accepts any LTF with probability at least 2/3 and
rejects any function that is O(ǫ)-far from all LTFs with
probability at least 2/3. The algorithm is nonadaptive
and has two-sided error; the analysis of the two-sided
confidence error is standard and will be omitted.

Given an input parameter ǫ > 0, the algorithm
works as follows:

1. Let µ̃ denote an estimate of E[f ] that is accurate
to within additive accuracy ±ǫ3.

2. Let σ̃2 denote an estimate of
∑n

i=1 f̂(ei)
2 that is

accurate to within additive accuracy ±ǫ3.



3. If |σ̃2 − W (µ̃)| ≤ 2ǫ3 then output “yes,” otherwise
output “no.”

The first step can be performed simply by making
O(1/ǫ6) independent draws from the Gaussian distri-
bution, querying f on each draw, and letting µ̃ be the
corresponding empirical estimate of E[f ]; the result will
be ±ǫ3-accurate with high probability.

We describe how to perform the second step of esti-
mating

∑n
i=1 f̂(ei)

2 in Section 3 of the full version of the
paper, see Lemma 16 in particular [MORS07]. As de-
scribed there, the number of queries required is O(1/ǫ12)
for a ±ǫ3-accurate additive estimate. (We briefly note

that the estimate of
∑n

i=1 f̂(ei)
2 is obtained in a fairly

straightforward way from an estimate of E[f(x)f(y)]
where x and y are η-correlated n-dimensional Gaus-
sians for a suitably small η; more precisely, x and z are
both drawn independently from the usual n-dimensional
Gaussian distribution and y is set to be ηx+

√
1 − η2 ·z.

Thus in some sense the 2-query test “does f(x) equal
f(y) for x, y generated as described above?” is at the
heart of our algorithm for the Gaussian distribution.)

We now analyze the correctness of the test. The
“yes” case is quite easy: Since µ̃ is within ±ǫ3 of
E[f ], and since |W ′| ≤ 1 for all x (by Proposition 2.1
item 2), we conclude that W (µ̃) is within ±ǫ3 of the true
value W (E[f ]). But since f is an LTF, this value is

precisely
∑n

i=1 f̂(ei)
2, by Proposition 2.2 item 3. Now

σ̃2 is within ±ǫ3 of
∑n

i=1 f̂(ei)
2, and so the test indeed

outputs “yes”.
As for the “no” case, the following theorem implies

that any function f which passes the test with high
probability is O(ǫ)-close to an LTF (either a constant
function ±1 or a specific LTF defined by E[f ] and f ’s
degree-1 Hermite coefficients):

Theorem 2.1. Assume that |E[f ]| ≤ 1 − ǫ. If

|∑n
i=1 f̂(ei)

2 − W (E[f ])| ≤ 4ǫ3, then f is O(ǫ)-close
to an LTF (in fact to an LTF whose coefficients are the

Hermite coefficients f̂(ei)).

Proof. Let σ =
√∑

i f̂(ei)2, let t = µ−1(E[f ]), and

let h(x) = 1
σ

∑
f̂(ei)xi − t. We will show that f and

the LTF sgn(h) are O(ǫ)-close, by showing that both
functions are correlated similarly with h. We have

E[fh] =
1

σ

∑

i

f̂(ei)
2 − tE[f ] = σ − tE[f ],

where the first equality uses Plancherel. On the other
hand, by Proposition 2.1 (item 1), we have

E[|h|] = 2φ(t) − tµ(t)

= 2φ(µ−1(E[f ])) − tE[f ]

=
√

W (E[f ]) − tE[f ]

and thus

E[h(sgn(h) − f)] = E[|h| − fh]

=
√

W (E[f ]) − σ

≤ 4ǫ3√
W (E[f ])

≤ Cǫ2,

where C > 0 is some universal constant. Here the first
inequality follows easily from W (E[f ]) being 4ǫ3-close
to σ2 (see Fact 5 from the full paper) and the second
follows from the assumption that |E[f ]| ≤ 1−ǫ, which by
Proposition 2.1 (item 3) implies that

√
W (E[f ]) ≥ Ω(ǫ).

