AGNOSTICALLY LEARNING HALFSPACES∗

ADAM TAUMAN KALAI†, ADAM R. KLIVANS‡, YISHAY MANSOUR§, AND
ROCCO A. SERVEDIO¶

Abstract. We give a computationally efficient algorithm that learns (under distributional assumptions) a halfspace in the difficult agnostic framework of Kearns, Schapire, and Sellie [Mach. Learn., 17 (1994), pp. 115–141], where a learner is given access to a distribution on labelled examples but where the labelling may be arbitrary (similar to malicious noise). It constructs a hypothesis whose error rate on future examples is within an additive \(\epsilon \) of the optimal halfspace, in time \(\text{poly}(n) \) for any constant \(\epsilon > 0 \), for the uniform distribution over \(\{-1, 1\}^n \) or unit sphere in \(\mathbb{R}^n \), as well as any log-concave distribution in \(\mathbb{R}^n \). It also agnostically learns Boolean disjunctions in time \(2^{O(\sqrt{n})} \) with respect to any distribution. Our algorithm, which performs \(L_1 \) polynomial regression, is a natural noise-tolerant arbitrary-distribution generalization of the well-known “low-degree” Fourier algorithm of Linial, Mansour, and Nisan. We observe that significant improvements on the running time of our algorithm would yield the fastest known algorithm for learning parity with noise, a challenging open problem in computational learning theory.

Key words. agnostic learning, halfspaces, Fourier

AMS subject classification. 68Q32

DOI. 10.1137/060649057

1. Introduction. Halfspaces have been used extensively in machine learning for decades. From the early work on the Perceptron algorithm in the 1950’s, through the learning of artificial neural networks in the 1980’s, and up to and including today’s AdaBoost [14] and support vector machines [45], halfspaces have played a central role in the development of the field’s most important tools.

Formally, a halfspace is a Boolean function \(f(x) = \text{sgn}(\sum_{i=1}^{n} w_i x_i - \theta) \). While efficient algorithms are known for learning halfspaces if the data is guaranteed to be noise-free, learning a halfspace from noisy examples remains a challenging and important problem. Halfspace-based learning methods appear repeatedly in both theory and practice, and they are frequently applied to labeled data sets which are not linearly separable. This motivates the following natural and well-studied questions: What can one proveably say about the performance of halfspace-based learning methods in the presence of noisy data or distributions that do not obey constraints induced by an unknown halfspace? Can we develop learning algorithms which tolerate data generated from a “noisy” halfspace and output a meaningful hypothesis?

1.1. Agnostic learning. We consider the standard model in statistical learning theory, which is a natural model for learning from possibly noisy data. Kearns,
Schapire, and Sellie [25] termed this agnostic learning and gave an elegant formalization of this model and defined what it means to be a computationally efficient learner. In this model the learner receives labeled examples \((x,y)\) drawn from a fixed distribution over example-label pairs, but (in contrast with Valiant’s standard probably approximately correct (PAC) learning model [43]) it is not necessarily the case that the labels \(y\) are generated by applying some target function \(f\) to the examples \(x\). Of course, without any assumptions on the distribution it is impossible for the learner to always output a meaningful hypothesis. Kearns et al. instead require the learner to output a hypothesis whose accuracy with respect to future examples drawn from the distribution approximates that of the optimal concept from some fixed concept class of functions \(C\), such as the class of all halfspaces \(f(x) = \text{sgn}(v \cdot x - \theta)\). Given a concept class \(C\) and a distribution \(D\) over labeled examples \((x,y)\), we write \(\text{opt} = \min_{f \in C} \Pr_{D}[f(x) \neq y]\) to denote the error rate of the optimal (smallest error) concept from \(C\) with respect to \(D\).

For intuition, one can view agnostic learning as a noisy learning problem in the following way: There is a distribution \(D\) over examples \(x\) and the data is assumed to be labeled according to a function \(f \in C\), but an adversary is allowed to corrupt an \(\eta = \text{opt}\) fraction of the labels given to the learning algorithm. The goal is to find a hypothesis \(h\) with error \(\Pr_{D}[h(x) \neq y]\) as close as possible to \(\eta\). (We note that such a noise scenario is far more challenging than the random classification noise model, in which an \(\eta\) fraction of labels are flipped independently at random and for which a range of effective noise-tolerant learning algorithms are known [23, 4].)

Unfortunately, only few positive results are known for agnostically learning expressive concept classes. Kearns, Schapire, and Sellie [25] gave an algorithm for agnostically learning piecewise linear functions, and Goldman, Kearns, and Schapire [17] showed how to agnostically learn certain classes of geometric patterns. Lee, Bartlett, and Williamson [29] showed how to agnostically learn some very restricted classes of neural networks in time exponential in the fan-in. We note that standard results on the Perceptron algorithm and support vector machines [15, 41] give error rates for those algorithms in terms of the hinge loss of the optimal linear threshold function. Our goal is different, since we want to give a bound on the error rate that depends on—in fact, is almost identical to—the error rate (rather than the hinge loss) of the optimal linear threshold function.

1.2. Known negative results. Some strong negative results are known for the case of proper agnostic learning, where the output hypothesis must belong to the concept class to be learned. Properly agnostically learning halfspaces, for example, is known to be NP-hard [18, 13]; it is even NP-hard to properly agnostically learn the concept class of disjunctions [25, 12]. More specifically, these results [18, 13] show that there exist distributions that are consistent with a halfspace on a \(1 - \epsilon\) (for any \(\epsilon > 0\)) fraction of inputs, and it is NP-hard to output a halfspace with accuracy \(1/2 + \epsilon\) with respect to this distribution (the same holds for even disjunctions [12]).

For nonproper learning, fewer negative results are known. Given the recent representation-independent hardness results for learning majorities of halfspaces [13] and intersections of halfspaces [28], it is easy to see (and pointed out in [13]) that a polynomial-time, distribution-free agnostic learning algorithm for halfspaces for \(\epsilon = o(1/n^\gamma)\) for some \(\gamma > 0\) (regardless of the output representation of the hypothesis) would imply polynomial-time solutions to well-studied lattice problems. These lattice problems are thought to be intractable and form the basis of several recent public key cryptosystems (see, e.g., [39]). It is also known [30] that agnostically learning
disjunctions, again with no restrictions on the hypotheses used, is at least as hard as PAC learning DNF formulas, a longstanding open question in learning theory.

Thus, it is natural to consider, as we do in this paper, agnostic learning with respect to various restricted distributions D for which the marginal distribution D_X over the example space X satisfies some prescribed property. This corresponds to a learning scenario in which the labels are arbitrary, but the distribution over examples is restricted.

1.3. Our main technique. The following two observations are the starting point of our work:

- The “low-degree” Fourier learning algorithm of Linial et al. can be viewed as an algorithm for performing L_2-norm polynomial regression under the uniform distribution on $\{-1,1\}^n$. (See section 2.2.)
- A simple analysis (Observation 3) shows that the low-degree algorithm has some attractive agnostic learning properties under the uniform distribution on $\{-1,1\}^n$. (See section 2.3.)

The “low-degree” algorithm, however, will achieve only partial results for agnostic learning (the output hypothesis will be within a factor of 8 of optimal). As described in section 3, the above two observations naturally motivate a new algorithm which can be viewed as an L_1-norm version of the low-degree algorithm; we call this simply the polynomial regression algorithm. (At this point, it may be slightly mysterious why the L_1-norm would be significantly better than the L_2-norm; we discuss this point in section 3.)

Roughly speaking, our main result about the polynomial regression algorithm, Theorem 5, shows the following (see section 3 for the detailed statement):

Given a concept class C and a distribution D, if concepts in C can be approximated by low-degree polynomials in the L_2-norm relative to the marginal distribution D_X, then the L_1 polynomial regression algorithm is an efficient agnostic learning algorithm for C with respect to D.

A long line of research has focused on how well the truncated Fourier polynomial over the parity basis approximates concept classes with respect to the L_2-norm; this has led to numerous algorithms for learning concepts with respect to the uniform distribution over the Boolean hypercube $\{-1,1\}^n$ [31, 8, 20, 22, 26]. For learning with respect to the uniform distribution on the unit sphere, our analysis uses the Hermite polynomials [42], a family of orthogonal polynomials with a weighting scheme related to the density function of the Gaussian distribution. As such, these polynomials are well suited for approximating concepts with respect to the L_2-norm over S^{n-1}. We believe this approach will find further applications in the future.

Additionally, we show that a slightly modified version of the wildly popular support vector machine (SVM) algorithm [45], with a polynomial kernel, can achieve the same result.\footnote{This was pointed out to us by Avrim Blum.} Unfortunately, with the number of examples we require for our analysis, the SVM algorithm is no more efficient than our simple polynomial regression algorithm (the “Kernel trick” does not help). But it is interesting to give strong provable guarantees about the agnostic learning ability of an algorithm that is so popular in practice.

1.4. Our main results. As described below, our main result about the polynomial regression algorithm can be applied to obtain many results for agnostic learning
of halfspaces with respect to a number of different distributions, both discrete and continuous, some uniform and some nonuniform.

Theorem 1. Let \mathcal{D} be a distribution over $\mathbb{R}^n \times \{-1,1\}$. The L_1 polynomial regression algorithm has the following properties: its runtime is polynomial in the number of examples it is given, and

1. if the marginal \mathcal{D}_X is (a) uniform on $\{-1,1\}^n$ or (b) uniform on the unit sphere in \mathbb{R}^n, then with probability $1 - \delta$ the polynomial regression algorithm outputs a hypothesis with error $\text{opt} + \epsilon$ given $\text{poly}(n^{1/\epsilon^2}, \log \frac{1}{\delta})$ examples;
2. if the marginal \mathcal{D}_X is log-concave, then with probability $1 - \delta$ the polynomial regression algorithm outputs a hypothesis with error $\text{opt} + \epsilon$ given $\text{poly}(n^{d(\epsilon)}, \log \frac{1}{\delta})$ examples, where $d : \mathbb{R} \to \mathbb{Z}_+$ is a universal function independent of \mathcal{D}_X or n.

Part 1(a) follows from our analysis of the L_1 polynomial regression algorithm combined with the Fourier bounds on halfspaces given by Klivans, O’Donnel, and Servedio [26]. Part 1(b) follows from the same analysis of the algorithm combined with concentration bounds over the n-dimensional sphere. In proving such bounds, we use the Hermite polynomial basis in analogy with the Fourier basis used previously. (We note that learning halfspaces under the uniform distribution on the sphere is a well-studied problem; see, e.g., [1, 2, 23, 32, 33].) As before, we show that a related algorithm gives a hypothesis with error $O(\text{opt} + \epsilon)$ in time $n^{O(1/\epsilon^2)}$.

In section 4.2 we show that algorithms for agnostically learning halfspaces with respect to the uniform distribution on $\{0,1\}^n$ can be used to solve the well-known problem of learning parity functions with respect to random classification noise [6]. This indicates that substantially improving the results of part 1 of Theorem 1 may be very difficult. For example, improving our $n^{O(1/\epsilon^2)}$ time algorithm for agnostically learning halfspaces to accuracy $\text{opt} + \epsilon$ (with respect to the uniform distribution over the hypercube) to an $n^{O(1/\epsilon^2 - \beta)}$ time algorithm ($\beta > 0$) would yield the fastest known algorithm for learning parity with noise.

As indicated by part 2 of Theorem 1, for any constant ϵ, we can also achieve a polynomial-time algorithm for learning with respect to any log-concave distribution. Recall that any Gaussian distribution, exponential distribution, and uniform distribution over a convex set is log-concave.

We next consider a simpler class of halfspaces: disjunctions on n variables. The problem of agnostically learning an unknown disjunction (or learning noisy disjunctions) has long been a difficult problem in computational learning theory and was recently reposed as a challenge by Avrim Blum in his FOCS 2003 tutorial [3]. By combining Theorem 5 with known constructions of low-degree polynomials that are good L_∞-approximators of the OR function, we obtain a subexponential time algorithm for agnostically learning disjunctions with respect to any distribution (recall that since this problem is at least as hard as PAC-learning DNF, given the current state of the art we do not expect to achieve a polynomial-time algorithm).

Theorem 2. Let \mathcal{D} be a distribution on $X \times Y$, where \mathcal{D} is an arbitrary distribution over $\{-1,1\}^n$ and $Y = \{-1,1\}$. For the class of disjunctions, with probability $1 - \delta$ the polynomial regression algorithm outputs a hypothesis with error $\leq \text{opt} + \epsilon$ in time $2^{O\left(\sqrt{n \log(1/\epsilon)}\right)} \cdot \text{poly}(\log \frac{1}{\delta})$.

1.5. Extensions and other applications. We believe that the polynomial regression algorithm will have many extensions and applications; so far we have explored only a few of these, which we now describe.

In section 4.3 we show how our approach can be used to improve the algorithm...
due to Klivans, O’Donnel, and Servedio [26] for learning intersections of halfspaces with respect to the uniform distribution over the hypercube.

In section 5 we give a detailed analysis of an algorithm, which is essentially the same as the degree-1 version of the polynomial regression algorithm, for agnostic learning the concept class of origin-centered halfspaces \(\text{sgn}(v \cdot x) \) over the uniform distribution on the unit sphere, \(S^{n-1} = \{x \in \mathbb{R}^n \mid \|x\| = 1\} \). (Similar results also hold for the ball \(\{x \in \mathbb{R}^n \mid \|x\| \leq 1\} \).) While our analysis from section 3 implies only that this algorithm should achieve some fixed constant error \(\Theta(1) \) independent of \(\text{opt} \), we are able to show that in fact we do much better if \(\text{opt} \) is small.

Theorem 3. Let \(\mathcal{D} \) be a distribution on \(X \times Y \), where \(Y = \{-1, 1\} \) and the marginal \(\mathcal{D}_X \) is uniform on the sphere \(S^{n-1} \) in \(\mathbb{R}^n \). There is a simple algorithm for agnostically learning origin-centered halfspaces with respect to \(\mathcal{D} \) which uses \(m = O(\frac{n^2}{\epsilon^2} \log \frac{2}{\delta}) \) examples, runs in \(\text{poly}(n, 1/\epsilon, \log \frac{1}{\delta}) \) time, and outputs a hypothesis with error \(\text{err} O(\text{opt} \sqrt{\log \frac{1}{\text{opt}}} + \epsilon) \).

This result thus trades off accuracy versus runtime compared with Theorem 1. We feel that Theorem 3 is intriguing, since it suggests that a deeper analysis might yield improved runtime bounds for Theorem 1 as well.

