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Abstract

We describe a new boosting algorithm which generates only smooth distributions which do not
assign too much weight to any single example. We show that this new boosting algorithm can be
used to construct efficient PAC learning algorithms which tolerate relatively high rates of malicious
noise. In particular, we use the new smooth boosting algorithm to construct malicious noise toler-
ant versions of the PAC-modgtnorm linear threshold learning algorithms described by Servedio
(2002). The bounds on sample complexity and malicious noise tolerance of these new PAC algo-
rithms closely correspond to known bounds for the onfimgorm algorithms of Grove, Littlestone

and Schuurmans (1997) and Gentile and Littlestone (1999). As special cases of our new algorithms
we obtain linear threshold learning algorithms which match the sample complexity and malicious
noise tolerance of the online Perceptron and Winnow algorithms. Our analysis reveals an interest-
ing connection between boosting and noise tolerance in the PAC setting.

Keywords: Boosting, Learning with Noise, Linear Threshold Functions

1. Introduction

Any realistic model of learning from examples must address the issue of noisy data. In the Probably
Approximately Correct learning framework, Valiant (1985) introduced the notion of PAC learning
in the presence afnalicious noise This is a worst-case model of errors in which some fraction

of the labeled examples given to a learning algorithm may be corrupted by an adversary who can
modify both example points and labels in an arbitrary fashion (a detailed description of the model
is given in Section 3). The frequency of such corrupted examples is known asatlegous noise

rate.

Learning in the presence of malicious noise is in general quite difficult. Kearns and Li (1993)
have shown that for many classes of Boolean functions (concept classes), it is impossible to learn
to accuracy if the malicious noise rate excee@%. In fact, for many interesting concept classes
such as the class of linear threshold functions, the best efficient algorithms known can only tolerate
malicious noise rates significantly lower than this general upper bound. Despite these difficulties,
the importance of being able to cope with noisy data has led many researchers to study PAC learning
in the presence of malicious noise (see Aslam and Decatur, 1998, Auer, 1997, Auer and Cesa-
Bianchi, 1998, Cesa-Bianchi et al., 1999, Decatur, 1993, Mansour and Parnas, 1998).

In this paper we give a neesmooth boostinglgorithm which can be used to transform a ma-
licious noise tolerant weak learning algorithm into a PAC algorithm which learns successfully in
the presence of malicious noise. We use this smooth boosting algorithm to construct a family of
PAC algorithms for learning linear threshold functions in the presence of malicious noise. These
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new algorithms match the sample complexity and noise tolerance of the gatinem algorithms
of Grove, Littlestone, and Schuurmans (1997) and Gentile and Littlestone (1999), which include as
special cases the well-known Perceptron and Winnow algorithms.

1.1 Smooth Boosting and Learning with Malicious Noise

Our basic approach is quite simple, as illustrated by the following example. Consider a learning
scenario in which we have a weak learning algorithnvhich takes as input a finite samgsef m

labeled examples. Algorithrh is known to have some tolerance to malicious noise; specifidally,

is guaranteed to generate a hypothesis with nonnegligible advantage provided that the frequency of
noisy examples in its sample is at most 10 would like to learn to high accuracy in the presence

of malicious noise at a rate of 1%.

The obvious approach in this setting is to use a boosting algorithm, which is an algorithm that
can generate a high accuracy hypothesis given access to a weak learner; see the paper of Schapire
(1999) for an overview of boosting. In the context of our learning scenario, a boosting algorithm will
generate some sequeride, Do, ... of probability distributions oveBand will run the weak learning
algorithmL on each of these distributions. This approach can fail, though, if the boosting algorithm
generates distributions which are very skewed from the uniform distributid ibdistribution D;
assigns weights as large %%to individual points inS for instance, then the frequency of noisy
examples foiL in stagei could be as high as 20%Vhat we need instead issamoothboosting
algorithm which only constructs distributioh3; over Swhich never assign weight greater th%n
to any single example. By using such a smooth booster we are assured that the weak learner will
function successfully at each stage, so the overall boosting process will work correctly.

While the setting described above is artificial, we note that indirect empirical evidence has been
given supporting the smooth boosting approach for noisy settings. It is well known (Dietterich,
2000, Schapire, 1999) that commonly used boosting algorithms sushba8sost (Freund and
Schapire, 1997) can perform poorly on noisy data. Dietterich (2000) has suggested that this poor
performance is due thdaBoost 's tendency to generate very skewed distributions which put a great
deal of weight on a few noisy examples. This overweighting of noisy examples cannot occur under
a smooth boosting regimen.

In Section 2 we give a new boosting algorith&moothBoost , which is guaranteed to generate
only smooth distributions as described above. We show in Section 5 that the distributions generated
by SmoothBoost are optimally smooth.