Now given that E[h(sgn(h) − f)] ≤ Cǫ2, the value
of Pr[f(x) 6= sgn(h(x))] is greatest if the points of
disagreement are those on which h is smallest. Let p
denote Pr[f 6= sgn(h)]. Since h is a normal random
variable with variance 1, it is easy to see that Pr[|h| ≤
p/2] ≤ 1√

2π
p ≤ p/2. It follows that f and sgn(h)

disagree on a set of measure at least p/2, over which |h|
is at least p/2. Thus, E[h(sgn(h)−f)] ≥ 2·(p/2)·(p/2) =
p2/2. Combining this with the above, it follows that
p ≤

√
2C · ǫ, and we are done.

3 A Tester for Balanced Regular LTFs over

{−1, 1}n

It is natural to hope that an algorithm similar to the
one we employed in the Gaussian case — estimating
the sum of squares of the degree-1 Fourier coefficients
of the function, and checking that it matches up with
W of the function’s mean — can be used for LTFs
over {−1, 1}n as well. It turns out that LTFs which
are what we call “regular” — i.e., they have all their
degree-1 Fourier coefficients small in magnitude — are
amenable to the basic approach from Section 2, but
LTFs which have large degree-1 Fourier coefficients
pose significant additional complications. For intuition,
consider Maj(x) = sgn(x1 + · · · + xn) as an example
of a highly regular LTF and sgn(x1) as an example of
an LTF which is highly non-regular. In the first case,
the argument x1 + · · · + xn behaves very much like a
Gaussian random variable so it is not too surprising
that the Gaussian approach can be made to work; but
in the second case, the ±1-valued random variable x1 is
very unlike a Gaussian.

We defer the general case to Section 4, and here
present a tester for balanced, regular LTFs.

Definition 3.1. We say that any function f :
{−1, 1}n → {−1, 1} is “τ-regular” if |f̂(i)| ≤ τ for all
i ∈ [n].

Definition 3.2. We say that an LTF f : {−1, 1}n →
{−1, 1} is “balanced” if it has threshold zero and mean



zero. We define LTFn,τ to be the class of all balanced,
τ-regular LTFs.

The balanced regular LTF subcase gives an impor-
tant conceptual ingredient in the testing algorithm for
general LTFs and admits a relatively self-contained pre-
sentation. As we discuss in Section 4, though, signifi-
cant additional work is required to get rid of either the
“balanced” or “regular” restriction.

The following theorem shows that we can test the
class LTFn,τ with a constant number of queries:

Theorem 3.1. Fix any τ > 0. There is an O(1/τ8)-
query algorithm A that satisfies the following property:
Let ǫ be any value ǫ ≥ Cτ1/6, where C is an absolute
constant. Then if A is run with input ǫ and black-box
access to any f : {−1, 1}n → {−1, 1},

• if f ∈ LTFn,τ then A outputs “yes” with probability
at least 2/3;

• if f is ǫ-far from every function in LTFn,τ then A
outputs “no” with probability at least 2/3.

The algorithm A in Theorem 3.1 has two steps.
The purpose of Step 1 is to check that f is roughly
τ -regular; if it is not, then the test rejects since f is
certainly not a τ -regular LTF. In Step 2, A checks that∑n

i=1 f̂(i)2 ≈ W (0) = 2
π . This check is based on the

idea (see Section 3.1) that for any regular function f ,
the degree-1 Fourier weight is close to 2

π if and only if
f is close to being an LTF. (Note the correspondence
between this statement and the results of Section 2 in
the case E[f ] = 0.)

We now describe algorithm A, which takes as input
a parameter ǫ ≥ Cτ1/6:

1. First A estimates
∑n

i=1 f̂(i)4 to within an additive
±τ2. If the estimate is greater than 2τ2 then A
halts and outputs “no,” otherwise it continues.