In section 6 we consider the problem of learning an unknown origin-centered halfspace under the uniform distribution on \(S^{n-1} \) in the presence of malicious noise (we give a precise definition of the malicious noise model in section 6). Recall from section 1.1 that we can view agnostic learning with respect to a particular marginal distribution \(\mathcal{D}_X \) as the problem of learning under \(\mathcal{D}_X \) in the presence of an adversary who may change the labels of an \(\eta \) fraction of the examples, without changing the actual distribution \(\mathcal{D}_X \) over examples. In contrast, in the model of learning under malicious noise with respect to \(\mathcal{D}_X \), roughly speaking the adversary is allowed to change an \(\eta \) fraction of the labels and examples given to the learner. As described in section 6 this is a very challenging noise model in which only limited positive results are known. We show that by combining the algorithm of Theorem 3 with a simple prepossessing step, we can achieve relatively high tolerance to malicious noise.

Theorem 4. There is a simple algorithm for learning origin-centered halfspaces under the uniform distribution on \(S^{n-1} \) to error \(\epsilon \) in the presence of malicious noise when the noise rate \(\eta \) is at most \(O\left(\frac{\epsilon^2}{n}\log^{\frac{1}{2}}(n/\epsilon)\right) \). The algorithm runs in \(\text{poly}(n, 1/\epsilon, \log \frac{1}{\delta}) \) time and uses \(m = O(\frac{n^2}{\epsilon^2} \log \frac{2}{\delta}) \) many examples.

This is the highest known rate of malicious noise that can be tolerated in polynomial time for any nontrivial halfspace learning problem. The preprocessing step can be viewed as a somewhat counterintuitive form of outlier removal—instead of identifying and discarding examples that lie “too far” from the rest of the data set, we discard examples that lie too close to any other data point. The analysis of this approach relies on classical results from sphere packing.

2. Preliminaries. Let \(\mathcal{D} \) be an arbitrary distribution on \(X \times \{-1, 1\} \) for some set \(X \). Let \(\mathcal{C} \) be a class of Boolean functions on \(X \). Define the error of \(f : X \to \{-1, 1\} \) and the optimal error of \(\mathcal{C} \) to be

\[
\text{err}(f) = \Pr_{(x,y) \sim \mathcal{D}}[f(x) \neq y], \quad \text{opt} = \min_{c \in \mathcal{C}} \text{err}(c),
\]

respectively. Roughly speaking, the goal in agnostic learning of a concept class \(\mathcal{C} \) is as follows: given access to examples drawn from distribution \(\mathcal{D} \), we wish to efficiently find a hypothesis with error not much larger than \(\text{opt} \). More precisely, we say \(\mathcal{C} \) is
agnostically learnable if there exists an algorithm which takes as input δ and ϵ, has access to an example oracle $EX(D)$, and outputs with probability greater than $1 - \delta$ a hypothesis $h : X \rightarrow \{-1, 1\}$ such that $err(h) \leq opt + \epsilon$. We say C isagnostically learnable in time t if its running time (including calls to the example oracle) is bounded by $t(\epsilon, \delta, n)$. If the above holds only for a distribution D whose margin is uniform over X, we say the algorithm agnostically learns C over the uniform distribution. See [25] for a detailed description of the agnostic learning framework.

A distribution is log-concave if its support is convex and it has a probability density function whose logarithm is a concave function from \mathbb{R}^n to \mathbb{R}.

In all our algorithms we assume that we are given m labeled examples $Z = (x^1, y^1), \ldots, (x^m, y^m)$ drawn independently from the distribution D over $X \times \{-1, 1\}$. The $sgn : \mathbb{R} \rightarrow \{-1, 1\}$ function is defined by $sgn(z) = 1$ if $z \geq 0$ and $sgn(z) = -1$ if $z < 0$.

2.1. Fourier preliminaries and the low-degree algorithm. For $S \subseteq [n]$, the parity function $\chi_S : \{-1, 1\}^n \rightarrow \{-1, 1\}$ over the variables in S is simply the multilinear monomial $\chi_S(x) = \prod_{i \in S} x_i$. The set of all 2^n parity functions $\{\chi_S\}_{S \subseteq [n]}$ forms an orthonormal basis for the vector space of real-valued functions on $\{-1, 1\}^n$ with respect to the inner product $(f, g) = E[f \cdot g]$ (which we write as $E[fg]$; here and throughout section 2.1 unless otherwise indicated all probabilities and expectations are with respect to the uniform distribution over $\{-1, 1\}^n$). Hence every real-valued function $f : \{-1, 1\}^n \rightarrow \mathbb{R}$ can be uniquely expressed as a linear combination:

$$f(x) = \sum_{S \subseteq [n]} \tilde{f}(S) \chi_S(x).$$

The coefficients $\tilde{f}(S) = E[f \chi_S]$ of the Fourier polynomial (1) are called the Fourier coefficients of f; collectively they constitute the Fourier spectrum of f. We recall Parseval’s identity, which states that for every real-valued function f we have $E[f(x)^2] = \sum_S \tilde{f}(S)^2$. For Boolean functions, we thus have $\sum_S \tilde{f}(S)^2 = 1$.

The “low-degree algorithm” for learning Boolean functions under the uniform distribution via their Fourier spectra was introduced by Linial, Mansur, and Nisan [31] and has proved to be a powerful tool in uniform distribution learning. The algorithm works by empirically estimating each coefficient $\tilde{f}(S) \approx \hat{f}(S) := \frac{1}{m} \sum_{i=1}^m f(x^i) \chi_S(x^i)$ with $|S| \leq d$ from the data and constructing the degree-d polynomial $p(x) = \sum_{|S| \leq d} \hat{f}(S) \chi_S(x)$ as an approximation to f. (Note that the polynomial $p(x)$ is real-valued rather than Boolean-valued. If a Boolean-valued classifier h is desired, it can be obtained by taking $h(x) = sgn(p(x))$ and using the simple fact $Pr_D[sgn(p(x)) \neq g(x)] \leq E_D[(p(x) - f(x))^2]$ which holds for any polynomial p, any Boolean function $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$, and any distribution D.)

Let $\alpha(\epsilon, n)$ be a function $\alpha : (0, 1/2) \times \mathbb{N} \rightarrow \mathbb{N}$. We say that concept class C has a Fourier concentration bound of $\alpha(\epsilon, n)$ if, for all $n \geq 1$, all $0 < \epsilon < 1/2$, and all $f \in C_n$, we have $\sum_{|S| \geq \alpha(\epsilon, n)} \tilde{f}(S)^2 \leq \epsilon$. The low-degree algorithm is useful because it efficiently constructs a high-accuracy approximator for functions that have good Fourier concentration bounds (we suppress the logarithmic dependence on the failure probability δ to improve readability).

Fact 1 (see [31]). Let C be a concept class with concentration bound $\alpha(\epsilon, n)$. Then for any $f \in C$, given data labeled according to f and drawn from the uniform distribution on $X = \{-1, 1\}^n$, the low-degree algorithm outputs, with probability $1 - \delta$, a polynomial p such that $E[(p(x) - f(x))^2] \leq \epsilon$ and runs in time $poly(n^{\alpha(\epsilon/2, n)}, \log \frac{1}{\delta})$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
The idea behind Fact 1 is simple: if the coefficients of \(p \) were precisely \(\hat{f}(S) \) instead of \(f(S) \), then the Fourier concentration bound and Parseval’s identity would give
\[
\sum_{|S| \geq \alpha/2} E{|p(x) - f(x)|^2} \leq \epsilon/2.
\]
The extra \(\epsilon/2 \) is incurred because of approximation error in the estimates \(\hat{f}(S) \).

2.2. The low-degree algorithm and \(L_2 \) polynomial regression. The main observation of this section is that the low-degree Fourier algorithm of [31] can be viewed as a special case of least-squares polynomial regression over uniform distributions on the \(n \)-dimensional cube.

Let \(D \) be a distribution over \(X \times \{-1, 1\} \). In least-squares (\(L_2 \)-norm) polynomial regression, one attempts to minimize the following:
\[
(2) \quad \min_{p: \deg(p) \leq d} \mathbb{E}_D \left[(p(x) - y)^2 \right] \approx \min_{p: \deg(p) \leq d} \frac{1}{m} \sum_{j=1}^m (p(x^j) - y^j)^2.
\]

Ideally, one would like to minimize the left-hand side (LHS), i.e., find the best degree-\(d \) polynomial \(L_2 \) approximation to \(y \) over \(D \). To do this (approximately) given a data set, we minimize the right-hand side (RHS). In particular, we write a polynomial as a sum over all degree \(\leq d \) monomials,
\[
p(x) = \sum_{b \in \mathbb{Z}^n} \prod_{i=1}^n (x_i)^{b_i},
\]
where the sum is over \(\{b \in \mathbb{Z}^n | \sum_{i=1}^n b_i \leq d \text{ for all } i \} \). In turn, this can be viewed as a standard linear regression problem if we expand example \(x^j \) into a vector with a coordinate \(\prod_{i=1}^n (x_i)^{b_i} \) for each of the \(\leq n^{d+1} \) different \(b \)'s. Least-squares linear regression, in turn, can be solved by a single matrix inversion; and thus in general we can approximate the RHS of (2) in \(n^{O(d)} \) time.

Now let us consider \(L_2 \) polynomial regression in the uniform distribution scenario where \(X = \{-1, 1\}^n \), \(y = f(x) \) for some function \(f : X \rightarrow \{-1, 1\} \), and we have a uniform distribution \(U_X \) over \(x \in \{-1, 1\}^n \). Since \(x^2 = 1 \) for \(x \in \{-1, 1\} \), we may consider only degree-\(d \) multilinear polynomials, i.e., sums of monomials \(\chi_S(x) = \prod_{i \in S} x_i \) with \(S \subseteq [n], |S| \leq d \). Using Parseval’s identity, it is not difficult to show that best degree-\(d \) polynomial is exactly
\[
\text{arg min}_{p: \deg(p) \leq d} \mathbb{E}_{U_X} \left[(p(x) - f(x))^2 \right] = \sum_{S \subseteq [n], |S| \leq d} \hat{f}(S) \chi_S(x),
\]
where \(\hat{f}(S) = \mathbb{E}_{U_X} [f(x) \chi_S(x)] \). Thus in this uniform case, one can simply estimate each coefficient \(\hat{f}(S) \approx \frac{1}{m} \sum_{j=1}^m f(x^j) \chi_S(x^j) \) rather than solving the general least-squares regression problem; and this is precisely what the low-degree algorithm does.

In the nonuniform case, it is natural to consider running general \(L_2 \) polynomial regression rather than the low-degree algorithm. We do something similar to this in section 3, but first we consider the agnostic learning properties of the low-degree algorithm in the next subsection.

2.3. Using the low-degree algorithm as an agnostic learner. Kearns et al. prove the following statement about agnostic learning with the low-degree algorithm.

Fact 2 (see [25, Corollary 1]). Let \(\mathcal{C} \) be a concept class with concentration bound \(\alpha(\epsilon, n) \). Then the low-degree algorithm agnostically learns \(\mathcal{C} \) under the uniform distribution to error \(\frac{1}{2} - \frac{1}{n^{\alpha(\epsilon/2, n)} \log \frac{1}{\delta}} \) with probability \(1 - \delta \) and in time \(\text{poly}(n^{\alpha(\epsilon/2, n)} \log \frac{1}{\delta}) \).

This was termed a “weak agnostic learner” in [25] because as long as \(\text{opt} \) is bounded away from 1/2, say \(\text{opt} = 1/2 - \gamma \), this resulting hypothesis has error at
most $1/2 - \gamma^2 + \epsilon < 1/2$. However, if opt is near 0, their bound is still $> 1/4$. We now show that if opt is small, the low-degree algorithm can in fact achieve very low error.

Observation 3. Let \mathcal{C} be a concept class with concentration bound $\alpha(\epsilon, n)$. Then the low-degree algorithm agnostically learns \mathcal{C} under the uniform distribution to error $8\text{opt} + \epsilon$ in time $n^{O(\alpha(n^4/\epsilon^2))}$.

Proof. Let $f \in \mathcal{C}$ be an optimal function, i.e., $\Pr[y \neq f(x)] = \text{opt}$. As described above, the low-degree algorithm (approximately) finds the best degree-d approximation $p(x)$ to the data y, i.e., \(\min_{\text{deg}(p) \leq d} E[(p(x) - y)^2] \), and the same term represents the mean squared error of p. This can be bounded using the “almost-triangle” inequality $\sum |a - c| \leq 2((a - b)^2 + (b - c)^2)$ for $a, b, c \in \mathbb{R}$:

\[
\min_{\text{deg}(p) \leq d} E[(y - p(x))^2] \leq E \left[\left(y - \sum_{|S| < d} \hat{f}(S) \chi_S(x) \right)^2 \right] \\
\leq 2E \left[(y - f(x))^2 + \left(f(x) - \sum_{|S| < d} \hat{f}(S) \chi_S(x) \right)^2 \right] \\
= 2 \left(4\Pr[y \neq f(x)] + \sum_{|S| \geq d} \hat{f}(S)^2 \right).
\]

The first term is 8opt and the second is at most $\epsilon/2$ for $d = \alpha(n, \epsilon/2)$, where an additional $\epsilon/2$ is due to the sampling. Outputting $h(x) = \text{sgn}(p(x))$ gives error at most $8\text{opt} + \epsilon$ because $\Pr[\text{sgn}(p(x)) \neq y] \leq E[(p(x) - y)^2]$. \(\square \)

Another way to state this is that if f and \hat{f} are two functions and f has a Fourier concentration bound of $\alpha(\epsilon, n)$, then \hat{f} satisfies the concentration bound $\sum_{|S| \geq \alpha(n, \epsilon)} \hat{f}(S)^2 \leq 8\Pr[f(x) \neq \hat{f}(x)] + 2\epsilon$.

3. L$_1$ polynomial regression. Given the setup in the previous sections, it is natural to expect that we will now show that the general L$_2$ polynomial regression algorithm has agnostic learning properties similar to those established for the low-degree algorithm in Observation 3. However, such an approach yields only error bounds of the form $O(\text{opt} + \epsilon)$, and for agnostic learning our real goal is a bound of the form $\text{opt} + \epsilon$. To achieve this, we will instead use the L$_1$-norm rather than the L$_2$-norm.

