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Abstract
We describe a new boosting algorithm which generates only smooth distributions which do not

assign too much weight to any single example. We show that this new boosting algorithm can be
used to construct efficient PAC learning algorithms which tolerate relatively high rates of malicious
noise. In particular, we use the new smooth boosting algorithm to construct malicious noise toler-
ant versions of the PAC-modelp-norm linear threshold learning algorithms described by Servedio
(2002). The bounds on sample complexity and malicious noise tolerance of these new PAC algo-
rithms closely correspond to known bounds for the onlinep-norm algorithms of Grove, Littlestone
and Schuurmans (1997) and Gentile and Littlestone (1999). As special cases of our new algorithms
we obtain linear threshold learning algorithms which match the sample complexity and malicious
noise tolerance of the online Perceptron and Winnow algorithms. Our analysis reveals an interest-
ing connection between boosting and noise tolerance in the PAC setting.
Keywords: Boosting, Learning with Noise, Linear Threshold Functions

1. Introduction

Any realistic model of learning from examples must address the issue of noisy data. In the Probably
Approximately Correct learning framework, Valiant (1985) introduced the notion of PAC learning
in the presence ofmalicious noise. This is a worst-case model of errors in which some fraction
of the labeled examples given to a learning algorithm may be corrupted by an adversary who can
modify both example points and labels in an arbitrary fashion (a detailed description of the model
is given in Section 3). The frequency of such corrupted examples is known as themalicious noise
rate.

Learning in the presence of malicious noise is in general quite difficult. Kearns and Li (1993)
have shown that for many classes of Boolean functions (concept classes), it is impossible to learn
to accuracyε if the malicious noise rate exceedsε1+ε . In fact, for many interesting concept classes
such as the class of linear threshold functions, the best efficient algorithms known can only tolerate
malicious noise rates significantly lower than this general upper bound. Despite these difficulties,
the importance of being able to cope with noisy data has led many researchers to study PAC learning
in the presence of malicious noise (see Aslam and Decatur, 1998, Auer, 1997, Auer and Cesa-
Bianchi, 1998, Cesa-Bianchi et al., 1999, Decatur, 1993, Mansour and Parnas, 1998).

In this paper we give a newsmooth boostingalgorithm which can be used to transform a ma-
licious noise tolerant weak learning algorithm into a PAC algorithm which learns successfully in
the presence of malicious noise. We use this smooth boosting algorithm to construct a family of
PAC algorithms for learning linear threshold functions in the presence of malicious noise. These
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new algorithms match the sample complexity and noise tolerance of the onlinep-norm algorithms
of Grove, Littlestone, and Schuurmans (1997) and Gentile and Littlestone (1999), which include as
special cases the well-known Perceptron and Winnow algorithms.

1.1 Smooth Boosting and Learning with Malicious Noise

Our basic approach is quite simple, as illustrated by the following example. Consider a learning
scenario in which we have a weak learning algorithmL which takes as input a finite sampleSof m
labeled examples. AlgorithmL is known to have some tolerance to malicious noise; specifically,L
is guaranteed to generate a hypothesis with nonnegligible advantage provided that the frequency of
noisy examples in its sample is at most 10%. We would like to learn to high accuracy in the presence
of malicious noise at a rate of 1%.

The obvious approach in this setting is to use a boosting algorithm, which is an algorithm that
can generate a high accuracy hypothesis given access to a weak learner; see the paper of Schapire
(1999) for an overview of boosting. In the context of our learning scenario, a boosting algorithm will
generate some sequenceD1,D2, . . . of probability distributions overSand will run the weak learning
algorithmL on each of these distributions. This approach can fail, though, if the boosting algorithm
generates distributions which are very skewed from the uniform distribution onS; if distribution Di

assigns weights as large as20
m to individual points inS, for instance, then the frequency of noisy

examples forL in stagei could be as high as 20%. What we need instead is asmoothboosting
algorithm which only constructs distributionsDi overSwhich never assign weight greater than10

m
to any single example. By using such a smooth booster we are assured that the weak learner will
function successfully at each stage, so the overall boosting process will work correctly.

While the setting described above is artificial, we note that indirect empirical evidence has been
given supporting the smooth boosting approach for noisy settings. It is well known (Dietterich,
2000, Schapire, 1999) that commonly used boosting algorithms such asAdaBoost (Freund and
Schapire, 1997) can perform poorly on noisy data. Dietterich (2000) has suggested that this poor
performance is due toAdaBoost ’s tendency to generate very skewed distributions which put a great
deal of weight on a few noisy examples. This overweighting of noisy examples cannot occur under
a smooth boosting regimen.

In Section 2 we give a new boosting algorithm,SmoothBoost , which is guaranteed to generate
only smooth distributions as described above. We show in Section 5 that the distributions generated
by SmoothBoost are optimally smooth.

SmoothBoost is not the first boosting algorithm which attempts to avoid the skewed distribu-
tions of AdaBoost ; algorithms with similar smoothness guarantees have been given by Domingo
and Watanabe (2000) and Impagliazzo (1995). Freund (1999) has also described a boosting al-
gorithm which uses a more moderate weighting scheme thanAdaBoost . In Section 2.3 we show
that ourSmoothBoost algorithm has several other desirable properties, such as constructing a large
margin final hypothesis, which are essential for the noisy linear threshold learning application of
Section 3. We discuss the relationship betweenSmoothBoost and the algorithms of Domingo and
Watanabe, Impagliazzo, and Freund in Section 2.4.