2. Next A estimates
∑n

i=1 f̂(i)2 to within an additive
±C1τ

1/3 (where C1 > 0 is an absolute constant
specified below). If this estimate is within an
additive ±2C1τ

1/3 of 2
π then A outputs “yes”,

otherwise it outputs “no.”

A description of how the sums of powers of degree-1
Fourier coefficients can be estimated is given in Sec-
tion 3 of the full paper, see Lemma 16 in particu-
lar [MORS07]. The basic idea is that for randomly
chosen strings x1, x2, · · · , xp−1, and a randomly chosen
“noise vector” µ ∈ {−1, 1}n whose bits are indepen-
dently 1 with probability 1

2 + 1
2η, the estimatable quan-

tity E[f(x1)f(x2) · · · f(xp−1)f(x1 ⊙ x2 ⊙ · · · ⊙ xp−1 ⊙

µ)] (where ⊙ denotes coordinatewise multiplication) is

equal to
∑

S⊆[n] η
|S|f̂(S)p, which in turn is very close

to E[f ] + η
∑n

i=1 f̂(S)p for small values of η.
In Section 3.1, we prove two theorems showing that

balanced regular LTFs are essentially characterized by
the property

∑n
i=1 f̂(i)2 ≈ 2

π . In Section 3.2 we prove
correctness of the test.

3.1 Useful theorems about LTFn,τ . The first the-
orem of this section tells us that any f ∈ LTFn,τ has
sum of squares of degree-1 Fourier coefficients very close
to 2

π . The next theorem is a sort of dual; it states that
any Boolean function f whose degree-1 Fourier coeffi-
cients are all small and have sum of squares ≈ 2

π is close
to being a balanced regular LTF (in fact, to the LTF
whose weights equal f ’s degree-1 Fourier coefficients).
Note the similarity in spirit between these results and
the characterization of LTFs with respect to the Gaus-
sian distribution that was provided by Proposition 2.2
item 3 and Theorem 2.1.

Theorem 3.2. Let f ∈ LTFn,τ . Then∣∣∣
∑n

i=1 f̂(i)2 − 2
π

∣∣∣ ≤ O(τ2/3).

Proof. Let ρ > 0 be small (chosen later). Using
Proposition 7.1 and Theorem 5 of [KKMO07], we have

∑
S

ρ|S|f̂(S)2 =
2

π
arcsinρ ± O(τ).

On the LHS side we have that f̂(S) = 0 for all
even |S| since f is an odd function, and therefore,

|∑S ρ|S|f̂(S)2 − ρ
∑

|S|=1 f̂(S)2| ≤ ρ3
∑

|S|≥3 f̂(S)2 ≤
ρ3. On the RHS, by a Taylor expansion we have
2
π arcsinρ = 2

πρ + O(ρ3). We thus conclude

ρ
n∑

i=1

f̂(i)2 =
2

π
ρ ± O(ρ3 + τ).

Dividing by ρ and optimizing with ρ = Θ(τ1/3) com-
pletes the proof.

Theorem 3.3. Let f : {−1, 1}n → {−1, 1} be any

function such that |f̂(i)| ≤ τ for all i and |
∑n

i=1 f̂(i)2−
2
π | ≤ γ. Write ℓ(x) :=

∑n
i=1 f̂(i)xi. Then f and

sgn(ℓ(x)) are O(
√

γ + τ )-close.

Proof. First note that if γ > 1/3 then the claimed
bound is vacuous, so we may assume that γ ≤ 1/3.

Let L :=
√∑n

i=1 f̂(i)2; note that by our assumption on

γ we have L ≥ 1
2 . We have:

(2/π) − γ ≤
n∑

i=1

f̂(i)2



= E[fℓ](3.1)

≤ E[|ℓ|](3.2)

≤
√

2/π · L + O(τ)(3.3)

≤
√

2/π
√

2/π + γ + O(τ)

≤ (2/π) + O(γ) + O(τ).