Analogous to (2), in L$_1$-norm polynomial regression we attempt to minimize the following:

\[
(3) \quad \min_{\text{deg}(p) \leq d} E_D[|p(x) - y|] \approx \min_{\text{deg}(p) \leq d} \frac{1}{m} \sum_{i=1}^{m} |p(x^i) - y^i|.
\]

To solve the RHS minimization problem, again each example is expanded into a vector of length $\leq n^{d+1}$, and an algorithm for L$_1$ linear regression is applied. L$_1$ linear regression is a well-studied problem, and the minimizing polynomial p for the RHS of (3) can be obtained in poly(n^d) time using linear programming (see Appendix A for an elaboration on this point). For our purposes, we will be satisfied with an approximate minimum, and hence one can use a variety of techniques for approximately solving linear programs efficiently.

How do L$_1$ and L$_2$ polynomial regression compare? In the noiseless case, both (2) and (3) approach 0 at related rates as d increases. However, in the noisy/agnostic case, flipping the sign of $y = \pm 1$ changes $(p(x) - y)^2$ by $4p(x)$, which can potentially be very large; in contrast, flipping y’s sign can change $|p(x) - y|$ only by 2. On the
Input: $Z = (x^1, y^1), \ldots, (x^m, y^m), d$.

1. Find polynomial p of degree $\leq d$ to minimize the following:
\[
\frac{1}{m} \sum_{j=1}^{m} |p(x^j) - y^j|.
\]
(This can be done by expanding examples to include all monomials of degree $\leq d$ and then performing L_1 linear regression, as described earlier.)

2. Output $h(x) = \text{sgn}(p(x) - t)$, where $t \in [-1, 1]$ is chosen so as to minimize the error of the hypothesis on Z.

Fig. 1. The L_1 polynomial regression algorithm.

other hand, it is often easier to bound the L_1-error in terms of the mathematically convenient L_2-error. Thus while our polynomial regression algorithm works only with the L_1-norm, the performance bound and analysis depend on the L_2-norm.

3.1. The algorithm and proof of correctness.

We now give the polynomial regression algorithm (see Figure 1) and establish conditions under which it is an agnostic learner achieving error $\text{opt} + \epsilon$. The algorithm takes as input m examples, $Z = (x^1, y^1), \ldots, (x^m, y^m)$, and a degree d.

Theorem 5. Suppose $\min_{\deg(p) \leq d} E_{x \sim D_x} [(p(x) - c(x))^2] \leq \epsilon^2$ for some degree d, some distribution D over $X \times \{-1, 1\}$ with marginal D_X, and any c in the concept class C. Then for h output by the degree-d L_1 polynomial regression algorithm with $m = \text{poly}(n^d/\epsilon)$ examples, $E_{Z \sim D^n}[\text{err}(h)] \leq \text{opt} + \epsilon$.

If we repeat the same algorithm $r = O(\log(1/\delta)/\epsilon)$ times with fresh examples each and let h be the hypothesis with lowest error on an independent test set of size $O(\log(1/\delta)/\epsilon^2)$, then with probability $1 - \delta$, $\text{err}(h) \leq \text{opt} + \epsilon$.

Remark 4. Note that using Theorem 5, a Fourier concentration bound of $O(n, \epsilon)$ immediately implies that the L_1 regression algorithm achieves error $\text{opt} + \epsilon$ in time $n^O(\alpha(n, \epsilon^2))$ for distributions D with marginal D_X that is uniform on $\{-1, 1\}^n$. As we will see in the next section, Theorem 5 can be applied to other distributions as well.

Proof of Theorem 5. Suppose the algorithm chooses polynomial p and threshold t. First, we claim that the empirical error of h on Z is at most one half the L_1-error of p:

\[
\frac{1}{m} \sum_{j=1}^{m} \mathbb{I}(h(x^j) \neq y^j) \leq \frac{1}{2m} \sum_{j=1}^{m} |y^j - p(x^j)|.
\]

To see this, note that $h(x^j) \neq y^j$ if and only if the threshold $t \in [-1, 1]$ lies in between the numbers $p(x^j)$ and y^j; i.e., if they are on the same side of t, then $\text{sgn}(p(x^j) - t) = \text{sgn}(y^j - t) = y^j$. Hence, even if we chose a uniformly random $t \in [-1, 1]$, for any j, the chance of t splitting these numbers is at most $|y^j - p(x^j)|/2$ because the width of $[-1, 1]$ is 2 and the separation between the numbers is $|y^j - p(x^j)|$. Thus, (4) holds in expectation for random $t \in [-1, 1]$. Since the algorithm chooses t to minimize the LHS of (4), it holds with certainty. (This reduction is a general procedure for converting an L_1 bound on error to a classification error, and a similar randomized threshold idea was used by Blum et al. [5] for the low-degree algorithm.)

Let c be an optimal classifier in C, and let p^* be a polynomial of degree $\leq d$ with $E_D[(c(x) - p^*(x))^2] \leq \epsilon^2$. By the fact that $E[|Z|] \leq \sqrt{E[Z^2]}$ for any random variable Z, we have $E_D[|c(x) - p^*(x)|] \leq \epsilon$. By the algorithm’s choice of p, we have

\[
\frac{1}{m} \sum_{j=1}^{m} |y^j - p(x^j)| \leq \frac{1}{m} \sum_{j=1}^{m} |y^j - p^*(x^j)| \leq \frac{1}{m} \sum_{j=1}^{m} |y^j - c(x^j)| + |c(x^j) - p^*(x^j)|.
\]
The expectation of the RHS is \(\leq 2\opt + \epsilon \). Taking expectations and combining with (4) gives

\[
E_Z \left[\frac{1}{m} \sum_{j=1}^{m} I(h(x^j) \neq y^j) \right] \leq \opt + \frac{\epsilon}{2}.
\]

By VC theory, for \(m = \text{poly}(n^d/\epsilon) \) examples, the empirical error \(\frac{1}{m} \sum_{j=1}^{m} I(h(x^j) \neq y^j) \) above and generalization error \(\err(h) \) will differ by at most an expected \(\epsilon/4 \). Hence, the first part of the theorem is implied by

\[
E_Z[\err(h)] \leq \opt + (3/4)\epsilon.
\]

The second part of the theorem is a relatively standard reduction from expected error to high-probability guarantees. In particular, by Markov’s inequality, on any single repetition,

\[
\Pr[Z \mid \err(h) \geq \opt + (\frac{7}{8})\epsilon] \leq \frac{\opt + (3/4)\epsilon}{\opt + (7/8)\epsilon} \leq 1 - \frac{\epsilon}{16}.
\]

Hence, after \(r = O(\log(1/\delta)/\epsilon) \) repetitions of the algorithm, with probability \(1 - \delta/2 \), one of them will have \(\err(h) \leq \opt + (7/8)\epsilon \). In this case, using an independent set of size \(O(\log(1/\delta)/\epsilon^2) \), with probability at most \(\delta/2 \), we will choose one with error \(> \opt + \epsilon \).

As noted at the very beginning of this section, an analogous \(L_2 \)-algorithm could be defined to minimize \(\frac{1}{m} \sum_{j=1}^{m} (p(x^j) - y^j)^2 \) rather than \(\frac{1}{m} \sum_{j=1}^{m} |p(x^j) - y^j| \). Error guarantees of the form \(O(\opt + \epsilon) \) can be shown for this \(L_2 \)-algorithm, following the same argument but again using the “almost-triangle” inequality.

3.2. Relationship to SVMs. As pointed out by Avrim Blum, our algorithm is very similar to an SVM with a polynomial kernel and can be made even more similar. The standard SVM with a degree-\(d \) polynomial kernel solves the following minimization problem:

\[
\min_{\deg(p) \leq d} (1 - \lambda) \frac{1}{m} \sum_{i=1}^{m} L(y^i, z) + \lambda (\text{regularization term}),
\]

where \(L(y^i, z) = \max\{0, 1 - y^i z\} \). It does this using an algorithmic trick that requires time only \(\text{poly}(m, n, d) \). In theory, this could be substantially faster than our \(n^{O(d)} \) algorithm. However, for our analysis, we require \(m = n^{O(d)} \) samples, in which case the SVM algorithm is no faster.

Step 1 of our algorithm could be replaced by the above minimization problem, with \(\lambda = 0 \), and the analysis would hold almost exactly as is. Intuitively, this is because, for \(|y| = 1 \), \(L(y, z) = |y - z| \) unless \(yz \geq 1 \). However, if \(yz > 1 \), thresholding \(z \) with \(t \in [-1, 1] \) will certainly give us the correct prediction of this \(y \). More technically, we have that, for \(|y| = 1 \), \(L(y, z) \leq |y - z| \), yet we still have that \(\Pr_{t \in [-1, 1]}[y \neq \sgn(z - t)] \leq \frac{1}{2} L(y, z) \) (we now have \(L(y, z) \) where we had \(|y - z| \)).

Hence one can use a standard SVM package to implement our algorithm, setting the regularization parameter to 0. The only nonstandard part would be choosing an optimal threshold \(t \) rather than using standard SVM choice of \(t = 0 \).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
4. Agnostic learning halfspaces and disjunctions via polynomial regression. In this section we show how to apply Theorem 5 to prove Theorems 1 and 2.

As noted in Remark 4, Theorem 5 implies that any concept class with a Fourier concentration bound is in fact agnostically learnable to error $\opt + \epsilon$ under the uniform distribution on $\{-1, 1\}^n$. In particular, Theorem 1, part 1(a), follows immediately from the Fourier concentration bound for halfspaces of $[26]$.

FACT 5 (see [26]). The concept class \mathcal{C} of all halfspaces over $\{-1, 1\}^n$ has a Fourier concentration bound of $\alpha(\epsilon, n) = 441/\epsilon^2$.

For the uniform distribution on S^{n-1} and any log-concave distribution, we can prove the existence of a good low-degree polynomial as follows. Suppose we had a degree-d univariate approximation to the sign function $p_d(x) \approx \sgn(x)$, and say we have an n-dimensional halfspace $\sgn(v \cdot x - \theta)$. Then $\sgn(v \cdot x - \theta) \approx p_d(v \cdot x - \theta)$. Moreover, this latter quantity is now a degree-d multivariate polynomial. The sense in which we measure approximations will be distributional, the L_2 error of our multivariate polynomial over the distribution D. Hence, we need a polynomial p_d that well-approximates the sign function on the marginal distribution in the direction v, i.e., the distribution over projections onto the vector v.

For the uniform distribution on a sphere, the projection onto a single coordinate is distributed very close to Gaussian distribution. For a log-concave distribution, its projection is distributed log-concavely. In both of these cases, it so happens that the necessary degree to get approximation error ϵ boils down to a one-dimensional problem! For the sphere, we can upper bound the degree necessary as a function of ϵ using the following for the normal distribution $\mathcal{N}(0, \frac{1}{\sqrt{d}})$ with density $e^{-x^2}/\sqrt{\pi}$.

THEOREM 6. For any $d > 0$ and any $\theta \in \mathbb{R}$, there is a degree-d univariate polynomial $p_{d, \theta}$ such that

$$
\int_{-\infty}^{\infty} (p_{d, \theta}(x) - \sgn(x - \theta))^2 e^{-x^2}/\sqrt{\pi} dx = O\left(\frac{1}{\sqrt{d}}\right).
$$

We note that the $n^{O(1/\epsilon^2)}$-time, $O(\opt + \epsilon)$-error analogues of Theorem 1, part 1, mentioned in section 1.4 follow from Fact 5 and Theorem 6 using the L_2-norm analogue of the polynomial regression algorithm mentioned at the end of section 3. The improved time bound comes from the fact that we no longer need to invoke $\mathbb{E}[\|Z\|] \leq \sqrt{\mathbb{E}[Z^2]}$ to bound the square loss, since we are minimizing the square loss directly rather than the absolute loss. We defer the proof of Theorem 6 to Appendix B.

Using Theorem 6, it is not difficult to establish Theorem 1, part 1(b), which we restate below:

Let D be a distribution over $\mathbb{R}^n \times \{-1, 1\}$ with D_X uniform over S^{n-1}. With probability $1 - \delta$, the L_1 polynomial regression outputs a hypothesis with error $\opt + \epsilon$ given poly($n^{1/\epsilon^4}, \log \frac{1}{\delta}$) examples.

Proof. Let $f(x) = \sgn(v \cdot x - \tau)$ be any halfspace over the unit ball S^{n-1}, where without loss of generality we may assume $\|v\| = 1$ (and thus $|\tau| \leq 1$). Let U denote the uniform distribution over S^{n-1}. It suffices to establish the existence of a degree-d polynomial $P(x)$, with $d = O(1/\epsilon^4)$, which satisfies the condition $\mathbb{E}_{x \in U}((P(x) - f(x))^2) \leq \epsilon^2$; given such a polynomial, we apply Theorem 5, and Theorem 1, part 1(b), immediately follows.

Let $\theta = \sqrt{\frac{n-1}{2}} \tau$, and let $P(x) = p_{d, \theta}(\sqrt{n-1} v \cdot x)$. For $d = O(1/\epsilon^4)$, we show that the polynomial $P(x) = p_{d, \theta}(\sqrt{n-1} v \cdot x)$ satisfies $\mathbb{E}_{U}[(P(x) - f(x))^2] \leq \epsilon^2$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
We have (justifications are given below)

\[
\mathbb{E}_{x \in U} [(P(x) - f(x))^2] = \mathbb{E}_{x \in U} \left[(p_{d,\theta}(\sqrt{\frac{n-3}{2}} (v \cdot x)) - \text{sgn} \left(\sqrt{\frac{n-3}{2}} (v \cdot x) - \theta \right))^2 \right]
\]

(6) \[= \frac{A_{n-2}}{A_{n-1}} \int_{-1}^{1} (1 - z^2)^{(n-3)/2} \left(p_{d,\theta} \left(\sqrt{\frac{n-3}{2}} z \right) - \text{sgn} \left(\sqrt{\frac{n-3}{2}} z - \theta \right) \right)^2 dz \]

(7) \[\leq \frac{A_{n-2}}{A_{n-1}} \int_{-\infty}^{\infty} e^{-z^2(n-3)/2} \left(p_{d,\theta} \left(\sqrt{\frac{n-3}{2}} z \right) - \text{sgn} \left(\sqrt{\frac{n-3}{2}} z - \theta \right) \right)^2 dz \]

(8) \[= \frac{A_{n-2}}{A_{n-1}} \int_{-\infty}^{\infty} e^{-y^2} \left(p_{d,\theta}(y) - \text{sgn} (y - \theta) \right)^2 \frac{dy}{\sqrt{(n-3)/2}} \]

(9) \[\leq \epsilon^2,
\]

where (6) follows from Fact 10 on the PDF of the uniform distribution over \(S^{n-1}\); (7) follows from \(1 - z \leq \exp(-z)\) and the fact that the integrand is nonnegative; (8) follows from a change of variable \(y = \sqrt{\frac{n-3}{2}} \cdot z\); and (9) follows from \(\frac{A_{n-2}}{A_{n-1}} = \Theta(\sqrt{n})\), Theorem 6, and our choice of \(d = O(1/\epsilon^4)\). This concludes the proof of Theorem 1, part 1(b). \(\square\)

Since we have proven Theorem 1, part 1(a), in section 4, we are now ready to move on to the log-concave part. The first thing to notice is that, just as the normal distribution served as a prototypical distribution for all spheres, there is a log-concave distribution that is not much smaller than any other.