1.2 Learning Linear Threshold Functions with Malicious Noise

We use theSmoothBoost algorithm in Section 3 to construct a family of PAC-model malicious
noise tolerant algorithms for learning linear threshold functions. A similar family was constructed
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by Servedio (2000) usingAdaBoost instead ofSmoothBoost as the boosting component. It was
shown by Servedio (2000) that for linearly separable data these PAC model algorithms have sample
complexity bounds which are essentially identical to the bounds obtained from a standard PAC
conversion of the onlinep-norm linear threshold learning algorithms of Grove et al. (1997). We
note that the onlinep-norm algorithms include as special cases (p = 2 andp = ∞) the well-studied
online Perceptron and Winnow algorithms.

Gentile and Littlestone (1999) have given mistake bounds for the onlinep-norm algorithms
when run on examples which are not linearly separable, thus generalizing previous bounds on noise
tolerance for Perceptron (Freund and Schapire, 1998) and Winnow (Littlestone, 1991). A significant
drawback of theAdaBoost -based PAC-modelp-norm algorithms of Servedio (2000) is that they do
not appear to succeed in the presence of malicious noise. We show in Section 4 that for all values
2≤ p≤ ∞, our new PAC algorithms which useSmoothBoost match both the sample complexity
and the malicious noise tolerance of the PAC conversions of the onlinep-norm algorithms. Our
construction thus provides malicious noise tolerant PAC analogues of Perceptron and Winnow (and
many other algorithms as well).

2. Smooth Boosting

In this section we describe a new boosting algorithm,SmoothBoost , which has several useful prop-
erties.SmoothBoost only constructs smooth distributions which do not put too much weight on any
single example; it can be used to generate a large margin final hypothesis; and it can be used with a
weak learning algorithm which outputs real-valued hypotheses. All of these properties are essential
for the noisy linear threshold learning problem we address in Section 3.

2.1 Preliminaries

We fix some terminology from Impagliazzo (1995) first. Ameasureon a finite set is a function
M : S→ [0,1]. We write |M| to denote∑x∈SM(x). Given a measureM, there is a natural induced
distributionDM defined byDM(x) = M(x)/|M|. This definition yields

Observation 1 L∞(DM)≤ 1
|M| .

Let D be a distribution over a setS= 〈x1,y1〉, . . . ,〈xm,ym〉 of labeled examples with eachyj ∈
{−1,1} and lethbe a real-valued function which maps{x1, . . . ,xm} into [−1,1]. If 1

2 ∑m
j=1D( j)|h(xj )−

yj | ≤ 1
2 − γ then we say that theadvantageof h underD is γ. We say that an algorithm which takes

SandD as input and outputs anh which has advantage at leastγ > 0 is aweak learning algorithm
(this is somewhat less general than the notion of weak learning which was originally introduced by
Kearns and Valiant (1994) but is sufficient for our purposes). Finally, letf : X → [−1,1] be a real-
valued function. We say that themargin of f on a labeled example〈x,y〉 ∈ X×{−1,1} is y f(x);
intuitively, this is the amount by whichf predictsy correctly. Note that the margin off on 〈x,y〉 is
nonnegative if and only if sign( f (x)) predictsy correctly.

2.2 TheSmoothBoost Algorithm

For our purposes, we can view a boosting algorithm as an algorithm which is given access to a
weak learning algorithm and a data set of labeled examples. The boosting algorithm generates a
sequence of probability distributions over the data set, runs the weak learning algorithm on each of
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Input: parameters 0< κ < 1, 0≤ θ ≤ γ < 1
2

sampleS= 〈x1,y1〉, . . . ,〈xm,ym〉 where eachyi ∈ {−1,1}
weak learnerWLwhich takes input(S,Dt) and outputs

ht : {x1, . . . ,xm} → [−1,1]

Output: hypothesish(x) = sign( f (x))

1. forall j = 1, . . . ,msetM1( j) = 1
2. forall j = 1, . . . ,msetN0( j) = 0
3. sett = 1
4. until |Mt |/m< κ do
5. forall j = 1, . . . ,msetDt( j) = Mt( j)/|Mt |
6. runWL(S,Dt) to getht such that12 ∑m

j=1Dt( j)|ht(xj)−yj | ≤ 1
2 − γ

7. forall j = 1, . . . ,msetNt( j) = Nt−1( j)+yjht(xj )−θ

8. forall j = 1, . . . ,msetMt+1( j) =
{

1 if Nt( j) < 0
(1− γ)Nt ( j)/2 if Nt( j)≥ 0

9. sett = t +1
10. setT = t−1
11. return h = sign( f (x)) where f (x) = 1

T ∑T
i=1hi(x)

Figure 1: TheSmoothBoost algorithm.

these distributions, and combines the resulting hypotheses to obtain a final hypothesis which has
high accuracy for the data set. (Boosting algorithms of this sort, which work with a fixed sample,
are sometimes referred to as boosting-by-sampling algorithms). See Schapire (1999) for a detailed
overview of boosting.

Our new boosting algorithm,SmoothBoost , is given in Figure 1. The parameterκ is the desired
error rate of the final hypothesis, the parameterγ is the guaranteed advantage of the hypotheses
returned by the weak learner, andθ is the desired margin of the final hypothesis.SmoothBoost runs
the weak learning algorithm several times on a sequence of carefully constructed distributions and
outputs a thresholded sum of the hypotheses thus generated. The quantityNt( j) in line 7 may be
viewed as the cumulative amount by which the hypothesesh1, . . . ,ht beat the desired marginθ on
the labeled example〈xj ,yj〉. The measureMt+1 assigns more weight to examples whereNt is small
and less weight to examples whereNt is large, thus forcing the weak learner to focus in staget +1
on examples where previous hypotheses have done poorly. Note that since any measure maps into
[0,1] there is a strict upper bound on the amount of weight which can be assigned to any example.

