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Abstract

Let S = X1 + · · ·+ Xn be a sum of n independent integer random variables Xi, where each Xi is
supported on {0, 1, . . . , k − 1} but otherwise may have an arbitrary distribution (in particular the Xi’s
need not be identically distributed). How many samples are required to learn the distribution S to
high accuracy? In this paper we show that the answer is completely independent of n, and moreover we
give a computationally efficient algorithm which achieves this low sample complexity. More precisely,
our algorithm learns any such S to ε-accuracy (with respect to the total variation distance between
distributions) using poly(k, 1/ε) samples, independent of n. Its running time is poly(k, 1/ε) in the
standard word RAM model. Thus we give a broad generalization of the main result of [DDS12b] which
gave a similar learning result for the special case k = 2 (when the distribution S is a Poisson Binomial
Distribution).

Prior to this work, no nontrivial results were known for learning these distributions even in the case
k = 3. A key difficulty is that, in contrast to the case of k = 2, sums of independent {0, 1, 2}-valued
random variables may behave very differently from (discretized) normal distributions, and in fact may
be rather complicated — they are not log-concave, they can be Θ(n)-modal, there is no relationship
between Kolmogorov distance and total variation distance for the class, etc. Nevertheless, the heart of
our learning result is a new limit theorem which characterizes what the sum of an arbitrary number of
arbitrary independent {0, 1, . . . , k − 1}-valued random variables may look like. Previous limit theorems
in this setting made strong assumptions on the “shift invariance” of the random variables Xi in order
to force a discretized normal limit. We believe that our new limit theorem, as the first result for truly
arbitrary sums of independent {0, 1, . . . , k − 1}-valued random variables, is of independent interest.
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1 Introduction

We study the problem of learning an unknown random variable given access to independent samples drawn
from it. This is essentially the problem of density estimation, which has received significant attention in the
probability and statistics literature over the course of several decades (see e.g. [DG85, Sil86, Sco92, DL01]
for introductory books). More recently many works in theoretical computer science have also considered
problems of this sort, with an emphasis on developing computationally efficient algorithms (see e.g. [KMR+94,
Das99, FM99, DS00, AK01, VW02, CGG02, BGK04, DHKS05, MR05, FOS05, FOS06, BS10, KMV10,
MV10, DDS12a, DDS12b, RSS12, AHK12]).

In this paper we work in the following standard learning framework: the learning algorithm is given ac-
cess to independent samples drawn from the unknown random variable S, and it must output a hypothesis
random variable S̃ such that with high probability the total variation distance dTV(S, S̃) between S and
S̃ is at most ε. This is a natural extension of the well-known PAC learning model for learning Boolean
functions [Val84] to the unsupervised setting of learning an unknown random variable (i.e. probability dis-
tribution).

While density estimation has been well studied by several different communities of researchers as described
above, both the number of samples and running time required to learn are not yet well understood, even
for some surprisingly simple types of discrete random variables. Below we describe a simple and natural
class of random variables — sums of independent integer-valued random variables — for which we give the
first known results, both from an information-theoretic and computational perspective, characterizing the
complexity of learning such random variables.

1.1 Sums of independent integer random variables.

Perhaps the most basic discrete distribution learning problem imaginable is learning an unknown random
variable X that is supported on the k-element finite set {0, 1, . . . , k − 1}. Throughout the paper we refer
to such a random variable as a k-IRV (for “Integer Random Variable”). Learning an unknown k-IRV is
of course a well understood problem: it has long been known that a simple histogram-based algorithm can
learn such a random variable to accuracy ε using Θ(k/ε2) samples, and that Ω(k/ε2) samples are necessary
for any learning algorithm.

A natural extension of this problem is to learn a sum of n independent such random variables, i.e. to
learn S = X1 + · · ·+Xn where the Xi’s are independent k-IRVs (which, we stress, need not be identically
distributed and may have arbitrary distributions supported on {0, 1, . . . , k − 1}). We call such a random
variable a k-SIIRV (for “Sum of Independent Integer Random Variables”); learning an unknown k-SIIRV is
the problem we solve in this paper.

Since every k-SIIRV is supported on {0, 1, . . . , n(k − 1)} any such distribution can be learned using
O(nk/ε2) samples, but of course this simple observation does not use any of the k-SIIRV structure. On the
other hand, it is clear (even when n = 1) that Ω(k/ε2) samples are necessary for learning k-SIIRVs. 1 A
priori it is not clear how many samples (as a function of n and k) are information-theoretically sufficient
to learn k-SIIRVs, even ignoring issues of computational efficiency. The k = 2 case of this problem (i.e.,
Poisson Binomial Distributions, or “PBDs”) was only solved last year in [DDS12b], which gave an efficient
algorithm using Õ(1/ε3) samples (independent of n) to learn any Poisson Binomial Distribution.

We stress that k-SIIRVs for general k may have a much richer structure than Poisson Binomial Distribu-
tions; even 3-SIIRVs are qualitatively very different from 2-SIIRVs. As a simple example of this more intricate
structure, consider the 3-SIIRV X1 + · · · +Xn with n = 50 depicted in Figure 1, in which X1, . . . ,Xn−1

are identically distributed and uniform over {0, 2} while Xn puts probability 2/3 on 0 and 1/3 on 1. It
is easy to see from this simple example that even 3-SIIRVs can have significantly more daunting structure
than any PBD; in particular, they can be Θ(1)-far from every log-concave distribution; can be Θ(1)-far from
every Binomial distribution; and can have Θ(n) modes (and be Θ(1)-far from every unimodal distribution).
They thus dramatically fail to have all three kinds of structure (unimodality, log-concavity, and closeness to
Binomial) that were exploited in the recent works [DDS12b, CDSS13] on learning PBDs.

1It should be noted that while all our results in the paper hold for all settings of n and k, intuitively one should think of n
as a “large” asymptotic parameter and k � n as a “small” fixed parameter. If k ≥ n then the trivial approach described above
learns using O(nk/ε2) = O(k2/ε2) samples.
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Figure 1: The probability mass function of a certain 3-SIIRV with n = 50.

The main learning result. Our main learning result is that both the sample complexity (number of
samples required for learning) and the computational complexity (running time) of learning k-SIIRVs is
polynomial in k and 1/ε, and completely independent of n. 2

Theorem 1.1. [Main Learning Result] There is a learning algorithm for k-SIIRVs with the following
properties: Let S = X1 + · · · + Xn be any sum of n independent (not necessarily identically distributed)
random variables X1, . . . ,Xn each supported on {0, . . . , k − 1}. The algorithm uses poly(k/ε) samples
from S, runs in time poly(k/ε), and with probability at least 9/10 outputs a (succinct description of a)
random variable S̃ such that dTV(S, S̃) ≤ ε.

(Note that since even learning a single k-IRV requires Ω(k/ε2) samples as noted above, this poly(k, 1/ε)
complexity is best possible up to the specific degree of the polynomial.) We give a detailed description of
the “succinct description” of our hypothesis random variable S̃ in Section 1.2, after we describe the new
structural theorem that underlies our learning results.

1.2 Prior work and our techniques.

As noted above, Theorem 1.1 is a broad generalization of the main learning result of [DDS12b], which
established it in the special case of k = 2. A key ingredient in the [DDS12b] learning result is a structural
theorem of Daskalakis and Papadimitriou [DP11] which states that any Poisson Binomial Distribution must
be either ε-close to a sparse distribution (supported on poly(1/ε) consecutive integers), or ε-close to a
translated Binomial distribution. In our current setting of working with k-SIIRVs for general k, structural
results of this sort (giving arbitrary-accuracy approximation for an arbitrary k-SIIRV) were not previously
known. Our main technical contribution is proving such a structural result (see Theorem 1.2 below); given
this structural result, it is relatively straightforward for us to obtain our main learning result, Theorem 1.1,
using algorithmic ingredients for learning probability distributions from the recent works [DDS12b, CDSS13].

There is a fairly long line of research on approximate limit theorems for sums of independent integer
random variables, dating back several decades (see e.g. [Pre83, Kru86, BHJ92]). Our main structural result
employs some of the latest results in this area [CL10, CGS11]; however, we need to extend these results
beyond what is currently known. Known approximation theorems for sums of integer random variables
(which are generally proved using Stein’s method) typically give bounds on the variation distance between a
SIIRV S and various specific types of “nice” (Gaussian-like) random variables such as translated/compound
Poisson random variables or discretized normals (as described in Definition 2.3). However, it is easy to see
that in general a k-SIIRV may be very far in variation distance from any discretized normal distribution; see
for example the 3-SIIRVs discussed in Figure 1, or the discussion following Corollary 4.5 in [BX99]. To evade
this difficulty, limit theorems in the literature typically put strong restrictions on the SIIRVs they apply to

2We work in the standard “word RAM” model in which basic arithmetic operations on O(logn)-bit integers are assumed to
take constant time. We give more model details in Section 5.
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so that a normal-like distribution is forced. Specifically, they bound the total variation distance between S
and a “nice” distribution using an error term involving the “shift-distance” (see Definition 2.4) of certain
random variables closely related to S; see for example Theorem 4.3 of [BX99], Theorem 7.4 of [CGS11], or
Theorem 1.3 of [Fan12] for results of this sort. However it is easy to see that for general k-SIIRVs these shift-
distances can be very large — large enough that no nontrivial bound is obtained. Thus previous bounds from
the literature do not provide structural results that characterize general k-SIIRVs up to arbitrary accuracy.