The equality in (3.1) is Plancherel’s identity, and the
inequality in (3.2) is because f is a ±1-valued function.
The inequality (3.3) holds for the following reason: ℓ(x)
is a linear form over random ±1’s in which all the
coefficients are at most τ in absolute value. Hence
we expect it to act like a Gaussian (up to O(τ) error)
with standard deviation L, which would have expected
absolute value

√
2/π ·L. See Propositions 58 and 59 in

the full paper for the precise justification. Comparing
the overall left- and right-hand sides, we conclude that
E[|ℓ|] − E[fℓ] ≤ O(γ) + O(τ).

Let ǫ denote the fraction of points in {−1, 1}n on
which f and sgn(ℓ) disagree. Given that there is a
ǫ fraction of disagreement, the value E[|ℓ|] − E[fℓ] is
smallest if the disagreement points are precisely those
points on which |ℓ(x)| takes the smallest value. Now
again we use the fact that ℓ should act like a Gaussian
with standard deviation L, up to some error O(τ/L) ≤
O(2τ); we can assume this error is at most ǫ/4, since
if ǫ ≤ O(τ) then the theorem already holds. Hence
we have (see Theorem 55 in the full paper for precise
justification)

Pr[|ℓ| ≤ ǫ/8]

= Pr[|ℓ/L| ≤ ǫ/8L]

≤ Pr[|N(0, 1)| ≤ ǫ/8L] + ǫ/4 ≤ ǫ/8L + ǫ/4

≤ ǫ/2

since L ≥ 1/2. It follows that at least an ǫ/2 fraction of
inputs x have both f(x) 6= sgn(ℓ(x)) and |ℓ(x)| > ǫ/8.
This implies that E[|ℓ|]−E[fℓ] ≥ 2 · (ǫ/2) · (ǫ/8) = ǫ2/8.
Combining this with the previous bound E[|ℓ|]−E[fℓ] ≤
O(γ) + O(τ), we get ǫ2/8 ≤ O(γ) + O(τ) which gives
the desired result.

3.2 Proof of Theorem 3.1. First observe that for
any Boolean function f : {−1, 1}n → {−1, 1}, if |f̂(i)| ≤
τ for all i then

∑
i∈T f̂(i)4 ≤ τ2

∑
i∈T f̂(i)2 ≤ τ2, using

Parseval. On the other hand, if |f̂(i)| ≥ 2τ1/2 for some

i, then
∑n

i=1 f̂(i)4 is certainly at least 16τ2.
Suppose first that the function f being tested

belongs to LTFn,τ . As explained above, in this case f
will with high probability pass Step 1 and continue to
Step 2. By Theorem 3.2 the true value of

∑n
i=1 f̂(i)2 is

within an additive O(τ2/3) of 2
π ; since O(τ2/3) ≤ C1τ

1/3

the algorithm outputs “yes” with high probability. So

the algorithm behaves correctly on functions in LTFn,τ .
Now suppose f : {−1, 1}n → {−1, 1} is such that

the algorithm outputs “yes” with high probability; we
show that f must be ǫ-close to some function in LTFn,τ .
Since there is a low probability that A outputs “no” in
Step 1 on f , it must be the case that each |f̂(i)| is at
most 2τ1/2. Since f outputs “yes” with high probability
in Step 2, it must be the case that

∑n
i=1 f̂(i)2 is within

an additive O(τ1/3) of 2
π . Plugging in 2τ1/2 for “τ”

and O(τ1/3) for “γ” in Theorem 3.3, we have that f
is Cτ1/6-close to sgn(ℓ(x)) where C is some absolute
constant. This proves the correctness of A.

To analyze the query complexity, note that Corol-
lary 13 in the full paper tells us that Step 1 requires
O(1/τ8) many queries, and Step 2 only O(1/τ4/3), so
the total query complexity is O(1/τ8).

4 A constant-query algorithm for testing

arbitrary LTFs over {−1, 1}n

In this section we outline the ideas that underly the
constant-query test for general LTFs. We stress that
many technical details, in some cases subtle ones, have
been suppressed.