SmoothBoost is not the first boosting algorithm which attempts to avoid the skewed distribu-
tions of AdaBoost ; algorithms with similar smoothness guarantees have been given by Domingo
and Watanabe (2000) and Impagliazzo (1995). Freund (1999) has also described a boosting al-
gorithm which uses a more moderate weighting scheme AldaBoost . In Section 2.3 we show
that ourSmoothBoost algorithm has several other desirable properties, such as constructing a large
margin final hypothesis, which are essential for the noisy linear threshold learning application of
Section 3. We discuss the relationship betw8moothBoost and the algorithms of Domingo and
Watanabe, Impagliazzo, and Freund in Section 2.4.

1.2 Learning Linear Threshold Functions with Malicious Noise

We use theSmoothBoost algorithm in Section 3 to construct a family of PAC-model malicious
noise tolerant algorithms for learning linear threshold functions. A similar family was constructed
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by Servedio (2000) usingdaBoost instead ofSmoothBoost as the boosting component. It was
shown by Servedio (2000) that for linearly separable data these PAC model algorithms have sample
complexity bounds which are essentially identical to the bounds obtained from a standard PAC
conversion of the onling-norm linear threshold learning algorithms of Grove et al. (1997). We
note that the onling-norm algorithms include as special casps=2 andp = «) the well-studied
online Perceptron and Winnow algorithms.

Gentile and Littlestone (1999) have given mistake bounds for the oplinerm algorithms
when run on examples which are not linearly separable, thus generalizing previous bounds on noise
tolerance for Perceptron (Freund and Schapire, 1998) and Winnow (Littlestone, 1991). A significant
drawback of theddaBoost -based PAC-modgl-norm algorithms of Servedio (2000) is that they do
not appear to succeed in the presence of malicious noise. We show in Section 4 that for all values
2 < p < oo, our new PAC algorithms which usemoothBoost match both the sample complexity
and the malicious noise tolerance of the PAC conversions of the oplimem algorithms. Our
construction thus provides malicious noise tolerant PAC analogues of Perceptron and Winnow (and
many other algorithms as well).

2. Smooth Boosting

In this section we describe a new boosting algoritSmgothBoost , which has several useful prop-
erties.SmoothBoost only constructs smooth distributions which do not put too much weight on any
single example; it can be used to generate a large margin final hypothesis; and it can be used with a
weak learning algorithm which outputs real-valued hypotheses. All of these properties are essential
for the noisy linear threshold learning problem we address in Section 3.

2.1 Preliminaries

We fix some terminology from Impagliazzo (1995) first. rAeasureon a finite set is a function
M :S— [0,1]. We write |[M| to denote ,.sM(x). Given a measur#, there is a natural induced
distribution Dy defined byDy (x) = M(x)/|M|. This definition yields

Observation 1 Le(Dwm) < -

Let D be a distribution over a s&= (x1,y1),..., (XM, ym) of labeled examples with eagh €
{-1,1} and leth be a real-valued function which mape', ..., x™} into [-1,1]. If YL D(j)h(x)) -
yjl < % —ythen we say that thedvantageof h underD isy. We say that an algorithm which takes
SandD as input and outputs anwhich has advantage at legst 0 is aweak learning algorithm
(this is somewhat less general than the notion of weak learning which was originally introduced by
Kearns and Valiant (1994) but is sufficient for our purposes). Finallyf leX — [—1,1] be a real-
valued function. We say that threarginof f on a labeled examplé,y) € X x {—1,1} is yf(x);
intuitively, this is the amount by whiclfi predictsy correctly. Note that the margin dfon (x,y) is
nonnegative if and only if sigrf (x)) predictsy correctly.

2.2 TheSmoothBoost Algorithm

For our purposes, we can view a boosting algorithm as an algorithm which is given access to a
weak learning algorithm and a data set of labeled examples. The boosting algorithm generates a
sequence of probability distributions over the data set, runs the weak learning algorithm on each of
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Input: parameters &Kk <1, 0<B<y< %
sampleS= (x},y1),..., (X", ym) where eacly, € {-1,1}
weak learneiWLwhich takes inpufS D;) and outputs
he s {xL,. XM — [—1,1]

Output: hypothesish(x) = sign(f(x))

1. forall j=1,...,msetM(j) =1
2. forall j=1,....msetNy(j)=0
3. sett=1

4. until [M¢|/m< k do
5 forall j=1,...,msetD¢(j) = M(j)/|M|

6 runWI(S Dy) to gethy such thatg 37, Dy (j) (X)) —yj| < 3 —v
7 forall j=1,...,msetN(j) = Ne_1(j) +y;he(x)) — 6

1 if Ne(j) <O
(1—y)NI/2 if Ne(j) >0

o

forall j=1,...,msetMy1(j) = {

9. sett=t+1
10. setT =t—-1
11. return h= sign(f(x)) wheref(x) = 1 $_; hi(X)

Figure 1: TheSmoothBoost algorithm.

these distributions, and combines the resulting hypotheses to obtain a final hypothesis which has
high accuracy for the data set. (Boosting algorithms of this sort, which work with a fixed sample,
are sometimes referred to as boosting-by-sampling algorithms). See Schapire (1999) for a detailed
overview of boosting.