Another approach to analyzing k-SIIRVs arises from the recent work of Valiant and Valiant [VV11]. They
gave a limit theorem for sums ~S of independent Zk-valued random variables supported on {0, e1, e2, . . . , ek},
where ei denotes the vector (0, . . . , 0, 1, 0, . . . , 0) with the 1 in the ith coordinate. Specifically, they bounded
the total variation distance of such ~S from the appropriate discretized k-dimensional normal. Note that
these Zk-valued random sums effectively generalize k-SIIRVs, because any k-SIIRV can be obtained as the
dot-product 〈~S, (0, 1, . . . , k − 1)〉. Unfortunately we cannot use their work for two reasons. The first reason
is technical: their error bound has a dependence on n, namely Θ(log2/3 n), which we do not want to pay.
The second reason is more conceptual; as in previous theorems their limiting distribution is a (discretized)
normal, which means it cannot capture general SIIRVs. This issue manifests itself in their error term, which
is large if the covariance matrix of the k-dimensional normal has a small eigenvalue. Indeed, the covariance
matrix will have an on(1) eigenvalue for k-SIIRVs of the sort illustrated in Figure 1.

Despite these difficulties, we are able to leverage prior partial results on SIIRVs to give a new structural
result showing that any k-SIIRV can be approximated to arbitrarily high accuracy by a relatively “simple”
random variable. More precisely, our result shows that every k-SIIRV is either close to a “sparse” random
variable, or else is close to a random variable cZ + Y which decomposes nicely into an arbitrary “local”
component Y and a highly structured “global” component cZ (where as above Z is a discretized normal):

Theorem 1.2. [Main Structural Result] Let S = X1 + · · ·+Xn be a sum of n independent (not necessarily
identically distributed) random variables X1, . . . ,Xn each supported on {0, . . . , k − 1}. Then for any ε > 0,
S is either

1. O(ε)-close to a random variable which is supported on at most k9

ε4 consecutive integers; or

2. O(ε)-close to a random variable of the form cZ+Y for some 1 ≤ c ≤ k−1, where Y , Z are independent
random variables such that:

(a) Y is a c-IRV, and

(b) Z is a discretized normal random variable with parameters µ
c ,

σ2

c2 where µ = E[S] and σ2 =
Var[S].

An alternative statement of our main structural result is the following: for S a k-SIIRV with variance
Var[S] = σ2, there is a value 1 ≤ c ≤ k − 1 and independent random variables Y ,Z as specified in part (2)
above, such that dTV(S, cZ + Y ) ≤ poly(k, 1/σ). (See Corollary 4.5 for a more detailed statement.) Given
this detailed structural characterization of an arbitrary k-SIIRV, it is not difficult to establish our main
learning result, Theorem 1.1; see Section 5.

We believe this approximation theorem for arbitrary k-SIIRVs should be of independent interest. One
potential direction for future application comes from the field of pseudorandomness. A classic problem in
this area is to find pseudorandom generators with short seed length which fool “combinatorial rectangles”.
A notable recent work by Gopalan et al. [GMRZ11] made new progress on this problem, as well as a
generalization they described as fooling “combinatorial shapes”. A combinatorial shape is nothing more
than a 2-SIIRV (in which the sample space of each Xi is [m] for some integer m). Indeed, much of the
technical work in [GMRZ11] goes into giving a new proof methodology for 2-SIIRV limit theorems, one
which is more amenable to derandomization. It seems possible that our new limit theorem for k-SIIRVs may
be useful in generalizing the [GMRZ11] derandomization results from 2-SIIRVs to k-SIIRVs.

We conclude this subsection by providing the high-level idea in the proof of our structural result, as well
as the structure of the hypothesis output by our learning algorithm.

The idea behind Theorem 1.2. The two cases (1) and (2) of Theorem 1.2 correspond to S having
“small” versus “large” variance respectively. The easier case is when Var(S) is “small”: in this case it is
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straightforward to show that S must have almost all its probability mass on values in a small interval, and
(1) follows easily from this.

The more challenging case is when Var(S) is “large.” Intuitively, in order for Var(S) to be large it must
be the case that at least one of the k − 1 values 1, 2, . . . , k − 1 makes a “large contribution” to Var(S).
(This is made precise by working with “0-moded” SIIRVs and analyzing the “b-weight” of the SIIRV for
b ∈ {1, . . . , k − 1}; see Definition 2.2 for details.)

It is useful to first consider the special case that all k−1 values {1, . . . , k−1} make a “large contribution”
to Var(S); we do this in Section 3. To analyze this case it is useful to view a draw of the random variable
S as taking place in two stages as follows: First (stage 1) we independently choose for each Xi a value
ri ∈ {1, . . . , k − 1}. Then (stage 2) for each i we independently choose whether Xi will be set to 0 or
to ri. Using this perspective on S, it can be shown that with high probability over the stage-1 outcomes,
the resulting random variable that is sampled in Stage 2 is of the form

∑k−1
j=1 j · Y j where each Y j is a

large-variance PBD. Given this, using Theorem 7.4 of [CGS11] (see Theorem 3.2) it is not difficult to show
that the overall distribution of S is close to a discretetized normal distribution. (This is the c = 1 case of
case (2) of Theorem 1.2.)

In the general case it may be the case that some of the k − 1 values contribute very little to Var(S).
(This is what happened in the example illustrated in Figure 1.) Let L ⊂ {1, . . . , k − 1} denote the set of
values that make a “small” contribution to Var(S) (observe that L is nonempty by assumption in this case,
or else we are in the special case of the previous paragraph) and let H∪ {0} denote the remaining values in
{0, 1, . . . , k − 1} (observe that H is nonempty since otherwise Var(S) would be small as noted earlier). In
this general case it is useful to consider a different decomposition of the random variable S. As before we
view a draw of S as taking place in stages, but now the stages are as follows: First (stage 1) for each i ∈ [N ]
we independently select whether Xi will be “light” (i.e. will take a value in L) or will be “heavy” (will take
a value in H ∪ {0}). Then (stage 2) for each Xi that has been designated to be “light” we independently
choose which particular value in L it will take, and similarly (stage 3) for each Xi that has been designated
“heavy” we independently choose an element of H ∪ {0} for it.

The key advantage of the above decomposition is that conditioned on the stage 1 outcome, stages 2 and 3
are independent of each other. Using this decomposition, our analysis shows that the contribution from the
“light” IRVs (stage 2) is close to a sparse random variable, and the contribution from the “heavy” random
variables (stage 3) is close to a gcd(H)-scaled discretized normal distribution (this uses the special case,
sketched earlier, in which all values make a “large contribution” to the variance). This essentially gives case
(2) of Theorem 1.2, where as sketched above, the value “c” is gcd(H).

The structure of our hypotheses. The “succinct description” of the hypothesis random variable that our
learning algorithm outputs naturally reflects the structure of the approximating random variable given by
Theorem 1.2 above. Some terminology will be useful here: we say that an IRV A is t-flat if A is supported
on a union of t′ ≤ t disjoint intervals I1 ∪ · · · ∪ It′ , and for each fixed 1 ≤ j ≤ t′ all points x1, x2 ∈ Ij have
Pr[X = x1] = Pr[X = x2] = pj for some pj > 0 (so A is piecewise-constant across each interval Ij). An
explicit description of a t-flat IRV A is a list of pairs (I1, p1), . . . , (It′ , pt′), for some t′ ≤ t.

There are two possible forms for the output hypothesis random variable S̃ of Theorem 1.1, corresponding
to the two cases of Theorem 1.2 above. The first possible form is simply a list of pairs (r, p0), . . . , (r + `, p`)
where the pair (s, p) indicates that Pr[S̃ = s] = p and

∑`
j=0 pj = 1 and ` = k9/ε4. The second possible

form of the hypothesis is as two lists (I1, p1), . . . , (I`, pt) and (0, q0), . . . , (c − 1, qc−1), where I1, . . . , It are
disjoint intervals and

∑t
j=1 |Ij |pj =

∑c−1
i=0 qi = 1. The list (I1, p1), . . . , (It, pt) specifies a t-flat random

variable Z ′ and the list (0, q0), . . . , (c−1, qc−1) specifies a c-IRV Y ′. The hypothesis distribution in this case
is S̃ = cZ ′ + Y ′.

1.3 Discussion: Learning independent sums of more general random variables?

It is natural to ask whether our highly efficient poly(k/ε)-sample (independent of n) learning algorithm for
k-SIIRVs can be extended to n-way independent sums X1 + · · ·+Xn of more general types of integer-valued
random variables Xi than k-IRVs. Here we note that no such efficient learning results are possible for several
natural generalizations of k-IRVs.
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One natural generalization is to consider integer random variables which are supported on k values which
need not be consecutive. Let us say that X is a k-support IRV if X is an IRV supported on at most k
values. It turns out that sums of independent k-support IRVs can be quite difficult to learn; in particular,
Theorem 3 of [DDS12b] give an information-theoretic argument showing that even for k = 2, any algorithm
that learns a sum of n 2-support IRVs must use Ω(n) samples (even if the i-th IRV is constrained to have
support {0, i}).

A different generalization of k-IRVs to consider in this context is a class that we denote as (c, k)-moment
IRVs. A (c, k)-moment IRV is an integer-valued random variable X such that the c-th absolute moment
E[|X|c] lies in [0, (k − 1)c].

It is clear that any k-IRV is a (c, k)-moment IRV for all c. Moreover, it is easy to show (using Markov’s
inequality) that for any fixed c > 0, any single (c, k)-moment IRV X can be learned to accuracy ε using
poly(k/ε) samples. However, our sample complexity bounds for learning sums of n independent k-IRVs
provably cannot be extended to sums of n independent (c, k)-moment IRVs, in a strong sense: any learning
algorithm for such sums must (information-theoretically) use at least poly(n) samples.

Observation 1.3. Fix any integer c ≥ 1. Let S = X1 + · · ·+Xn be a sum of n (c, 2)-moment IRVs. Let L
be any algorithm which, given n and access to independent samples from S, with probability at least e−o(n

1/c)

outputs a hypothesis distribution S̃ such that dTV(S, S̃) < 1/41. Then L must use at least n1/c/10 samples.

The argument is a simple modification of the lower bound given by Theorem 3 of [DDS12b] and is given
in Appendix A.