As we saw in Section 3, it is possible to test
a function f for being close to a balanced τ -regular
LTF. The key observation was that such functions
have

∑n
i=1 f̂(i)2 approximately equal to 2

π if and only
if they are close to LTFs. Furthermore, in this case, the
functions are actually close to being the sign of their
degree-1 Fourier part. It remains to extend the test
described there to handle general LTFs which may be
unbalanced and/or non-regular.

A clear approach suggests itself for handling unbal-
anced regular LTFs using the W (·) function as in Sec-
tion 2. This is to try to show that for f an arbitrary
τ -regular function, the following holds:

∑n
i=1 f̂(i)2 is

approximately equal to W (E[f ]) if and only if f is close
to an LTF — in particular, close to an LTF whose lin-
ear form is the degree-1 Fourier part of f . The “only
if” direction here is not too much more difficult than
Theorem 3.3 (see Theorem 38 in Section 6.2 of the full
paper), although the result degrades as the function’s
mean gets close to 1 or −1. However the “if” direction
turns out to present a significant probabilistic difficulty.

In the proof of Theorem 3.2, the special case of
mean-zero, we appeal to two results from [KKMO07].
The first shows that a balanced τ -regular LTF can
be represented with “small weights” (small com-
pared to their sum-of-squares); the second shows that∑

S ρ|S|f̂(S)2 is close to 2
π arcsinρ for balanced LTFs

with small weights. It is not too hard to appropriately
generalize the second of these to unbalanced LTFs with
small weights (see Theorem 37 in Section 6.2 of the full



paper) . However generalizing the first result to un-
balanced LTFs is quite complicated, and requires the
following theorem, which we prove in Section 6.1 of the
full paper [MORS07] :4

Theorem 4.1. Let f(x) = sgn(w1x1 + · · ·+ wnxn − θ)
be an LTF such that

∑
i w2

i = 1 and δ := |w1| ≥ |wi|
for all i ∈ [n]. Let 0 ≤ ǫ ≤ 1 be such that |E[f ]| ≤ 1− ǫ.

Then |f̂(1)| ≥ Ω(δǫ6 log(1/ǫ)).

We now discuss removing the regularity condition;
this requires additional analytic work and moreover
requires that several new algorithmic ingredients be
added to the test. Given any Boolean function f ,
Parseval’s inequality implies that J := {i : |f̂(i)| ≥ τ2}
has cardinality at most 1/τ4. Let us pretend for now
that the testing algorithm could somehow know the set
J . (If we allowed the algorithm Θ(log n) many queries,
it could in fact exactly identify some set like J . However
with constantly many queries this is not possible. We
ignore this problem for the time being, and will discuss
how to get around it at the end of this section.)

Our algorithm first checks whether it is the case
that for all but an ǫ fraction of restrictions ρ to J , the
restricted function fρ is ǫ-close to a constant function.
If this is the case, then f is an LTF if and only if f is
close to an LTF which depends only on the variables
in J . So in this case the tester simply enumerates over
“all” LTFs over J and checks whether f seems close to
any of them. (Note that since J is of constant size there
are at most constantly many LTFs to check here.)

It remains to deal with the case that for at least an
ǫ fraction of restrictions to J , the restricted function is
ǫ-far from a constant function. In this case, it can be
shown using Theorem 4.1 that if f is an LTF then in fact
every restriction of the variables in J yields a regular
subfunction. So it can use the testing procedure for
(general mean) regular LTFs already described to check
that for most restrictions π, the restricted function fπ

is close to an LTF — indeed, close to an LTF whose
linear form is its own degree-1 Fourier part.

This is a good start, but it is not enough. At
this point the tester is confident that most restricted
functions fπ are close to LTFs whose linear forms
are their own degree-1 Fourier parts — but in a true
LTF, all of these restricted functions are expressible
using a common linear form. Thus the tester needs to
test pairwise consistency among the linear parts of the
different fπ’s.

4Readers familiar with the notion of influence will recall
that for any LTF f we have Infi(f) = |f̂(i)| for each i. Thus
Theorem 4.1 may roughly be viewed as saying that “every not-
too-biased LTF with a large weight has an influential variable.”