Our new boosting algorithn§moothBoost , is given in Figure 1. The parameteiis the desired
error rate of the final hypothesis, the paramstés the guaranteed advantage of the hypotheses
returned by the weak learner, a@ds the desired margin of the final hypothessmoothBoost runs
the weak learning algorithm several times on a sequence of carefully constructed distributions and
outputs a thresholded sum of the hypotheses thus generated. The gNgiiitin line 7 may be
viewed as the cumulative amount by which the hypothésges., h; beat the desired marghon
the labeled exampléd,y;). The measurd/; 1 assigns more weight to examples whisgés small
and less weight to examples whéeis large, thus forcing the weak learner to focus in stagd
on examples where previous hypotheses have done poorly. Note that since any measure maps into
[0,1] there is a strict upper bound on the amount of weight which can be assigned to any example.

2.3 Proof of Correctness

Several useful properties of tisenoothBoost algorithm are easy to verify. The algorithm is called
SmoothBoost because each distribution it constructs is guaranteed to be “smooth” in that no single
point receives too much weight:

Lemma 1 EachD; defined in step 5 @moothBoost  has L.(Dy) < L.
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Proof Follows directly from Observation 1 and the condition in line 4. [ |

Another useful property is that the final hypothesisas margin at leagton all but ak fraction
of the points inS:

y f(x)<6}|
m

Theorem 2 If SmoothBoost terminates then f satisfi < K.

Proof SinceNr(j) = T(y;f(x)) —8), if y;f(x)) < 8 thenNr(j) < 0 and henceMr1(j) = 1.
Consequently we have

{i : y;f(x) <8} zrjn:lMT+1(j)_|MT+1|
m m m

<K

by the condition in line 4. [ |

Note that sincé > 0 Theorem 2 implies that the fin&moothBoost hypothesis is correct on all
but ak fraction ofS

Finally we must show that the algorithm terminates in a reasonable amount of time. The fol-
lowing theorem bounds the number of times tBabothBoost will execute its main loop:

Theorem 3 If each hypothesis;hreturned byWLin line 6 has advantage at leagtunderD; (i.e.,
satisfies the condition of line 6) ads set to,*, thenSmoothBoost  terminates with T< ﬁ

As will be evident from the proof, slightly different bounds drtan be established by choosing
different values o8 in the rangd0,y]. We taked = 2+y in the theorem above both to obtain a margin

of Q(y) and to obtain a clean bound in the theorem. Theorem 3 follows from the bounds established
in the following two lemmas:

Lemma 4 Under the conditions of Theorem 3, we have that

m T . T
3 St g i

Lemma 5 Under the conditions of Theorem 3, we have that

m T . 2m T
M (])Yi ! M.
2,2, MR < L7A=+v 3 M

Combining these bounds we obt%i% > ythzl IM;| > ykmT where the last inequality is because
IM{| >kmfort=1,...T.

Proof of Lemma 4:Sincehy (x)) € [—1,1] andy; € {—1,1}, we haveyjh(x)) = 1 — [ (X)) — i,
and thus

3 DUiyin ) = 3 D)= )~y ) > 2.
J: :
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N(t)

Figure 2: A plot ofN with T = 4. Note thatN is piecewise linear with joins at integer values oA
possible pairing of segments matches es] with [es, eg] and|es, e4] with [e4, 5], leaving
[eo,€1], [€1,€] and[es, 7] unpaired. In this examplél is increasing on each unpaired
segment.

This implies that

T

m
Z Mt t;“\/lt Z Dt yJ XJ > ZLZV|MI

j=1t=

|
Proof of Lemma 5By the definition of\;(j), we have
m T m T
M( - Me(1) (N (1) — Ne-a() +©
,th: t( (x)) ,th; t(1)(Ne(J) 1(1)+6)
T T m
= ezlylvlt ZZ —Ne-1(j))- @)
It thus suffices to show that @ = ziy, then foreachj = 1,...,mwe have
T T
M ( )—N—1())) < ——=—=+(y—0) ) M(] 2

since summing this inequality ovg¢e=1,..., mand substituting into (1) proves the lemma. Fix any
j € {1,...,m}; for ease of notation we writl andM; in place ofN;(j) andM;(j) for the rest of
the proof.

If Nt = Ni_1 for some integet then the termM;(N; — Ni_1) contributes 0 to the sum in (2),
so without loss of generality we assume that~ N;_; for all integerst. We extend the sequence
(No,Ny,...,Ny) to a continuous piecewise linear functibiron [0, T] in the obvious way, that is, for
t an integer and < [0,1] we haveN(t +€) = Ny +&(Ne 1 — Ny). Let

E={ec[0,T]:N(e) = N, for some integet =0,1,...,T}.

