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Abstract. Recent work has introduced Boolean kernels with which one
can learn over a feature space containing all conjunctions of length up
to k (for any 1 ≤ k ≤ n) over the original n Boolean features in the
input space. This motivates the question of whether maximum margin
algorithms such as support vector machines can learn Disjunctive Normal
Form expressions in the PAC learning model using this kernel. We study
this question, as well as a variant in which structural risk minimization
(SRM) is performed where the class hierarchy is taken over the length
of conjunctions.
We show that such maximum margin algorithms do not PAC learn t(n)-
term DNF for any t(n) = ω(1), even when used with such a SRM scheme.
We also consider PAC learning under the uniform distribution and show
that if the kernel uses conjunctions of length ω̃(

√
n) then the maximum

margin hypothesis will fail on the uniform distribution as well. Our re-
sults concretely illustrate that margin based algorithms may overfit when
learning simple target functions with natural kernels.

Keywords: kernel methods, PAC learning

1 Introduction

1.1 Background

Maximum margin algorithms, notably Support Vector Machines (SVM) [3], have
received considerable attention in recent years (see e.g. [21] for an introduction).
In their basic form, SVM learn linear threshold hypotheses and combine two
powerful ideas. The first idea is to learn using the linear separator which achieves
the maximum margin on the training data rather than an arbitrary consistent
hypothesis. The second idea is to use an implicit feature expansion by a kernel
function. The kernel K : X×X → R, where X is the original space of examples,
computes the inner product in the expanded feature space. Given a kernel K
which corresponds to some expanded feature space, the SVM hypothesis h is



(an implicit representation of) the maximum margin linear threshold hypothesis
over this expanded feature space rather than the original feature space. SVM
theory implies that if the kernel K is efficiently computable then it is possible
to efficiently construct this maximum margin hypothesis h and that h itself is
efficiently computable. Several on-line algorithms have also been proposed which
iteratively construct large margin hypotheses in the feature space, see e.g. [6].

Another major focus of research in learning theory is the question of whether
various classes of Boolean functions can be learned by computationally efficient
algorithms. The canonical open question in this area is whether there exist effi-
cient algorithms in Valiant’s PAC learning model [23] for learning Boolean formu-
las in Disjunctive Normal Form, or DNF. This question has been open since the
introduction of the PAC model nearly twenty years ago, and has been intensively
studied by many researchers (see e.g. [1, 2, 4, 7, 8, 10, 12, 14, 15, 18, 22, 24, 25]).

1.2 Can SVMs learn DNF?

In this paper we analyze the performance of maximum margin algorithms when
used with Boolean kernels to learn DNF formulas. Several authors [11, 17, 26, 13]
have recently proposed a family of kernel functions Kk : {0, 1}n × {0, 1}n → N,
where 1 ≤ k ≤ n, such that Kk(x, y) computes the number of (monotone or
unrestricted) conjunctions of length (exactly or up to) k which are true in both
x and y. This is equivalent to expanding the original feature space of n Boolean
features to include all such conjunctions.1 Since linear threshold elements can
represent disjunctions, one can naturally view any DNF formula as a linear
threshold function over this expanded feature space. It is thus natural to ask
whether theKk kernel maximum margin learning algorithms are good algorithms
for learning DNF.

Additional motivation for studying DNF learnability with the Kk kernels
comes from recent progress on the DNF learning problem. The fastest known
algorithm for PAC learning DNF is due to Klivans and Servedio [12]; it works by
explicitly expanding each example into a feature space of monotone conjunctions
and explicitly learning a consistent linear threshold function over this expanded
feature space. Since the Kk kernel enables us to do such expansions implicitly
in a computationally efficient way, it is natural to investigate whether the Kk-
kernel maximum margin algorithm yields a computationally efficient algorithm
for PAC learning DNF.

We note that it is easily seen that standard convergence bounds on large
margin classifiers do not imply that the Kk kernel maximum margin algorithm
is an efficient algorithm for PAC learning DNF. Indeed, the bound given by,
e.g., Theorem 4.18 of [21] only implies nontrivial generalization error for the Kk

1 This Boolean kernel is similar to the well known polynomial kernel in that all mono-
mials of length up to k are represented. The main difference is that the polynomial
kernel assigns weights to monomials which depend on certain binomial coefficients;
thus the weights of different monomials can differ by an exponential factor. In the
Boolean kernel all monomials have the same weight.



kernel algorithm if a sample of size nΩ(k) is used, and with such a large sample
the computational advantage of using the Kk kernel is lost. However, such upper
bounds do not imply that the Kk kernel maximum margin algorithm must have
poor generalization error if run with a smaller sample. The situation is analogous
to that of [19] where the generalization error of the Perceptron and Winnow
algorithms were studied. For both Perceptron and Winnow the standard bounds
gave only an exponential upper bound on the number of examples required
to learn various classes, but a detailed algorithm-specific analysis gave positive
PAC learning results for Perceptron and negative PAC results for Winnow for the
problems considered. Analogously, in this paper we perform detailed algorithm-
specific analyses for the Kk kernel maximum margin algorithms.

1.3 Previous work

Khardon et al. constructed a simple Boolean function and an example sequence
and showed that this sequence causes the Kn kernel perceptron algorithm (i.e.
the Perceptron algorithm run over a feature space of all 2n monotone conjunc-
tions) to make exponentially many mistakes [11]. The current paper differs in
several ways from this earlier work: we study the maximum margin algorithm
rather than Perceptron, we consider PAC learning from a random sample rather
than online learning, and we analyze the Kk kernels for all 1 ≤ k ≤ n.