Lemma 6. Let \(\nu\) be the distribution on \(\mathbb{R}\) with density \(d\nu(x) = e^{-|x|/16}/32\). Let \(\mu\) be any log-concave distribution on \(\mathbb{R}\) with mean 0 and variance 1. Then, for all \(x \in \mathbb{R}\), \(d\mu(x) \leq (32\epsilon) d\nu(x)\).

In the above, we necessarily chose a distribution \(\nu\) that did not have variance 1.

Proof. To prove this lemma, we will use the properties of log-concave functions given by Lovász and Vempala [34]. Specifically, for any log-concave density \(d\mu\) with mean 0 and variance 1, for all \(x\) \(d\mu(x) \leq 1\), and \(d\mu(0) \geq 1/8\). From the latter fact, we next argue that \(d\mu(x) \leq e^{-|x|/16}\) for \(|x| > 16\). It suffices to show this for \(x > 16\) by symmetry. Suppose not; i.e., suppose there exists \(r > 16\) such that \(d\mu(r) \geq e^{-r/16}\). Then log-concavity implies that \(d\mu(x) \geq (1/8)^{1-x/r} (e^{-r/16})^{x/r}\) for \(x \in [0, r]\). In turn, this means

\[
\int_{0}^{16} d\mu(x) \geq \int_{0}^{16} \frac{1}{8} e^{-x/16} dx > 1,
\]

which is a contradiction. Hence, \(d\mu(x) \leq e^{-|x|/16} = 32d\nu(x)\) for \(|x| > 16\). (These bounds are far from tight.) Also, for \(|x| < 16\), \(d\mu(x) \leq 1 \leq (32\epsilon) d\nu(x)\). \(\square\)

This lemma will enable us to transfer a bound on the error of a fixed log-concave function such as \(e^{-|x|}\) to all log-concave functions.

Lemma 7. There exists a fixed function \(d : \mathbb{R} \to \mathbb{R}\), such that, for any log-concave distribution \(\mu\), and any \(\theta \in \mathbb{R}\), there exists a degree-\(d(\epsilon)\) polynomial \(p\), such that

\[
\int_{-\infty}^{\infty} (p(x) - \text{sgn}(x - \theta))^2 d\mu(x) \leq \epsilon.
\]

Proof. It suffices to show it for any log-concave distribution \(\mu\) with mean 0 and variance 1. This is because we can always apply an affine transformation to \(x\),
$x \rightarrow ax + b$, which puts it in such a standard position and maintains the properties of the lemma (for a suitably transformed polynomial p and θ). Thus, we assume that μ has mean 0 and variance 1.

Next, we claim it suffices to show the lemma for the log-concave density $d\nu(x) = e^{-|x|^2/32}$, which has mean 0 but variance > 1. To see this, suppose it holds for $d\nu$ and p, and we have some mean 0 variance 1 log-concave density $d\mu$. Then by Lemma 6,

$$\int_{-\infty}^{\infty} (p(x) - \text{sgn}(x - \theta))^2 d\mu(x) \leq 32e \int_{-\infty}^{\infty} (p(x) - \text{sgn}(x - \theta))^2 d\nu(x) \leq 32\epsilon.$$

Hence it would hold for mean-0 variance-1 $d\mu$ with function $d' : \mathbb{R} \rightarrow \mathbb{R}$, where $d'(\epsilon) = d(\epsilon/(32\epsilon))$. By a similar stretching argument, it suffices to show it for $d\nu(x) = e^{-2|x|}$.

Next, again without loss of generality, it suffices to show it for $|\theta| < \log 1/e$. For if $|\theta| > 2 \log 1/e$, then the constant polynomial $p(x) = -\text{sgn}(\theta)$ has error less than ϵ under $d\nu(x) = e^{-2|x|}$. Continuing on the seemingly endless chain of without losses of generalities, next it suffices to show it for $\theta = 0$. Suppose it holds for $d\nu(x) = e^{-2|x|}$, a particular p and ϵ, and $\text{sgn}(x)$. That is,

$$\int_{-\infty}^{\infty} (p(x) - \text{sgn}(x))^2 d\nu(x) \leq \epsilon. \quad (10)$$

Then consider the function $\text{sgn}(x-\theta)$ and the density $d\rho(x) = e^{-2|x-\theta|/\log(1/e)} \log(1/e)/\log(1/e)$.

For this density, by (10) and change of variable $z = \log(1/e)(x - \theta)$,

$$\int_{-\infty}^{\infty} (p(z) - \text{sgn}(z))^2 d\nu(z) = \int_{-\infty}^{\infty} (p(\log(1/e)(x - \theta)) - \text{sgn}(x - \theta))^2 d\rho(x) \leq \epsilon. \quad (11)$$

Now observe that as long as $\log(1/e) > 1$ (where $\epsilon \leq 1/e$),

$$\frac{d\nu(x)}{d\rho(x)} = \log \left(\frac{1}{e} \right) e^{2 \left(\frac{|x-\theta|}{\log(1/e)} - |x| \right)} \leq \log \left(\frac{1}{e} \right) e^{2 \left(\frac{|x-\theta|}{\log(1/e)} - |x| \right)} \leq \log \left(\frac{1}{e} \right) e^{2 \left(\frac{|x|}{\log(1/e)} \right)} \leq \log \left(\frac{1}{e} \right) e^2.$$

By this and (11),

$$\int_{-\infty}^{\infty} (p(\log(1/e)(x - \theta)) - \text{sgn}(x - \theta))^2 d\mu(x) \leq e^2 \epsilon \log(1/e).$$

Hence a bound of ϵ on the error of p for $\text{sgn}(x)$ implies a bound of $e^2 \epsilon \log(1/e)$ on the error of $p(\log(1/e)(x - \theta))$. So, it suffices to show we can achieve such a bound for $\text{sgn}(x)$, $d\nu(x) = e^{-2|x|}$, and arbitrarily small ϵ.

At this point, we have a single function $\text{sgn}(x)$ and a single density $e^{-2|x|}$, and we must establish that for any ϵ there is some $d = d(\epsilon)$ for which there is a degree-d polynomial p for which (10) holds. But $\text{sgn}(x) \in L^2(\mathbb{R}, e^{-2|x|})$ because $\int_{-\infty}^{\infty} \text{sgn}(x)^2 e^{-2|x|} dx = 1 < \infty$ and it is known that polynomials are dense in $L^2(\mathbb{R}, e^{-2|x|})$ [42].

4.1. Agnostically learning disjunctions under any distribution. We can use the polynomial regression algorithm to learn disjunctions agnostically with respect to any distribution in subexponential time. We make use of the existence of low-degree polynomials that strongly approximate the OR function in the L_∞-norm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Theorem 7 (see [38, 36, 26]). Let \(f(x_1, \ldots, x_n) \) compute the OR function on some subset of (possibly negated) input variables. Then there exists a polynomial \(p \) of degree \(O(\sqrt{n} \log(1/\epsilon)) \) such that, for all \(x \in \{-1, 1\}^n \), we have \(|f(x) - p(x)| \leq \epsilon \).

For \(\epsilon = \Theta(1) \), this fact appears in [38, 36]; an easy extension to arbitrary \(\epsilon \) is given in [26]. Theorem 2 follows immediately from Theorems 7 and 5, since for any distribution \(D \) the \(L_\infty \) bound given by Theorem 7 clearly implies the bound on expectation required by Theorem 5.

We note that low-degree \(L_\infty \)-approximators are known for richer concept classes than just disjunctions. For example, results of O’Donnell and Servedio [37] show that any Boolean function \(f : \{-1, 1\}^n \rightarrow \{-1, 1\} \) computed by a Boolean formula of linear size and constant depth is \(\epsilon \)-approximated in the \(L_\infty \)-norm by a polynomial of degree \(O(\sqrt{n}) \cdot \text{polylog} \frac{1}{\epsilon} \). By combining Theorem 5 with such existence results, one can immediately obtain arbitrary-distribution agnostic learning results analogous to Theorem 2 for concept classes of such formulas as well; one well-studied example of such a concept class is the class of read-k DNF formulas for constant \(k \).

4.2. Hardness results for agnostically learning halfspaces over the hypercube. In this section we show that the challenging “learning noisy parity” problem reduces to the problem of agnostically learning halfspaces with respect to the uniform distribution over the hypercube. Recall that a vector \(c \in \{0,1\}^n \) induces a parity function \(c : \{0,1\}^n \rightarrow \{0,1\} \) as follows: \(c(x) = c \cdot x \mod 2 \) (the indices of \(c \) equal to 1 are the relevant variables). The noisy parity learning problem is the problem of PAC learning an unknown parity function with respect to the uniform distribution on \(\{0,1\}^n \) where the label of each example is flipped (independently) with probability \(\eta \). The fastest known learning algorithm for this well-known problem is due to Blum, Kalai, and Wasserman [6] and runs in time \(2^{O(n^{1/4})} \).

An algorithm for agnostically learning halfspaces can be easily transformed into an algorithm for learning parity with noise.

Theorem 8. Let \(A \) be an algorithm for agnostically learning halfspaces to accuracy \(\text{opt} + \epsilon \) with respect to the uniform distribution over \(\{0,1\}^n \). Then there exists an algorithm \(B \) for learning parity with noise which runs in time \(\text{poly}(n,t) \).

Proof. Assume that the unknown parity function \(c \) has \(k \) relevant variables (and for simplicity assume \(k \) is even). Note that for a set \(S \) of \(k \) variables, the majority function on \(S \) (equal to 1 if \(k/2 + 1 \) or more of the variables in \(S \) are set to 1) agrees with the parity function on all variables in \(S \) for a \(1/2 + \Theta(1/\sqrt{k}) \) fraction of inputs of \(\{0,1\}^n \). This is because the majority function equals parity for all inputs of hamming weight equal to \(k/2 \) (which have mass \(\Theta(1/\sqrt{k}) \)) and agrees with parity on half of all other inputs.

Now choose a random example (labeled by \(c \)) and flip its label with probability \(\eta \). The probability that the majority function on \(S \) correctly labels the example equals \(\eta + (1-2\eta)(1/2 - \Theta(1/\sqrt{k})) = 1/2 - (1 - 2\eta)\Theta(1/\sqrt{k}) \). That is, the error rate of the majority function on \(S \) with respect to noisy examples is bounded away from 1/2 by \((1 - 2\eta)\Theta(1/\sqrt{k}) \).

We can now use an algorithm for agnostically learning halfspaces to identify the relevant variables of the unknown parity function \(c \). To determine if the variable \(x_i \) is relevant, set \(\epsilon = (1/2)(1 - 2\eta)/\sqrt{k} \) and take a number of random examples as specified by the agnostic learner. Feed the examples to the agnostic learner with the \(i \)th bit removed from every example. If \(x_i \) is a relevant variable, then the labels will be totally uncorrelated with the examples (now of length \(n - 1 \), and the agnostic
learner will not produce a hypothesis with error rate bounded away from 1/2. If \(x_i \) is irrelevant, then the majority function on the relevant variables has error rate bounded away from 1/2, and the agnostic learner will output a hypothesis with error less than
\[1/2 - (1/2)(1 - 2\eta)/\sqrt{k}. \]
\(\Box \)

If the error rate \(\eta \) is \(\Theta(1) \) and the agnostic learning algorithm runs in time
\[n^{O(1/\epsilon^2/\delta^2)}, \]
then the above algorithm will learn a noisy parity in time \(2^{O(n^\gamma)} \) for some \(0 < \gamma < 1 \).

4.3. An application to learning intersections of halfspaces. Learning an intersection of halfspaces is a challenging and well-studied problem even in the noise-free setting. Klivans, O’Donnell, and Servedio [26] showed that the standard low-degree algorithm can learn the intersection of \(k \) halfspaces with respect to the uniform distribution on \(\{-1,1\}^n \) to error \(\epsilon \) in time \(n^{O(k^2/\epsilon^2)} \), provided that \(\epsilon < 1/k^2 \). Note that because of the requirement on \(\epsilon \), the algorithm always takes time at least \(n^{O(k^6)} \), even if the desired final error is \(\epsilon = \Theta(1) \) independent of \(k \).

We can use the idea of learning halfspaces agnostically to obtain the following runtime bound, which is better than [26] for \(\epsilon > \frac{1}{k} \).

Theorem 9. Let \(f = h_1 \land \cdots \land h_k \) be an intersection of \(k \) halfspaces over \(\{-1,1\}^n \). Then \(f \) is learnable with respect to the uniform distribution over \(\{-1,1\}^n \) in time \(n^{O(k^4/\epsilon^2)} \) for any \(k > 0 \).

We note that a comparable bound can be proved via techniques from a recent work due to Jackson, Klivans, and Servedio [22] which does not involve agnostic learning. The presentation here, however, is more straightforward and shows how agnostic learning can have applications even in the nonnoisy framework.

The approach that establishes Theorem 9 is similar to Jackson’s Harmonic Sieve [21]: we apply a boosting algorithm, using the polynomial regression algorithm at each stage to identify a low-degree polynomial which, after thresholding, has advantage at least \(\Omega(1/k) \) on the target function.

We begin with the following easy fact which follows directly from the “discriminator lemma” [19].

Fact 8. Let \(f = h_1 \land \cdots \land h_k \) be an intersection of \(k \) halfspaces. Then for any distribution \(D \) on \(\{0,1\}^n \) either there exists an \(h_i \) such that \(|E_D[h_i]| \geq 1/k \) or we have \(|E_D[f]| \geq 1/k \).