638



SMOOTH BOOSTING AND LEARNING WITH MALICIOUS NOISE

The seE is finite sowe have & g < e;--- < g =T with E={ey,...,& } (see Figure 2). Since for
each integet > 1 the intervalt — 1,t] must contain some, we can reexpress the sy, My (N —

N_1) as
Mrq1 (N(e) —N(g_1)). (3)

We say that two segmeniig,_1,€,] and|[ey_1, &) matchif N(es_1) = N(ep) andN(ep_1) = N(ey).
For example, in Figure 2 the segmeéet, e3] matcheges, es] but does not matcles, e;]. We pair
up matching segments until no more pairs can be formed. Note that if any unpaired segments
remain, it must be the case that eiti\eis increasing on each unpaired segmenhigif> 0) or N is
decreasing on each unpaired segmernti{ik 0). Now we separate the sum (3) into two pieces, i.e.,
Si—1 Mg (N(g)—N(g_1)) = P+U, whereP is the sum over all paired segments ahi the sum
over all unpaired segments. We will show tiRat. (y— 0) Zthl M; andU < ﬁ thus proving the
lemma.

First we boundP. Let [e,-1,€,] and [e,_1,8] be a pair of matching segments wheeis
increasing one,_1,€,] and decreasing ojey,_1,€]. The contribution of these two segment$tas

Mre.j (N(€a) — N(€a-1)) +Mye (N(en) —N(es-1))
= (M(eal - M(e(ﬂ) (N(ea) - N(ea—l)) . 4)

Since each segmefe,_1,€;] is contained int — 1,t] for some integet, we have thafe;] — 1 <
€1 < €2 < [e;]. The linearity ofN on[[es] — 1, [ea]] implies that

N(eaW*J- < N(ea,]_) < N(ea) < N[eaw < N[ea}71+ 1-6 (5)

where the last inequality is becawqdat(xj) < 1inline 7 of SmoothBoost . Similarly, we have that
[&] —1<e& 1<e <[&],andhence

Nig1-1> N(ey-1) > N(&) > Ny > Njgy -1 —1—6. (6)

SinceN(e,) = N(ey_1) inequalities (5) and (6) imply thdfe;; 1 > Nye,)_1 — 2. The definition of
M now implies thatMq,| > (1—Yy)Mpe,1. SinceN(es) — N(es1) > 0, we thus have that (4) is at
most

WWre,) (N(€2) —N(ea 1)) < y(1—8)Mpe,) (62— €a-1) (7)

where the inequality follows from (5) and the linearityléfon [e,_1,€,]. SinceN(e,) —N(ex 1) =

A

N(ep—-1) —N(ep), we similarly have that (4) is at most

Y
1-y
Y

< 1—_y(1+e)|v|w (Bp-1— &) 8

Wi, (N(er-1) —N(&)) < Mie,] (N(en-1) — N(ep))

Sinceb = % we have that the right side of (7) equ%M(eﬂ (ea—e€s-1) and the right side of (8)

equals%weﬂ (ep—1— &) Since (4) is upper bounded by each of these quantities, taking a
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convex combination o@’ times the first plusl;—y times the second and simplifying we find that (4)
is at most

Y(1+Y)
24y

(M(e,1(€a—€a-1) + Mg ] (E0-1— &) . 9)

If we sum (9) over all pairs of matching segments the resulting quantity is an upper boéhthon
this sum, for each value af=1,..., T, the coefficient ofM; will be at mosty(zl—jf =vy—0. (This
bound on the coefficient d#l; holds because for ea¢hthe total length of all paired segments in
[t — 1,t] is at most 1). Consequently we haRe< (y—8) 51, M, as desired.

Now we show thatJ, the sum over unpaired segments, is at r@%g:y If N is decreasing on
each unpaired segment then cleddly< 0, so we suppose tha is increasing on each unpaired
segment. Letecl,l,ecll,...,[ecdil,ecd] be all the unpaired segments. As in Figure 2 it must be the
case that the interval®(e;_1),N(e;)) are all disjoint and their union i®, Ny). By the definition
of M, we havel = 58, (1—y)M=1-2/2 (N(e;) —N(eq 1)) . As in the bound foP, we have

N(eqw,l < N(eci,l) < N(ecl) < Nfecﬂ < N[ecﬂfl_‘_ 1-6< N[ecﬂfl“‘l
and hence

u < i(l—v><“<‘*q>”/2(ﬂ<eq> —RN(es 1))

d N
- (1—v)*l/zzi(l—v)“(eq)/2 (N(eg) —N(eg-1)).