2 Definitions and Basic Tools

In this section we give some necessary definitions and recall some useful tools from probability.

2.1 Definitions

We begin with a formal definition of total variation distance, which we specialize to the case of integer-valued
random variables. For two distributions P and Q supported on Z, their total variation distance is defined to
be

dTV(P,Q) = sup
A⊆Z
|P(A)−Q(A)| = 1

2

∑
j∈Z
|P({j})−Q({j})|.

If X and Y are integer random variables, their total variation distance, dTV(X,Y ), is defined to be the total
variation distance of their distributions. Throughout the paper we are casual about the distinction between
a random variable and a distribution. For example, when we say “draw a sample from random variable X”
we formally mean “draw a sample from the distribution of X”, etc.

We proceed to discuss the most basic random variables that we will be interested in, namely IRVs, k-IRVs
and ±k-IRVs, and sums of these random variables:

Definition 2.1. An IRV is an integer-valued random variable. For an integer k ≥ 2, a k-IRV is an IRV
supported on {0, 1, . . . , k − 1}. (Note that a 2-IRV is the same as a Bernoulli random variable.) A ±k-
IRV is an IRV supported on {−k + 1,−k + 2, . . . , k − 2, k − 1}. We say that an IRV Xi has mode 0 if
Pr[Xi = 0] ≥ Pr[Xi = b] for all b ∈ Z.

Definition 2.2. A SIIRV (Sum of Independent IRVs) is any random variable S = X1 + · · · +Xn where
the Xi’s are independent IRVs. We define k-SIIRVs and ±k-SIIRVs similarly; a 2-SIIRV is also called a
PBD (Poisson Binomial Distribution). For b ∈ Z we say that the b-weight of the SIIRV is

∑n
i=1 Pr[Xi = b].

Finally, we say that a SIIRV is 0-moded if each Xi has mode 0.

As a notational convention, we will typically use X to denote an IRV, and S to denote a SIIRV.

Discretized normal distributions will play an important role in our technical results, largely because of
known theorems in probability which assert that under suitable conditions sums of independent integer ran-
dom variables converge in total variation distance to discretized normal distributions (see e.g. Theorem 3.2).
We now define these distributions:
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Definition 2.3. Let µ ∈ R, σ ∈ R≥0. We let Z(µ, σ2) denote the discretized normal distribution. The
definition of Z ∼ Z(µ, σ2) is that we first draw a normal G ∼ N(µ, σ2) and then we set Z = bGe; i.e., G
rounded to the nearest integer.

We note that in the “large-variance” regime that we shall be concerned with, discretized normals are
known to be close in variation distance to other types of distributions such as Binomial distributions and
Translated Poisson distributions (see e.g. [R0̈7, RR12]); however we shall not need to work with these other
distributions.

Some of our arguments will use the following notion of shift-distance of a random variable:

Definition 2.4. For X a random variable we define its shift-distance to be dshift(X) = dTV(X,X + 1).

Finally, for completeness we record the following:

Definition 2.5. Given a sequence or set C of nonzero integers we define gcd(C) to be the greatest common
divisor of the absolute values of the integers in C. We adopt the convention that gcd(∅) = 0.

2.2 Basic results from probability

Our proofs use various basic results from probability; these include bounds on total variation distance, results
on normal and discretized normal distributions, bounds on shift-distance, and uniform convergence bounds.
We give these results in Appendix B.

3 A useful special case: each b ∈ {1, . . . , k − 1} has large weight

In this section we prove a useful special case of our our desired structural theorem for k-SIIRVs. In later
sections we will use this special case to prove the general result.

Recall that for b ∈ {0, 1, . . . , k − 1} the b-weight of a k-SIIRV S = X1 + · · · +Xn is
∑n
i=1 Pr[Xi = b].

The special case we consider in this section is that every b ∈ {1, . . . , k − 1} has large b-weight. The result
we prove in this special case is that S is close to a discretized normal distribution:

Theorem 3.1. Let S = X1 + · · · +Xn be a 0-moded ±k-SIIRV, and assume no Xi is constantly 0. For
each nonzero integer c with |c| < k, let Mc denote the c-weight of S and let C = {c ∈ Z : c 6= 0, |c| < k,
and Mc > 0} 6= ∅. Further assume gcd(C) = 1 and Mc ≥ M for all c ∈ C where M = ω(k log k). Let
Z ∼ Z(µ, σ2), where µ = E[S] and σ2 = Var[S]. Then dTV(S,Z) ≤ O(k3.5/

√
M) and σ2 ≥M/8k.

Observe that Theorem 3.1 corresponds to Case (2) of Theorem 1.2 with c = 1 (so Y is a 1-IRV, i.e. the
constant-0 random variable).

In Section 3.1 we record some ingredients from the probability literature and the two main tools we need
for Theorem 3.1. We prove Theorem 3.1 in Section 3.2.

3.1 Ingredients from probability

We will need a bound on the distance of a SIIRV to a discrete Gaussian in terms of the shift-invariances of
the “leave-one-out” partial sums of n− 1 of the n random variables. We will use the following formulation
which appears (in a slightly more quantitative form) in [CGS11, Theorem 7.4], where it is credited to Chen
and Leong. It is proved by Stein’s Method.

Theorem 3.2. Let S = X1 + · · ·+Xn be a SIIRV. Write µi = E[Xi], σ2
i = Var[Xi], βi = E[|Xi − µi|3],

µ =
∑
i µi, σ

2 =
∑
i σ

2
i , and β =

∑
i βi. Further, assume

dshift(X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn) ≤ δ ∀i ∈ [n].

Then for Z ∼ Z(µ, σ2) we have

dTV(S,Z) ≤ O(1/σ) +O(δ) +O(β/σ3) +O(δβ/σ2).

In particular, if S is a ±k-SIIRV then βi ≤ kσ2
i for each i; hence β ≤ kσ2 and so

dTV(S,Z) ≤ O(k)(1/σ + δ).
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The other main tool we need for Theorem 3.1 is a bound on the shift-invariance of the weighted sum of
large-variance PBDs, which we will use in conjunction with Theorem 3.2 to establish closeness to a discrete
Gaussian. Before proving this fact we first recall a few facts from the probability literature. The following
theorem is proved via a coupling argument:

Theorem 3.3. ([MR07, Cor. 1.6]; see also [BX99, Prop. 4.6].) Let S = X1 + · · · + Xn be any SIIRV.
Then

dshift(S) ≤
√

2/π√
1
4 +

∑n
i=1(1− dshift(Xi))

.

Corollary 3.4. Let S = X1 + · · ·+Xn be any PBD with variance σ2. Then dshift(S) ≤ O(1/σ).

Proof. Let δ = min(Pr[X1 = 0],Pr[X1 = 1]). Then Var[X1] = δ(1 − δ) ≤ δ = 1 − dshift(X1). Using the
analogous inequality for each Xi in Theorem 3.3 we get

dshift(S) ≤
√

2/π√
1
4 +

∑n
i=1 Var[Xi]

=

√
2/π√

1
4 + σ2

= O(1/σ).

Theorem 3.5. Let S1, . . . ,Sm be independent IRVs each satisfying dshift(Si) ≤ ε. Let c1, . . . , cm be a
sequence of nonzero integers with gcd 1 and assume

∑
i |ci| ≤ B. Then

dshift

(
m∑
i=1

ciSi

)
≤ Bε.

Proof. Since gcd(|c1|, . . . , |cm|) = 1, Bézout’s identity says that there are integers b1, . . . , bm satisfying∑
i bi|ci| = 1; it is also possible [Bru12] to ensure that

∑
i |bi| ≤

∑
i |ci| ≤ B. Negating bi’s if necessary we

can obtain
∑
i bici = 1. Then

dshift

(
m∑
i=1

ciSi

)
= dTV

(
m∑
i=1

ciSi, 1 +
m∑
i=1

ciSi

)

= dTV

(
m∑
i=1

ciSi,

m∑
i=1

ci(Si + bi)

)

≤
m∑
i=1

dTV(ciSi, ci(Si + bi))

=
m∑
i=1

dTV(Si,Si + bi)

≤
m∑
i=1

|bi|dshift(Si) ≤ ε
m∑
i=1

|bi|,

where the first inequality uses Proposition B.2 and the second uses Fact B.7. The result now follows from∑
i |bi| ≤ B.

Corollary 3.6. Let ∅ 6= C ⊆ {−k + 1,−k + 2, . . . ,−1, 1, . . . , k − 1} satisfy gcd(C) = 1. Let J1, . . .Jn be
independent Bernoulli random variables and fix a sequence c1, . . . , cn of values from C. For each c ∈ C
define σ2

c =
∑
i:ci=c

Var[J i]. Then dshift(
∑n
i=1 ciJ i) ≤ O(k2)/minc∈C{σc}.

Proof. We may write the random variable
∑n
i=1 ciJ i as

∑
c∈C cY c, where the Y c’s are independent PBDs

satisfying
Var[Y i] =

∑
i:ci=c

Var[J i].

The claim now follows from Theorem 3.5 and Corollary 3.4.
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3.2 Proof of Theorem 3.1

The high-level idea behind the proof of Theorem 3.1 is as follows. We view a draw of Si as taking place
in two stages: in the first stage, we choose for each Xi its value in {1, . . . , k − 1} conditioned on a nonzero
outcome, and in the second stage we decide whether each Xi will in fact attain a nonzero value. That is,
we view each Xi as CiJ i, where Ci is Xi conditioned on a nonzero outcome and J i is a indicator random
variable for the event that Xi attains a nonzero variable; note that S conditioned on an outcome of the first
stage is simply a weighted sum of independent Bernoulli random variables. This is a useful view because we
can then show that with high probability over the stage-one outcomes S is the weighted sum of large-variance
PBDs, which is in turn close to a discrete Gaussian via Theorem 3.2 and Corollary 3.6.