2.3 Proof of Correctness

Several useful properties of theSmoothBoost algorithm are easy to verify. The algorithm is called
SmoothBoost because each distribution it constructs is guaranteed to be “smooth” in that no single
point receives too much weight:

Lemma 1 EachDt defined in step 5 ofSmoothBoost has L∞(Dt)≤ 1
κm.
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Proof Follows directly from Observation 1 and the condition in line 4.

Another useful property is that the final hypothesish has margin at leastθ on all but aκ fraction
of the points inS:

Theorem 2 If SmoothBoost terminates then f satisfies|{ j : yj f (xj )≤θ}|
m < κ.

Proof SinceNT( j) = T(yj f (xj)− θ), if yj f (xj) ≤ θ then NT( j) ≤ 0 and henceMT+1( j) = 1.
Consequently we have

|{ j : yj f (xj)≤ θ}|
m

≤ ∑m
j=1 MT+1( j)

m
=
|MT+1|

m
< κ

by the condition in line 4.

Note that sinceθ≥ 0 Theorem 2 implies that the finalSmoothBoost hypothesis is correct on all
but aκ fraction ofS.

Finally we must show that the algorithm terminates in a reasonable amount of time. The fol-
lowing theorem bounds the number of times thatSmoothBoost will execute its main loop:

Theorem 3 If each hypothesis ht returned byWLin line 6 has advantage at leastγ underDt (i.e.,
satisfies the condition of line 6) andθ is set to γ

2+γ , thenSmoothBoost terminates with T< 2
κγ2

√
1−γ .

As will be evident from the proof, slightly different bounds onT can be established by choosing
different values ofθ in the range[0,γ]. We takeθ = γ

2+γ in the theorem above both to obtain a margin
of Ω(γ) and to obtain a clean bound in the theorem. Theorem 3 follows from the bounds established
in the following two lemmas:

Lemma 4 Under the conditions of Theorem 3, we have that

m

∑
j=1

T

∑
t=1

Mt( j)yj ht(xj)≥ 2γ
T

∑
t=1

|Mt |.

Lemma 5 Under the conditions of Theorem 3, we have that

m

∑
j=1

T

∑
t=1

Mt( j)yj ht(xj) <
2m

γ
√

1− γ
+ γ

T

∑
t=1

|Mt |.

Combining these bounds we obtain2m
γ
√

1−γ > γ∑T
t=1 |Mt | ≥ γκmT where the last inequality is because

|Mt | ≥ κm for t = 1, . . . ,T.

Proof of Lemma 4:Sinceht(xj) ∈ [−1,1] andyj ∈ {−1,1}, we haveyjht(xj) = 1− |ht(xj)− yj |,
and thus

m

∑
j=1

Dt( j)yj ht(xj ) =
m

∑
j=1

Dt( j)(1−|ht(xj)−yj |)≥ 2γ.
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N(t)

0 1 2 3 4 t

e0 e1 e2 e3 e4 e5 e6 e7

Figure 2: A plot ofN̂ with T = 4. Note thatN̂ is piecewise linear with joins at integer values oft. A
possible pairing of segments matches[e2,e3] with [e5,e6] and[e3,e4] with [e4,e5], leaving
[e0,e1], [e1,e2] and [e6,e7] unpaired. In this examplêN is increasing on each unpaired
segment.

This implies that

m

∑
j=1

T

∑
t=1

Mt( j)yjht(xj) =
T

∑
t=1

|Mt |
m

∑
j=1

Dt( j)yj ht(xj )≥
T

∑
t=1

2γ|Mt |.

Proof of Lemma 5:By the definition ofNt( j), we have

m

∑
j=1

T

∑
t=1

Mt( j)yjht(xj ) =
m

∑
j=1

T

∑
t=1

Mt( j)(Nt( j)−Nt−1( j)+ θ)

= θ
T

∑
t=1

|Mt |+
T

∑
t=1

m

∑
j=1

Mt( j)(Nt( j)−Nt−1( j)). (1)

It thus suffices to show that ifθ = γ
2+γ , then for eachj = 1, . . . ,m we have

T

∑
t=1

Mt( j)(Nt( j)−Nt−1( j)) <
2

γ
√

1− γ
+(γ−θ)

T

∑
t=1

Mt( j) (2)

since summing this inequality overj = 1, . . . ,mand substituting into (1) proves the lemma. Fix any
j ∈ {1, . . . ,m}; for ease of notation we writeNt andMt in place ofNt( j) andMt( j) for the rest of
the proof.