Hence for any distribution \(D \) there exists a single halfspace which has accuracy at least \(1/2 + 1/2k \) with respect to \(f \) and \(D \). We will be concerned only with distributions that are \(c \)-bounded (\(c \) will be chosen later), i.e., distributions \(D \) such that \(D(x) \leq c/2^n \) for all \(x \). Fix such a \(c \)-bounded distribution \(D \), and let \(h_D \) denote the halfspace obtained from Fact 8. Applying Fact 5, it is not difficult to see that for any halfspace (and in particular \(h_D \)) and sufficiently large constant \(a \),

\[
\sum_{S, |S| \geq a \cdot k \cdot \epsilon^2} h_D(S)^2 \leq 1/16c^2.
\]

By setting \(g = \sum_{S, |S| \leq a \cdot k \cdot \epsilon^2} h_D(S) \chi_S(x) \), we have \(E_D[|g - h_D|] \leq 1/4k \) for any \(c \)-bounded distribution \(D \).

We now show that the polynomial regression algorithm can be used as a weak learning algorithm for \(f \).

Lemma 9. There exists an algorithm \(A \) such that for any \(c \)-bounded distribution \(D \) and \(0 < \delta < 1 \), if \(A \) is given access to examples drawn from \(D \) labeled according to
f, then A runs in time \(\text{poly}(n^{k^2}, 1/\delta)\) and, with probability at least \(1 - \delta\), A outputs a hypothesis \(h\) such that \(\Pr[D[f(x) = h(x)] \geq 1/2 + 1/8k]\).

Proof. Let \(\ell = a k^2 c^2\) for a sufficiently large constant \(a\). Apply the polynomial regression algorithm from section 3 to obtain a hypothesis \(g^* = \text{sgn}(\sum_{|S| \leq \ell} w_S \chi_S(x) - t)\). For \(\xi > 0\), we claim that \(g^*\) has error less than \(1/2 - 1/4k + \xi\) as long as \(m \geq \text{poly}(n^k, 1/k^2, \log(1/\delta))\) as in Theorem 5. To see this, note that

\[
E_D[|f(x) - g^*|] \leq E_D[|f(x) - h_D(x)|] + E_D[|h_D(x) - g^*|]
\]

and recall that the first term on the RHS is at most \(1/2 - 1/2k\). For the second term, recall that \(\min_w E_D[|h_D(x) - \sum_{|S| \leq \ell} w_S \chi_S|] \leq 1/4k\). But \(g^*\) is an approximation to the truncated Fourier polynomial for \(h_D(x)\), and as in the proof of Theorem 5, for our choice of \(m\), \(E_D[|h_D(x) - g^*(x)|] \leq \min_w E_D[|h_D(x) - \sum_{|S| \leq \ell} w_S \chi_S|] + \xi\) with probability greater than \(1 - \delta\). Hence with probability \(1 - \delta\) we have \(E_D[|f(x) - g^*(x)|] \leq 1/2 - 1/4k + \xi\). Taking \(\xi = 1/(8k)\) gives the lemma.

At this point, we will need to recall the definition of a boosting algorithm; see, e.g., [16]. Roughly speaking, a boosting algorithm iteratively applies a weak learning algorithm as a subroutine in order to construct a highly accurate final hypothesis. At each iteration, the boosting algorithm generates a distribution \(D\) and runs the weak learner to obtain a hypothesis which has accuracy \(1/2 + \gamma\) with respect to \(D\). After \(t = \text{poly}(1/\gamma, 1/\epsilon)\) iterations, the boosting algorithm outputs a hypothesis with accuracy greater than \(1 - \epsilon\). The following fact from [27] is sufficient for our purposes.

Theorem 10. There is a boosting algorithm which runs in \(t = O(1/\epsilon^2 \gamma^2)\) iterations and at each stage generates an \(O(1/\epsilon)\)-bounded distribution \(D\).

By combining this boosting algorithm with the weak learning algorithm from Lemma 9, we obtain Theorem 9.

Proof of Theorem 9. Run the boosting algorithm to learn \(f\) using the weak learner from Lemma 9 as a subroutine. The boosting algorithm requires at most \(O(1/\epsilon^2 \gamma^2)\) iterations, since the distributions are all \(O(1/\epsilon)\) bounded and the weak learner outputs a hypothesis with accuracy \(1/2 + \Omega(1/k)\). The running time of the weak learning algorithm is at most \(n^{O(k^2/\epsilon^2)}\), since each distribution is \(c = O(1/\epsilon)\) bounded.

5. Learning halfspaces over the sphere with the degree-1 version of the polynomial regression algorithm. Let us return to the case where the marginal distribution \(D_X\) is uniform over \(S^{n-1}\), and now consider the homogeneous \(d = 1\) version of the polynomial regression algorithm. In this case, we would like to find the vector \(w \in \mathbb{R}^n\) that minimizes \(E_{D_X}[|w \cdot x - y|^2]\). By differentiating with respect to \(w_i\) and using the fact that \(E[x_i] = E[x_i x_j] = 0\) for \(i \neq j\) and \(E[x_i^2] = \frac{1}{n}\), we see that the minimum is achieved at \(w_i = \frac{1}{n} E[x_i y_i]\).

This is essentially the same as the simple \textbf{Average} algorithm which was proposed by Servedio in [40] for learning origin-centered halfspaces under uniform in the presence of random misclassification noise. The \textbf{Average} algorithm draws examples until it has a sample of \(m\) positively labeled examples \(x^1, \ldots, x^m\), and then it returns the hypothesis \(h(x) = \text{sgn}(\overline{\tau} \cdot x)\), where \(\overline{\tau} = \frac{1}{m} \sum_{i=1}^m x^i\) is the vector average of the positive examples. The intuition for this algorithm is simple: if there were no noise, then the average of the positive examples should (in the limit) point exactly in the direction of the target normal vector.

A straightforward application of the bounds from sections 3 and 4 implies only that the degree-1 polynomial regression algorithm should achieve some fixed constant accuracy \(\Theta(1)\) independent of \(\text{opt}\) for agnostic learning halfspaces under the
uniform distribution on S^{n-1}. However, a more detailed analysis shows that the simple Average algorithm does surprisingly well, in fact obtaining a hypothesis with error rate $O(\text{opt} \sqrt{\log(1/\text{opt})} + \epsilon)$; this is Theorem 3. We give useful preliminaries in section 5.1 and prove Theorem 3 in section 5.2.

5.1. Learning halfspaces on the unit sphere: Preliminaries. We write \mathcal{U} to denote the uniform distribution over $S^{n-1} = \{ x \in \mathbb{R}^n \mid \|x\| = 1 \}$. Given two nonzero vectors $u, v \in \mathbb{R}^n$, we write $\alpha(u, v)$ to denote $\arccos(\frac{u \cdot v}{\|u\|\|v\|})$, the angle between u and v. If the target halfspace is $\text{sgn}(u \cdot x)$ and $\text{sgn}(v \cdot x)$ is a hypothesis halfspace, then it is easy to see that we have $\Pr_{x \in \mathcal{U}}[\text{sgn}(u \cdot x) \neq \text{sgn}(v \cdot x)] = \alpha(u, v)/\pi$.

We write A_{n-1} to denote the surface area of S^{n-1}. It is well known (see, e.g., [1]) that $A_{n-2}/A_{n-1} = \Theta(n^{1/2})$. The following fact (see, e.g., [1]) is useful.

FACT 10. For any unit vector $v \in \mathbb{R}^n$ and any $-1 \leq \alpha < \beta \leq 1$, we have

$$
\Pr_{x \in \mathcal{U}}[\alpha \leq v \cdot x \leq \beta] = \frac{A_{n-2}}{A_{n-1}} \cdot \int_{\alpha}^{\beta} (1 - z^2)^{(n-3)/2} dz.
$$

The following straightforward result lets us deal easily with sample error.

FACT 11. Let \mathcal{D} be any distribution over S^{n-1}. Let v denote the expected location $E_{x \in \mathcal{D}}[x]$ of a random draw from \mathcal{D}, and suppose that $\|v\| \geq \xi$. Then if $\bar{v} = \frac{1}{m} \sum_{i=1}^{m} x^i$ is a sample estimate of $E_{x \in \mathcal{D}}[x]$, where each x^i is drawn independently from \mathcal{D} and $m = O\left(\frac{n}{\epsilon^2 \log \frac{1}{\xi}}\right)$, we have that $\Pr_{x \in \mathcal{U}}[\text{sgn}(\bar{v} \cdot x) \neq \text{sgn}(v \cdot x)] \leq \epsilon$ with probability at least $1 - \delta$.

Proof. We define an orthonormal basis for \mathbb{R}^n by letting vector u^1 denote $\frac{v}{\|v\|}$ and letting u^2, \ldots, u^n be an arbitrary orthonormal completion. Given a vector $z \in \mathbb{R}^n$, we may write z_1 for $z \cdot u^1$ and z_2, \ldots, z_n for $z \cdot u^2, \ldots, z \cdot u^n$, respectively. We have $E_{x \in \mathcal{D}}[x_1] = \xi$ so that standard additive Chernoff bounds imply that taking $m = O\left(\frac{n}{\epsilon^2 \log \frac{1}{\xi}}\right)$ many draws will result in $|\bar{v}_1 - \xi| \leq \frac{\xi}{2}$ with probability at least $1 - \frac{\delta}{2}$. For $i = 2, \ldots, n$, we have $E_{x \in \mathcal{D}}[x_i] = 0$; again standard additive Chernoff bounds imply that taking $m = O\left(\frac{n}{\epsilon^2 \log \frac{1}{\xi}}\right)$ many draws will result in $|\bar{v}_i| \leq \frac{\xi}{2\sqrt{n}}$ for each i with probability at least $1 - \frac{\delta}{2}$. Thus, with overall probability at least $1 - \delta$ we have

$$
\alpha(\bar{v}, v) = \arctan \left(\frac{\sqrt{\bar{v}_2^2 + \cdots + \bar{v}_n^2}}{\bar{v}_1} \right) \leq \arctan (\epsilon) \leq \epsilon,
$$

and thus $\Pr_{x \in \mathcal{U}}[\text{sgn}(\bar{v} \cdot x) \neq \text{sgn}(v \cdot x)] \leq \alpha(\bar{v}, v)/\pi < \epsilon/\pi < \epsilon$. \square

5.2. Proof of Theorem 3. We have that \mathcal{D} is a distribution over $X \times \{-1, 1\}$ whose marginal is the uniform distribution \mathcal{U} on S^{n-1}. Without loss of generality we may suppose that the optimal origin-centered halfspace is $f(x) = \text{sgn}(x_1)$; i.e., the normal vector to the separating hyperplane is $e_1 = (1, 0, \ldots, 0)$. We write S^+ to denote the “positive hemisphere” $\{ x \in S^{n-1} : x_1 \geq 0 \}$ and write S^- to denote $S^{n-1} \setminus S^+$. We may also suppose without loss of generality that the optimal halfspace’s error rate opt is such that $O(\text{opt} \sqrt{\log \frac{1}{\text{opt}}})$ is less than $\frac{1}{4}$; i.e., opt is less than some fixed absolute constant that we do not specify here.

Let $p : S^{n-1} \rightarrow [0, 1]$ be the function

$$
p(z) = \Pr_{(x, y) \in \mathcal{D}}[y \neq f(z) \mid x = z]
$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
so intuitively \(p(z) \) is the probability of getting a “noisy label” \(y \) on instance \(z \). (We assume the joint distribution \(D \) on \(X \times Y \) is sufficiently “nice” in terms of measurability, etc., so that \(p \) is well defined as specified above.) Let \(v \) denote the true vector average of all positively labeled examples generated by \(D \), i.e.,

\[
v = \int_{x \in S^+} x(1 - p(x)) \mathcal{U}(x) + \int_{x \in S^-} xp(x) \mathcal{U}(x).
\]

If the number \(m \) of examples used by \texttt{Average} went to infinity, the vector average \(\bar{v} \) that \texttt{Average} computes would converge to \(v \). We prove Theorem 3 by first establishing bounds on \(v \) and then using Fact 11 (in Appendix 5.1) to deal with sample error.

Let \(u \) denote the vector average of all points in \(S^+ \). It is clear from symmetry that \(u = (u_1, 0, \ldots, 0) \) for some \(u_1 > 0 \); in fact we have the following.

Claim 12. \(u_1 = 2 \cdot \frac{A_n - 1}{A_n} \cdot \int_0^1 z(1 - z^2)^{(n-3)/2} dz = \Theta\left(\frac{1}{\sqrt{n}}\right)\).

Proof. The first equality follows immediately from Fact 10 (the factor of 2 is present because \(u \) is the vector average of half the points of \(S^{n-1} \)). For the second equality, since \(\frac{A_n - 1}{A_n} = \Theta(\sqrt{n}) \) we need to show that \(\int_0^1 z(1 - z^2)^{(n-3)/2} dz = \Theta(1/n) \).

For each \(z \in [1/\sqrt{n}, 2/\sqrt{n}] \), the value of the integrand \(z(1 - z^2)^{(n-3)/2} \) is at least \((1/\sqrt{n})(1 - \frac{1}{4})(n-3)/2 = \Theta(1/\sqrt{n})\), and so this implies that the whole integral is \(\Omega(1/n) \). The integrand is clearly at most \(1/\sqrt{n} \) for all \(z \in [0, 1/\sqrt{n}] \), and so we have \(\int_{2/\sqrt{n}}^1 z(1 - z^2)^{(n-3)/2} dz = \Theta(1/n) \); to finish the proof we need only show that \(\int_{2/\sqrt{n}}^1 z(1 - z^2)^{(n-3)/2} dz = O(1/n) \). We can piecewise approximate this integral (in increments of \(1/\sqrt{n} \)) as

\[
\int_{2/\sqrt{n}}^1 z(1 - z^2)^{(n-3)/2} dz \\
\approx \sum_{j=2}^{\sqrt{n}} \frac{j}{\sqrt{n}} e^{-j^2/2}, \
\frac{1}{\sqrt{n}} = \frac{1}{n} \sum_{j=2}^{\sqrt{n}} j e^{-j^2/2} < \frac{1}{n} \sum_{j=2}^{\infty} j e^{-j^2/2} = O\left(\frac{1}{n}\right),
\]

and this gives the claim. \(\square \)

If there were no noise, then the vector average \(v \) would equal \(u \); since there is noise we must add in a contribution from true negative examples that are falsely labeled as positive and subtract off a contribution from true positive examples that are falsely labeled as negative.