1.4 Our results

Throughout this paper we study the kernels corresponding to all monotone
monomials of length up to k, which we denote by Kk. In addition to maxi-
mum margin algorithms we also consider a natural scheme of structural risk
minimization (SRM) that can be used with this family of Boolean kernels. In
SRM, given a hierarchy of classes C1 ⊆ C2 ⊆ . . ., one learns with each class
separately and uses a cost function combining the complexity of the class with
its observed accuracy to choose the final hypothesis. The cost function typically
balances various criteria such as the observed error and the (bound on) gener-
alization error. A natural scheme here is to use SRM over the classes formed by
Kk with k = 1, . . . , n.2

We prove several negative results which establish strong limitations on the
ability of maximum margin algorithms to PAC learn DNF formulas (or other
simple Boolean classes) using the monomial kernels. Our first result says es-
sentially that for any t(n) = ω(1), for all k = 1, . . . , n the Kk kernel maximum
margin algorithm cannot PAC learn t(n)-term DNF. More precisely, we prove

Result 1: Let t(n) = ω(1) and let ε = 1
4·2t(n) . There is a O(t(n))-term monotone

DNF over t(n) relevant variables, and a distribution D over {0, 1}n such that
for all k ∈ {1, . . . , n} the Kk maximum margin hypothesis has error larger than

2 This is standard practice in experimental work with the polynomial kernel, where
typically small values of k are tried (e.g. 1 to 5) and the best is chosen.



ε (with overwhelmingly high probability over the choice of a polynomial size
random sample from D).

Note that this result implies that the Kk maximum margin algorithms fail
even when combined with SRM regardless of the cost function. This is simply
because the maximum margin hypothesis has error > ε for all k, and hence the
final SRM hypothesis must also have error > ε.

While our accuracy bound in the above result is small (it is o(1) since t(n) =
ω(1)), a simple variant of the construction used for Result 1 also proves:

Result 2: Let f(x) = x1 be the target function. There is a distribution D over
{0, 1}n such that for any k = ω(1) the Kk maximum margin hypothesis has

error at least 1
2 − 2−nΩ(1)

(with overwhelmingly high probability over the choice
of a polynomial size random sample from D).

Thus any attempt to learn using monomials of non-constant size can provably
lead to overfitting. Note that for any k = Θ(1), standard bounds on maximum
margin algorithms show that the Kk kernel algorithm can learn f(x) = x1 from
a polynomial size sample.

Given these strong negative results for PAC learning under arbitrary distri-
butions, we next consider the problem of PAC learning monotone DNF under
the uniform distribution. This is one of the few frameworks in which some pos-
itive results have been obtained for learning DNF from random examples only
(see e.g. [5, 20]). In this scenario a simple variant of the construction for Result 1
shows that learning must fail if k is too small:

Result 3: Let t(n) = ω(1) and ε = 1
4·2t(n) . There is a O(t(n))-term monotone

DNF over t(n) relevant variables such that for all k < t(n) the Kk maximum
margin hypothesis has error at least ε (with probability 1 over the choice of a
random sample from the uniform distribution).

On the other hand, we also show that the Kk algorithm fails under the uniform
distribution for large k:

Result 4: Let f(x) = x1 be the target function. For any k = ω̃(
√
n), the Kk

maximum margin hypothesis will have error 1
2 −2−Ω(n) with probability at least

0.029 over the choice of a polynomial size random sample from the uniform
distribution.

Note that there is a substantial gap between the “low” values of k (for which
learning is guaranteed to fail) and the “high” values of k (for which we show that
learning fails with constant probability). We feel that it is of significant interest
to characterize the performance of the Kk maximum margin algorithm under
the uniform distribution for these intermediate values of k; a discussion of this
point is given in Section 5.

Finally, we note here that some of our results can be adapted to give similar
negative results for the standard polynomial kernel.



2 Preliminaries

We consider learning Boolean functions over the Boolean cube {0, 1}n so that
f : {0, 1}n → {0, 1}. It is convenient to consider instead the range {−1, 1} with 0
mapped to −1 and 1 mapped to 1. This is easily achieved by the transformation
f ′(x) = 1−2f(x) and since we deal with linear function representations this can
be done without affecting the results. For the rest of the paper we assume this
representation.

Our arguments will refer to L1 and L2 norms of vectors. We use the notation
|x| =

∑ |xl| and ‖x‖ =
√

∑

x2
l .

Definition 1. Let h : R
N → {−1, 1} be a linear threshold function h(x) =

sign(W ·x−θ) for some W ∈ R
N , θ ∈ R. The margin of h on 〈z, b〉 ∈ R

N×{−1, 1}
is

mh(z, b) =
b(W · z − θ)

‖W‖ .

Note that |mh(z, b)| is the Euclidean distance from z to the hyperplaneW ·x = θ.

Definition 2. Let S = {〈xi, bi〉}i=1,...,m be a set of labeled examples where each
xi ∈ R

N and each bi ∈ {−1, 1}. Let h(x) = sign(W · x− θ) be a linear threshold
function. The margin of h on S is

mh(S) = min
〈x,b〉∈S

mh(x, b).

The maximum margin classifier for S is the linear threshold function h(x) =
sign(W · x− θ) such that

mh(S) = max
W ′∈RN ,θ′∈R

min
〈x,b〉∈S

b(W ′ · x− θ′)

‖W ′‖ . (1)

The quantity (1) is called the margin of S and is denoted mS .

Note that mS > 0 iff S is consistent with some linear threshold function. If
mS > 0 then the maximum margin classifier for S is unique [21].

Let φ be a transformation which maps {0, 1}n to R
N and let K : {0, 1}n ×

{0, 1}n → R be the corresponding kernel function K(x, y) = φ(x) · φ(y). Given
a set of labeled examples S = {〈xi, bi〉}i=1,...,m where each xi belongs to {0, 1}n

we write φ(S) to denote the set of transformed examples {〈φ(xi), bi〉}i=1,...,m.
We refer to the following learning algorithm as the K-maximum margin

learner:

– The algorithm first draws a sample S = {〈xi, f(xi)〉}i=1,...,m of m = poly(n)
labeled examples from some fixed probability distribution D over {0, 1}n;
here f : {0, 1}n → {−1, 1} is the unknown function to be learned.

– The algorithm’s hypothesis is h : {0, 1}n → {−1, 1}, h(x) = sign(W ·φ(x)−θ)
where sign(W · x − θ) is the maximum margin classifier for φ(S). Without
loss of generality we assume that W is normalized, that is ‖W‖ = 1. We also
assume that S contains both positive and negative examples since otherwise
the maximum margin classifier is not defined.