To do this, recall that when the algorithm tests
that a restricted function fπ is close to an LTF, the
actual test is that there is near-equality in the inequality∑

|S|=1 f̂π(S)2 ≤ W (E[fπ]). If this holds for both
fπ and fπ′ , the algorithm can further check that the
degree-1 parts of fπ and fπ′ are essentially parallel
(i.e., equivalent) by testing that near-equality holds in

the Cauchy-Schwarz inequality
∑

|S|=1 f̂π(S)f̂π′(S) ≤√
W (E[fπ])

√
W (E[fπ′ ]). Thus to become convinced

that most restricted fπ’s are close to LTFs over the
same linear form, the tester can pick a particular fπ∗

and check that
∑

|S|=1 f̂π∗(S)f̂π(S) ≈
√

W (E[fπ∗ ])·√
W (E[fπ]) for most π’s. (At this point there is one

caveat. As mentioned earlier, the general-mean LTF
tests degrade when the function being tested has mean
close to 1 or −1. For the above-described test to work,
fπ∗ needs to have mean somewhat bounded away from
1 and −1, so it is important that the algorithm uses
a restriction π∗ that has |E[f ]| bounded away from 1.
Fortunately, finding such a restriction is not a problem
since we are in the case in which at least an ǫ fraction
of restrictions have this property.)

Now the algorithm has tested that there is a single
linear form ℓ (with small weights) such that for most
restrictions π to J , fπ is close to being expressible as
an LTF with linear form ℓ. It only remains for the
tester to check that the thresholds — or essentially
equivalently, for small-weight linear forms, the means
— of these restricted functions are consistent with some
arbitrary weight linear form on the variables in J . It can
be shown that there are at most 2poly(|J|) essentially
different such linear forms w · π − θ, and thus the tester
can just enumerate all of them and check whether for
most π’s it holds that E[fπ] is close to the mean of the
threshold function sgn(ℓ− (θ−w ·π)). This will happen
for one such linear form if and only if f is close to being
expressible as the LTF h(π, x) = sgn(w · π + ℓ − θ).

This completes the sketch of the testing algorithm,
modulo the explanation of how the tester can get around
“knowing” what the set J is. Looking carefully at what
the tester needs to do with J , it turns out that it suffices
for it to be able to query f on random strings and
correlated tuples of strings, subject to given restrictions
π to J . This can be done essentially by borrowing a
technique from the paper [FKR+02] (see the discussion
after Theorem 42 in Section 6.4.2. of the full paper ).

In Section 6 of the full version of the paper, we make
all these ideas precise and prove the following, which is
our main result [MORS07] :

Theorem 4.2. There is an algorithm Test-LTF for
testing whether an arbitrary black-box f : {−1, 1}n →
{−1, 1} is an LTF versus ǫ-far from any LTF. The algo-



rithm has two-sided error and makes at most poly(1/ǫ)
queries to f.

We remark that the algorithm described above
is adaptive, but using the same techniques found in
[FKR+02], the algorithm can be made nonadaptive with
a polynomial factor increase in the query complexity.

5 Conclusion

As mentioned in the introduction, the techniques of
this paper were instrumental in the recent algorithm
of [OS08] for the “Chow Parameters Problem” (i.e. the
problem of efficiently learning an unknown LTF given
only its degree-0 and degree-1 Fourier coefficients). A
goal for future work is to see whether our techniques can
be applied to other interesting and related problems.
One such problem, suggested to us by R. Santhanam
[San08], is the following: give an efficient deterministic
algorithm which, given an explicit weights-based repre-
sentation of an LTF f(x) = sgn(w1x1 + · · ·+wnxn − θ),
outputs an estimate of E[f ] (i.e. the fraction of in-
puts that satisfy f) to within an additive ±ǫ. This
is arguably the simplest explicit open derandomization
problem of which we are aware. The work of [Ser06]
gives a deterministic algorithm which runs in time poly-
nomial in n but exponential in 1/ǫ. Can the insights into
LTFs from the current paper be used to obtain a truly
polynomial algorithm?
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