If Nt = Nt−1 for some integert then the termMt(Nt −Nt−1) contributes 0 to the sum in (2),
so without loss of generality we assume thatNt 6= Nt−1 for all integerst. We extend the sequence
(N0,N1, . . . ,NT) to a continuous piecewise linear functionN̂ on [0,T] in the obvious way, that is, for
t an integer andε ∈ [0,1] we haveN̂(t + ε) = Nt + ε(Nt+1−Nt). Let

E = {e∈ [0,T] : N̂(e) = Nt for some integert = 0,1, . . . ,T}.
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The setE is finite so we have 0= e0 < e1 · · ·< er = T with E = {e0, . . . ,er} (see Figure 2). Since for
each integert ≥ 1 the interval(t−1, t] must contain someei , we can reexpress the sum∑T

t=1Mt(Nt−
Nt−1) as

r

∑
i=1

Mdeie
(
N̂(ei)− N̂(ei−1)

)
. (3)

We say that two segments[ea−1,ea] and[eb−1,eb] matchif N̂(ea−1) = N̂(eb) andN̂(eb−1) = N̂(ea).
For example, in Figure 2 the segment[e2,e3] matches[e5,e6] but does not match[e6,e7]. We pair
up matching segments until no more pairs can be formed. Note that if any unpaired segments
remain, it must be the case that eitherN̂ is increasing on each unpaired segment (ifNT > 0) or N̂ is
decreasing on each unpaired segment (ifNT < 0). Now we separate the sum (3) into two pieces, i.e.,
∑r

i=1Mdeie(N̂(ei)− N̂(ei−1)) = P+U, whereP is the sum over all paired segments andU is the sum
over all unpaired segments. We will show thatP< (γ−θ)∑T

t=1Mt andU < 2
γ
√

1−γ , thus proving the
lemma.

First we boundP. Let [ea−1,ea] and [eb−1,eb] be a pair of matching segments whereN̂ is
increasing on[ea−1,ea] and decreasing on[eb−1,eb]. The contribution of these two segments toP is

Mdeae
(
N̂(ea)− N̂(ea−1)

)
+Mdebe

(
N̂(eb)− N̂(eb−1)

)
= (Mdeae −Mdebe)

(
N̂(ea)− N̂(ea−1)

)
. (4)

Since each segment[ea−1,ea] is contained in[t − 1, t] for some integert, we have thatdeae− 1≤
ea−1 < ea ≤ deae. The linearity ofN̂ on [deae−1,deae] implies that

Ndeae−1 ≤ N̂(ea−1) < N̂(ea)≤Ndeae ≤ Ndeae−1+1−θ (5)

where the last inequality is becauseyjht(xj)≤ 1 in line 7 ofSmoothBoost . Similarly, we have that
debe−1≤ eb−1 < eb ≤ debe, and hence

Ndebe−1 ≥ N̂(eb−1) > N̂(eb)≥ Ndebe ≥ Ndebe−1−1−θ. (6)

SinceN̂(ea) = N̂(eb−1) inequalities (5) and (6) imply thatNdeae−1 ≥ Ndebe−1−2. The definition of
M now implies thatMdebe ≥ (1− γ)Mdeae. SinceN̂(ea)− N̂(ea−1) > 0, we thus have that (4) is at
most

γMdeae
(
N̂(ea)− N̂(ea−1)

)≤ γ(1−θ)Mdeae(ea−ea−1) (7)

where the inequality follows from (5) and the linearity ofN̂ on [ea−1,ea]. SinceN̂(ea)− N̂(ea−1) =
N̂(eb−1)− N̂(eb), we similarly have that (4) is at most

γMdeae
(
N̂(eb−1)− N̂(eb)

) ≤ γ
1− γ

Mdebe
(
N̂(eb−1)− N̂(eb)

)
≤ γ

1− γ
(1+ θ)Mdebe(eb−1−eb). (8)

Sinceθ = γ
2+γ we have that the right side of (7) equals2γ

2+γ Mdeae(ea−ea−1) and the right side of (8)

equals 2γ(1+γ)
(1−γ)(2+γ)Mdebe(eb−1−eb) Since (4) is upper bounded by each of these quantities, taking a
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convex combination of1+γ
2 times the first plus1−γ

2 times the second and simplifying we find that (4)
is at most

γ(1+ γ)
2+ γ

(
Mdeae(ea−ea−1)+Mdebe(eb−1−eb)

)
. (9)

If we sum (9) over all pairs of matching segments the resulting quantity is an upper bound onP. In
this sum, for each value oft = 1, . . . ,T, the coefficient ofMt will be at mostγ(1+γ)

2+γ = γ− θ. (This
bound on the coefficient ofMt holds because for eacht, the total length of all paired segments in
[t−1, t] is at most 1). Consequently we haveP < (γ−θ)∑T

t=1 Mt as desired.
Now we show thatU, the sum over unpaired segments, is at most2

γ
√

1−γ . If N̂ is decreasing on

each unpaired segment then clearlyU < 0, so we suppose that̂N is increasing on each unpaired
segment. Let[ec1−1,ec1], . . . , [ecd−1,ecd ] be all the unpaired segments. As in Figure 2 it must be the
case that the intervals[N̂(eci−1),N̂(eci )) are all disjoint and their union is[0,NT). By the definition

of M, we haveU = ∑d
i=1(1− γ)(Ndeci e−1)/2(N̂(eci )− N̂(eci−1)

)
. As in the bound forP, we have

Ndeci e−1 ≤ N̂(eci−1) < N̂(eci )≤ Ndeci e ≤ Ndeci e−1+1−θ < Ndeci e−1+1

and hence

U ≤
d

∑
i=1

(1− γ)(N̂(eci )−1)/2(N̂(eci )− N̂(eci−1)
)

= (1− γ)−1/2
d

∑
i=1

(1− γ)N̂(eci )/2(N̂(eci )− N̂(eci−1)
)
.

SinceN̂ is increasing, for eachi we have

(1− γ)N̂(eci )/2(N̂(eci )− N̂(eci−1)
)

<

∫ N̂(eci )

z=N̂(eci−1)
(1− γ)z/2dz.