SVM theory tells us that if K(x, y) can be computed in poly(n) time then the
K-maximum margin learning algorithm runs in poly(n,m) time and the output
hypothesis h(x) can be evaluated in poly(n,m) time [21].

Our goal is to analyze the PAC learning ability of various kernel maximum
margin learning algorithms. Recall (see e.g. [9]) that a PAC learning algorithm
for a class C of functions over {0, 1}n is an algorithm which runs in time polyno-
mial in n and 1

δ , 1
ε where δ is a confidence parameter and ε is an accuracy param-

eter. We assume here, as is the case throughout the paper, that each function
in C has a description of size poly(n). Given access to random labelled examples
〈x, f(x)〉 for any f ∈ C and any distribution D over {0, 1}n, with probability
at least 1 − δ a PAC learning algorithm must output an efficiently computable
hypothesis h such that Prx∈D[h(x) 6= f(x)] ≤ ε. If an algorithm only satisfies
this criterion for a particular distribution such as the uniform distribution on
{0, 1}n, we say that it is a uniform distribution PAC learning algorithm.

Let ρk(n) =
∑i=k

i=1

(

n
i

)

. Note that the number of nonempty monotone conjunc-
tions (i.e. monomials) of size at most k on n variables is ρk(n). For x ∈ {0, 1}n we
write φk(x) to denote the ρk(n)-dimensional vector (xT )T⊆{1,...,n},1≤|T |≤k where
xT =

∏

i∈T xi, i.e. the components of φk(x) are all monotone conjunctions of
the desired size. We note that for an example x ∈ {0, 1}n, the L1 norm of the
expanded example φk(x) is |φk(x)| = ρk(|x|).

For x, y ∈ {0, 1}n we write x · y to denote
∑n

i=1 xiyi, i.e. the number of bits
which are 1 in both x and y.

Definition 3. We write Kk(x, y) to denote φk(x) ·φk(y). We refer to Kk as the
k-monomials kernel.

The following theorem shows that the k-monomial kernels are easy to compute:

Theorem 1 ([11]). For all 1 ≤ k ≤ n we have Kk(x, y) =
∑k

i=1

(

x·y
i

)

.

We will frequently use the following observation which is a direct consequence
of the Cauchy-Schwarz inequality:

Observation 1 If U ∈ R
N1 with ‖U‖ = L and I ⊆ {1, . . . , N1}, |I | = N2, then

∑

l∈I |Ui| ≤
√
L ·N2.

As a consequence of Observation 1 we have that if ρk(n) = N1 is the number
of features in the expanded feature space and |φk(x)| = ρk(|x|) = N2, then
U · φk(x) ≤

√
L ·N2.

3 Distribution-Free Non-Learnability

We give a DNF and a distribution which are such that the k-monomials kernel
fails to learn, for all 1 ≤ k ≤ n. The DNF we consider is a read once monotone
DNF over t(n) variables where t(n) = ω(1) and t(n) = O(log n). In fact our



results hold for any t(n) = ω(1) but for concreteness we use t(n) = logn as a
running example. We have

f(x) = (x1 · · ·x4`2) ∨ (x4`2+1 · · ·x8`2) ∨ · · · ∨ (x4`3−4`2+1 · · ·x4`3) (2)

where 4`3 = t(n) = logn so that the number of terms ` = Θ(t(n)1/3) =
Θ((log n)1/3). For the rest of this section f(x) will refer to the function defined
in Equation (2) and ` to its size parameter.

A polynomial threshold function is defined by a multivariate polynomial
p(x1, . . . , xn) with real coefficients. The output of the function is 1 if p(x1, . . . , xn) ≥
0 and −1 otherwise. The degree of the function is simply the degree of the poly-
nomial p. Note that any hypothesis output by the Kk kernel maximum margin
algorithm must be a polynomial threshold function of degree at most k. Minsky
and Papert [16] (see also [12]) gave the following lower bound on polynomial
threshold function degree for DNF:

Theorem 2. Any polynomial threshold function for f(x) in Equation (2) must
have degree at least `.

The distribution D on {0, 1}n we consider is the following:

– With probability 1
2 the distribution outputs 0n.

– With probability 1
2 the distribution outputs a string x ∈ {0, 1}n drawn from

the following product distribution D′: the first t(n) bits are drawn uniformly,
and the last n − t(n) bits are drawn from the product distribution which
assigns 1 to each bit with probability 1

n1/3 .

For small values of k the result is representation based and does not depend
on the sample drawn:

Lemma 1. If the maximum margin algorithm uses the kernel Kk for k < ` when
learning f(x) under D then its hypothesis has error greater than ε = 1

4·2t(n) = 1
4n .

Proof. If hypothesis h has error at most ε = 1
4·2t(n) under D then clearly it

must have error at most 1
2·2t(n) under D′. Since we are using the kernel Kk, the

hypothesis h is some polynomial threshold function of degree at most k which
has error τ ≤ 1

2·2t(n) under D′. So there must be some setting of the last n− t(n)
variables which causes h to have error at most τ under the uniform distribution
on the first t(n) bits. Under this setting of variables the hypothesis is a degree-k
polynomial threshold function on the first t(n) variables. By Minsky and Papert’s
theorem, this polynomial threshold function cannot compute the target function
exactly, so it must be wrong on at least one setting of the first t(n) variables. But
under the uniform distribution, every setting of those variables has probability
at least 1

2t(n) . This contradicts τ ≤ 1
2·2t(n) . ut

For larger values of k (in fact for all k = ω(1)) we show that the maximum
margin hypothesis will with high probability overfit the sample. The following
definition captures typical properties of a sample from distribution D:



Definition 4. A sample S is a D-typical sample if

– The sample includes the example 0n.
– Any nonzero example x in the sample has 0.99n2/3 ≤ |x| ≤ 1.01n2/3.
– Every pair of positive and negative examples xi, xj in S satisfies xi · xj ≤

1.01n1/3.