SinceN is increasing, for eachwe have

(1_V)N(eq>/2 (N(eci) — N(eq,l)) < /N(Aeci)

(1-y)?%dz
z=N(eg-1)

Since the disjoint intervalfN(e; 1),N(e; )) cover[0,Nr) we thus have

Nt
U < (1-y 2 -y

< @92 [ a-ytdz

z=0
_ 2 . _ 2 fy0< <1/2
- VI-yin(l-y) o owil-y Y '

(Lemma 5

2.4 Comparison with Other Boosting Algorithms

TheSmoothBoost algorithm was inspired by an algorithm given by Impagliazzo (1995) in the con-
text of hard-core set constructions in complexity theory. Klivans and Servedio (1999) observed that
Impagliazzo’s algorithm can be reinterpreted as a boosting algorithm which generates distributions
D; which, like the distributions generated BynoothBoost , satisfy L (D;) < %] However, our
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SmoothBoost algorithm differs from Impagliazzo’s algorithm in several important ways. The al-
gorithm of Impagliazzo (1995) uses additive rather than multiplicative updatedfgn, and the
bound onT which is given for the algorithm by Impagliazzo (1995X)$ﬁ) which is worse than

our bound by essentially a factor éfAnother important difference is that Impagliazzo’s algorithm

has no@ parameter and does not appear to output a large margin final hypothesis. Finally, the anal-
ysis given by Impagliazzo only covers the case where the weak hypotheses are binary-valued rather
than real-valued.

The well-known boosting algorithrAdaBoost of Freund and Schapire (1997) is somewhat
faster tharBmoothBoost , requiring onlyT = O(M) stages. Like&smoothBoost , AdaBoost can
be used with real-valued weak hypotheses and can be used to output a large margin final hypothesis
(Schapire et al., 1998). HowevéidaBoost is not guaranteed to generate only smooth distributions,
and thus does not appear to be useful in a malicious noise context.

Freund (1999) has recently introduced and studied a sophisticated boosting algorithm called
BrownBoost which uses a gentler weighting scheme tAdaBoost . Freund suggests thRitownBoost
should be well suited for dealing with noisy data; however it is not clear from the analysis of Fre-
und (1999) whetheBrownBoost -generated distributions satisfy a smoothness property such as the
Lo(Dy) < %q property ofSmoothBoost , or whetherBrownBoost can be used to generate a large
margin final hypothesis. We note that tBewnBoost algorithm is much more complicated to run
thanSmoothBoost , as it involves solving a differential equation at each stage of boosting.

SmoothBoost is perhaps most similar to the modified AdaBoost algoritiiadaBoost which
was defined and analyzed by Domingo and Watanabe (2000).ShikethBoost , MadaBoost uses
multiplicative updates on weights and never allows weights to exceed 1 in value. Domingo and
Watanabe proved thitadaBoost takes at most < Ki stages, which is quite similar to our bound in
Theorem 3. (If we se = 0 in SmoothBoost , a slight modification of the proof of Theorem 3 gives
a bound of roughly,d%, which improves théladaboost bound by a constant factor.) However, the
analysis forMadaBoost given by Domingo and Watanabe (2000) only covers the case of binary-
valued weak hypotheses, and does not establishMbddBoost generates a large margin final
hypothesis. We also note that our proof technique of simultaneously upper and lower bounding
Y1 S Mi(j)yjhe(x)) is different from the approach used by Domingo and Watanabe (2000).

3. Learning Linear Threshold Functions with Malicious Noise

In this section we show how th&moothBoost algorithm can be used in conjunction with a sim-
ple noise tolerant weak learning algorithm to obtain a PAC learning algorithm for learning linear
threshold functions with malicious noise.

3.1 Geometric Preliminaries

For X = (X1,...,%) € R" and p > 1 we write |[X||, to denote thep-norm of X, namely |[X||, =
(z{‘zl\xi\p)l/p. The co-norm of X is [|X||c = Max—1,_.n|Xi|. We write By(R) to denote thep-norm
ball of radiusR, i.e.,Bp(R) = {x € R": ||X||p < R}.

For p,q > 1 theg-norm isdual to the p-norm if £ + 1 = 1; so the 1-norm and the-norm are
dual to each other and the 2-norm is dual to itself. For the rest of the pegusiiq always denote
dual norms. The following facts (see Taylor and Mann, 1972, pp. 203-204) will be useful:

Holder Inequality: [0-v| < ||T|p||V||q for all T,ve R" and 1< p < oo,
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Minkowski Inequality: |[U+ V||, < |[U]|p+ ||V]| for all O,v € R" and 1< p < oo,

Finally, recall that dinear threshold functioris a functionf : R" — {—1,1} such thatf(X) =
sign(t - Xx) for somet € R".