Let \(\text{opt}_- \) and \(\text{opt}_+ \) be defined as

\[
\text{opt}_- = \int_{x \in S^-} p(x) \mathcal{U}(x) \quad \text{and} \quad \text{opt}_+ = \int_{x \in S^+} p(x) \mathcal{U}(x),
\]

and so \(\text{opt}_- \) is the overall probability of receiving an example that is truly negative but falsely labeled as positive, and vice versa for \(\text{opt}_+ \). Clearly, \(\text{opt} = \text{opt}_- + \text{opt}_+ \). Let \(u^- \) and \(u^+ \) be the vectors

\[
\begin{align*}
&u^- = \frac{\int_{x \in S^-} x p(x) \mathcal{U}(x)}{\text{opt}_-} \\
&u^+ = \frac{\int_{x \in S^+} x p(x) \mathcal{U}(x)}{\text{opt}_+},
\end{align*}
\]

and so \(u^- \) (\(u^+ \), respectively) is the vector average of all the false positive (false negative, respectively) examples generated by \(p \). Then the vector average \(v \) of all positively labeled examples is

\[
v = \frac{u^-}{2} + \frac{\text{opt}_- u^- - \text{opt}_+ u^+}{1/2 + \text{opt}_- - \text{opt}_+} = C_1 \cdot v',
\]
where \(v' = u/2 + \text{opt}_- u - \text{opt}_+ u^+ \) and \(\frac{1}{2} \leq C_1 = \frac{1}{1/2 + \text{opt}_- \text{opt}_+} \leq 4 \); the bounds on \(C_1 \) hold, since by assumption we have \(\text{opt} \leq \frac{1}{4} \). So \(v' \) is a constant multiple of \(v \), and it suffices to analyze \(v' \).

We have \(v' = (v'_1, \ldots, v'_n) \), where \(v'_1 \) is the component parallel to \(e_1 \). In the rest of this subsection we will establish the following bounds on \(v' \).

Theorem 11. (i) The component of \(v' \) that is parallel to the target vector \(e_1 \) is

\[
v'_1 \geq u_1 \left(\frac{1}{2} - O(\text{opt} \sqrt{\log \frac{1}{\text{opt}}}) \right) > \frac{u_1}{4}.
\]

(ii) The component of \(v' \) that is orthogonal to \(e_1 \), namely \(v'_\perp = v' - v'_1 e_1 = (0, v'_2, \ldots, v'_n) \), satisfies \(\|v'_\perp\| = O(\text{opt} \sqrt{\log \frac{1}{\text{opt}}}) u_1 \).

Given Theorem 11, the error rate of the hypothesis \(\text{sgn}(v \cdot x) \) under \(\mathcal{U} \) is

\[
\Pr[\text{sgn}(v' \cdot x) \neq \text{sgn}(x_1)] = \frac{\arctan \left(\frac{\|v'_\perp\|}{\pi} \right)}{\arctan \left(\frac{\text{opt} \sqrt{\log \frac{1}{\text{opt}}}}{\pi} \right)} = O \left(\text{opt} \sqrt{\log \frac{1}{\text{opt}}} \right).
\]

By Fact 11, the sample average vector \(\bar{v} \) has \(\Pr_{x \in \mathcal{U}}[\text{sgn}(\bar{v} \cdot x) \neq \text{sgn}(v \cdot x)] \leq \epsilon \) with probability at least \(1 - \delta \), and we obtain Theorem 3.

Now we prove Theorem 11. Note that if \(\text{opt}_- u - \text{opt}_+ u^+ \) is the zero vector, then the theorem clearly holds, and so we henceforth assume that \(\text{opt}_- u - \text{opt}_+ u^+ \) is not the zero vector.

Fix any unit vector \(w \in S^{n-1} \). Suppose that \(p \) is such that the vector \(\text{opt}_- u - \text{opt}_+ u^+ \) points in the direction of \(w \), i.e., \(w = \frac{\text{opt}_- u - \text{opt}_+ u^+}{\|\text{opt}_- u - \text{opt}_+ u^+\|} \); let \(\tau > 0 \) denote \(\|\text{opt}_- u - \text{opt}_+ u^+\| \), and so \(v' = u/2 + \tau w \). To establish Theorem 11, it suffices to show that the desired bounds hold for any function \(p \) which satisfies (12) and is such that (a) the vector \(\text{opt}_- u - \text{opt}_+ u^+ \) points in the direction of \(w \), and (b) the magnitude of \(\tau = \|\text{opt}_- u - \text{opt}_+ u^+\| \) is as large as possible. (Since \(u/2 \) contributes zero to \(v'_1 \), we have that \(\|v_1\| \) scales with \(\tau \), and thus condition (ii) becomes only harder to satisfy as \(\tau \) increases. If \(w_1 > 0 \), then condition (i) holds for any \(\tau > 0 \), and if \(w_1 < 0 \), then the larger \(\tau \) is, the more difficult it is to satisfy condition (i).) We let \(\tau_{\text{max}} \) denote this maximum possible value of \(\tau \); if we can show that \(|\tau_{\text{max}}| = O(\text{opt} \sqrt{\log \frac{1}{\text{opt}}}) u_1 \), then since \(v'_1 = \frac{u_1}{2} + \tau w_1 \) and \(v'_\perp = \tau (0, w_2, w_3, \ldots, w_n) \), this gives Theorem 11.

We upper bound \(\tau_{\text{max}} \) by considering an even more relaxed scenario. Let \(w \) be any unit vector in \(S^{n-1} \). Let \(A \) be any subset of \(S^{n-1} \), and let \(\mathcal{B} \) be any subset of \(S^{n-1} \setminus A \) such that \(\text{opt}_A + \text{opt}_\mathcal{B} = \text{opt} \), where \(\text{opt}_A = \int_{x \in A} p(x) U(x) \) and \(\text{opt}_\mathcal{B} = \int_{x \in \mathcal{B}} p(x) U(x) \). Let \(u^A = \frac{\int_{x \in A} x p(x) U(x)}{\text{opt}_A} \) and \(u^B = \frac{\int_{x \in \mathcal{B}} x p(x) U(x)}{\text{opt}_\mathcal{B}} \). Let \(p : S^{n-1} \to [0, 1] \) be any function such that (i) (12) holds, and (ii) the vector \(\text{opt}_A u^A - \text{opt}_\mathcal{B} u^B \) points in the direction of \(w \). If we can upper bound the magnitude of \(\text{opt}_A u^A - \text{opt}_\mathcal{B} u^B \), then this gives an upper bound on \(\tau_{\text{max}} \). (This is a more relaxed scenario because we are not requiring that \(A \subseteq S^- \) and \(\mathcal{B} \subseteq S^+ \).) But now a simple convexity argument shows that \(\|\text{opt}_A u^A - \text{opt}_\mathcal{B} u^B\| \) is maximized by taking \(A \) to be \(\{x \in S^{n-1} : x \cdot w \geq y \} \), where \(y \) is chosen so that \(\int_{x \in A} U(x) = \frac{\text{opt}^2}{2} \) taking \(B \) to be \(-A\); and taking \(p(x) \) to be 1 on \(x \in (A \cup B) \) and 0 on \(x \notin (A \cup B) \) (note that this gives \(\text{opt}_A = \text{opt}_B = \frac{\text{opt}^2}{2} \)). Let \(\tau_{\text{MAX}} \) be the value of \(\|\text{opt}_A u^A - \text{opt}_\mathcal{B} u^B\| \) that results from taking \(A, B, \text{opt}_A, \text{opt}_\mathcal{B}, B, \) and \(p \) as described in the previous sentence; we will show that \(\tau_{\text{MAX}} = O(\text{opt} \sqrt{\log \frac{1}{\text{opt}}}) u_1 \) and thus prove Theorem 11.

It is clear that \(\text{opt}_A u^A = -\text{opt}_\mathcal{B} u^B \), and so it suffices to bound \(\|\text{opt}_A u^A\| = \frac{\tau_{\text{MAX}}}{2} \).
Let $y \in [0,1]$ be the value specified above, and so

\begin{equation}
\frac{\opt}{2} = \Pr_{x \in U} [x \cdot w \geq y] = \frac{A_{n-2}}{A_{n-1}} \cdot \int_y^1 (1-z^2)^{(n-3)/2} \, dz.
\end{equation}

We have

\[\opt_A u^A = \int_{x \in A} x p(x) U(x) = \left(\frac{A_{n-2}}{A_{n-1}} \cdot \int_y^1 z (1-z^2)^{(n-3)/2} \, dz \right) w, \]

and so it remains to show that $\gamma = O(\opt \sqrt{\log(1/\opt)})$, where $\gamma > 0$ is such that

\begin{equation}
\frac{A_{n-2}}{A_{n-1}} \cdot \int_y^1 z (1-z^2)^{(n-3)/2} \, dz = \gamma u_1,
\end{equation}

where y satisfies (13). We do this in the following two claims.

Claim 13. Let ℓ be such that $y = \ell / \sqrt{n}$. Then $e^{-\ell^2/2} = \Theta(\opt)$.

Proof. We have $\int_y^1 (1-z^2)^{(n-3)/2} \, dz = \frac{\opt}{2A_{n-2}/\sqrt{n}} = \Theta(\opt/\sqrt{n})$. Write $y = \ell / \sqrt{n}$. Piecewise approximating the integral in increments of $1/\sqrt{n}$, we have

\[\int_y^1 (1-z^2)^{(n-3)/2} \, dz \approx \frac{\sqrt{n}}{\ell} e^{-\ell^2/2} \cdot \frac{1}{\sqrt{n}} = \Theta(e^{-\ell^2/2}) \cdot \frac{1}{\sqrt{n}}. \]

Since this equals $\Theta(\opt/\sqrt{n})$, we have that $e^{-\ell^2/2} = \Theta(\opt)$, which gives the claim. (Note that we have $\ell = \Theta(\sqrt{\log(1/\opt)}) \gg 1$, which is compatible with approximating the integral with a sum as done above.)

Claim 14. We have $\gamma = \Theta(\opt \sqrt{\log(1/\opt)})$.

Proof. From Claim 12 we have $u_1 = \Theta(1/\sqrt{n})$. Since $\frac{A_{n-2}}{A_{n-1}} = \Theta(\sqrt{n})$, by (14) we have that $\gamma = \Theta(n \cdot \int_y^1 z (1-z^2)^{(n-3)/2} \, dz)$. Since $y = \ell / \sqrt{n}$, where $\ell = \Theta(\sqrt{\log(1/\opt)})$ (and, more precisely, $e^{-\ell^2/2} = \Theta(\opt)$) by Claim 13, again a piecewise approximation with pieces of length $1/\sqrt{n}$ gives us

\[\int_y^1 z (1-z^2)^{(n-3)/2} \, dz \approx \sum_{j=\ell}^{\sqrt{n}} j \frac{1}{\sqrt{n}} e^{-j^2/2} \cdot \frac{1}{\sqrt{n}} < \frac{1}{n} \sum_{j=\ell}^{\infty} j e^{-j^2/2} = \Theta \left(\frac{\ell e^{-\ell^2/2}}{n} \right), \]

and thus $\gamma = \Theta(\opt \sqrt{\log(1/\opt)})$ as desired.

6. Learning halfspaces in the presence of malicious noise. We now consider the problem of PAC learning an unknown origin-centered halfspace, under the uniform distribution on S^{n-1}, in the demanding *malicious noise model* introduced by Valiant [44] and subsequently studied by Kearns and Li [24] and many others.

We first define the malicious noise model. Given a target function f and a distribution \mathcal{D} over X, a *malicious example oracle with noise rate* η is an oracle $\mathbb{EX}_\eta(f, \mathcal{D})$ that behaves as follows. Each time it is called, with probability $1 - \eta$ the oracle returns a noiseless example $(x, f(x))$, where x is drawn from \mathcal{D}, and with probability η it returns a pair (x, y) about which nothing can be assumed; in particular such a “malicious” example may be chosen by a computationally unbounded adversary.
which has complete knowledge of \(f, \mathcal{D} \), and the state of the learning algorithm when the oracle is invoked. We say that an algorithm learns to error \(\epsilon \) in the presence of malicious noise at rate \(\eta \) under the uniform distribution if it satisfies the following condition: given access to \(\mathbb{E} \mathcal{X}_n(f, \mathcal{U}) \) with probability \(1 - \delta \), the algorithm outputs a hypothesis \(h \) such that \(\Pr_{x \in \mathcal{U}}[h(x) \neq f(x)] \leq \epsilon \).

Few positive results are known for learning in the presence of malicious noise. Improving on \([44, 24]\), Decatur \([10]\) gave an algorithm to learn disjunctions under any distribution that tolerates a noise rate of \(O(\frac{n}{\log n}) \). More recently, Mansour and Parnas \([35]\) studied the problem of learning disjunctions under product distributions in an “oblivious” variant of the malicious noise model, giving an algorithm that can tolerate a noise rate of \(O(\frac{5}{3}n^{2/3}) \). We note that the Perceptron algorithm can be shown to tolerate malicious noise at rate \(O(\epsilon/\sqrt{n}) \) when learning an origin-centered halfspace under the uniform distribution \(\mathcal{U} \) on \(S^{n-1} \).

It is not difficult to show that the simple \textbf{Average} algorithm can also tolerate malicious noise at rate \(O(\epsilon/\sqrt{n}) \).

Theorem 12. For any \(\epsilon > 0 \), algorithm \textbf{Average} (with \(m = O(n^2 \cdot \log \frac{n}{\epsilon}) \)) learns the class of origin-centered halfspaces to error \(\epsilon \) in the presence of malicious noise at rate \(\eta = O(\frac{\epsilon}{\sqrt{n}}) \) under the uniform distribution.