We are interested in cases where a polynomial size sample is used by the algo-
rithm. The following two lemmas hold by standard Chernoff bound arguments:

Lemma 2. For m = poly(n), with probability 1−2−nΩ(1)

a random i.i.d. sample
of m draws from D is a D-typical sample.

Definition 5. Let S be a sample. The set Z(S) includes all positive examples z
such that every positive example x in S satisfies x · z ≤ 1.01n1/3.

Lemma 3. Let S be a D-typical sample of size m = poly(n) examples. Then

PrD[z ∈ Z(S)|f(z) = 1] = 1 − 2−nΩ(1)

.

We now show that for a D-typical sample one can achieve a very large margin:

Lemma 4. Let S be a D-typical sample. Then the maximal margin mS satisfies

mS ≥Mh′ ≡ 1

2
· ρk(.99n2/3) −mρk(1.01n1/3)

√

mρk(1.01n2/3)

Proof. We exhibit an explicit linear threshold function h′ which has margin at
least Mh′ on the data set. Let h′(x) = sign(W ′ · φ(x)− θ′) be defined as follows:

– W ′
T = 1 if T is active in some positive example;

– W ′
T = 0 if T is not active in any positive example.

– θ′ is the value that gives the maximum margin on φk(S) for this W ′, i.e. θ′

is the average of the smallest value of W ′ · φk(xi,+) and the largest value of
W ′ · φk(xj,−).

Since each positive example x+ in S has at least .99n2/3 ones, we have W ′ ·
φ(x+) ≥ ρk(.99n2/3). Since each positive example has at most 1.01n2/3 ones,
each positive example in the sample contributes at most ρk(1.01n2/3) ones to

W ′, so ‖W ′‖ ≤
√

mρk(1.01n2/3). Finally, since each negative example x− in the
sample and each positive example x+ in the sample share at most 1.01n1/3 ones,
for any x− in the sample W ′ · φ(x−) ≤ mρk(1.01n1/3). Putting these conditions
together, we get that the margin of h′ on the sample is at least

1

2
· ρk(.99n2/3) −mρk(1.01n1/3)

√

mρk(1.01n2/3)

as desired. ut

Lemma 5. If S is a D-typical sample, then the threshold θ in the maximum
margin classifier for S is at least Mh′ .



Proof. Let h(x) = sign(W ·φ(x)− θ) be the maximum margin hypothesis. Since
‖W‖ = 1 we have

θ =
θ

‖W‖ = mh(φk(0n),−1) ≥ mh′(S) ≥Mh′

where the second equality holds because W · φ(0n) = 0 and the last inequality
is by Lemma 4. ut

Lemma 6. If the maximum margin algorithm uses the kernel Kk for k = ω(1)

when learning f(x) under D then with probability 1− 2−nΩ(1)

its hypothesis has
error greater than ε = 1

4·2t(n) = 1
4n .

Proof. Let S be the sample used for learning and let h(x) = sign(W · φk(x)− θ)
be the maximum margin hypothesis. It is well known (see e.g. Proposition 6.5
of [21]) that the maximum margin weight vector W is a linear combination of
the support vectors, i.e. of certain examples φk(x) in the sample φk(S). Hence
the only coordinates WT of W that can be nonzero are those corresponding to
features (conjunctions) T such that xT = 1 for some example x in S.

By Lemma 2 we have that with probability 1 − 2−nΩ(1)

the sample S is D-
typical. Consider any z ∈ Z(S). It follows from the above observations on W
that W ·φk(z) is a sum of at most mρk(1.01n1/3) nonzero numbers, and moreover
the sum of the squares of these numbers is at most 1. Thus by Observation 1 we
have that W · φk(z) ≤

√

mρk(1.01n1/3). The positive example z is erroneously
classified as negative by h if θ > W · φk(z); by Lemma 5 this inequality holds if

1

2
· ρk(.99n2/3) −mρk(1.01n1/3)

√

mρk(1.01n2/3)
>

√

mρk(1.01n1/3),

i.e. if

ρk(.99n2/3) > 2m
√

ρk(1.01n1/3)ρk(1.01n2/3) +mρk(1.01n1/3). (3)

We prove in Appendix A that this holds for any k = ω(1).
Finally, observe that positive examples have probability at least 1

2t(n) = 1
n .

The above argument shows that any z ∈ Z(S) is misclassified, and Lemma 3

guarantees that the relative weight of Z(S) in positive examples is 1 − 2−nΩ(1)

.
Thus the overall error rate of h under D is at least 1

4·2t(n) = 1
4n as claimed. ut

Together, Lemma 1 and Lemma 6 imply Result 1:

Theorem 3. For any value of k, if the maximum margin algorithm uses the

kernel Kk when learning f(x) under D then with probability 1 − 2−nΩ(1)

its
hypothesis has error greater than ε = 1

4·2t(n) = 1
4n .

With a small modification we can also obtain Result 2. In particular, since
we do not need to deal with small k we can use a simple function f = x1 and
modify D slightly so that the probability that f(x) = 1 is 0.5. Now the argument
of Lemma 6 yields



Theorem 4. For k = ω(1), if the maximum margin algorithm uses the ker-

nel Kk when learning f(x) = x1 under D then with probability 1 − 2−nΩ(1)

its

hypothesis has error at least ε = 1
2 − 2−nΩ(1)

.

4 Uniform Distribution

While Theorem 3 tells us that the Kk-maximum margin learner is not a PAC
learning algorithm for monotone DNF in the distribution-free PAC model, it
does not rule out the possibility that the Kk-maximum margin learner might
succeed for particular probability distributions such as the uniform distribution
on {0, 1}n. In this section we investigate the uniform distribution.

In Section 3 we took advantage of the fact that 0n occurred with high weight
under the distribution D. This let us give a lower bound (of 0) on the value of
W · φk(x) for some negative example in the sample, and we then could argue
that the value of θ in the maximum margin classifier must be at least as large
as mS . For the uniform distribution, though, this lower bound no longer holds,
so we must use a more subtle analysis.

