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Abstract. We survey the fastest known algorithms for learning various
expressive classes of Boolean functions in the Probably Approximately
Correct (PAC) learning model.

1 Introduction

Computational learning theory is the study of the inherent abilities and lim-
itations of algorithms that learn from data. A broad goal of the field is to
design computationally efficient algorithms that can learn Boolean functions
f : {0, 1}n → {0, 1}. A general framework within which this question is often
addressed is roughly the following:

1. There is a fixed class C of possible target functions over {0, 1}n which is
a priori known to the learning algorithm. (Such function classes are often
referred to as concept classes, and the functions in such classes are referred
to as concepts.)

2. The learning algorithm is given some form of access to information about
the unknown target concept c ∈ C.

3. At the end of its execution, the learning algorithm outputs a hypothesis
h : {0, 1}n → {0, 1}, which ideally should be equivalent or close to c.

Different ways of instantiating (2) and (3) above – what form of access to c is
the learner given? what is required of the hypothesis function h? etc. – give rise
to different learning models. Within a given learning model, different choices of
the Boolean function class C (i.e. different ways of instantiating (1) above) give
rise to different learning problems such as the problem of learning an unknown
conjunction, learning an unknown linear threshold function, an unknown decision
tree, and so on.

In this brief survey we will focus exclusively on the widely studied Probably
Approximately Correct (PAC) learning model introduced by Valiant [39]. In this
learning model, which we define precisely in Section 2.1, the learning algorithm
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is only given access to independent random examples labelled according to c, i.e.
access to input-output pairs (x, c(x)) where each x is independently drawn from
the same unknown probability distribution. Thus the learning algorithm has no
control over the choice of examples used for learning. Such a model may be
viewed as a good first-order approximation of commonly encountered scenarios
in machine learning where one must learn from a given training set of examples
generated according to some unknown random process.

(We note that a wide range of models exist in which the learning algorithm
has other forms of access to the target function; in particular several standard
models allow the learner to make black-box queries to the target function, which
are often known as membership queries. Many powerful and elegant learning
algorithms are known in various models that permit membership queries, see
e.g. [1, 4, 10, 19, 28], but we will not discuss this work here. A rich body of
results have also been obtained for the uniform-distribution variant of the PAC
learning model, in which the learner need only succeed when given uniform
random examples from {0, 1}n; see e.g. [40, 29, 12, 20, 34] for some representative
work in this setting. Finally, we note that there also exist well-motivated and
well-studied learning models in which the learning algorithm only has some more
limited form of access to c than random labeled examples, see e.g. [5, 21].)

There are well-known polynomial-time PAC learning algorithms for concept
classes consisting of simple functions such as conjunctions and disjunctions [39],
decision lists [35], parity functions [15, 18], and halfspaces [9]. We give a con-
cise overview of the current state of the art for learning richer concept classes
consisting of more expressive Boolean functions such as decision trees, Disjunc-
tive Normal Form (DNF) formulas, intersections of halfspaces, and various re-
stricted classes of Boolean formulas. For each of these “rich” concept classes true
polynomial-time algorithms are not (yet) known, but as we describe below, it
is possible to give provable guarantees which improve substantially over naive
exponential runtime bounds.

One perhaps surprising point which emerges from our survey is that a single
linear programming based algorithm for learning polynomial threshold functions

gives the current state-of-the-art results for learning a wide range of rich con-
cept classes, including all those we will discuss in Section 3. We close the survey
in Section 4 with a brief description of a very different approach to obtaining
PAC learning algorithms, based on linear algebra rather than linear program-
ming, which is also of interest. While to date this linear algebraic approach has
not yielded as many results for learning rich concept classes as the polynomial
threshold function approach, we feel that it presents an interesting direction for
future study.

Throughout the survey we highlight various open questions, with an emphasis
on problems where progress both would be of interest and (in the view of the
author) would seem most likely to be feasible.



2 Distribution-Independent Learning

2.1 The learning model

In an influential 1984 paper Valiant introduced the Probably Approximately Cor-

rect (PAC) model of learning Boolean functions from random examples [39].
(See the book [22] for an excellent and detailed introduction to the model.) In
the PAC model a learning algorithm has access to an example oracle EX(c,D)
which, when queried, provides a labeled example (x, c(x)) where x is drawn
from a fixed but unknown distribution D over {0, 1}n and c ∈ C is the un-
known target concept which the algorithm is trying to learn. Given Boolean
functions h, c on {0, 1}n, we say that h is an ε-approximator for c under D if
Prx∈D[h(x) = c(x)] ≥ 1− ε. The goal of a PAC learning algorithm is to output a
hypothesis h which is an ε-approximator for the unknown target concept c with
high probability.