3.2 PAC Learning with Malicious Noise

Let EX{j (0,D) be amalicious example oracle with noise ratethat behaves as follows when
invoked: with probability - n the oracle returns eleanexample(x, sign(d- X)) wherex is drawn

from the probability distributiorD overBy(R). With probabilityn, though,E)g{}lAL(u, D) returns a

dirty example(X,y) € Bp(R) x {—1,1} about which nothing can be assumed. Such a malicious ex-
ample(X,y) may be chosen by a computationally unbounded adversary which has complete knowl-
edge oft, D, and the state of the learning algorithm when the oracle is invoked.

The goal of a learning algorithm in this model is to construct an approximation to the tar-
get concept sigiu - X). More formally, we say that a Boolean functidn: R" — {—1,1} is an
g-approximator fort underD if Prycp [n(X) # sign(@-X)] < €. The learning algorithm is given an
accuracy parameterand a confidence parameterhas access tEX,\'}l AT, D), and must output a
hypothesish which, with probability at least % d, is ane-approximator fo underD. Thesample
complexityof a learning algorithm in this model is the number of times it queries the malicious
example oraclé.

A final note: like the Perceptron algorithm, the learning algorithms which we consider will
require that the quantity- X be bounded away from zero (at least most of the time). We thus say
that a distributionD is &-good foru if [U-X%| > & for all X which have nonzero probability under
D, and we restrict our attention to learning undegood distributions. (Of course, dirty examples
drawn fromEX{} ,, (0, D) need not satisfyu- x| > €.)

3.3 A Noise Tolerant Weak Learning Algorithm

As shown in Figure 3, our weak learning algorithm for linear threshold functions, c&llddakes
as input a data s&and a distributiorD overS The algorithm computes the vectowhich is the
average location of the (label-normalized) pointsSinnderD, transformsz to obtain a vectomw,
and predicts using the linear functional definedwbyAs motivation for the algorithm, note that if
every example paitx,y) satisfiesy = sign(u-X) for somet, then each poinyx would lie on the
same side of the hyperplane definedtbgsu itself, and hence the average vectatefined in Step
1 of the algorithm intuitively should point in roughly the same directiom.as

Servedio (2000) showed that th& Aalgorithm is a weak learning algorithm for linear threshold
functions in a noise-free setting. The following theorem shows that if a small fraction of the exam-
ples inS are affected by malicious nois@/LAwill still generates a hypothesis with nonnegligible
advantage provided that the input distributidns sufficiently smooth.

Theorem 6 Fix 2 < p < and let S= (xty1),..., (XM ym) be a set of labeled examples with each
X! € Bp(R). LetD be a distribution over S such that[D) < .L.. Suppose tha > 0 andt € R" are

1. A slightly stronger model of PAC learning with malicious noise has also been proposed by Aslam and Decatur (1998)
and Cesa-Bianchi et al. (1999). In this model first a clean sample of the desired size is drawn from a noise-free oracle;
then each point in the sample is independently selected with probaiilibhen an adversary replaces each selected
point with a dirty example of its choice; and finally the corrupted sample is provided to the learning algorithm. This
model is stronger than the original malicious noise model since each dirty example is chosen by the adversary with
full knowledge of the entire sample. All of our results also hold in this stronger model.
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Input:  parametetp > 2
sampleS= (x},y1),...,(X™ ym) where eacly, € {—1,1}
distributionD overS
upper boundRon [|X||

Output: hypothesish(x)

1. setz= z’f‘:lD(j)ij(j
2. forall i=1,...,nsetw = sign(z)|z[P !
3. return hypothesih(X) =V-X wherev = \WvquR

Figure 3: Thep-norm weak learning algorithiwLA
such tha€ < R||tl|q and at most’m examples in S do not satisfy(y-x!) > &, wheren’ < 4R'ﬂﬁ“

ThenWLAp,S D) returns a hypothesis hBp(R) — [—1,1] which has advantage at Ieaﬁw
underD.

Proof: By Holder’s inequality, for ang € By(R) we have

W% _ [l
[WilgR ™~ [|WllqR
and thush indeed map8,(R) into [-1,1].

Now we show thah has the desired advantage. Siggx') € [-1,1] andyj € {-1,1}, we
have|h(x)) —y;| = 1-y;h(X)), so

Ih(X)| = <1

3

D (j)|h(x)) il =
1

(ZJ L. D(y;(w- >_<j)>.

m
j
2, PA=yihee) = 2TwlaR

NI =
I\)IH

i
To prove the theorem it thus suffices to show t'zgql[)‘fvjv)‘ij (wx) > 2”u”
left side isw- (1L, D(j)y;X}) =w-z= zi”:l\z P = ||z||b. Using the fact thatp— 1)q = p, the

denominator is
/q
W]l = 7Pt \zlp —HZH"’ :
o= (20 (3 p

We can therefore rewrite the left side Haa]p/\\z|]p/q = |IZ|p, and thus our goal is to show that
I2l[p > 2\|u\| By Holder’s inequality it suffices to show thatu > g, which we now prove.
Let S = {(x,y;) € S:y;(U-X)) > &} and letS, = S\ S;. The definition ofS; immediately

yields 3 jes D(j)y;(u- x) > D(S1)&. Moreover, since eaciiX! ||, < R, by Hélder's inequality we
havey;(U-X}) > —|[%!||-|[0llq > —R||U||q for each(X],y;) € S. Since each example B has weight

at most.k- underD, we haveD (S;) < L, and hence

The numerator of the

= 3 DUMER)= 3 D@+ T Dy

16 je
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' 'R||u
> D(S)E- D (SRl > (1_ %) G
¥ _&_ %
2 Z iy
where the inequalityl — rl?) 3 7 follows from the bound om’ and the fact tha§ < R|[T]|q. m