Before turning to the main result, it is easy to observe that the proof of
Lemma 1 goes through for the uniform distribution as well (we actually gain a
factor of 2). This therefore proves Result 3: if the algorithm uses too low a degree
k then its hypothesis cannot possibly be a sufficiently accurate approimation of
the target. In contrast, the next result will show that if a rather large k is used
then the algorithm is likely to overfit.

For the next result, we consider the target function f(x) = x1. Let S = S+ ∪
S− be a data set drawn from the uniform distribution U and labelled according
to the function f(x) where S+ = {〈xi,+, 1〉}i=1,...,m+ are the positive examples
and S− = {〈xj,−,−1〉}j=1,...,m−

are the negative examples. Let ui denote |xi,+|
the weight of the i-th positive example, and let the positive examples be ordered
so that u1 ≤ u2 ≤ · · · ≤ um+ . Similarly let vj denote |xj,−| the weight of the
j-th negative example with v1 ≤ v2 ≤ · · · ≤ vm− .

Definition 6. A sample S is a U-typical sample if

– Every example x ∈ S satisfies 0.49n ≤ |x| ≤ 0.51n.
– Every pair of positive and negative examples xi,+, xj,− in S satisfy xi,+ ·
xj,− ≤ 0.26n.

A straightforward application of Chernoff bounds yields the next two lemmas:

Lemma 7. For m = poly(n), with probability 1−2−Ω(n) a random i.i.d. sample
of m draws from U is a U-typical sample.

Definition 7. Let S be a sample. The set Z(S) includes all positive examples z
such that every positive example x in S satisfies x · z ≤ 0.26n.

Lemma 8. Let S be a U-typical sample of size m = poly(n) examples. Then
ProbU [z ∈ Z(S)|f(z) = 1] = 1 − 2−Ω(n).



The following lemma is analogous to Lemma 4:

Lemma 9. Let S be a U-typical sample of size m. Then the maximal margin
mS satisfies

mS ≥ 1

2

(

1√
m

√

ρk(u1) −
√

mρk(.26n)

)

.

Proof. We exhibit an explicit linear threshold function h′ which has this margin.
Let h′(x) = sign(W ′ · φk(x) − θ′) be defined as follows:

– For each positive example xi,+ in S, pick a set of ρk(u1) features (monomials)
which take value 1 on xi,+. This can be done since each positive example
xi,+ has at least u1 bits which are 1. For each feature T in each of these sets,
assign W ′

T = 1.
– For all remaining features T set W ′

T = 0.
– Set θ′ to be the value that gives the maximum margin on φk(S) for this W ′,

i.e. θ′ is the average of the smallest value of W ′ · φk(xi,+) and the largest
value of W ′ · φk(xj,−).

Note that since each positive example contributes at most ρk(u1) nonzero coef-
ficients to W ′, the number of 1’s in W ′ is at most mρk(u1), and hence ‖W ′‖ ≤
√

mρk(u1). By construction we also have that each positive example xi,+ satis-
fies W ′ · φk(xi,+) ≥ ρk(u1).

Since S is a U-typical sample, each negative example xj,− in S shares at most
.26n ones with any positive example in S. Hence the value of W ′ · φk(xj,−) is a
sum of at most mρk(.26n) numbers whose squares sum to at most mρk(u1). By
Observation 1 we have that W ′ · φk(xj,−) ≤

√

mρk(.26n)
√

mρk(u1).
The lemma follows by combining the above bounds on ‖W ′‖, W ′ · φk(xi,+)

and W ′ · φk(xj,−). ut
It turns out that the relative sizes of u1 and v1 (the weights of the lightest

positive and negative examples in S) play an important role.

Definition 8. A sample S of size m is positive-skewed if u1 ≥ v1 +B, i.e. the
lightest positive example in S weighs at least B more than the lightest negative

example, where B = 1
66

√

n
log m .

The following lemma, which we prove in Appendix B, shows that a random
sample is positive skewed with constant probability:

Lemma 10. Let S be a sample of size m = poly(n) drawn from the uniform
distribution. Then S is positive-skewed with probability at least 0.029.

Now we can give a lower bound on the threshold θ for the maximum margin
classifier.

Lemma 11. Let S be a labeled sample of size m which is U-typical and positive
skewed, and let h(x) = sign(W · φk(x) − θ) be the maximum margin hypothesis
for S. Then

θ ≥ 1

2

(

1√
m

√

ρk(u1) −
√

mρk(.26n)

)

−
√

ρk(u1 −B).



Proof. Since S is positive-skewed we know that W · φk(x1,−) is a sum of at
most ρk(u1 −B) weights WT , and since W is normalized the sum of the squares
of these weights is at most 1. By Observation 1 we thus have W · φk(x1,−) ≥
−

√

ρk(u1 −B). Since θ ≥W ·φk(x1,−)+mS, together with Lemma 9 this proves
the lemma. ut

Putting all of the pieces together, we have:

Theorem 5. If the maximum margin algorithm uses the kernel Kk for k =

ω(
√
n log

3
2 n) when learning f(x) = x1 under the uniform distribution then with

probability at least 0.028 its hypothesis has error ε = 1
2 − 2−Ω(n).

Proof. By Lemmas 7 and 10, the sample S used for learning is both U-typical and
positive skewed with probability at least 0.029−1/2−Ω(n) > 0.028. Consider any
z ∈ Z(S). Using the reasoning from Lemma 6, we have that W ·φ(z) is a sum of
at most mρk(.26n) numbers whose squares sum to 1, so W ·φ(z) ≤

√

mρk(.26n).
The example z is erroneously classified as negative by h if

1

2

(

1√
m

√

ρk(u1) −
√

mρk(.26n)

)

−
√

ρk(u1 −B) >
√

mρk(.26n).

so it suffices to show that

√

ρk(u1) > 3m
(

√

ρk(.26n) +
√

ρk(u1 −B)
)

. (4)

In Appendix C we show that this holds for all k = ω(
√
n log

3
2 n) as required.