Since the disjoint intervals[N̂(eci−1),N̂(eci )) cover[0,NT) we thus have

U < (1− γ)−1/2
∫ NT

z=0
(1− γ)z/2dz

< (1− γ)−1/2
∫ ∞

z=0
(1− γ)z/2dz

=
−2√

1− γ ln(1− γ)
<

2
γ
√

1− γ
for 0 < γ < 1/2.

(Lemma 5)

2.4 Comparison with Other Boosting Algorithms

TheSmoothBoost algorithm was inspired by an algorithm given by Impagliazzo (1995) in the con-
text of hard-core set constructions in complexity theory. Klivans and Servedio (1999) observed that
Impagliazzo’s algorithm can be reinterpreted as a boosting algorithm which generates distributions
Dt which, like the distributions generated bySmoothBoost , satisfyL∞(Dt) ≤ 1

κm. However, our
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SmoothBoost algorithm differs from Impagliazzo’s algorithm in several important ways. The al-
gorithm of Impagliazzo (1995) uses additive rather than multiplicative updates forMt( j), and the
bound onT which is given for the algorithm by Impagliazzo (1995) isO( 1

κ2γ2 ) which is worse than

our bound by essentially a factor of1
κ . Another important difference is that Impagliazzo’s algorithm

has noθ parameter and does not appear to output a large margin final hypothesis. Finally, the anal-
ysis given by Impagliazzo only covers the case where the weak hypotheses are binary-valued rather
than real-valued.

The well-known boosting algorithmAdaBoost of Freund and Schapire (1997) is somewhat
faster thanSmoothBoost , requiring onlyT = O( log(1/κ)

γ2 ) stages. LikeSmoothBoost , AdaBoost can
be used with real-valued weak hypotheses and can be used to output a large margin final hypothesis
(Schapire et al., 1998). However,AdaBoost is not guaranteed to generate only smooth distributions,
and thus does not appear to be useful in a malicious noise context.

Freund (1999) has recently introduced and studied a sophisticated boosting algorithm called
BrownBoost which uses a gentler weighting scheme thanAdaBoost . Freund suggests thatBrownBoost
should be well suited for dealing with noisy data; however it is not clear from the analysis of Fre-
und (1999) whetherBrownBoost -generated distributions satisfy a smoothness property such as the
L∞(Dt) ≤ 1

κm property ofSmoothBoost , or whetherBrownBoost can be used to generate a large
margin final hypothesis. We note that theBrownBoost algorithm is much more complicated to run
thanSmoothBoost , as it involves solving a differential equation at each stage of boosting.

SmoothBoost is perhaps most similar to the modified AdaBoost algorithmMadaBoost which
was defined and analyzed by Domingo and Watanabe (2000). LikeSmoothBoost , MadaBoost uses
multiplicative updates on weights and never allows weights to exceed 1 in value. Domingo and
Watanabe proved thatMadaBoost takes at mostT ≤ 2

κγ2 stages, which is quite similar to our bound in
Theorem 3. (If we setθ = 0 in SmoothBoost , a slight modification of the proof of Theorem 3 gives
a bound of roughly 4

3κγ2 , which improves theMadaboost bound by a constant factor.) However, the
analysis forMadaBoost given by Domingo and Watanabe (2000) only covers the case of binary-
valued weak hypotheses, and does not establish thatMadaBoost generates a large margin final
hypothesis. We also note that our proof technique of simultaneously upper and lower bounding
∑m

j=1∑T
t=1Mt( j)yj ht(xj) is different from the approach used by Domingo and Watanabe (2000).

3. Learning Linear Threshold Functions with Malicious Noise

In this section we show how theSmoothBoost algorithm can be used in conjunction with a sim-
ple noise tolerant weak learning algorithm to obtain a PAC learning algorithm for learning linear
threshold functions with malicious noise.

3.1 Geometric Preliminaries

For x = (x1, . . . ,xn) ∈ R
n and p ≥ 1 we write ‖x‖p to denote thep-norm of x, namely‖x‖p =

(∑n
i=1 |xi |p)1/p . The ∞-norm of x is ‖x‖∞ = maxi=1,...,n |xi |. We write Bp(R) to denote thep-norm

ball of radiusR, i.e.,Bp(R) = {x∈R
n : ‖x‖p ≤ R}.

For p,q≥ 1 theq-norm isdual to the p-norm if 1
p + 1

q = 1; so the 1-norm and the∞-norm are
dual to each other and the 2-norm is dual to itself. For the rest of the paperp andq always denote
dual norms. The following facts (see Taylor and Mann, 1972, pp. 203-204) will be useful:

Hölder Inequality: |u·v| ≤ ‖u‖p‖v‖q for all u,v∈ R
n and 1≤ p≤ ∞.
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Minkowski Inequality: ‖u+v‖p ≤ ‖u‖p +‖v‖p for all u,v∈ R
n and 1≤ p≤ ∞.

Finally, recall that alinear threshold functionis a function f : R
n → {−1,1} such that f (x) =

sign(u ·x) for someu∈ R
n.

3.2 PAC Learning with Malicious Noise

Let EXη
MAL(u,D) be amalicious example oracle with noise rateη that behaves as follows when

invoked: with probability 1−η the oracle returns acleanexample〈x, sign(u ·x)〉 wherex is drawn
from the probability distributionD overBp(R). With probabilityη, though,EXη

MAL(u,D) returns a
dirty example〈x,y〉 ∈ Bp(R)×{−1,1} about which nothing can be assumed. Such a malicious ex-
ample〈x,y〉 may be chosen by a computationally unbounded adversary which has complete knowl-
edge ofu, D, and the state of the learning algorithm when the oracle is invoked.