Theorem 3.7. Let S = X1 + · · · +Xn be a 0-moded ±k-SIIRV, and assume no Xi is constantly 0. For
each nonzero integer c with |c| < k, let Mc denote the c-weight of S and let C = {c ∈ Z : c 6= 0, |c| < k,
and Mc > 0} 6= ∅. Further assume gcd(C) = 1 and Mc ≥ M for all c ∈ C where M = ω(k log k). Then
dshift(S) ≤ O(k2.5/

√
M).

Proof. We introduce a sequence C of independent IRVs C1, . . . ,Cn, supported on C, defined by

Pr[Ci = c] =
Pr[Xi = c]
Pr[Xi 6= 0]

for each c 6= 0.

Thus Ci is Xi conditioned on a nonzero outcome, and this is well-defined since we assume that no Xi is
constantly 0. Further introduce independent Bernoulli random variables J1, . . . ,Jn, with Pr[J i = 1] =
Pr[Xi 6= 0]. We can now view the Xi’s as being constructed via Xi = CiJ i. Consider now a particular
outcome for C; say, C1 = c1, . . . ,Cn = cn, which we denote as C = c = (c1, . . . , cn). The conditional
distribution S | C = c is as

∑n
i=1 ciJ i. Now for each c ∈ C define

σ2
c =

∑
i:ci=c

Var[J i] =
∑
i:Ci=c

Pr[Xi = 0] Pr[Xi 6= 0].

These quantities are random variables depending on the outcome of C. From Corollary 3.6 it follows that

dshift(S | C = c) ≤ min{1, O(k2)/min
c∈C
{σc}}.

Recalling Proposition B.8, we can complete the proof by establishing that

E
C

[min{1, 1/min
c∈C
{σc}}] ≤ O(

√
k/M). (1)

Note that for each c ∈ C the random variable σ2
c is the sum of independent random variables V 1, . . . ,V n,

where V i is Pr[Xi = 0] Pr[Xi 6= 0] with probability Pr[Xi = c]/Pr[Xi 6= 0] and is 0 otherwise. The ex-
pected value of σ2

c is therefore
∑n
i=1 Pr[Xi = 0] Pr[Xi = c] ≥Mc/2k ≥M/2k, where we used Pr[Xi = 0] ≥

1/2k since S is 0-moded. A multiplicative Chernoff bound tells us that Pr[σ2
c < M/4k] ≤ exp(−M/16k).

Thus except with probability at most 2k exp(−M/16k) over the outcome of C we have σ2
c ≥ M/4k for all

c ∈ C. It follows that
E[min{1, 1/min

c∈C
{σc}}] ≤

√
4k/M + 2k exp(−M/16k).

Recalling that M = ω(k log k), this gives (1).

Proof of Theorem 3.1. For each i ∈ [n] we have dshift(X1 + · · ·+Xi−1 +Xi+1 + · · ·+Xn) ≤ O(k2.5/
√
M),

by Theorem 3.7 — to compensate for Xi dropping out we only need to change “M” to “M − 1”, which
doesn’t affect the asymptotics since M = ω(k log k). Applying Theorem 3.2 we deduce that dshift(S) ≤
O(k/σ) + O(k3.5/

√
M)). We will show the latter dominates the former by proving that σ2 = Ω(M/2k).

To see this, select any c ∈ C. Note that Var[Xi] is at least min{Pr[Xi = c](c/2)2,Pr[Xi = 0](c/2)2} ≥
(c2/4) Pr[Xi = c] Pr[Xi = 0] ≥ Pr[Xi = c]/8k, where the last inequality is because S is 0-moded. Thus
σ2 =

∑
i Var[Xi] ≥Mc/8k ≥M/8k as needed.
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4 Proof of Main Structural Result

4.1 Intuition and Preparatory Work

Throughout this section we let δ be an error parameter, and M = M(k, 1/δ) a large enough polynomial in k
and 1/δ to be determined later. With respect to M we make the following definition:

Definition 4.1 (Light integers and heavy integers). Let S = X1 + · · ·+Xn be a 0-moded ±k-SIIRV. We
say that a non-zero integer |b| < k is M -light if the b-weight of S is at most M ; otherwise we call it M -heavy.
We denote by L the set of M -light integers, and by H the set of M -heavy integers.

The bulk of the work towards proving Theorem 1.2 is showing that any 0-moded ±k-SIIRV S is close
to the sum of a sparse distribution (supported on some poly(k/δ) consecutive integers) and a discretized
normal random variable scaled by gcd(H). To see why this may be true, we can distinguish the following
cases:

• If H = ∅ then S should be close to a sparse random variable, by Markov’s inequality and E[|S|] ≤
E[
∑
i |Xi|] ≤

∑
i kPr[Xi ∈ L] =

∑
i k
∑
j∈LPr[Xi = j] ≤ 2k2M , where the last inequality holds

because there are at most 2k integers in L and each of them is M -light.

• On the other hand, if L = ∅, then Theorem 3.1 is readily applicable, showing that S is close to a
discretized normal random variable with the same mean and variance as S.

• The remaining possibility is that L, H 6= ∅. If we condition on the event Xi /∈ L for all i, then the
conditional distribution of S is still, by Theorem 3.1, close to a discretized normal random variable,
except that this discretized normal random variable is now scaled by gcd(H). (Indeed the conditioning
only boosts the b-weight of integers b ∈ H.) But “Xi /∈ L for all i” may be a rare event. Regardless, a
typical sample from S shouldn’t have a large set of indices L := {i | Xi ∈ L}, because E[|L|] ≤ 2kM .
Indeed, one would expect that, conditioning on a typical L, the b-weight of

∑
i/∈LXi for b ∈ H is still

very large. Hence, conditioning on typical L’s,
∑
i/∈LXi should still be close to a discretized normal

(scaled by gcd(H)). Moreover, we may hope that the normals arising by conditioning on different
typical L’s are close to a fixed “typical” discretized normal. Indeed, the fluctuations in the mean
and variance of

∑
i/∈LXi, conditioned on typical L’s, should not be severe, since L is small. These

considerations suggest that S is close to the sum of a sparse random variable, “the contribution of L”,
and a gcd(H)-scaled discretized normal, “the contribution of H ∪ {0}”.

The last case is clearly the hardest and is handled by Theorem 4.3 in the next section. Before proceeding,
let us make our intuition a bit more precise. First, let us formally disentangle S into the contributions of L
and H ∪ {0}, by means of the following alternate sampling procedure for S.

Definition 4.2. [“The Light-Heavy Experiment”.] Let S = X1 + · · ·+Xn be a 0-moded ±k-SIIRV. We de-
fine here an alternate experiment for sampling the random variable S, called the “Light-Heavy Experiment”.
There are three stages:

1. [Stage 1]: We first sample a random subset L ⊆ [n], by independently including each i into L with
probability Pr[Xi ∈ L].

2. [Stage 2]: Independently we sample for each i ∈ [n] a random variable Xi ∈ L as follows:

Xi = b,with probability
Pr[Xi = b]
Pr[Xi ∈ L]

;

i.e. Xi is distributed according to the conditional distribution of Xi, conditioning on Xi ∈ L. In the
exceptional case that Pr[Xi ∈ L] = 0, we define Xi = 0 with probability 1.

3. [Stage 3]: Independently we sample for each i ∈ [n] a random variable Xi ∈ H ∪ {0} as follows:

Xi = b,with probability
Pr[Xi = b]
Pr[Xi /∈ L]

;

i.e. Xi is distributed according to the conditional distribution of Xi, conditioning on Xi /∈ L.
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After these three stages we output
∑
i∈LXi+

∑
i/∈LXi as a sample from S, where

∑
i∈LXi represents “the

contribution of L” and SL :=
∑
i/∈LXi “the contribution ofH∪{0}.” We note that the two contributions are

not independent, but they are independent conditioned on the outcome of L. This concludes the definition
of the Light-Heavy Experiment.

Coming back to our proof strategy, we aim to argue that:

(i) The contribution of L is close to a sparse random variable. This is clear from the definition of L, since
E[|
∑
i∈LXi|] ≤ E[

∑
i∈L |Xi|] ≤ k

∑n
i=1 Pr[Xi ∈ L] = k

∑
j∈L

∑n
i=1 Pr[Xi = j] ≤ 2k2M.

(ii) With probability close to 1 (with respect to L), the contribution of H∪{0} is close to a fixed, gcd(H)-
scaled discretized normal random variable Z, which is independent of S. Showing this is the heart of
our argument in the proof of Theorem 4.3, in the next section.

Given (i) and (ii), we can readily finish the proof of Theorem 4.3 using Proposition B.3: Indeed, if we set X
to be the contribution of L and Y to be the contribution of H∪{0}, we get that S is close to the sum of X
times the indicator that L is typical (which is close to a sparse random variable) and a discretized normal
independent of X, scaled by gcd(H).

4.2 The Structural Result

We make the intuition of the previous section precise, by providing the proof of the following.

Theorem 4.3. Let S = X1+· · ·+Xn be a 0-moded ±k-SIIRV with mean µ and variance σ2 ≥ 15k4 log(1/δ)·
M , where 1 ≤M = ω(k log k) and δ ∈ (0, 1

10 ) are parameters. Let also c = gcd(H), where L, H are defined
in terms of M and k as in Definition 4.1. Then there are independent random variables Y and Z such that:

• Y is a ±(kM ′)-IRV, where M ′ = 4k log(1/δ) ·M ;

• Z ∼ Z(µc ,
σ2

c2 );

• dTV(S,Y + cZ) ≤ δ + 2k exp(−M/8) +O(k3.5/
√
M) +O(k2 log(1/δ)M/σ).

In particular, taking M = k7/δ2 the total variation bound becomes O(δ + (k9/δ2) log(1/δ)/σ).