3.4 Putting it All Together

The algorithm for learning sig - X) with respect to &-good distributionD over Bp(R) is as
follows:

e Draw fromEX{}, (0,D) a sampleS= (xL,y1),..., (XM ym) of mlabeled examples.

e RunSmoothBoost on Swith parameters = £, y=
learning algorithm.

4RHEU”q, 8 = 51y usingWLAas the weak

We now determine constraints on the sample siznd the malicious noise rateunder which this
is a successful and efficient learning algorithm.

We first note that sinc® is &-good fort, we have thag < R|[Tl|q. Furthermore, since = £,
Lemma 1 implies that each distributi@ which is given toNLAby SmoothBoost hasL., (Dt) 4
Let S C S be the clean examples a8 = S\ & the dirty examples ir§ If n < and

32RHUH

%R”U“q Iogé, then a simple Chernoff bound implies that W|th probability at least nge

m>

ha"e|SD‘ < 1T, Ty
h(X) = V' - x generated bWLAhas advantaggw underD;. Consequently, by Theorems 2 and 3,
SmoothBoost efficiently outputs a final hypothesigx) = sign(f (X)) which has margin less than
8 on at most arf, fraction of S. Since|&| is easily seen to be at lea®t we have that the margin
of his less tharB on at most ar fraction of &. This means that we can apply powerful methods
from the theory of data-dependent structural risk minimization (Bartlett and Shawe-Taylor, 1999,
Shawe-Taylor et al., 1998) to bound the errohafnderD.

Recall that the finagmoothBoost hypothesis i$1(X) = sign( f (X)) wheref (X) = v-Xis a convex
combination of hypothesés(X) = ¥ - X. Since each vectar satisfies|V!||q < &, by Minkowski's
inequality we have thatv||q < %{ as well. The following theorem was proved by Servedio (2000):

m. Thus, we can apply Theorem 6 witfi = ; SO each weak hypothesis

Theorem 7 Fix any value2 < p < « and letF be the class of function& — v-X: [|[V||q < &,X €

Bp(R)}. Then fag () < 2":1%4‘, where fag (u) is thefat-shattering dimension df at scaley as
defined in Bartlett et al. (1996), Bartlett and Shawe-Taylor (1999), Shawe-Taylor et al. (1998).

The following theorem is due to Bartlett and Shawe-Taylor (1999):

Theorem 8 LetF be a collection of real-valued functions over some domaiteXD be a distri-
bution over Xx {—1,1}, let S= (xL,y1), ..., (X™ ym) be a sequence of labeled examples drawn from
D, and let {x) = sign(f (X)) for some fe F . If h has margin less thafl on at most k examples in
S then with probability at least — 3 we have thaPry ) p [N(X) # Y] is at most

% + \/ % (dIn(34e/m) log(57am) + In(4/3)), (10)
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where d= fatr (6/16).

We have thah has margin less thefon at most arj fraction of the clean exampl&, so we may
takek/mto bef in the above theorem. Now if we apply Theorem 7 and solverftine inequality
obtained by setting (10) to be at mestve obtain

Theorem 9 Fix 2 < p < o and letD be a distribution over B(R) which is&-good fort. The

. 2
algorithm described above uses#0 ((R@q) > examples and outputs @rapproximator foru

underD with probability 1 — d in the presence of malicious noise at a rate- Q (s' ﬁ) .

4. Comparison with Online Algorithms

The bounds given by Theorem 9 on sample complexity and malicious noise tolerance of our algo-

rithms based oSmoothBoost are remarkably similar to the bounds which can be obtained through

a natural PAC conversion of the onlinenorm algorithms introduced by Grove et al. (1997) and

studied by Gentile and Littlestone (1999). Grove, Littlestone and Schuurmans (Theorem 6.1) proved
2

that the onlingg-norm algorithm makes at moé&t (%) mistakes on linearly separable data.