The goal of a learning algorithm in this model is to construct an approximation to the tar-
get concept sign(u · x). More formally, we say that a Boolean functionh : R

n → {−1,1} is an
ε-approximator foru underD if Prx∈D [h(x) 6= sign(u · x)] ≤ ε. The learning algorithm is given an
accuracy parameterε and a confidence parameterδ, has access toEXη

MAL(u,D), and must output a
hypothesish which, with probability at least 1−δ, is anε-approximator foru underD. Thesample
complexityof a learning algorithm in this model is the number of times it queries the malicious
example oracle.1

A final note: like the Perceptron algorithm, the learning algorithms which we consider will
require that the quantityu · x be bounded away from zero (at least most of the time). We thus say
that a distributionD is ξ-good foru if |u · x| ≥ ξ for all x which have nonzero probability under
D, and we restrict our attention to learning underξ-good distributions. (Of course, dirty examples
drawn fromEXη

MAL(u,D) need not satisfy|u·x| ≥ ξ.)

3.3 A Noise Tolerant Weak Learning Algorithm

As shown in Figure 3, our weak learning algorithm for linear threshold functions, calledWLA, takes
as input a data setSand a distributionD overS. The algorithm computes the vectorz which is the
average location of the (label-normalized) points inS underD, transformsz to obtain a vectorw,
and predicts using the linear functional defined byw. As motivation for the algorithm, note that if
every example pair〈x,y〉 satisfiesy = sign(u · x) for someu, then each pointyx would lie on the
same side of the hyperplane defined byu asu itself, and hence the average vectorz defined in Step
1 of the algorithm intuitively should point in roughly the same direction asu.

Servedio (2000) showed that theWLAalgorithm is a weak learning algorithm for linear threshold
functions in a noise-free setting. The following theorem shows that if a small fraction of the exam-
ples inS are affected by malicious noise,WLAwill still generates a hypothesis with nonnegligible
advantage provided that the input distributionD is sufficiently smooth.

Theorem 6 Fix 2≤ p≤ ∞ and let S= 〈x1,y1〉, . . . ,〈xm,ym〉 be a set of labeled examples with each
xj ∈Bp(R). LetD be a distribution over S such that L∞(D)≤ 1

κm. Suppose thatξ > 0 andu∈R
n are

1. A slightly stronger model of PAC learning with malicious noise has also been proposed by Aslam and Decatur (1998)
and Cesa-Bianchi et al. (1999). In this model first a clean sample of the desired size is drawn from a noise-free oracle;
then each point in the sample is independently selected with probabilityη; then an adversary replaces each selected
point with a dirty example of its choice; and finally the corrupted sample is provided to the learning algorithm. This
model is stronger than the original malicious noise model since each dirty example is chosen by the adversary with
full knowledge of the entire sample. All of our results also hold in this stronger model.
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Input: parameterp≥ 2
sampleS= 〈x1,y1〉, . . . ,〈xm,ym〉 where eachyi ∈ {−1,1}
distributionD overS
upper boundRon‖x‖p

Output: hypothesish(x)

1. setz= ∑m
j=1D( j)yjxj

2. for all i = 1, . . . ,n setwi = sign(zi)|zi |p−1

3. return hypothesish(x)≡ v·x wherev = w
‖w‖qR

Figure 3: Thep-norm weak learning algorithmWLA.

such thatξ ≤ R‖u‖q and at mostη′m examples in S do not satisfy yj(u ·xj)≥ ξ, whereη′ ≤ κξ
4R‖u‖q

.

ThenWLA(p,S,D) returns a hypothesis h: Bp(R) → [−1,1] which has advantage at least ξ
4R‖u‖q

underD.

Proof: By Hölder’s inequality, for anyx∈ Bp(R) we have

|h(x)|= |w ·x|
‖w‖qR

≤ ‖w‖q‖x‖p

‖w‖qR
≤ 1,

and thush indeed mapsBp(R) into [−1,1].
Now we show thath has the desired advantage. Sinceht(xj) ∈ [−1,1] andyj ∈ {−1,1}, we

have|h(xj)−yj |= 1−yjh(xj), so

1
2

m

∑
j=1

D( j)|h(xj)−yj |= 1
2

m

∑
j=1

D( j)(1−yjh(xj)) =
1
2
−
(

∑m
j=1 D( j)yj(w ·xj)

2‖w‖qR

)
.

To prove the theorem it thus suffices to show that
∑m

j=1 D( j)yj (w·xj )
‖w‖q

≥ ξ
2‖u‖q

. The numerator of the

left side isw · (∑m
j=1D( j)yjxj

)
= w · z = ∑n

i=1 |zi |p = ‖z‖p
p. Using the fact that(p− 1)q = p, the

denominator is

‖w‖q =

(
n

∑
i=1

(|zi |p−1)q

)1/q

=

(
n

∑
i=1

|zi |p
)1/q

= ‖z‖p/q
p .

We can therefore rewrite the left side as‖z‖p
p/‖z‖p/q

p = ‖z‖p, and thus our goal is to show that

‖z‖p ≥ ξ
2‖u‖q

. By Hölder’s inequality it suffices to show thatz·u≥ ξ
2, which we now prove.