Proof. Throughout we will assume that S is drawn according to the Light-Heavy Experiment from Defini-
tion 4.2. We use that definition’s notation: L, Xi, and Xi. For each outcome L of L, we introduce the
notation

SL =
∑
i/∈L

Xi.

Note that each random variable SL is a ±k-SIIRV. Finally, for each i ∈ [n] we introduce the shorthand
`i = Pr[Xi ∈ L]. Note that

∑n
i=1 `i ≤ 2kM and `i < 1− 1

2k (since Xi has mode 0).

Understanding Typical L’s. We study typical outcomes of L. First, we argue that typical L’s have
small cardinality. Indeed, let us define the following event:

BAD0 = {outcomes L for L having |L| ≥M ′}.

Since E[|L|] =
∑
i `i ≤ 2kM , our choice of M ′ and a multiplicative Chernoff bound imply that Pr[BAD0] ≤

δ.
Next, we argue that, conditioning on typical outcomes L for L, the random variable SL has b-weight at

least M/2 for each b ∈ H. In particular, for each b ∈ H define the event

BADb = {outcomes L for L in which the b-weight of the ±k-SIIRV SL is less than M/2}.

Notice that the b-weight of SL is the sum of independent random variables W i, where W i = 0 with
probability `i and W i = Pr[Xi = b]/(1 − `i) ≤ 1 with probability 1 − `i. Thus the expectation (over L)
of the b-weight of SL is simply the b-weight of S; since this is at least M , a multiplicative Chernoff bound
implies that Pr[BADb] ≤ exp(−M/8). Defining BAD to be the union of all the bad events, we conclude that

Pr[BAD] ≤ δ + 2k exp(−M/8). (2)
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Concluding the Proof. Let Z ∼ Z(µc ,
σ2

c2 ) be independent of all other random variables, as in the
statement of the theorem. The remainder of the proof will be devoted to showing that

for every L 6∈ BAD, dTV(SL, cZ) ≤ O(k3.5/
√
M) +O(k2 log(1/δ)M/σ). (3)

Given (3) we can conclude the proof by applying Proposition B.3, with
∑
i∈LXi playing the role of “X”,

SL playing the role of “Y ”, cZ playing the role of “Z”, and “G” being the complement of BAD. Note that
(
∑
i∈LXi) · 1L 6∈BAD is indeed a ±kM ′-IRV.

Establishing (3). Notice first that if H = ∅, then (3) is trivially true as then Z = 0. Otherwise, Z ∼ Z(µc ,
σ2

c2 )
and let us fix an arbitrary outcome L 6∈ BAD. Write µL = E[SL], σ2

L = Var[SL], and define S′ = 1
cSL.

(Also, delete any identically zero summands from S′.) By virtue of L 6∈ BADb for all b ∈ H we are in a
position to apply Theorem 3.1 to S′ (except with M/2 in place of M). We deduce that for Z ′ ∼ Z(µL

c ,
σ2

L

c2 )
we have

dTV(S′,Z ′) ≤ O(k3.5/
√
M).

If we can furthermore show
dTV(Z ′,Z) ≤ O(k2 log(1/δ)M/σ) (4)

then we will have established (3).

It therefore remains to show (4); i.e., to show that

dTV

(
Z

(
µL
c
,
σ2
L

c2

)
, Z

(
µ

c
,
σ2

c2

))
≤ O(k2 log(1/δ)M/σ).

This is in turn implied by the claim

dTV

(
N(µL, σ2

L),N(µ, σ2)
)
≤ O(k2 log(1/δ)M/σ). (5)

To establish (5) we claim the following:

Claim 4.4. For L 6∈ BAD,

|µ− µL| ≤ 4k2(log(1/δ) + 1) ·M ; (6)

|σ2 − σ2
L| ≤ 14k4 log(1/δ) ·M. (7)

Proof of Claim 4.4. (Bounding the Mean Difference.) We have:

|µ− µL| =

∣∣∣∣∣∣
∑
i∈L

E[Xi] +
∑
i6∈L

(E[Xi]−E[Xi])

∣∣∣∣∣∣
≤
∑
i∈L

E[|Xi|] +
∑
i6∈L

|E[Xi]−E[Xi]|.

Notice that
∑
i∈L E[|Xi|] ≤ k|L| ≤ kM ′ ≤ 4k2 log(1/δ) ·M . Next we bound each difference |E[Xi] −

E[Xi]| separately, using the law of total expectation. Namely, if I is the indicator for Xi ∈ L, we have

E[Xi] = E[E[Xi | I]] = Pr[I]E[Xi] + (1−Pr[I])E[Xi].

Hence,

|E[Xi]−E[Xi]| = Pr[I]|E[Xi]− E[Xi]| ≤ `i2k

and consequently
∑
i 6∈L |E[Xi]−E[Xi]| ≤ 2k

∑
i `i ≤ 4k2M. (6) follows.
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(Bounding the Variance Difference.) We have

|σ2 − σ2
L| =

∣∣∣∣∣∣
∑
i∈L

Var[Xi] +
∑
i 6∈L

(Var[Xi]−Var[Xi])

∣∣∣∣∣∣
≤
∑
i∈L

Var[Xi] +
∑
i 6∈L

|Var[Xi]−Var[Xi]|. (8)

The first term is at most k2 · |L| ≤ k2 ·M ′ = 4k3 log(1/δ) ·M . To bound the second term we bound each
|Var[Xi]−Var[Xi]| using the law of total variance. Letting I be the indicator for Xi ∈ L we have

Var[Xi] = E[Var[Xi | I]] + Var[E[Xi | I]]

= Pr[I] Var[Xi] + (1−Pr[I]) Var[Xi] + Pr[I](1−Pr[I])(E[Xi]−E[Xi])2 (9)

From this we get:

Var[Xi] ≤ `i · k2 + Var[Xi] + `i · 4k2 =⇒ Var[Xi]−Var[Xi] ≤ `i · 5k2.

For a lower bound, we get from (9):

(1−Pr[I])(Var[Xi]−Var[Xi]) = Pr[I](Var[Xi]−Var[Xi]) + Pr[I](1−Pr[I])(E[Xi]−E[Xi])2

≥ −Pr[I] Var[Xi].

Hence, Var[Xi]−Var[Xi] ≥ − `i
1−`i Var[Xi] ≥ − `i

1−`i k
2 ≥ −2k3`i.

Thus |Var[Xi]−Var[Xi]| ≤ 5k3`i and so the second sum in (8) is at most 5k3
∑
i `i ≤ 10k4 ·M .

We conclude
|σ2 − σ2

L| ≤ 14k4 log(1/δ) ·M.

Given Claim 4.4, (5) follows from (6), (7), Proposition B.4, and our assumption that σ2 ≥ 15k4 log(1/δ) ·
M . This completes the proof of Theorem 4.3.

Corollary 4.5. Let S be a k-SIIRV with mean µ and variance σ2. Moreover, let 0 < δ < 1
10 and assume

σ2 ≥ 15(k18/δ6) log2(1/δ). Then, for some integer c with 1 ≤ c ≤ k−1, we have that dTV(S,Y +cZ) ≤ O(δ),
where Y and Z are independent, Y is a c-IRV and Z ∼ Z(µc ,

σ2

c2 ).

Proof. The claim is trivial for k = 1 so we assume that k ≥ 2. By subtracting an appropriate integer constant
from each component Xi of the k-SIIRV S, we can obtain a 0-moded ±k-SIIRV S′ such that S = S′ + m
for some m ∈ Z. Note that S′ has mean µ − m and variance σ2. Now apply Theorem 4.3 to S′ with
M = k7/δ2, calling the obtained random variables Y ′ and Z ′. (We leave it to the reader to verify, with the
aid of Proposition 4.7 below, that the lower bound on σ means there is at least one M -heavy integer and
hence the obtained c is nonzero.) Y ′ and Z ′ are independent, Z ′ ∼ Z(µ−mc , σ

2

c2 ), and Y ′ is a ±M ′′-IRV,
where M ′′ = 4(k9/δ2) log(1/δ). Moreover,

dTV(S′,Y ′ + cZ ′) ≤ O(δ + (k9/δ2) log(1/δ)/σ) ≤ O(δ), (10)

where the second inequality is by our assumed lower bound on σ.
Next, write m = qc+ r for some integers q, r with |r| ≤ c/2 ≤ k. Defining Y ′′ = Y ′ + r, clearly Y ′′ is a

±(M ′′ + k)-IRV. Moreover, it follows from Proposition B.5 that dTV(Z ′ + q,Z) ≤ 1/σ. So assuming Z is
independent of Y ′′, using the triangle inequality, Proposition B.2, and (10), we obtain:

dTV(S,Y ′′ + cZ) ≤ O(δ). (11)

Finally, define two dependent random variables Y = Y (Y ′′) and Q = Q(Y ′′) such that Y = Y ′′ mod c,
which is a c-IRV, and Y ′′ = cQ+Y , so that Q is a ±bM

′′+k
c c-IRV. With this definition, we have Y ′′+ cZ =

Y + c(Z +Q). The proof is concluded by noting the following:
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Claim 4.6. dTV(Y + c(Z +Q),Y + cZ) ≤ b
M′′+k

c c
2σ .

Proof of Claim 4.6. First, by iterating Proposition B.6 and using the triangle inequality, we have that for
any integer λ, dTV(Z,Z + λ) ≤ λ

2σ .
For the following derivation, whenever X is a random variable, we write fX for the probability density

function of X. We have:

dTV(Y + c(Z +Q),Y + cZ)

=
1
2

∫ +∞

−∞
|fY +c(Z+Q)(x)− fY +cZ(x)|dx

=
1
2

∫ +∞

−∞
|fY +c(Z+Q)(x)− fY +cZ(x)|dx

=
1
2

∫ +∞

−∞

∫ +∞

−∞
fY (y′′)+c(Z+Q(y′′))(x)fY ′′(y′′)dy′′ − fY (y′′)+cZ(x)fY ′′(y′′)dy′′dx

≤
∫ +∞

−∞

1
2

∫ +∞

−∞
fY (y′′)+c(Z+Q(y′′))(x)− fY (y′′)+cZ(x)dxfY ′′(y′′)dy′′

≤
∫ +∞

−∞
dTV(Y (y′′) + c(Z +Q(y′′)),Y (y′′) + cZ)fY ′′(y′′)dy′′

≤
∫ +∞

−∞
dTV(Z +Q(y′′),Z)fY ′′(y′′)dy′′

≤
bM

′′+k
c c

2σ
.