The above argument shows that any z ∈ Z(S) is misclassified, and Lemma 8
guarantees that the relative weight of Z(S) in positive examples is 1 − 2−Ω(n).
Since Prx∈U [f(x) = 1] is 1/2, we have that with probability at least 0.028 the
hypothesis h has error rate at least ε = 1

2 − 2−Ω(n), and the theorem is proved.
ut

5 Conclusions and Future Work

Boolean kernels offer an interesting new algorithmic approach to one of the ma-
jor open problems in computational learning theory, namely learnability of DNF
expressions. We have studied the performance of a maximum margin algorithm
with the Boolean kernels, giving negative results for several settings of the prob-
lem. Our results indicate that the maximum margin algorithm can overfit even
when learning simple target functions and using natural and expressive kernels
for such functions, and even when combined with structural risk minimization.
We hope that these negative results will be used as a tool to explore alternate
approaches which may succeed; we now discuss these briefly.

One direction for future work is to modify the basic learning algorithm.
Many interesting variants of the basic maximum margin algorithm have been
used in recent years, such as soft margin criteria, kernel regularization, etc.. It



may be possible to prove positive results for some DNF learning problems using
these approaches. A starting point would be to test their performance on the
counterexamples (functions and distributions) which we have constructed.

A more immediate goal is to close the gap between small and large k in our
results for the uniform distribution. It is well known [24] that when learning
polynomial size DNF under uniform, conjunctions of length ω(logn) can be
ignored with little effect. Hence the most interesting setting of k for the uniform
distribution learning problem is k = Θ(log n). Learning under uniform with a
k = Θ(log n) kernel is qualitatively quite different from learning with the large
values of k which we were able to analyze. For example, for k = Θ(log n) if a
sufficiently large polynomial size sample is taken, then with very high probability
all features (monomials of size at most k) are active in the sample.

As a first concrete problem in this scenario, one might consider the question
of whether a k = Θ(log n) kernel maximum margin algorithm can efficiently PAC
learn the target function f(x) = x1 under uniform. For this problem it is easy
to show that that the naive hypothesis h′ constructed in our proofs achieves
both a large margin and high accuracy. Moreover, it is possible to show that
with high probability the maximum margin hypothesis has a margin which is
within a multiplicative factor of (1+ o(1)) of the margin achieved by h′. Though
these preliminary results do not answer the above question they suggest that
the answer may be positive. A positive answer, in our view, would be strong
motivation to analyze the general case.
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Appendix

A Proof of Equation 3

To show that

ρk(.99n2/3) > 2m
√

ρk(1.01n1/3)ρk(1.01n2/3) +mρk(1.01n1/3)

it suffices to show that

ρk(.99n2/3) > 3m
√

ρk(1.01n1/3)ρk(1.01n2/3). (5)

The proof uses several cases depending on the value of k relative to n.

Case 1: k ≤ 0.505n1/3. Since ρk(`) =
∑k

i=1

(

`
i

)

, for k ≤ `/2 we have that

ρk(`) ≤ k
(

`
k

)

. For all k we have ρk(`) ≥
(

`
k

)

so it suffices to show that

(

.99n2/3

k

)

> 3mk

√

(

1.01n1/3

k

)(

1.01n2/3

k

)

which is equivalent (clearing denominators from the binomial coefficients) to

k−1
∏

i=0

(.99n2/3 − i) > 3mk

√

√

√

√

k−1
∏

i=0

(1.01n1/3 − i)(1.01n2/3 − i).

We now use the fact that for i ≥ 0 we have (A − i)(B − i) ≤ (
√
AB − i)2

provided that 2
√
AB < A + B; it is easy to see that this latter condition holds

for A = 1.01n1/3, B = 1.01n2/3. It thus suffices to show that

k−1
∏

i=0

(.99n2/3 − i) > 3mk

k−1
∏

i=0

(1.01n1/2 − i)

which in turn is implied by

(

.99n2/3

1.01n1/2

)k

> 3mn

(we used the fact that k ≤ n to obtain the right-hand side above). This holds as

long as k > 6 · log(3mn)
log 0.98n , which is true for any m = poly(n) and k = ω(1).

Case 2: 0.505n1/3 ≤ k ≤ 0.25 · 0.99n2/3. In this case we use the bounds
( `

k )k ≤ ρk(`) =
∑k

i=1

(

`
i

)

≤ ( e`
k )k for the first and third occurrences of ρk in

equation (5) and we use ρk(`) ≤ 2` for the second occurrence. It thus suffices to
show that

(

.99n2/3

k

)k

> 3m

√

(

e · 1.01n2/3

k

)k

· 21.01n1/3



Since 1.01n1/3 ≤ 2k it suffices to show that

(

.99n2/3

k

)k

> 3m

(

e · 1.01n2/3

k

)k/2

· 2k

which holds (taking k-th roots and rearranging) if and only if

1

2
· .99n2/3

k
·

√
k

n1/3
√

1.01 · e
=

1

2

(

.99√
1.01 · e

)

n1/3

√
k
> (3m)1/k.

Using our upper bound on k on the left side, the previous inequality holds if

.99√
1.01 · e

· 2√
.99

> (3m)1/k.

The left side is greater than 1.2 and the right side is 1+ o(1) (since m = poly(n)
and k = Ω(n1/3)) so Case 2 is proved.

Case 3: 0.25 · 0.99n2/3 ≤ k ≤ 0.5 · 0.99n2/3. We use the following bound
(proved later) which holds for 0 < α < 1 :

αq
∑

i=1

(

q

i

)

≥ 1√
2πq

2H(α)q (6)

whereH(p) = −p log p−(1−p) log(1−p) is the binary entropy function. Applying
this bound to the left side of (5) with q = .99n2/3 and α = k/q, we have
.25 ≤ α ≤ .5 so H(α) > .81. Thus it suffices to show that

1√
2π · .99n1/3

20.81·0.99n2/3

> 3m
√

21.01n2/3+1.01n1/3 .