Let S1 = {〈xj ,yj〉 ∈ S : yj(u · xj) ≥ ξ} and letS2 = S\S1. The definition ofS1 immediately
yields ∑ j∈S1

D( j)yj(u · xj) ≥ D(S1)ξ. Moreover, since each‖xj‖p ≤ R, by Hölder’s inequality we
haveyj(u·xj)≥−‖xj‖p ·‖u‖q≥−R‖u‖q for each〈xj ,yj〉 ∈S2. Since each example inS2 has weight

at most 1
κm underD, we haveD(S2)≤ η′

κ , and hence

z·u =
m

∑
j=1

D( j)yj(u·xj) = ∑
j∈S1

D( j)yj(u·xj)+ ∑
j∈S2

D( j)yj(u ·xj)
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≥ D(S1)ξ−D(S2)R‖u‖q ≥
(

1− η′

κ

)
ξ− η′R‖u‖q

κ

≥ 3ξ
4
− ξ

4
=

ξ
2
,

where the inequality(1− η′
κ )≥ 3

4 follows from the bound onη′ and the fact thatξ ≤R‖u‖q.

3.4 Putting it All Together

The algorithm for learning sign(u · x) with respect to aξ-good distributionD over Bp(R) is as
follows:

• Draw fromEXη
MAL(u,D) a sampleS= 〈x1,y1〉, . . . ,〈xm,ym〉 of m labeled examples.

• Run SmoothBoost on S with parametersκ = ε
4, γ = ξ

4R‖u‖q
, θ = γ

2+γ usingWLAas the weak
learning algorithm.

We now determine constraints on the sample sizemand the malicious noise rateη under which this
is a successful and efficient learning algorithm.

We first note that sinceD is ξ-good foru, we have thatξ ≤ R‖u‖q. Furthermore, sinceκ = ε
4,

Lemma 1 implies that each distributionDt which is given toWLAby SmoothBoost hasL∞(Dt)≤ 4
εm.

Let SC ⊆ S be the clean examples andSD = S\SC the dirty examples inS. If η ≤ εξ
32R‖u‖q

and

m≥ 96R‖u‖q

εξ log 2
δ , then a simple Chernoff bound implies that with probability at least 1− δ

2 we

have|SD| ≤ εξ
16R‖u‖q

m. Thus, we can apply Theorem 6 withη′ = εξ
16R‖u‖q

; so each weak hypothesis

ht(x) = vt ·x generated byWLAhas advantage ξ
4R‖u‖q

underDt . Consequently, by Theorems 2 and 3,

SmoothBoost efficiently outputs a final hypothesish(x) = sign( f (x)) which has margin less than
θ on at most anε

4 fraction ofS. Since|SC| is easily seen to be at leastm
2 , we have that the margin

of h is less thanθ on at most anε
2 fraction ofSC. This means that we can apply powerful methods

from the theory of data-dependent structural risk minimization (Bartlett and Shawe-Taylor, 1999,
Shawe-Taylor et al., 1998) to bound the error ofh underD.

Recall that the finalSmoothBoost hypothesis ish(x) = sign( f (x)) where f (x) = v·x is a convex
combination of hypothesesht(x) = vt · x. Since each vectorvt satisfies‖vt‖q ≤ 1

R, by Minkowski’s
inequality we have that‖v‖q ≤ 1

R as well. The following theorem was proved by Servedio (2000):

Theorem 7 Fix any value2≤ p≤ ∞ and letF be the class of functions{x 7→ v·x : ‖v‖q ≤ 1
R,x∈

Bp(R)}. Then fatF (µ) ≤ 2log4n
µ2 , where fatF (µ) is the fat-shattering dimension ofF at scaleµ as

defined in Bartlett et al. (1996), Bartlett and Shawe-Taylor (1999), Shawe-Taylor et al. (1998).

The following theorem is due to Bartlett and Shawe-Taylor (1999):

Theorem 8 Let F be a collection of real-valued functions over some domain X, let D be a distri-
bution over X×{−1,1}, let S= 〈x1,y1〉, . . . ,〈xm,ym〉 be a sequence of labeled examples drawn from
D, and let h(x) = sign( f (x)) for some f∈ F . If h has margin less thanθ on at most k examples in
S, then with probability at least1−δ we have thatPr〈x,y〉∈D [h(x) 6= y] is at most

k
m

+

√
2
m

(d ln(34e/m) log(578m)+ ln(4/δ)), (10)
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where d= fatF (θ/16).

We have thath has margin less thanθ on at most anε
2 fraction of the clean examplesSC, so we may

takek/m to be ε
2 in the above theorem. Now if we apply Theorem 7 and solve form the inequality

obtained by setting (10) to be at mostε, we obtain

Theorem 9 Fix 2 ≤ p ≤ ∞ and let D be a distribution over Bp(R) which is ξ-good for u. The

algorithm described above uses m= Õ

((
R‖u‖q

ξε

)2
)

examples and outputs anε-approximator foru

underD with probability1−δ in the presence of malicious noise at a rateη = Ω
(

ε · ξ
R‖u‖q

)
.

4. Comparison with Online Algorithms

The bounds given by Theorem 9 on sample complexity and malicious noise tolerance of our algo-
rithms based onSmoothBoost are remarkably similar to the bounds which can be obtained through
a natural PAC conversion of the onlinep-norm algorithms introduced by Grove et al. (1997) and
studied by Gentile and Littlestone (1999). Grove, Littlestone and Schuurmans (Theorem 6.1) proved

that the onlinep-norm algorithm makes at mostO

((
R‖u‖q

ξ

)2
)

mistakes on linearly separable data.