Using the triangle inequality, Claim 4.6 and (11), we obtain: dTV(S,Y + cZ) ≤ O(δ) + bM′′+k
c c

2σ = O(δ),
by our lower bound on σ.

Proposition 4.7. Let X be a ±k-IRV with mode 0. Let w = Pr[X 6= 0]. Then 1
8w ≤ Var[X] ≤ k2w.

Proof. For the upper bound we have Var[X] ≤ E[X2] ≤ Pr[X 6= 0]k2 = k2w. As for the lower bound, let
µ = E[X] and write m = bµe. If m = 0 then whenever X 6= 0 we have |X − µ| ≥ 1

2 ; hence Var[X] =
E[(X − µ)2] ≥ ( 1

2 )2w ≥ 1
8w. If m 6= 0 then we have Pr[X 6= m] ≥ 1

2 (else m would be the mode of X);
hence E[(X − µ)2] ≥ 1

2 ( 1
2 )2 = 1

8 ≥
1
8w.

We conclude this section with the following corollary, which is another way of stating Theorem 1.2.

Corollary 4.8. Let S = X1+· · ·+Xn be a k-SIIRV for some positive integer k. Let µ and σ2 be respectively
the mean and variance of S. Then, for all ε > 0, the distribution of S is O(ε)-close in total variation distance
to one of the following:

1. a random variable supported on k9

ε4 consecutive integers; or

2. the sum of two independent random variables S1 + cS2, where c is some positive integer 1 ≤ c ≤ k− 1,
S2 is distributed according to Z(µ, σ2), and S1 is a c-IRV; in this case, σ2 = Ω

(
k18

ε6 log2(1/ε)
)

.

Proof. Assume ε < 1/10. We distinguish two cases depending on whether σ2 is < or ≥ 15(k18/ε6) log2(1/ε).
In the former case, we have by Chebyshev’s inequality that S is ε-close to a random variable supported on
O(k

9

ε4 ) consecutive integers, as in the first case of the statement. In the latter case, we can apply Corollary 4.5
to get that S is close to S1 + cS2 as in the second case of the statement.
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5 Learning Sums of Independent Integer Random Variables

In this section we apply our main structural result, Corollary 4.8, to prove our main learning result,
Theorem 1.1. We do this using ideas and tools from previous work on learning discrete distributions
[DDS12b, CDSS13].

The algorithm of Theorem 1.1 works by first running two different learning procedures, corresponding to
the “small variance” and “large variance” cases of Corollary 4.8 respectively. It then does hypothesis testing
to select a final hypothesis from the hypotheses thus obtained. We first describe the two learning procedures
and analyze their performance, then describe the hypothesis testing routine and its performance, and finally
put the pieces together to prove Theorem 1.1.

Before entering into the descriptions of our algorithms we briefly specify the details of the word RAM
model within which they operate. As is standard, we assume that registers are of size O(log n) bits and that
the basic operations of comparison, addition, subtraction, multiplication and integer division take unit time
for values that fit into a single register.3

We remind the reader that as discussed in the footnote in Section 1.1, we may assume that k ≤ n since
otherwise the desired learning result of poly(k, 1/ε) samples and poly(k, 1/ε) time is trivial. Thus we may
assume that the target SIIRV S is an n2-IRV and hence that each sample point drawn from S fits in a single
O(log n)-bit register.

5.1 The low-variance case.

The first procedure, Learn-Sparse, is useful when the variance σ2 of S is small. We use the following result
which is implicit in [DDS12b] (see Lemma 3):

Lemma 5.1. There is a procedure Learn-Sparse with the following properties: It takes as input a size
parameter L, an accuracy parameter ε′ > 0, and a confidence parameter δ′ > 0, as well as access to samples
from a poly(n)-IRV S. Let a be the largest integer such that Pr[S ≤ a] ≤ ε′, and let b be the smallest
integer such that Pr[S ≥ b] ≤ ε′. Learn-Sparse uses O((L/ε′2) · log(1/δ′)) samples from S, runs in time
Õ((L/ε′2) · log(1/δ′)) and has the following performance guarantee: If b− a ≤ L then with probability 1− δ′
Learn-Sparse outputs an explicit description of a hypothesis random variable H supported on [a, . . . , b] such
that dTV(H,S) ≤ O(ε′) (note that such an H is (b− a+ 1)-flat).

We note that the algorithm Learn-Sparse is quite simple: it truncates O(ε′) of the probability mass
from each end of S, and then (assuming the non-truncated middle region contains at most L+1 points) it
learns S by outputting the empirical distribution over this middle region (see Appendix A of [DDS12b] for
details). It is straightforward to verify that the necessary operations can be performed in time that is nearly
linear in the number of samples.

5.2 The high-variance case.

The second procedure, Learn-Heavy, is useful when the variance σ2 of S is large.

Lemma 5.2. There is a procedure Learn-Heavy with the following properties: It takes as input a value
c ∈ {1, . . . , k − 1}, an accuracy parameter ε′ > 0, a variance parameter σ2 = Ω(k2/ε′), and a confi-
dence parameter δ′ > 0, as well as access to samples from a poly(n)-IRV S. Learn-Heavy uses m =
Õ(1/ε′4) +O((1/ε′2)(c+ log(1/δ′))) samples from S, runs in time Õ(m), and has the following performance
guarantee:

Suppose that dTV(S, cZ + Y ) ≤ ε′ where Z is a discretized normal random variable distributed as
Z(µ

′

c ,
σ′2

c2 ) for some σ′2 ≥ σ2, Y is a c-IRV, and Z and Y are independent. Then Learn-Heavy out-
puts a hypothesis variable Hc such that dTV(S,Hc) ≤ O(ε′). (More precisely, the form of the output is
a pair Ŷ , Ẑ where Ŷ is an (explicitly described) c-IRV and Ẑ is an explicitly described O(1/ε′2)-flat IRV
(independent from Ŷ ); the hypothesis Hc is cẐ + Ŷ .)

3In fact we only need multiplication and integer division by values that are at most k, and k can be assumed to be o(log logn)
bits as otherwise we can multiply and divide in poly(k)-time in any model.
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Proof. The procedure works in the obvious way, by learning Y and Z in separate stages.
To learn Y , it draws m1 = O((1/ε′2)(c+ log(1/δ′))) samples from S and reduces each one to its residue

mod c. For 0 ≤ i < c let γi denote the fraction of the m1 samples that have value i mod c. The c-IRV Ŷ
is defined by Pr[Ŷ = i] = γi. In other words, given samples from S, it simulates samples of the random
variable Y ′ = (S mod c) and outputs its empirical distribution Ŷ .

We claim that with probability at least 1−δ′/2, we will have dTV(Ŷ ,Y ) ≤ 2ε′. The argument is standard,
but we include it here for the sake of completeness. First, since dTV(S, cZ + Y ) ≤ ε′, the data processing
inequality for the total variation distance (Proposition B.1) implies that dTV(Y ′,Y ) ≤ ε′. Hence, by the
triangle inequality, it suffices to show that with probability at least 1− δ′/2, we will have dTV(Ŷ ,Y ′) ≤ ε′.
Now consider the random variable X = dTV(Ŷ ,Y ′). Since Y ′ is a c-IRV, Theorem B.9 implies that

E[X] = O(
√
c/m1) ≤ ε′/2.

Moreover, Theorem B.10 for η = ε′/2 implies that

Pr[X > ε′] ≤ Pr[X −E[X] > η] ≤ e−2mη2
≤ δ′/2

where the first inequality uses the upper bound on E[X] and the last inequality follows by our choice of m1.
To learn Z, the procedure draws m2 = Õ(1/ε′4) +O((1/ε′2) log(1/δ′)) samples from S and replaces each

value v thus obtained with the value bv/cc. In other words, given samples from S it simulates samples of
the random variable Z ′ = bS/cc. Since dTV(S, cZ + Y ) ≤ ε′, the data processing inequality for the total
variation distance implies that dTV(Z ′,Z) ≤ ε′. We now require the following:

Claim 5.3. Z is O(ε′)-close to a t-flat distribution Z ′′, for t = Õ(1/ε′).

Proof. To show this, it is clearly sufficient to show that Z` is O(ε′)-close to a t-flat distribution Z ′′, where
Z` is distributed as Z(µ′′, σ

′2

c2 ) and µ′′ = ` + µ′

c is an integer translate by ` ∈ Z of µ′

c . We show this as
follows: Let µ̄ ∈ R+ be chosen such that there is a positive integer n > 0 and a value 0 < p < 1 satisfying

µ̄ = np,
σ′2

c2
= np(1− p).

(Using the fact that σ′2

c2 = Ω(1/ε′) and the observation that p(1− p) may take any value in [ 1
5 ,

1
4 ] it is easy

to see that there exists a value of µ̄ as desired.) Now we recall Theorem 7.1 of [CGS11]:

Theorem 7.1 of [CGS11] Let X1, . . . ,Xn be independent {0, 1} variables with distribution Pr[Xi =
1] = pi, and let S =

∑n
i=1Xi, µ =

∑n
i=1 pi and σ2 =

∑n
i=1 pi(1− pi). Then dTV(S, Z(µ, σ2)) ≤ O(1)/σ.