This is easily seen to hold for any m = poly(n).
To prove the bound (6) we use Stirling’s approximation

√
2πn(n

e )n ≤ n! ≤
√

2πn(n
e )n

√

1 + 1
2n ; in fact we use a weaker form with

√
2 instead of

√

1 + 1
2n

in the upper bound. We thus have

αq
∑

i=1

(

q

i

)

≥
(

q

αq

)

=
q!

(αq)!((1 − α)q)!
≥

√
2πq

2
√

2παq
√

2π(1 − α)q

(q

e

)q
(

e

αq

)αq (

e

(1 − α)q

)(1−α)q

=
1

2
√

2πα(1 − α)q
α−αq(1 − α)−(1−α)q =

1

2
√

2πα(1 − α)q
2qH(α).

Equation (6) follows since α(1 − α) ≤ 1/4.

Case 4: k ≥ 0.5·0.99n2/3. In this case we have ρk(.99n2/3) =
∑k

i=1

(

.99n2/3

i

)

≥
1
22.99n2/3

. Since ρk(`) is always at most 2` it suffices to show that

1

2
· 20.99n2/3

> 3m
√

21.01n2/3+1.01n1/3

which is easily seen to hold for any m = poly(n). Thus Equation (5) holds for
all k = ω(1).



B Proof of Lemma 10

Recall Lemma 10:

Lemma 10 Let S be a sample of size m = poly(n) drawn from the uniform
distribution. Then S is positive-skewed with probability at least 0.029.

Our first step is to reduce to a situation in which the positive examples and
negative examples are independent from each other.3

Let M−,M+ be any two positive integers. Consider the following new prob-
abilistic experiment which we call EM−,M+ : first M− draws are made from a
binomial distribution B(n − 1, 1

2 ) to obtain (sorted) values v1 ≤ · · · ≤ vM−
,

and then M+ draws are made from 1 + B(n − 1, 1
2 ) to obtain (sorted) values

u1 ≤ · · · ≤ uM+. The values v1, . . . , vM−
are thus distributed identically to

the weights of the negative examples in the Lemma 10 scenario conditioned on
m− = M−, and likewise for the u1, . . . , uM+ and the positive examples. We
define the following event:

– Event AM−,M+: u1 ≥ v1 +B.

For succinctness let us write Am for the event (in our original scenario of a
size-m sample S drawn from U) that S is positive-skewed. We then have

Pr[Am] ≥ Pr[.49m < m−,m+ < .51m] · Pr[A | .49m < m−,m+ < .51m]

≥ (1 − 2Ω(m)) Pr[Am | .49m < m−,m+ < .51m]

≥ (1 − 2Ω(m)) min
.49m<M−,M+<.51m

Pr[Am | m− = M− and m+ = M+]

= (1 − 2Ω(m)) min
.49m<M−,M+<.51m

Pr[AM−,M+ ].

It thus suffices to show that for any values M−,M+ in (.49m, .51m) we have
Pr[AM−,M+ ] ≥ 0.0291. Fix any M−,M+ in this range; we will henceforth only
consider the experiment EM−,M+ in which any event involving only the ui’s is
independent from any event involving only vi’s.

Let n′ denote n − 1. The idea of the next part of the proof is to show that
with some probability v1 falls into a relatively small left tail of the distribution
while u1 is bounded away from this tail. This gives us a gap between u1 and v1
as desired.

We consider u1 first. For 1 ≤ i ≤ n′ let ψ(i) denote
∑i−1

j=0

(

n′

j

)

2−n′

. Note that

ψ(i) is precisely the weight in the “left tail up to i” of the distribution 1+B(n′, 1
2 ).

LetX be the event that ψ(u1) ≥ 1
2m and u1 ≤ n′/2. In order to have ψ(u1) <

1
2m ,

at least one of the M+ < .51m draws from 1 + B(n′, 1
2 ) must land in the “left

tail” of weight less than 1
2m ; by a union bound the probability that this occurs is

3 Note that this is not the case in S because the total number of examples is m. So,
for example, if we condition on the lightest positive example weighing much more
than n/2, then this biases m+ (the number of positive examples) down, hence biases
m
−

up, and thus biases the weight of the lightest negative example down.



less than 0.51
2 and hence Pr[ψ(u1) ≥ 1

2m ] ≥ 1− 0.51
2 > 0.745. The probability that

u1 ≥ n′/2 is easily seen to be 2−Ω(m) and thus Pr[X ] > 0.745− 2−Ω(m) > 0.74.

Next consider v1. For 1 ≤ i ≤ n′ let ϕ(i) denote
∑i

j=0

(

n′

j

)

2−n′

; similar to

ψ(i) we have that ϕ(i) captures the weight in the left tail of B(n′, 1
2 ). Let Y be

the event that ϕn(v1) ≤ 1
4m . This event fails to occur only if each of the M−

draws from B(n′, 1
2 ) misses the left tail of weight at most 1

4m . We need to be
slightly careful; note that ϕ(·) takes discrete values, so this tail may actually
weigh less than 1

4m (e.g. conceivably ϕ(22) = 1
m2 and ϕ(23) = 1

m .) To take care
of this we will now show that this tail cannot weigh much less than 1

4m .
For c ≥ 1 let σ(c) denote the largest integer such that ϕ(σ(c)) ≤ 1

cm .

Claim. For any constant c ≥ 1 we have ϕ(σ(c)) ≥ 1
3cm .

Proof. Suppose not; then we have ϕ(σ(c)) < 1
3cm and ϕ(σ(c) + 1) > 1

cm . This

implies that
(

n′

σ(c)+1

)

> 2
∑σ(c)

j=0

(

n′

j

)

so in particular
(

n′

σ(c)+1

)

> 2
(

n′

σ(c)

)

. This

implies that n′ − σ(c) > 2σ(c) + 2 which implies σ(c) < (n′ − 2)/3. But then
Chernoff bound implies that for such values of σ(c), ϕ(σ(c) + 1) = 2−Ω(n′)

which contradicts the inequality ϕ(σ(c) + 1) > 1
cm since c is constant and m is

polynomial in n. ut
The claim implies that the left tail of weight at most 1

4m must have weight
at least 1

12m . Hence the probability that each of the M− > .49m draws from
B(n′, 1

2 ) misses this left tail is at most (1 − 1
12m ).49m. This is at most 0.96 and

hence Pr[Y ] ≥ 0.04.