Subsequently Gentile and Littlestone (1999) extended the earlier analysis of Grove, Littlestone and
Schuurmans and considered a setting in which the examples are not linearly separable. Their analy-
sis (Theorem 6) shows that if an example sequence containingK malicious errors is provided to the
online p-norm algorithm, then the algorithm will make at most

O

((
R‖u‖q

ξ

)2

+K · R‖u‖q

ξ

)

mistakes. To obtain PAC-model bounds on the onlinep-norm algorithms in the presence of mali-
cious noise, we use the following theorem due to Auer and Cesa-Bianchi (1998, Theorem 6.2):

Theorem 10 Fix a hypothesis classH of Vapnik-Chervonenkis dimension d. Let A be an online
learning algorithm with the following properties: (1) A only uses hypotheses which belong toH ,
(2) if A is given a noise-free example sequence then A makes at most m0 mistakes, and (3) if A is
given an example sequence with K malicious errors then A makes at most m0 +BK mistakes. Then
there is a PAC algorithm A′ which learns to accuracyε and confidenceδ, usesÕ(B2

ε2 + m0
ε + d

ε )
examples, and can tolerate a malicious noise rateη = ε

2B.

Applying this theorem, we find that these PAC conversions of the onlinep-norm algorithms
have sample complexity and malicious noise tolerance bounds which are essentially identical to the
bounds given for ourSmoothBoost -based algorithm.

5. SmoothBoost is Optimally Smooth

It is evident from the proof of Theorem 9 that the smoothness of the distributions generated by
SmoothBoost relates directly to the level of malicious noise which our linear threshold learning
algorithm can tolerate. On the other hand, as mentioned in Section 1, Kearns and Li have shown
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that for a broad range of concept classes no algorithm can learn to accuracyε in the presence of
malicious noise at a rateη > ε

1+ε . Using the Kearns-Li upper bound on malicious noise tolerance, we
prove in this section thatSmoothBoost is optimal up to constant factors in terms of the smoothness
of the distributions which it generates. This demonstrates an interesting connection between bounds
on noise-tolerant learning and bounds on boosting algorithms.

Recall that ifSmoothBoost is run on a set ofm examples with input parametersκ,γ,θ, then
each distributionDt whichSmoothBoost constructs will satisfyL∞(Dt)≤ 1

κm. The proof is by con-
tradiction; so suppose that there exists a boosting algorithm calledSuperSmoothBoost which is
similar to SmoothBoost but which has an even stronger guarantee on its distributions. More pre-
cisely we suppose thatSuperSmoothBoost takes as input parametersκ,γ and a labeled sampleSof
sizem, has access to a weak learning algorithmWL, generates a sequenceD1,D2, . . . of distributions
overS, and outputs a Boolean-valued final hypothesish. As in Section 2.3, we suppose that if the
weak learning algorithmWLalways returns a hypothesisht which has advantageγ underDt , then
SuperSmoothBoost will eventually halt and the final hypothesish will agree with at least a 1−κ
fraction of the labeled examples inS. Finally, we suppose that each distributionDt is guaranteed to
satisfyL∞(Dt)≤ 1

64κm.
Consider the following severely restricted linear threshold learning problem: the domain is

{−1,1}2 ⊂ ℜ2, so any distributionD can assign weight only to these four points. Moreover, we
only allow two possibilities for the target concept sign(u·x): the vectoru is either(1,0) or (0,1). The
point (1,1) is classified positive by both of these concepts; the point(1,−1) is classified positive
only by the first of these concepts; the point(−1,1) is classified positive only by the second of
these concepts; and the point(−1,−1) is classified positive by neither of these concepts. Hence the
concept class consisting of these two concepts over these four points is adistinct concept class as
defined by Kearns and Li (1993). It is clear that every example belongs toB∞(1) (that is,R= 1),
that‖u‖1 = 1, and that any distributionD over{−1,1}2 is 1-good foru (i.e.,ξ = 1).

Consider the following algorithm for this restricted learning problem:

• Draw fromEXη
MAL(u,D) a sampleS= 〈x1,y1〉, . . . ,〈xm,ym〉 of m labeled examples.

• RunSuperSmoothBoost on Swith parametersκ = ε
4, γ = ξ

4R‖u‖q
= 1

4 usingWLAwith p = ∞
as the weak learning algorithm.

Suppose that the malicious noise rateη is 2ε. As in Section 3.4, a Chernoff bound shows that
for m= O(1

ε log 1
δ), with probability at least 1− δ

2 we have that the sampleScontains at most 4εm
dirty examples. By theSuperSmoothBoost smoothness property and our choice ofκ, we have
that L∞(Dt) ≤ 1

16εm. Theorem 6 now implies that eachWLAhypothesisht has advantage at least
ξ

4R‖u‖q
= 1

4 with respect toDt . As in Section 3.4, we have that with probability at least 1− δ
2 the

final hypothesish output bySuperSmoothBoost disagrees with at most anε2 fraction of the clean
examplesSC.

Since the domain is finite (in fact of size four) we can bound generalization error directly.
A simple Chernoff bound argument shows that ifm is sufficiently large, then with probability at
least 1− δ the hypothesish will be an ε-approximator for sign(u · x) underD. However, Kearns
and Li (1993, Theorem 1) have shown that no learning algorithm for a distinct concept class can
learn to accuracyε with probability 1− δ in the presence of malicious noise at rateη ≥ ε

1+ε . This
contradiction proves that theSuperSmoothBoost algorithm cannot exist, and hence the distributions
generated bySmoothBoost are optimal up to constant factors.
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