Taking each pi = p, we get that S is a PBD which has dTV(S, Z(µ̄, σ
′2

c2 )) = O(ε′). For a suitable integer
`, we have |µ̄ − µ′′| ≤ 1. Proposition B.4 gives that dTV(N(µ̄, σ

′2

c2 ),N(µ′′, σ
′2

c2 )) ≤ O(ε′), and hence the data
processing inequality for total variation distance (Proposition B.1) gives that dTV(Z(µ̄, σ

′2

c2 ), Z(µ′′, σ
′2

c2 )) ≤
O(ε′) as well. So the triangle inequality gives that dTV(S, Z(µ′′, σ

′2

c2 )) ≤ O(ε′), i.e. dTV(S,Z`) ≤ O(ε′).
Since S is a PBD it is a discrete log-concave distribution [KG71], and (as shown in [CDSS13], Theorem 4.2)
any discrete log-concave distribution is ε′-close to a t-flat distribution for t = Õ(1/ε′). Thus we have that
Z` (and hence Z) is O(ε′)-close to a t-flat distribution, as was claimed.

Given Claim 5.3, the triangle inequality implies that Z ′ is O(ε′)-close to a t-flat distribution. We now
recall the procedure Learn-Unknown-Decomposition from [CDSS13] which efficiently learns distributions
that are close to being t-flat:

Theorem 3.3 from [CDSS13] Suppose that Learn-Unknown-Decomposition(D′, t, ε′, δ′) is run on
O(t/ε′3 + log(1/δ′)/ε′2) samples from a poly(n)-IRV D′ which is ε′-close (in total variation distance) to some
random variable D that is t-flat. Then Learn-Unknown-Decomposition runs in time Õ(t/ε′3 + log(1/δ′)/ε′2)
and with probability 1− δ′/2 outputs a O(t/ε′)-flat hypothesis random variable that is O(ε′)-close to D′.

15



By running the procedure Learn-Unknown-Decomposition using the m2 transformed samples, we output a
distribution Ẑ such that dTV(Ẑ,Z ′) = O(ε′) and therefore dTV(Ẑ,Z) = O(ε′).

Thus with overall probability at least 1−δ′ we have that both dTV(Ŷ ,Y ) ≤ O(ε′) and dTV(Ẑ,Z) ≤ O(ε′).
Since all these random variables are independent, by Proposition B.2 we consequently have dTV(cZ+Y , cẐ+
Ŷ ) ≤ O(ε′). By the triangle inequality, this gives dTV(S,Hc) ≤ O(ε′) as was to be shown.

5.3 Hypothesis testing

We recall the hypothesis testing procedure from [DDS12b]. The following lemma is implicit in [DDS12b]
(see Lemmas 5 and 11):

Lemma 5.4. There is an algorithm Hypothesis-Testing with the following properties: Hypothesis-Testing
is given an accuracy parameter ε′ > 0, a confidence parameter δ′ > 0, access to samples from an N =
poly(n)-IRV S and explicit descriptions of ` t-flat hypothesis IRVs H1, . . . ,H` over {0, 1, . . . , N − 1}.
Choose-Hypothesis draws O(log(`) log(1/δ′)/ε′2) samples from S and runs in time O((t`2/ε′2) log(`/δ′)).
It has the following performance guarantee: If some Hi has dTV(S,Hi) ≤ ε′ then with probability at least
1− δ′ Hypothesis-Testing outputs a hypothesis Hi′ such that dTV(S,Hi′) ≤ 6ε′.

For the sake of completeness, we now sketch the algorithm Hypothesis-Testing in tandem with an
analysis of its running time. The basic primitive of the algorithm Hypothesis-Testing is a routine
Choose-Hypothesis(H1,H2, ε, δ) which, on input ε, δ > 0, sample access to S, and explicit descriptions of
two t-flat hypothesis IRVs H1H2, draws O(log(1/δ)/ε2) samples from S and runs in time O((t/ε2) log(1/δ)).
The routine Choose-Hypothesis(H1,H2, ε, δ) has the following performance guarantee: If one of H1,H2

has dTV(S,Hi) ≤ ε then with probability at least 1− δ it outputs an i ∈ {1, 2} such that dTV(S,Hi) ≤ 6ε.
We call the distribution Hi the winner of the competition between H1 and H2. The overall algorithm
Hypothesis-Testing({Hi}`i=1, ε

′, δ′) proceeds by running Choose-Hypothesis(Hi,Hj , ε
′, δ′/(2`)) for all

pairs (i, j) ∈ [`]2, i 6= j, and it outputs a distribution Hi that was never a loser (or “failure” if no such
distribution exists). (See Lemma 11 of [DDS12b].) The bound on the running time for Hypothesis-Testing
follows from the corresponding bound for Choose-Hypothesis so it suffices to establish the latter.

The routine Choose-Hypothesis works as follows (see Lemma 5 of [DDS12b]): It starts by computing
the set W1 = {x | H1(x) > H2(x)} and the corresponding probabilities pi = Hi(W1) for i = 1, 2. It then
draws m = O((1/ε2) log(1/δ)) samples from S and calculates the fraction τ of these samples that land in
W1. If τ > p1 − ε, it returns H1; if τ < p2 + ε, it returns H2; otherwise, it declares a draw (and returns
either of H1, H2).

By exploiting the fact that H1,H2 are t-flat distributions over the domain {0, 1, . . . , N − 1} where
N = poly(n) we can perform these calculations very efficiently. Indeed, let I(i) = {I(i)

1 , . . . , I
(i)
t } be the t-flat

decomposition for Hi, i = 1, 2, and p
(i)
1 , . . . , p

(i)
t be the corresponding probabilities. Consider the common

refinement I ′ = {I ′1, . . . , I ′t′} of I(1) and I(2) where t′ ≤ 2t and denote by p′1, . . . , p
′
t′ the corresponding

probabilities. (The common refinement is obtained by taking all possible nonempty intervals of the form
I

(1)
i ∩ I(2)

j .) By definition, for any y, z ∈ I ′j either y, z ∈ W1 or y, z 6∈ W1. Hence W1 can be succinctly
described by the sets I ′j ∈ I ′ it contains. The aforementioned computation can be performed with O(t)
comparisons. We then have that pi =

∑
I′j∈W1

Hi(I ′j) =
∑
I′j∈W1

|I ′j |p′j which can be computed in time O(t)
in the RAM model. It is also easy to see that the fraction τ can be computed in time O(mt). Hence, the
overall running time of the routine is O((t/ε2) log(1/δ)) as desired.

5.4 Proof of Theorem 1.1

Now we are ready to prove the main learning result, Theorem 1.1. The algorithm first runs Learn-Sparse
with size parameter set to L = O(k9/ε4), accuracy parameter ε′ = ε, and confidence parameter δ = 1

20k , to
obtain a hypothesis H0. Then for each c = 1, . . . , k − 1 the algorithm runs Learn-Heavy with parameter
c, variance parameter set to Ω(k

18

ε6 log2(1/ε)), accuracy parameter ε′ = ε, and confidence parameter δ =
1

20k , to obtain a hypothesis Hc. Finally, it runs Hypothesis-Testing using the explicit descriptions of
H0,H1, . . . ,Hk, accuracy parameter ε′ = ε, and confidence parameter δ = 1

20k , and outputs the hypothesis
Hi that Choose-Hypothesis returns.
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The claimed sample complexity and running time of the algorithm follows easily from the lemmas proved
earlier in this section. The correctness of the algorithm follows from those lemmas together with Corollary 4.8.
This concludes the proof of Theorem 1.1.
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A Proof of Observation 1.3

Recall Observation 1.3:

Observation 1.3. Fix any integer c ≥ 1. Let S = X1 + · · · + Xn be a sum of n (c, 2)-moment IRVs.
Let L be any algorithm which, given n and access to independent samples from S, with probability at least
e−o(n

1/c) outputs a hypothesis random variable S̃ such that dTV(S, S̃) < 1/41. Then L must use at least
n1/c/10 samples.

Proof. We assume w.l.o.g. in the argument below that n is the c-th power of some integer and a multiple of 8.
Let us define a probability distribution over possible target random variables S = X1 + · · ·+Xn as follows.
First, a sequence of values v1, . . . , vn1/c/4 is chosen as follows: for each i, the value vi is chosen independently
and uniformly from {n1/c/2 + 2i − 1, n1/c/2 + 2i}. Given the outcome of v1, . . . , vn1/c/4, the (c, 1)-moment
IRVs X1, . . . ,Xn/4 are defined as follows: for 1 ≤ i ≤ n1/c/4 and 1 ≤ k ≤ n1−1/c, the random variable
Xn1−1/c(i−1)+k takes value vi with probability 1/n and takes value 0 with probability 1 − 1/n (so observe
that the n1−1/c random variables Xn1−1/c(i−1)+1, . . . ,Xn1−1/c·i are identically distributed). For n/4 < j ≤ n
the random variable Xj is identically 0.

We have the following easy lemmas:

Lemma A.1. Fix any sequence of values v1, . . . , vn1/c/4 and corresponding sequence of (c, 1)-moment IRVs
Xi as described above. For any value r ∈ {n1/c/2 + 1, . . . , n1/c} we have that Pr[S = r] > 0 if and only if
vd(r−n1/c/2)/2e = r. For each of the n1/c/4 values of r ∈ {n1/c/2 + 1, . . . , n1/c} such that Pr[S = r] > 0, the
value Pr[S = r] is exactly 1

n1/c (1− 1
n )n/4−1 > 1

2n1/c .