Claim. If events X and Y both occur then event AM−,M+ occurs.

Proof. Suppose, for the sake of contradiction, that events X and Y both occur
but u1 ≤ v1 + (B − 1). Since X occurs we have ψ(u1) ≥ 1

2m , i.e.

ψ(u1) =

u1−1
∑

j=0

(

n′

j

)

2−n′ ≥ 1

2m
.

On the other hand since Y occurs we have ϕ(v1) ≤ 1
4m , so

v1
∑

j=0

(

n′

j

)

2−n′ ≤ 1

4m
. (7)

These two inequalities together clearly imply u1 > v1. In fact they imply

u1−1
∑

j=v1+1

(

n′

j

)

2−n′ ≥ 1

4m
. (8)

Recalling that u1 ≤ v1 + (B − 1), we have that the above sum has at most

B − 2 terms. Now since u1 <
n′

2 the largest of these terms is
(

n′

u1−1

)

2−n′

. By
Equation (8) we thus have that

(

n′

u1 − 1

)

2−n′ ≥ 1

4(B − 2)m
. (9)



Now we use the following lemma proved later:

Lemma 12. For all j such that u1 − 3B ≤ j ≤ u1 − 1 we have
(

n′

j

)

≥ 1
2

(

n′

u1−1

)

.

This lemma, together with Equation (9), implies that we have

1

4m
<

2B

2

1

4(B − 2)m
≤

u1−B−1
∑

j=u1−3B

1

2

(

n′

u1 − 1

)

2−n′ ≤
u1−B−1

∑

j=u1−3B

(

n′

j

)

2−n′

<

v1−1
∑

j=u1−3B

(

n′

j

)

2−n′

but this contradicts (7), so the claim is proved. ut

Since eventsX and Y are independent we have that Pr[AM−,M+ ] ≥ Pr[X ] Pr[Y ] ≥
0.0296 so Lemma 10 is proved. ut

Proof of Lemma 12: Clearly it suffices to prove that 2
(

n′

u1−3B

)

≥
(

n′

u1−1

)

. By

event X we know that ψ(u1) ≥ 1
2m so a standard Chernoff bound tells us that

u1 − 1 ≥ n′

2 − 2
√
n′ logm. Let c = n′

2 − (u1 − 1) so 0 < c ≤ 2
√
n′ logm. Now

observe that for any b such that b < 0.1n′ we have

(

n′

n′/2−b

)

(

n′

n′/2−b−1

) =
n′/2 + b+ 1

n′/2− b
= 1 +

2b+ 1

n′/2 − b
< 1 +

2b+ 1

0.4n′ = 1 +
5b+ 2.5

n′

We thus have
(

n′

u1−1

)

(

n′

u1−3B

) =

(

n′

u1−1

)

(

n′

u1−2

) ·
(

n′

u1−2

)

(

n′

u1−3

) · · · · ·
(

n′

u1−3B+1

)

(

n′

u1−3B

)

<

(

1 +
5c+ 2.5

n′

) (

1 +
5(c+ 1) + 2.5

n′

)

· · ·
(

1 +
5(c+ 3B − 1) + 2.5

n′

)

<

(

1 +
5(c+ 3B) + 2.5

n′

)3B

which by (1 + 1
x )x ≤ e is at most

√
e < 2 provided that

3B <
n′

10(c+ 3B) + 5
. (10)

Since c ≤ 2
√
n′ logm and we may assume 5 <

√
n′ logm, it is easily verified that

(10) is satisfied if B = 1
66

√

n
log m , and Lemma 12 is proved. ut

C Proof of Equation (4)

We must show that
√

ρk(u1) > 3m
(

√

ρk(.26n) +
√

ρk(u1 −B)
)

.



Since we are assuming that the sample S is U-typical, we have u1 ≥ .49n so
u1 −B > 0.26n. It thus suffices to show that

ρk(u1) > 36m2ρk(u1 −B).

Case 1: k ≤ 0.5 · (u1 − B). Since ρk(`) =
∑k

i=1

(

`
i

)

, for k ≤ `/2 we have

ρk(`) ≤ k
(

`
k

)

. Also for all k, ρk(`) ≥
(

`
k

)

so it suffices to show that
(

u1

k

)

> 36m2k

(

u1 −B

k

)

.

This inequality is true if
(

u1

u1 −B

)k

> 36m2k.

Recall that B = 1
66

√

n
log m . Now using the fact that

u1

u1 −B
= 1 +

B

u1 −B
> 1 +

B

n
= 1 +

1

66
√
n logm

it suffices to show that
(

1 +
1

66
√
n logm

)k

> 36m2k.

Using the fact that 1 + x ≥ ex/2 for 0 < x < 1, we can see that this inequality
holds if k > 132

√

n log(m) ln(36m2n). Since m = poly(n), this is the case for

k = ω(
√
n log

3
2 n).

Case 2: 0.5 · (u1 − B) ≤ k ≤ 0.5u1. Since ρk(u1 −B) ≤ 2u1−B , it suffices to
show that

u1
2 −B
∑

i=1

(

u1

i

)

> 36m2 · 2u1−B .

Since
√
u1 > B it suffices to show that

u1
2 −√

u1
∑

i=1

(

u1

i

)

> 36m2 · 2u1−B .

Standard properties of the binomial coefficients imply that the left side above

is Θ(2u1 ). Since m = poly(n) and B = 1
66

√

n
log m this is greater than the right

side.

Case 3: k > 0.5u1. In this case we have ρk(u1) =
∑k

i=1

(

u1

i

)

> 1
22u1 and

ρk(u1 −B) ≤ 2u1−B so it suffices to show that

1

2
2u1 > 36m22u1−B .

As in the previous case this holds for the given values of m and B.