More precisely, an algorithm A is a PAC learning algorithm for concept class

C if the following condition holds: for any c ∈ C, any distribution D on {0, 1}n,

and any 0 < ε < 1
2 , 0 < δ < 1, if A is given ε, δ as input and has access to

EX(c,D), then A outputs (a representation of) some h : {0, 1}n → {0, 1} which
satisfies Prx∈D[h(x) 6= c(x)] ≤ ε with probability at least 1 − δ. We say that
A PAC learns C in time t = t(n, ε, δ, s) if A runs for at most t time steps and
outputs a hypothesis h which can be evaluated on any point x ∈ {0, 1}n in time
t; here s =size(c) is a measure of the “size” of the target concept c ∈ C. Note
that no restriction is put on the form of the hypothesis h other than that it be
efficiently evaluatable. In particular, h need not belong to the concept class C

(i.e. we do not restrict ourselves to proper learning algorithms).
It is well known (see e.g. [22]) that the runtime dependence of a PAC learning

algorithm on δ can always be made logarithmic in 1
δ . Moreover, for all the results

we discuss the runtime dependence on ε is polynomial in1
ε . Thus throughout this

paper we discuss the running time of PAC learning algorithms as functions only
of n and (when appropriate) the size parameter s.

2.2 The main technique: polynomial threshold functions

A polynomial threshold function is defined by a polynomial p(x1, . . . , xn) with
real coefficients. The output of the polynomial threshold function on input x ∈
{0, 1}n is 1 if p(x1, . . . , xn) ≥ 0 and is 0 otherwise. The degree of a polynomial
threshold function is simply the degree of the polynomial p. A linear threshold

function or halfspace is a polynomial threshold function of degree 1. Since we
will only be concerned with the input space {0, 1}n, we may without loss of
generality only consider polynomial threshold functions which correspond to
multilinear polynomials.

It is well known that there are poly(n)-time PAC learning algorithms for
the concept class of linear threshold functions over {0, 1}n; this follows from
information-theoretic sample complexity arguments [8, 9] combined with the ex-
istence of polynomial-time algorithms for linear programming [23]. As various



authors have noted [7, 26], such algorithms can be run over an expanded feature

space of N =
∑d

i=1

(

n
d

)

monomials of degree at most d to learn degree-d poly-
nomial threshold functions in time poly(N). (This approach is closely related to
using a Support Vector Machine with a degree-d polynomial kernel, see e.g. [36].)
We thus have the following:

Fact 1 Let C be a class of functions each of which can be expressed as an degree-

d polynomial threshold function over {0, 1}n. Then there is a poly(N)-time PAC

learning algorithm for C, where N =
∑d

i=1

(

n
i

)

≤ ( en
d )d.

Thus, in order to get an upper bound on the runtime required to learn a con-
cept class C, it is enough to bound the degree of polynomial threshold functions
which represent the concepts in C. This approach has proved quite powerful as
we now describe.

3 Known results on learning rich Boolean function classes

3.1 Decision Trees

A Boolean decision tree T is a rooted binary tree in which each internal node
has two ordered children and is labeled with a variable, and each leaf is labeled
with a bit b ∈ {−1,+1}. The size of a decision tree is the number of leaves. A
decision tree T computes a Boolean function f : {0, 1}n → {0, 1} in the obvious
way: on input x, if variable xi is at the root of T we go to either the left or
right subtree depending on whether xi is 0 or 1. We continue in this way until
reaching a bit leaf; the value of this bit is f(x).

Algorithms for learning decision trees have received much attention both
from applied and theoretical perspectives. Ehrenfeucht and Haussler [14] gave
a recursive algorithm which learns any size-s decision tree in nO(log s) time;
while no faster algorithms are known, various alternate algorithms with the same
quasipolynomial runtime have since been given. Blum [6] showed that every size-
s decision tree is equivalent to some log(s)-decision list. (An r-decision list is a
sequence of nested “if-then” rules where each “if” condition is a conjunction
of at most r literals and each “then” statement is of the form “output bit b.”)
Since r-decision lists are PAC learnable in nO(r) time [35], this gives an equally
efficient alternative algorithm to [14].

Blum’s proof is easily seen to establish that any size-s decision tree is com-
puted by a log(s)-degree polynomial threshold function. Thus for decision trees
we may use Fact 1 to obtain the fastest known algorithm, but as described above
other equally fast algorithms are also known. However, for each of the concept
classes discussed below in Sections 3.2 through 3.3, the Fact 1 approach is the
only known way to achieve the current fastest runtimes.

3.2 DNF formulas

A disjunctive normal form formula, or DNF, is a disjunction T1 ∨ · · · ∨ Ts of
conjunctions of Boolean literals. An s-term DNF is one which has at most s



conjunctions (also known as terms). Learning s-term DNF formulas in time
poly(n, s) is a longstanding open question which goes back to Valiant’s inception
of the PAC learning model.