Proof. If there were no noise, the true average vector (average of all positive examples) would be \((u_1, 0, \ldots, 0)\), where by Claim 12 we have \(u_1 = \Theta(1/\sqrt{n}) \). By Chernoff bounds, we may assume that the true frequency \(\eta' \) of noisy examples in the sample is at most \(2\eta = O(\epsilon/\sqrt{n}) \). Let \(v \) denote the average of the noiselss vectors in the sample; Chernoff bounds are easily seen to imply that we have \(v_i = \Theta(1/\sqrt{n}) \) and \(|v_i| \leq \frac{\epsilon}{n} \) for each \(i = 2, \ldots, n \). Let \(z \) denote the average location of the malicious examples in the sample; since even malicious examples must lie on \(S^{n-1} \) (for otherwise we could trivially identify and discard them), it must be the case that \(\|z\| \leq 1 \). From this it is easy to see that the average \(\tau \) of the entire sample must satisfy \(\tau_1 = \Theta(1/\sqrt{n}) - \epsilon/\sqrt{n} = \Theta(1/\sqrt{n}) \) and \(\sqrt{\tau_1^2 + \cdots + \tau_n^2} = O(\epsilon/\sqrt{n}) \). We thus have \(\Pr_{x \in \mathcal{U}}[\text{sgn}(\tau \cdot x) \neq \text{sgn}(x_1)] = o(1) \). \(\square \)

As the main result of this section, in section 6.1 we show that by combining the \textbf{Average} algorithm with a simple preprocessing step to eliminate some noisy examples, we can handle a higher malicious noise rate of \(O(\frac{1}{(n \log n)^{1/\delta}}) \); this is Theorem 4. This algorithm, which we call \textbf{TestClose}, is the following:

1. Draw examples from \(\mathbb{E} \mathcal{X}_n(f, \mathcal{U}) \) until \(m = O(n^2 \log \frac{n}{\epsilon}) \) positively labeled examples have been received; let \(S = \{x^1, \ldots, x^m\} \) denote this set of examples.
2. Let \(\rho = \sqrt{\frac{\epsilon}{n} \log \frac{1}{\delta}} \), where \(C \) is a fixed constant (specified later in section 6.1). If any pair of examples \(x^i, x^j \) with \(i \neq j \) has \(\|x^i - x^j\| < \sqrt{2 - \rho} \), remove both \(x^i \) and \(x^j \) from \(S \). (We say that such a pair of examples is too close.) Repeat this until no two examples in \(S \) are too close to each other. Let \(S' \) denote this “reduced” set of examples.
3. Now run \textbf{Average} on \(S' \) to obtain a vector \(\tau \), and return the hypothesis \(h(x) = \text{sgn}(\tau \cdot x) \).

The idea behind this algorithm is simple. If there were no noise, then all examples received by the algorithm would be independent uniform random draws from the positive half of \(S^{n-1} \), and it is not difficult to show that with high probability no two examples would be too close to each other. Roughly speaking, the adversary controlling the noise would like to cause \(\tau \) to point as far away from the true target vector as possible; in order to do this, his best strategy (if we were simply running the
Average algorithm on the original data set \(S \) without discarding any points) would be to have all noisy examples be located at some single particular point \(x^* \in S^{n-1} \).

However, our “closeness” test rules out this adversary strategy, since it would certainly identify all these collocated points as being noisy and discard them. Thus, intuitively, in order to fool our closeness test, the adversary is constrained to place his noisy examples relatively far apart on \(S^{n-1} \) so that they will not be identified and discarded. But this means that the noisy examples cannot have a very large effect on the average vector \(\tau \), since intuitively placing the noisy examples far apart on \(S^{n-1} \) causes their vector average to have small magnitude and thus to affect the overall average \(\tau \) by only a small amount. The actual analysis in the proof of Theorem 4 uses bounds from the theory of sphere packing in \(\mathbb{R}^n \) to make these intuitive arguments precise.

6.1. Proof of Theorem 4. Let \(S_{\text{bad}} \subseteq S \) denote the set of “bad” examples in \(S \) that were chosen by the adversary, and let \(S_{\text{good}} = S \setminus S_{\text{bad}} \), the set of “good” noiseless examples. Let \(S'_{\text{bad}} \) (\(S'_{\text{good}} \), respectively) denote \(S_{\text{bad}} \cap S' \) (\(S_{\text{good}} \cap S' \), respectively), i.e., the set of bad (good, respectively) examples that survive the closeness test in step 2 of our algorithm.

Let us write \(v'_{\text{good}} \) to denote the vector average of all points in \(S'_{\text{good}} \) and \(v'_{\text{bad}} \) to denote the vector average of all points in \(S'_{\text{bad}} \). If we let \(\eta' \) denote \(\|v'_{\text{bad}}\| \), then we have that the overall vector average \(\tau \) of all examples in \(S' \) is \((1-\eta')v'_{\text{good}} + \eta'v'_{\text{bad}} \).

We first show that our closeness test does not cause us to discard any good examples.

Lemma 15. With probability at least \(1 - \frac{\delta}{4} \) we have \(S'_{\text{good}} = S_{\text{good}} \).

Proof. Let \(x' \) be any fixed point on \(S^{n-1} \). We will show that a uniform example drawn from \(U \) lies within distance \(\sqrt{2-\rho} \) of \(x' \) with probability at most \(\frac{\delta}{4} \). Since there are at most \(m \) examples in \(S_{\text{good}} \), this implies that for any individual example \(x^i \in S \), the probability that \(x^i \) lies too close to any example in \(S_{\text{good}} \) is at most \(\frac{\delta}{2m} \); taking a union bound gives the lemma.

Without loss of generality we may take \(x' = (1,0,\ldots,0) \). It is easy to see that for any \(y = (y_1,\ldots,y_n) \in S^{n-1} \), we have \(\|y-x'\| = \sqrt{2-2y_1} \) and thus \(\|y-x'\| < \sqrt{2-\rho} \) if and only if \(y > \rho/2 \). But, by Fact 10, we have that if \(y \) is drawn from \(U \), then

\[
\Pr_{y \in U} \left[y > \frac{\rho}{2} \right] = \frac{A_{n-2}}{A_{n-1}} \int_{\rho/2}^{\sqrt{n}} (1 - z^2)^{(n-3)/2} dz.
\]

It is easy to verify from the definition of \(\rho \) that for a suitable absolute constant \(C \), the integrand \((1 - z^2)^{(n-3)/2} \) is at most \((1 - (\rho/2)^2)^{(n-3)/2} \leq \frac{\delta}{4m} \) over the interval \([\rho/2, 1]\), and thus (since \(A_{n-2}/A_{n-1} = \Theta(\sqrt{n}) < m \)) we have that (15) is at most \(\frac{\delta}{4m} \) as required.

The true noise rate is \(\eta \), and the previous lemma implies that with probability \(1 - \frac{\delta}{4} \) we do not throw away any good examples from \(S \). Using Chernoff bounds, it is easy to show that with overall probability at least \(1 - \frac{\delta}{2} \) we have \(\eta' < 2\eta \).

Let \(v_{\text{good}} \) denote \(\frac{1}{|S_{\text{good}}|} \sum_{x \in S_{\text{good}}} x \), the average location of the vectors in \(S_{\text{good}} \). We have that the expected value of \(v_{\text{good}} \) is \((u_1,0,\ldots,0) \), where \(u_1 = \Theta(\frac{1}{\sqrt{n}}) \) is as defined in Claim 12. For \(m = O(\frac{n^2}{\eta^2} \log \frac{n}{\eta}) \), as in the proof of Fact 11, Chernoff bounds imply that with probability at least \(1 - \frac{\delta}{4} \) we have that \((v_{\text{good}})_1 = \Theta(\frac{1}{\sqrt{n}}) \) while \((v_{\text{good}})_i = O\left(\frac{\eta}{n}\right) \) for each \(i = 2,\ldots,n \). By Lemma 15, with probability at least \(1 - \frac{\delta}{4} \) we have \(v'_{\text{good}} = v_{\text{good}} \), and so with overall probability at least \(1 - \frac{\delta}{2} \) we have \((v'_{\text{good}})_1 = \Theta(\frac{1}{\sqrt{n}}) \) while \((v'_{\text{good}})_i = O\left(\frac{\eta}{n}\right) \) for each \(i = 2,\ldots,n \).
We now show that \(\|v'_{\text{bad}}\| \) must be small; once we establish this, as we will see it is straightforward to combine this with the bounds of the previous two paragraphs to prove Theorem 4. The desired bound on \(\|v'_{\text{bad}}\| \) is a consequence of the following lemma.

Lemma 16. Let \(T \) be any set of \(M = \omega(n^{3/2}/\sqrt{\rho}) \) many examples on \(S^{n-1} \) such that no two examples in \(T \) lie within distance \(\sqrt{2-\rho} \) of each other (recall that \(\rho = \sqrt{C \log \frac{n}{\pi}} \)). Then the vector average \(t = \frac{1}{|T|} \sum_{x \in T} x \) of \(T \) satisfies \(\|t\| = O(\frac{\log \frac{n}{\pi}}{\sqrt{n}})^{3/2} \).

Proof. Without loss of generality we may suppose that \(t = (c,0,\ldots,0) \) for some \(c > 0 \) (by rotating the set \(T \)); our goal is to upper bound \(c \). We consider a partition of \(T \) based on the value of the first coordinate as follows. For \(\tau = 1, 1-\frac{1}{\sqrt{n}}, 1-\frac{2}{\sqrt{n}}, \ldots \), we define the set \(T_\tau \) to be \(\{x \in T : \tau - \frac{1}{\sqrt{n}} \leq x_i < \tau + \frac{1}{\sqrt{n}}\} \). The idea of the proof is that for any value of \(\tau \) which is not very small, the set \(T_\tau \) must be small because of sphere-packing bounds. This implies that the overwhelming majority of the \(M \) examples in \(T \) must have a small first coordinate, which gives the desired result.

More precisely, we have the following claim.

Claim 17. There is a fixed constant \(K > 0 \) such that if \(\tau > K \sqrt{\rho} \), then \(|T_\tau| \leq n \).

Proof. We first give a crude argument to show that if \(\tau > 0.1 \), then \(|T_\tau| \leq n \). (It will be clear from the argument that any positive constant could be used in this argument instead of 0.1.) This argument uses the same basic ideas as the general case of \(\tau > K \sqrt{\rho} \) but is simpler because we do not need our bounds to be as precise; later, for the general case it will be useful to be able to assume that \(\tau < 0.1 \).

Fix some \(\tau > 0.1 \). We first note that if \(\tau \) is greater than (say) 4/5, then \(T_\tau \) can contain at most one point (since any two points of \(S^{n-1} \) which both have first coordinate \(4/5 \pm o(1) \) can have Euclidean distance at most \(6/5 + o(1) < \sqrt{2-\rho} \) from each other). Thus we may assume that \(0.1 < \tau < 4/5 \) (the key aspect of the upper bound is that \(\tau \) is bounded away from 1).

For \(x \in \mathbb{R}^n \), let \(x' \) denote \((x_2, \ldots, x_n)\). Since each \(x \in T_\tau \) has \(x_1 \in [\tau - \frac{1}{\sqrt{n}}, \tau + \frac{1}{\sqrt{n}}] \), we have that each \(x \in T_\tau \) satisfies \(\|x'\| = \sqrt{1-\tau^2} \cdot (1 \pm o(1)) \). Let \(\tilde{x}' \in \mathbb{R}^{n-1} \) denote the rescaled version of \(x' \) so that \(\|\tilde{x}'\| \) equals \(\sqrt{1-\tau^2} \) exactly, and let \(\tilde{T}_\tau \) denote \(\{\tilde{x}' : x \in T_\tau\} \). Since the first coordinates of any two points in \(T_\tau \) differ by at most \(\frac{1}{\sqrt{n}} \), it is not difficult to see that that the minimum pairwise distance condition on \(T_\tau \) implies that any pair of points in \(\tilde{T}_\tau \) must have distance at least \((\sqrt{2-\rho} - \frac{1}{\sqrt{n}}) \cdot (1 - o(1)) = \sqrt{2} \cdot (1 - o(1)) \) from each other.

We now recall Rankin’s second bound on the minimum pairwise distance for point sets on Euclidean spheres (see, e.g., Theorem 1.4.2 of [11]). This bound states that for any value \(\kappa > \sqrt{2} \), at most \(n + 1 \) points can be placed on \(S^{n-1} \) if each point is to have distance at least \(\kappa \) from all other points. By rescaling, this immediately implies that at most \(n \) points can be placed on the Euclidean sphere of radius \(\sqrt{1-\tau^2} \) in \(\mathbb{R}^{n-1} \) if all pairwise distances are at least \(\kappa \sqrt{1-\tau^2} \). Now recall from the previous paragraph that all points in \(\tilde{T}_\tau \) lie on the sphere of radius \(\sqrt{1-\tau^2} \), and all pairwise distances in \(\tilde{T}_\tau \) are at least \(\sqrt{2} \cdot (1 - o(1)) \). It follows by a suitable choice of \(\kappa > \sqrt{2} \) that \(|\tilde{T}_\tau| \), and thus \(|T_\tau| \), is at most \(n \).

We henceforth assume that \(K \sqrt{\rho} < \tau < 0.1 \) and give a more quantitatively precise version of the above argument to handle this case. We consider the following transformation \(f \) that maps points in \(T_\tau \) onto the ball of radius \(\sqrt{1-\tau^2} \) in \(\mathbb{R}^{n-1} \):
given \(x = (x_1, \ldots, x_n) \in T_\tau \), let

\[
f(x) = \sqrt{1-\tau^2} \cdot \frac{x'}{\|x'\|},
\]

i.e., \(f(x) \) is obtained by removing the first coordinate and normalizing the resulting \((n-1)\)-dimensional vector to have magnitude \(\sqrt{1-\tau^2} \).

We now claim that if \(x \neq y, x, y \in T_\tau \), then we have \(\|f(x) - f(y)\| > \sqrt{2-\rho} - \frac{1}{\sqrt{n}} - 3\tau^2 \). To see this, fix any \(x, y \in T_\tau \). By the triangle inequality, we have

\[
\|f(x) - f(y)\| \geq \|x' - y'\| - \|f(x) - x'\| - \|f(y) - y'\|,
\]

and so it suffices to bound the terms on the RHS.

For the first term, we have

\[
\sqrt{2-\rho} \leq \|x - y\| \leq \frac{1}{\sqrt{n}} + \sqrt{(x_2 - y_2)^2 + \cdots + (x_n - y_n)^2},
\]

where the first inequality holds since \(x, y \in T \) and the second inequality holds since the first coordinates of \(x \) and \(y \) differ by at most \(\frac{1}{\sqrt{n}} \). This immediately gives \(\|x' - y'\| \geq \sqrt{2-\rho} - \frac{1}{\sqrt{n}} \).