The first claim of the lemma holds because any set of at least two numbers from {n1/c/2 + 1, . . . , n1/c}
must sum to more than n1/c. Hence the only way that S can equal r is if exactly one of the n1−1/c random
variables Xn1−1/c(d(r−n1/c/2)/2e−1)+1, . . . ,Xn1−1/c(d(r−n1/c/2)/2e) takes value r and all other variables are 0.
Since variables X1, . . . ,Xn/4 are non-zero with probability 1/n and the rest are identically 0, the probability
of this is 1

n1/c (1− 1
n )n/4−1 > 1

2n1/c .
The next lemma is an easy consquence of Chernoff bounds:

Lemma A.2. Fix any sequence of (c, 1)-moment IRVs X1, . . . ,Xn/4 as described above. Consider a se-
quence of n1/c/10 independent draws of (X1, . . . ,Xn/4). With probability 1− e−Ω(n1/c), the total number of
indices i ∈ {1, . . . , n/4} such that Xi is ever nonzero in any of the n1/c/10 draws is at most n1/c/20.

We are now ready to prove Observation 1.3. Let L be a learning algorithm that receives n1/c/10 samples.
Let S be drawn from the distribution over possible target random variables described above.

We consider an augmented learner L′ that is given “extra information:” for each point in the sample
instead of receiving just the value of S = X1 + · · · +Xn the augmented learner receives the entire vector
of outcomes of (X1, . . . ,Xn). By Lemmas A.1 and A.2, with probability at least 1 − e−Ω(n1/c), the aug-
mented learner receives (complete) information about the outcome of at most n1/c/20 of the n1/c/4 values
v1, . . . , vn1/c/4 (we condition on this going forward). Since the choices of the vi’s are independent, for at
least n1/c/5 of the values vi, the learning algorithm has no information about whether vi is n1/c/2 + 2i− 1
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or n1/c/2 + 2i, and hence it is equally likely that Pr[S = r] > 0 for r being either of these two values.
Lemma A.1 implies that each of these n1/c/5 values contributes (at least) 1/(4n1/c) of error in expectation
(with respect to the randomness in the learning algorithm and the choice of vi’s) in the hypothesis output
by the learning algorithm. Hence the expected L1 error of the hypothesis output is at least 1/20. The proof
of Observation 1.3 is now concluded with a Chernoff bound.

B Tools from Probability

We begin by recalling some basic facts concerning total variation distance, starting with the “data processing
inequality for total variation distance” (see part (iv) of Lemma 2 of [Rey11] for the proof):

Proposition B.1 (Data Processing Inequality for Total Variation Distance). Let X, X ′ be two random
variables over a domain Ω. Fix any (possibly randomized) function F on Ω (which may be viewed as a
distribution over deterministic functions on Ω) and let F (X) be the random variable such that a draw from
F (X) is obtained by drawing independently x from X and f from F and then outputting f(x) (likewise for
F (X ′)). Then we have

dTV(F (X), F (X ′)) ≤ dTV(X,X ′).

Next we recall the subadditivity of total variation distance for independent random variables:

Proposition B.2. Let A,A′,B,B′ be integer random variables such that (A,A′) is independent of (B,B′).
Then dTV(A+B,A′ +B′) ≤ dTV(A,A′) + dTV(B,B′).

Proof. By definition there is a coupling of A,A′ such that A = A′ except with probability at most
dTV(A,A′), and similarly for B,B′. Taking these couplings independently we get that A +B = A′ +B′

except with probability at most dTV(A,A′) + dTV(B,B′), by the union bound.

Proposition B.3. Let X and Y be integer random variables which are independent conditioned on the
outcome of a third discrete random variable L. Further, let Z be an integer random variable independent of
X, Y , and L. Finally, let G be a set of “good” outcomes for L such that:

• Pr[L 6∈ G] ≤ η;

• for each L ∈ G we have dTV((Y | L = L),Z) ≤ ε.

Then dTV(X + Y ,X · 1L∈G +Z) ≤ (1− η)ε+ η ≤ ε+ η.

Proof. Let A ⊆ Z. Fix any good outcome L ∈ G for L and any outcome x for X. Since X and Y are
independent conditioned on L = L, and since Z is independent of X and L, we have

|Pr[Y ∈ A− x | L = L,X = x]−Pr[Z ∈ A− x | L = L,X = x]| ≤ dTV((Y | L = L),Z) ≤ ε.

We may also replace Pr[Z ∈ A−x | L = L,X = x] above with Pr[Z ∈ A−x ·1L∈G | L = L,X = x]. Then
multiplying the inequality by Pr[X = x] and summing over all x yields

|Pr[X + Y ∈ A | L = L]−Pr[X · 1L∈G +Z ∈ A | L = L]| ≤ ε.

Multiplying the above by Pr[L = L] and summing over all good L ∈ G yields

|Pr[X + Y ∈ A ∧L ∈ G]−Pr[X · 1L∈G +Z ∈ A ∧L ∈ G]| ≤ (1− η)ε.

Thus by a union bound, |Pr[X + Y ∈ A]−Pr[X · 1L∈G +Z ∈ A]| ≤ (1−η)ε+η, completing the proof.

We will use the following standard result which bounds the variation distance between two normal
distributions in terms of their means and variances:

Proposition B.4. Let µ1, µ2 ∈ R and 0 < σ1 ≤ σ2. Then dTV(N(µ1, σ
2
1),N(µ2, σ

2
2)) ≤ 1

2

(
|µ1−µ2|
σ1

+ σ2
2−σ

2
1

σ2
1

)
.
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Proof. From [Wik], the Kullback-Leibler divergence from N(µ2, σ
2
2) to N(µ1, σ

2
1) is

1
2

(
σ2

2

σ2
1

+
(µ1 − µ2)2

σ2
1

− ln
σ2

2

σ2
1

− 1
)
≤ 1

2

((
σ2

2 − σ2
1

σ2
1

)2

+
(µ1 − µ2)2

σ2
1

)
≤ 1

2

(
σ2

2 − σ2
1

σ2
1

+
|µ1 − µ2|

σ1

)2

,

where for the first inequality we used that x − lnx − 1 ≤ (1 − x)2, for x ≥ 1. The proof is concluded by
applying Pinsker’s inequality.

We will also require:

Proposition B.5. Let G ∼ N(µ, σ2) and λ ∈ R. Then dTV(bG + λe, bGe + bλe) ≤ 1
2σ . Consequently, for

λ ∈ Z, if Z ∼ Z(µ, σ2) and Z ′ ∼ Z(µ− λ, σ2) then dTV(Z, λ+Z ′) ≤ 1
2σ .

Proof of Proposition B.5: For all i ∈ Z and being lax about measure zero events, we have:

• bG+ λe = i⇐⇒ G ∈ [i− λ− 0.5, i− λ+ 0.5];

• bGe+ bλe = i⇐⇒ G ∈ [i− bλe − 0.5, i− bλe+ 0.5].

Hence, if f represents the probability density function of G we have:

dTV(bG+ λe, bGe+ bλe) =
1
2

∞∑
i=−∞

Pr[bG+ λe = i]−Pr[bGe+ bλe = i]

=
1
2

∞∑
i=−∞

∫ i−λ+0.5

i−λ−0.5

f(x)dx−
∫ i−bλe+0.5

i−bλe−0.5

f(x)dx

=
1
2

∞∑
i=−∞

∫ i+0.5

i−0.5

f(x− λ)dx−
∫ i+0.5

i−0.5

f(x− bλe)dx

=
1
2

∞∑
i=−∞

∫ i+0.5

i−0.5

(f(x− λ)− f(x− bλe))dx

≤ 1
2

∞∑
i=−∞

∫ i+0.5

i−0.5

|f(x− λ)− f(x− bλe)|dx

=
1
2

∫ +∞

−∞
|f(x− λ)− f(x− bλe)|dx

= dTV(G+ λ,G+ bλe) ≤ |λ− bλe|
σ

≤ 1
2σ
,

where in the second to last inequality of the above derivation we used Proposition B.4, and for the last
equality we used that f(x−λ) is the probability density function of G+λ, while f(x−bλe) is the probability
density function of G+ bλe. 2

Proposition B.6. Let G ∼ N(µ, σ2). Then dshift(G) ≤ 1
2σ . Consequently, if Z ∼ Z(µ, σ2) then dshift(Z) ≤

1
2σ .

Proof of Proposition B.6: Notice that G and G + 1 have the same variance and means differing by 1. The
proof follows immediately by an application of Proposition B.4. 2

The following is a simple consequence of the definition of shift-distance:

Fact B.7. Let X an IRV and let c ∈ Z. Then dTV(X,X + c) ≤ |c| · dshift(X).

Proposition B.8. Let S be an integer random variable and let C be a discrete random variable. Then
dshift(S) ≤ EC [dshift(S | C)].
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Proof. Let A ⊆ Z. Then

|Pr[S ∈ A]−Pr[S + 1 ∈ A]| =
∣∣∣E
C

[Pr[S ∈ A | C]]−E
C

[Pr[S + 1 ∈ A | C]]
∣∣∣

=
∣∣∣E
C

[Pr[S ∈ A | C]−Pr[S + 1 ∈ A | C]]
∣∣∣ ≤ E

C
[|Pr[S ∈ A | C]−Pr[S + 1 ∈ A | C]|] = E

C
[dshift(S | C)],

where the last step used the triangle inequality.

We will also required the following classical inequalities:

The VC inequality. Given a family of subsets A over [n], define ‖p‖A = supA∈A |p(A)|. The VC–dimension
of A is the maximum size of a subset X ⊆ [n] that is shattered by A (a set X is shattered by A if for every
Y ⊆ X some A ∈ A satisfies A ∩X = Y ).

Theorem B.9 (VC inequality, [DL01, p.31]). Let p̂m be an empirical distribution of m samples from p. Let
A be a family of subsets of VC–dimension d. Then

E [‖p− p̂m‖A] ≤ O(
√
d/m).

Uniform convergence. We will also use the following uniform convergence bound:

Theorem B.10 ([DL01, p17]). Let A be a family of subsets over [n], and p̂m be an empirical distribution
of m samples from p. Let X be the random variable ‖p− p̂‖A. Then we have

Pr [X −E[X] > η] ≤ e−2mη2
.
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