The first subexponential time algorithm for learning DNF was due to Bshouty

[11] and learns any s-term DNF over n variables in time 2O((n log s)1/2 log3/2 n). At
the heart of Bshouty’s algorithm is a structural result which shows that that any
s-term DNF can be expressed as an O((n log n log s)1/2)-decision list; together
with the aforementioned algorithm of [35] this gives the result. Subsequently
Tarui and Tsukiji [38] gave a different algorithm for learning DNF with a sim-
ilar runtime bound. Their algorithm adapted the machinery of “approximate
inclusion/exclusion” developed by Linial and Nisan [30] in combination with

hypothesis boosting [16] and learns s-term DNF in time 2O(n1/2 log n log s).

In [26], Klivans and Servedio showed that any DNF formula with s terms
can be expressed as a polynomial threshold function of degree O(n1/3 log s). By

Fact 1 this yields an algorithm for learning s-term DNF in time 2O(n1/3 log n log s),
which is the fastest known time bound.

Several lower bounds on polynomial threshold function degree for DNFs are
known which complement the O(n1/3 log s) upper bound of [26]. A well-known
theorem of Minsky and Papert [31] shows that the “one-in-a-box” function
(which is equivalent to an n1/3-term DNF on n variables) requires polynomial
threshold function degree Ω(n1/3). Minsky and Papert also proved that the par-
ity function on k variables required polynomial threshold function degree at least
k; since s-term DNF formulas can compute the parity function on log s variables,
this gives an Ω(log s) lower bound for s-term DNF as well. These known results
motivate:

Question 1. Can we close the remaining gap between the O(n1/3 log s) upper
bound and the max{n1/3, log s} lower bound on polynomial threshold function
degree for s-term DNF?

Note that for decision trees no gap at all exists; Blum’s approach gives a
blog sc degree upper bound for size-s decision trees, and the parity function
shows that this is tight.

3.3 Boolean Formulas

Known results on learning Boolean formulas of depth greater than two are quite
limited. O’Donnell and Servedio [33] have shown that any unbounded fanin
Boolean AND/OR/NOT formula of depth d and size (number of leaves) s is
computed by a polynomial threshold function of degree

√
s(log s)O(d). By Fact 1

this gives a 2Õ(n1/2+ε) time PAC learning algorithm for linear-size Boolean for-
mulas of depth o( log n

log log n ).
It would be very interesting to weaken the dependence on either size or depth

in the results of [33]:

Question 2. Does every AND/OR/NOT formula of size s have a polynomial
threshold function of degree O(

√
s), independent of its depth?



An O(
√

s) degree bound would be the best possible since size-s formulas can
express the parity function on

√
s variables.

Question 3. Does every depth-3 AND/OR/NOT formula of size poly(n) have a
polynomial threshold function of degree o(n)?

The strongest degree lower bound known for poly(n)-size formulas of small
depth is Ω(n1/3(log n)2(d−2)/3) for formulas of depth d ≥ 3 [33]. A lower bound of
Ω(n2/5) for an explicit linear-size, depth-3 formula is conjectured in [33]. Some
related results were proved by Krause and Pudlak [27], who gave an explicit

depth-3 formula that requires any polynomial threshold function to have 2nΩ(1)

many monomials.
We note that there is some reason to believe that the class of arbitrary

constant-depth, polynomial-size AND/OR/NOT Boolean formulas (e.g. the class
of AC0 circuits) is not PAC learnable in poly(n) time. Kharitonov [24] has shown

that an n(log n)o(d)

-time algorithm for learning poly(n)-size, depth-d Boolean for-
mulas for sufficiently large constant d would contradict a strong but plausible
cryptographic assumption about the hardness of integer factorization (essentially
the assumption is that factoring n-bit integers is 2nε

-hard in the average case
for some absolute constant ε > 0; see [24] for details).

3.4 Intersections of Halfspaces

In addition to the concept classes of Boolean formulas discussed in the previous
sections, there is considerable interest in studying the learnability of various ge-
ometrically defined concept classes. As noted in Section 2.2, efficient algorithms
are known which can learn a single halfspace over {0, 1}n. Algorithms for learn-
ing a single halfspace are at the heart of some of the most widely used and
successful techniques in machine learning such as support vector machines [36]
and boosting algorithms [16, 17]. Thus it is of great interest to obtain such algo-
rithms for learning richer functions defined in terms of several halfspaces, such
as intersections of two or more halfspaces.

A halfspace f has weight W if it can be expressed as f(x) = sgn(w1x1 +
· · · + wnxn − θ) where each wi is an integer and

∑n
i=1 |wi| ≤ W. Well known

results of Muroga et al. [32] show that any halfspace over {0, 1}n is equivalent
to some halfspace of weight 2O(n log n), and H̊astad [37] has exhibited a halfspace
which has weight 2Ω(n log n). All of the current fastest algorithms for learning
intersections of halfspaces have a significant runtime dependence on the weight
W .