For the second term, since \(x_1 \in [\tau - \frac{1}{2\sqrt{n}}, \tau + \frac{1}{2\sqrt{n}}) \), it must be the case that

\[
\|x'\|^2 = x_2^2 + \cdots + x_n^2 \in \left(1 - \left(\tau + \frac{1}{2\sqrt{n}}\right)^2, 1 - \left(\tau - \frac{1}{2\sqrt{n}}\right)^2\right).
\]

We have

\[
\|f(x) - x'\| = \left|\frac{(1 - \tau^2)^{1/2}}{\|x'\|} x' - x'\right| = \left|\frac{(1 - \tau^2)^{1/2}}{\|x'\|} - 1\right| \cdot \|x'\| \leq \left|\frac{(1 - \tau^2)^{1/2}}{\|x'\|} - 1\right|,
\]

where the last inequality uses \(\|x'\| \leq 1 \). A tedious but straightforward verification (using the fact that \(\tau < 0.1 \)) shows that condition (17) implies that the RHS of (18) is at most \(\frac{\tau^2}{10} \) (see section 6.1.1 for the proof). The third term \(\|f(y) - y'\| \) clearly satisfies the same bound.

Combining the bounds we have obtained, it follows from (16) that \(\|f(x) - f(y)\| \geq \sqrt{2-\rho} - \frac{1}{\sqrt{n}} - 3\tau^2 \). For some fixed absolute constant \(K > 0 \), we have that if \(\tau^2 > K^2 \rho \) (i.e., \(\tau > K \sqrt{\rho} \)), then the RHS of this last inequality is at least \(\sqrt{2} - \frac{\tau^2}{2} \). So we have established that the transformed set of points \(f(T_\tau) \) have all pairwise distances at least \(\sqrt{2} - \frac{\tau^2}{2} \). But just as in the crude argument at the beginning of the proof, Rankin’s bound implies that any point set on the radius-\(\sqrt{1-\tau^2} \) ball in \(\mathbb{R}^{n-1} \) with all pairwise distances strictly greater than \(\sqrt{2} \cdot \sqrt{1-\tau^2} \) must contain at most \(n \) points. Since (as is easily verified) \(\sqrt{2} - \frac{\tau^2}{2} \geq \sqrt{2} \cdot \sqrt{1-\tau^2} \), it must be the case that \(|T_\tau| \leq n \).

With Claim 17 in hand, it is clear that at most \(n^{3/2} \) examples \(x \in T \) can have \(x_1 \geq K \sqrt{\rho} \). Since certainly each point in \(T \) has first coordinate at most 1, the average value of the first coordinate of all \(M \) points in \(T \) must be at most

\[
\frac{n^{3/2} + MK \sqrt{\rho}}{M} \leq 2K \sqrt{\rho} = \Theta \left(\left(\frac{\log m}{\sqrt{\tau}}\right)^{1/4} \left(\frac{n}{n^{1/4}}\right) \right).
\]
(where we used $M = \omega(n^{3/2}/\sqrt{\rho})$ for the inequality above), and Lemma 16 is proved. \qed

Lemma 16 implies that $\|v'_{bad}\| = O(\frac{(\log \frac{n}{\rho})^{1/4}}{n^{1/2}})$. (Note that if S'_{bad} is not of size M, we can augment it with examples from S'_{good} in order to make it large enough so that we can apply the lemma. This can easily be done, since we need only $M = \tilde{\omega}(n^{7/4})$ for the lemma and we have $|S'_{good}| = \tilde{\Theta}(\frac{2^7}{\tau^2})$.) Putting all the pieces together, we have that with probability $1 - \delta$ all the following are true:

- $(v'_{good})_1 = \Theta(\frac{1}{\sqrt{n}})$;
- $(v'_{good})_i = O(\frac{\tau}{n})$ for $i = 2, \ldots, n$;
- $\|v'_{bad}\| = O(\frac{(\log \frac{n}{\rho})^{1/4}}{n^{1/2}})$;
- $\eta' \leq 2\eta$, where $\eta = (1 - \eta')v'_{good} + \eta'v'_{bad}$.

Combining all these bounds, a routine analysis shows that the angle between \overline{v} and the target $(1, 0, \ldots, 0)$ is at most ϵ, provided that

$$\frac{(2\eta)\log^{1/4}(m/\delta)}{n^{3/4}} \leq c \cdot \epsilon$$

for some sufficiently small constant c. Rearranging this inequality, Theorem 4 is proved.

6.1.1. Proof that (18) is at most $\frac{\tau^2}{10}$. We have that (18) $\leq 1 - \frac{(1 - \tau^2)^{1/2}}{\|x\|}$. To bound this quantity, we will consider the largest value greater than 1 and smallest value less than 1 that $\frac{(1 - \tau^2)^{1/2}}{\|x\|}$ can take. Throughout the following bounds, we repeatedly use the fact that $0 < \tau < 0.1$.

We have that

$$\|x\| > \sqrt{1 - \left(\frac{1}{\tau} + \frac{1}{2\sqrt{n}}\right)^2} > 1 - \frac{9\tau^2}{16},$$

where the first inequality is from (17) and the second is easily verified (recall that $\tau > K\sqrt{\rho} > \frac{1}{n^{1/2}}$). Since $(1 - \tau^2)^{1/2} < 1 - \frac{\tau^2}{2}$, we have $\frac{(1 - \tau^2)^{1/2}}{\|x\|} < 1 - \frac{\tau^2}{2} = \frac{1}{1 - 9\tau^2} < \frac{1}{1 - 9\tau^2/16}$.

On the other hand, from (17) we also have that $\|x\| \leq \sqrt{1 - (\tau - \frac{1}{2\sqrt{n}})^2}$, and so consequently we have (writing b for $\frac{1}{2\sqrt{n}}$ for readability below)

$$\frac{(1 - \tau^2)^{1/2}}{\|x\|} \geq \sqrt{\frac{1 - \tau^2}{1 - (\tau - b)^2}} = \sqrt{1 - \frac{2b\tau - b^2}{1 - (\tau - b)^2}} > 1 - \frac{3}{5} \cdot \frac{2b\tau - b^2}{1 - (\tau - b)^2}.$$

Recalling that $b = \frac{1}{2\sqrt{n}}$, whereas $\frac{1}{n^{1/2}} < \tau < 0.1$, we see that $\frac{3}{5} \cdot \frac{2b\tau - b^2}{1 - (\tau - b)^2}$ is greater than 0 but is easily less than $\frac{\tau^2}{10}$.

We thus have that $1 - \frac{(1 - \tau^2)^{1/2}}{\|x\|} < \frac{\tau^2}{10}$ as claimed.

7. Conclusions and future work. We have given an algorithm that learns (under distributional assumptions) a halfspace in the agnostic setting. It constructs a polynomial threshold function whose error rate on future examples is within an additive ϵ of the optimal halfspace, in time poly(n) for any constant $\epsilon > 0$, for the
uniform distribution over \{-1, 1\}^n or unit sphere in \mathbb{R}^n, as well as any log-concave distribution in \mathbb{R}^n. It also agnostically learns Boolean disjunctions in time \(2^\Theta(\sqrt{n})\) with respect to any distribution. Our algorithm has can be viewed as a noise-tolerant arbitrary-distribution generalization of the well-known “low-degree” Fourier algorithm of Linial, Mansour, and Nisan.

There are many natural ways to extend our work. One promising direction is to try to develop a broader range of learning results over the sphere \(S^{n-1}\) using the Hermite polynomials basis, in analogy with the rich theory of uniform distribution learning that has been developed for the parity basis over \{-1, 1\}^n. Another natural goal is to gain a better understanding of the distributions and concept classes for which we can use the polynomial regression algorithm as an agnostic learner. Is there a way to extend the analysis of the \(d = 1\) case of the polynomial regression algorithm (establishing Theorem 3) to obtain a stronger version of Theorem 1, part 1(b)? Another natural idea would be to use the “kernel trick” with the polynomial kernel to speed up the algorithm. Finally, it would be interesting to explore whether the polynomial regression algorithm can be used for other challenging noisy learning problems beyond agnostic learning, such as learning with malicious noise.

Appendix A. Solving \(L_1\) polynomial regression in polynomial time.

Let \(S\) denote the set of all indices of monomials of degree at most \(d\) over variables \(x_1, \ldots, x_n\), and so \(|S| \leq n^{d+1}\). Our goal is to find \(w_S \in \mathbb{R}\) for \(S \in S\) to minimize \(\frac{1}{m} \sum_{i=1}^{m} |y_i - \sum_{S \in S} w_S(x^i)_S|\), where \(x^i_S\) is the monomial indexed by \(S\). This can be done by solving the following LP:

\[
\min \sum_{i=1}^{m} z_i \text{ such that } \forall i : z_i \geq y^i - \sum_{S \in S} w_S(x^i)_S \text{ and } z_i \geq -\left(y^i - \sum_{S \in S} w_S(x^i)_S \right).
\]

Using a polynomial-time algorithm for linear programming, this can be solved exactly in \(n^{O(d)}\) time. In fact, for our purposes it is sufficient to obtain an approximate minimum, and hence one can use even more efficient algorithms [9].

Appendix B. Proof of Theorem 6.

Proof of Theorem 6. We assume without loss of generality that \(\theta \geq 0\); an entirely similar proof works for \(\theta < 0\). First, suppose that \(\theta > \sqrt{d}\). Then we claim that the constant polynomial \(p(x) = -1\) will be a sufficiently good approximation of \(\text{sgn}(x - \theta)\). In particular, it will have error:

\[
\int_{\theta}^{\infty} \frac{4e^{-x^2}}{\sqrt{\pi}} \, dx \leq \int_{\sqrt{\theta}}^{\infty} \frac{4e^{-x^2}}{\sqrt{\pi}} \, dx = \frac{4e^{-\sqrt{\theta}}}{\sqrt{\pi}} \leq \frac{4}{\sqrt{\pi d}}.
\]

So the case that \(\theta > \sqrt{d}\) is easy, and for the remainder we assume that \(\theta \in [0, \sqrt{d}]\).

We use the Hermite polynomials \(H_d\), \(d = 0, 1, \ldots\), \((H_d\) is a degree-\(d\) univariate polynomial) which are a set of orthogonal polynomials given the weighting \(e^{-x^2} \pi^{-1/2}\). In particular,

\[
\int_{-\infty}^{\infty} H_{d_1}(x) H_{d_2}(x) \frac{e^{-x^2}}{\sqrt{\pi}} \, dx = \begin{cases} 0 & \text{if } d_1 \neq d_2, \\ 2^{d_1} d_1! & \text{if } d_1 = d_2. \end{cases}
\]
Hence these polynomials form an orthogonal basis of polynomials with respect to the inner product \((p, q) = \int_{-\infty}^{\infty} p(x)q(x)e^{-x^2} \pi^{-1/2} dx \). The functions \(H_d(x) = H_d(x)/\sqrt{2^d d!} \) are an orthonormal basis.

Now the best degree-\(d \) approximation to the function \(\text{sgn}(x - \theta) \), in the sense of (5), for any \(d \), can be written as \(\sum_{i=0}^{d} c_i x_i \). The \(c_i \in \mathbb{R} \) that minimize (5) are

\[
c_i = \int_{-\infty}^{\infty} \text{sgn}(x - \theta)H_i(x) \frac{e^{-x^2}}{\sqrt{\pi}} dx
= \int_{-\infty}^{\theta} H_i(x) \frac{e^{-x^2}}{\sqrt{\pi}} dx - \int_{\theta}^{\infty} H_i(x) \frac{e^{-x^2}}{\sqrt{\pi}} dx
= 2 \int_{\theta}^{\infty} H_i(x) \frac{e^{-x^2}}{\sqrt{\pi}} dx \quad (\text{for } i \geq 1).
\]

(19)

The last step follows from the fact that \(\int_{-\infty}^{\infty} H_i(x) \frac{e^{-x^2}}{\sqrt{\pi}} dx = 0 \) for \(i \geq 1 \) by orthogonality of \(H_i \) with \(H_0 \). Next, to calculate our error, we use Parseval’s identity:

\[
\int_{-\infty}^{\infty} \left(\sum_{i=0}^{d} c_i H_i(x) - \text{sgn}(x - \theta) \right)^2 \frac{e^{-x^2}}{\sqrt{\pi}} dx = 1 - \sum_{i=0}^{d} c_i^2 = \sum_{i=d+1}^{\infty} c_i^2.
\]

The above holds because \(\int_{-\infty}^{\infty} \frac{e^{-x^2}}{\sqrt{\pi}} dx = 1 \) and hence \(\sum_{i=0}^{\infty} c_i^2 = 1 \) (\(\text{sgn}(x) \in L^2(\mathbb{R}, e^{-x^2}) \) and polynomials are dense in this set). It thus suffices for us to bound \(\sum_{i=d+1}^{\infty} c_i^2 \).

It is now easy to calculate each coefficient \(c_i \) using standard properties of the Hermite polynomials. It is well known [42] that the Hermite polynomials can be defined by

\[
H_i(x) e^{-x^2} = (-1)^i \frac{d^i}{dx^i} e^{-x^2}, \quad \text{which implies } \frac{d}{dx} H_i(x) e^{-x^2} = -H_{i+1}(x) e^{-x^2}.
\]

In turn, this and (19) imply that, for \(i \geq 1 \),

\[
c_i = \frac{2}{\sqrt{\pi 2^i i!}} \int_{\theta}^{\infty} H_i(x) e^{-x^2} dx
= \frac{2}{\sqrt{\pi 2^i i!}} \left(-H_{i-1}(x) e^{-x^2} \right) \bigg|_{\theta}^{\infty}
= \frac{2}{\sqrt{\pi 2^i i!}} \left(-H_{i-1}(\theta) e^{-\theta^2} \right).
\]

(20)

We must show that \(\sum_{i=d+1}^{\infty} c_i^2 = O(1/\sqrt{d}) \). To do this, it suffices to show that for each \(i \) we have \(c_i^2 = O(i^{-3/2}) \). From (20) we have, for \(i \geq 1 \),

\[
c_i^2 = \frac{4}{\pi 2^i i!} (H_{i-1}(\theta))^2 e^{-\theta^2}.
\]

(21)

Now, conveniently, Theorem 1.i of [7] states that, for all \(i \geq \theta^2 \),

\[
\frac{1}{2^i i!} H_i(\theta)^2 e^{-\theta^2} \leq \frac{C}{\sqrt{i}}
\]

where \(C \) is some absolute constant. Since we have \(\theta \leq \sqrt{d} \) by assumption, we have that, for \(i \geq d+1 \), \(c_i^2 \leq \frac{4C}{2^{d+1} \sqrt{d}} \), which is of the desired form \(O(i^{-3/2}) \), and Theorem 6 is proved. \(\Box \)
REFERENCES

[28] A. R. Klivans and A. A. Sherstov, Cryptographic hardness for learning intersections of half-
AGNOSTICALLY LEARNING HALFSpaces

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.