Subsequently Gentile and Littlestone (1999) extended the earlier analysis of Grove, Littlestone and

Schuurmans and considered a setting in which the examples are not linearly separable. Their analy-

sis (Theorem 6) shows that if an example sequence contafhmglicious errors is provided to the

online p-norm algorithm, then the algorithm will make at most

R||u||q>2 R|llq
o<(E Bl

mistakes. To obtain PAC-model bounds on the onf@orm algorithms in the presence of mali-
cious noise, we use the following theorem due to Auer and Cesa-Bianchi (1998, Theorem 6.2):

Theorem 10 Fix a hypothesis clasbl of Vapnik-Chervonenkis dimension lcet A be an online
learning algorithm with the following properties: (1) A only uses hypotheses which beldrg to
(2) if A is given a noise-free example sequence then A makes at gasistakes, and (3) if A is
given an example sequence with K malicious errors then A makes at medBkhmistakes. Then
there is a PAC algorithm ‘Awhich learns to accuracg and confidence, usesO(&; + ™ + 9)
examples, and can tolerate a malicious noise rate 5.

Applying this theorem, we find that these PAC conversions of the omdinerm algorithms
have sample complexity and malicious noise tolerance bounds which are essentially identical to the
bounds given for ousmoothBoost -based algorithm.

5. SmoothBoost is Optimally Smooth

It is evident from the proof of Theorem 9 that the smoothness of the distributions generated by
SmoothBoost relates directly to the level of malicious noise which our linear threshold learning
algorithm can tolerate. On the other hand, as mentioned in Section 1, Kearns and Li have shown
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that for a broad range of concept classes no algorithm can learn to aceuratlye presence of
malicious noise at a ratg> ﬁ Using the Kearns-Li upper bound on malicious noise tolerance, we
prove in this section theBmoothBoost is optimal up to constant factors in terms of the smoothness
of the distributions which it generates. This demonstrates an interesting connection between bounds
on noise-tolerant learning and bounds on boosting algorithms.

Recall that ifSmoothBoost is run on a set om examples with input parameteksy, 6, then
each distributiorD; which SmoothBoost constructs will satisfyl ., (D;) < %1 The proof is by con-
tradiction; so suppose that there exists a boosting algorithm caligetSmoothBoost  which is
similar to SmoothBoost but which has an even stronger guarantee on its distributions. More pre-
cisely we suppose th&uperSmoothBoost takes as input parameteatsy and a labeled sampfgof
sizem, has access to a weak learning algorithingenerates a sequeniog, Do, . .. of distributions
over S, and outputs a Boolean-valued final hypothdsigs in Section 2.3, we suppose that if the
weak learning algorithnwLalways returns a hypothedis which has advantaggunderDy, then
SuperSmoothBoost  will eventually halt and the final hypothediswill agree with at least a + K
fraction of the labeled examples $ Finally, we suppose that each distributiDpis guaranteed to
satisfyLe (D) < g

Consider the following severely restricted linear threshold learning problem: the domain is
{—1,1}? c 02, so any distributiorD can assign weight only to these four points. Moreover, we
only allow two possibilities for the target concept Sigr): the vectoitis either(1,0) or (0,1). The
point (1,1) is classified positive by both of these concepts; the pdint1) is classified positive
only by the first of these concepts; the pojrtl,1) is classified positive only by the second of
these concepts; and the poirtl, —1) is classified positive by neither of these concepts. Hence the
concept class consisting of these two concepts over these four pointisitnat concept class as
defined by Kearns and Li (1993). It is clear that every example belonBs (tb) (that is,R = 1),
that||tj|, = 1, and that any distributio® over{—1,1}? is 1-good foru (i.e.,& = 1).

Consider the following algorithm for this restricted learning problem:

e Draw fromEX{}, (0,D) a sampleS= (xL,y1),..., (XM ym) of mlabeled examples.

e RunSuperSmoothBoost on Swith parameters = £, y= ﬁunq = % usingWLAwith p= o
as the weak learning algorithm.

Suppose that the malicious noise rgtés 2¢. As in Section 3.4, a Chernoff bound shows that
form= O(% log %), with probability at least +- 525 we have that the sampf&contains at mosten
dirty examples. By theSuperSmoothBoost smoothness property and our choicekofwe have
that L. (Dy) < ﬁn. Theorem 6 now implies that eadLAhypothesish; has advantage at least

ﬁunq = %1 with respect tdD;. As in Section 3.4, we have that with probability at least g the
final hypothesish output bySuperSmoothBoost ~ disagrees with at most anfraction of the clean
examplesx:.

Since the domain is finite (in fact of size four) we can bound generalization error directly.
A simple Chernoff bound argument shows thatrifis sufficiently large, then with probability at
least 1— & the hypothesis will be an e-approximator for sig(ti- X) underD. However, Kearns
and Li (1993, Theorem 1) have shown that no learning algorithm for a distinct concept class can
learn to accuracyg with probability 1— d in the presence of malicious noise at rgte- ﬁ This
contradiction proves that tf&iperSmoothBoost algorithm cannot exist, and hence the distributions

generated bymoothBoost are optimal up to constant factors.
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