Using techniques of Beigel et al. [3], Klivans et al. [25] showed that any in-
tersection of k halfspaces of weight W is computed by a polynomial threshold
function of degree O(k log k log W ). By Fact 1, this gives a quasipolynomial-time
(npolylog(n)) algorithm for learning an intersection of polylog(n) many polynomial-
weight halfspaces. Since the “one-in-a-box” function on k3 variables can be ex-
pressed as an intersection of k halfspaces each of weight W = k2, we have that
for W = k2 there is an Ω(k) degree lower bound which nearly matches the



O(k log k log w) upper bound. It is also shown in [25] that any intersection of k

halfspaces of weight W can be expressed as a polynomial threshold function of
degree O(

√
W log k); this gives a stronger bound in cases where W is small and

k is large.
More generally, [25] showed that any Boolean function of k halfspaces of

weight W is computed by a polynomial threshold function of degree O(k2 log W ).
It follows that not just intersections, but in fact any Boolean function of polylog(n)
many polynomial-weight halfspaces can be learned in quasipolynomial time.

While the above results are useful for intersections of halfspaces whose weights
are not too large, in the general case they do not give a nontrivial bound even
for an intersection of two halfspaces. A major open question is:

Question 4. Is there a 2o(n) time algorithm which can PAC learn the intersection
of two arbitrary halfspaces over {0, 1}n?

An affirmative answer to the above question would immediately follow from
an affirmative answer to the following:

Question 5. Can every intersection of two halfspaces over {0, 1}n be computed
by a polynomial threshold function of degree o(n)?

The strongest known lower bound on polynomial threshold function degree for
intersections of two halfspaces is quite weak; in [33] it is shown that an in-
tersection of two majority functions (which are weight-n halfspaces) requires
polynomial threshold function degree Ω( log n

log log n ). Thus there is an exponential
gap in our current knowledge of the answer to Question 5.

4 A different direction: linear algebraic approaches

We have seen that algorithms for learning polynomial threshold functions have
broad utility in computational learning theory, yielding state-of-the-art PAC
learning results for a wide range of rich concept classes. We note also that, as is
well known, simple concept classes such as conjunctions, disjunctions, r-out-of-k
threshold functions and decision lists can all be learned in poly(n) time using
algorithms to learn linear threshold functions. Thus it is reasonable to ask at this
point whether there are any natural concept classes over {0, 1}n which require
other techniques.

The answer is yes. The parity function defined by a set of variables S ⊆
{x1, . . . , xn} is the Boolean function which outputs

∑

xi∈S xi mod 2. Polyno-
mial threshold function based learning techniques are poorly suited for learning
the concept class C consisting of all 2n parity functions1; however, there are
simple poly(n)-time learning algorithms for this class based on linear algebra
[18, 15]. (Each example which is labeled according to a parity function gives

1 Indeed, the parity function on all n variables and its negation are the only n-variable
Boolean functions which require every polynomial threshold function representation
to have degree as large as n [2].



a linear equation mod 2, and the system of linear equations obtained from a
labeled sample can be solved efficiently to obtain a consistent parity hypothesis.
Standard arguments [8] can be used to show that any parity function hypothesis
which is consistent with a sufficiently large sample is probably approximately
correct.)

As was the case with linear threshold learning algorithms, it is possible to
run algorithms for learning parity functions over an expanded feature space of
all degree-d monomials. Since multiplication corresponds to AND over GF2 and
addition corresponds to parity, we have the following analogue of Fact 1:

Fact 2 Let C be a class of functions each of which can be expressed as an degree-

d polynomial over GF2. Then there is a poly(N)-time PAC learning algorithm

for C, where N =
∑d

i=1

(

n
i

)

≤ ( en
d )d.

Can Fact 2 can be used, either by itself or in conjunction with other tech-
niques, to obtain interesting algorithms for learning rich Boolean function classes?
One such result has been achieved by Bshouty et al. [13]. They showed that the
class of strict width two branching programs (branching programs of width two
with exactly two sinks) are PAC learnable in polynomial time, using an algo-
rithm which combines parity learning with a decision list learning technique of
Rivest [35]. The algorithm of [13] is of special interest because it provides an
example where general linear threshold function learning algorithms do not sup-
plant algorithms designed for restricted subclasses of linear threshold functions
(in this case decision lists); while linear threshold function learning algorithms
can learn decision lists, they cannot be combined with the parity learning com-
ponent as required to obtain the results of [13]. Inspection shows that in fact it
is possible to combine the more powerful approach of Ehrenfeucht and Haussler
[14] for learning decision trees (a richer class of functions than decision lists)
with parity (or more generally, GF2 polynomial) learning algorithms in a similar
way to [13]. Exploring the power of such an approach is an interesting direction
for future work.
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