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Abstract: We give a “regularity lemma” for degree-d polynomial threshold functions
(PTFs) over the Boolean cube {−1,1}n. Roughly speaking, this result shows that every
degree-d PTF can be decomposed into a constant number of subfunctions such that almost
all of the subfunctions are close to being regular PTFs. Here a “regular” PTF is a PTF
sign(p(x)) where the influence of each variable on the polynomial p(x) is a small fraction of
the total influence of p.

As an application of this regularity lemma, we prove that for any constants d ≥ 1,ε > 0,
every degree-d PTF over n variables can be approximated to accuracy ε by a constant-degree
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PTF that has integer weights of total magnitude Oε,d(nd). This weight bound is shown to be
optimal up to logarithmic factors.

1 Introduction

A polynomial threshold function (henceforth PTF) is a Boolean function f : {−1,1}n→{−1,1},

f (x) = sign(p(x)),

where p : {−1,1}n → R is a polynomial with real coefficients. If p has degree d, we say that f is a
degree-d PTF. Low-degree PTFs are a natural generalization of linear threshold functions (the case d = 1)
and hence are of significant interest in complexity theory, see e.g. [1, 5, 27, 29, 10, 14, 17, 25, 32, 34]
and many other works.

The influence of coordinate i on a function g : {−1,1}n→ R measures the extent to which xi affects
the output of g. More precisely, we have Infi(g) = ∑S3i ĝ(S)2, where ∑S⊆[n] ĝ(S)χS(x) is the Fourier
expansion of g. The total influence of g is the sum of all n coordinate influences, Inf(g) = ∑

n
i=1 Infi(g).

See [28, 19] for background on influences.
We say that a polynomial p : {−1,1}n→ R is “τ-regular” if the influence of each coordinate on p

is at most a τ fraction of p’s total influence (see Section 3 for a more detailed definition). A PTF f is
said to be τ-regular if f = sign(p), where p is τ-regular. Roughly speaking, regular polynomials and
PTFs are useful because they inherit some nice properties of PTFs and polynomials over Gaussian (rather
than Boolean) inputs; this intuition can be made precise using the “invariance principle” of Mossel et al.
[26]. This point of view has been useful in the d = 1 case for constructing pseudorandom generators [7],
low-weight approximators [33, 11], and other results for LTFs [30, 24].

1.1 Our results

A regularity lemma for degree-d PTFs. A number of useful results in different areas, loosely referred
to as “regularity lemmas,” show that for various types of combinatorial objects an arbitrary object can be
approximately decomposed into a constant number of “pseudorandom” sub-objects. The best-known
example of such a result is Szemerédi’s classical regularity lemma for graphs [35], which (roughly) says
that any graph can be decomposed into a constant number of subsets such that almost every pair of
subsets induces a “pseudorandom” bipartite graph. Another example is Green’s recent regularity lemma
for Boolean functions [15]. Results of this sort are useful because different properties of interest are
sometimes easier to establish for pseudorandom objects, and via regularity lemmas it may be possible
to prove the corresponding theorems for general objects. We note also that results of this sort play an
important part in the “structure versus randomness” paradigm that has been prominent in recent work in
combinatorics and number theory, see e.g. [36].

We prove a structural result about degree-d PTFs which follows the above pattern; we thus refer to it
as a “regularity lemma for degree-d PTFs.” Our result says that any low-degree PTF can be decomposed
as a small depth decision tree, most of whose leaves are close to regular PTFs:
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Theorem 1.1. Let f (x) = sign(p(x)) be any degree-d PTF. Fix any τ > 0. Then f is equivalent to a
decision tree T, of depth

depth(d,τ) :=
1
τ
·
(
d log

1
τ

)O(d)

with variables at the internal nodes and a degree-d PTF fρ = sign(pρ) at each leaf ρ , with the following
property: with probability at least 1− τ , a random path1 from the root reaches a leaf ρ such that either
(i) pρ is τ-regular, or (ii) fρ is τ-close to a constant function.

Regularity is a natural way to capture the notion of pseudorandomness for PTFs, and results of interest
can be easier to establish for regular PTFs than for arbitrary PTFs (this is the case for our main application,
constructing low-weight approximators, as we describe below). Our regularity lemma provides a general
tool to reduce questions about arbitrary PTFs to regular PTFs; it has been used in this way as an essential
ingredient in the recent proof that bounded independence fools all degree-2 PTFs [9] and (subsequently to
the conference publication of this work [12]) degree-d PTFs [20] (see Section 9). We note that the recent
construction of pseudorandom generators for degree-d PTFs of [25] also crucially uses a decomposition
result which is very similar to our regularity lemma; we discuss the relation between our work and [25] in
more detail below and in Section 1.2. Finally, Kane’s recent work establishing the correct exponent in the
Gotsman-Linial conjecture also uses a decomposition result which is very similar to our regularity lemma
[22].

Application: Every low-degree PTF has a low-weight approximator. [33] showed that every linear
threshold function (LTF) over {−1,1}n can be ε-approximated by an LTF with integer weights w1, . . . ,wn

such that ∑i w2
i = n ·2Õ(1/ε2). (Here and throughout the paper we say that g is an ε-approximator for f

if f and g differ on at most ε2n inputs from {−1,1}n.) This result and the tools used in its proof found
several subsequent applications in complexity theory and learning theory, see e.g. [7, 30].

We apply our regularity lemma for degree-d PTFs to prove an analogue of the [33] result for low-
degree polynomial threshold functions. Our result implies that for any constants d,ε , any degree-d PTF
has an ε-approximating PTF of constant degree and (integer) weight O(nd).

When we refer to the weight of a PTF f = sign(p(x)), we assume that all the coefficients of p are
integers; by “weight” we mean the sum of the squares of p’s coefficients. We prove

Theorem 1.2. Let f (x) = sign(p(x)) be any degree-d PTF. Fix any ε > 0. Then there is a polynomial
q(x) of degree D = (d/ε)O(d) and weight 2(d/ε)O(d) ·nd such that sign(q(x)) is ε-close to f .

A result on the existence of low-weight ε-approximators for PTFs is implicit in the recent work [10].
They show that any degree-d PTF f has Fourier concentration ∑|S|>1/εO(d) f̂ (S)2 ≤ ε , and this easily
implies that f can be ε-approximated by a PTF with integer weights. (Indeed, recall that the learning
algorithm of [23] works by constructing such a PTF as its hypothesis.) The above Fourier concentration
bound implies that there is a PTF of degree 1/εO(d) and weight n1/εO(d)

which ε-approximates f . In
contrast, our Theorem 1.2 can give a weaker degree bound (if d = 1/εω(1)), but always gives a much
stronger weight bound in terms of the dependence on n. We mention here that Podolskii [31] has shown

1A random path corresponds to the standard uniform random walk on the tree.
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that for every constant d ≥ 2, there is a degree-d PTF for which any exact representation requires weight
nΩ(nd).

We also prove lower bounds showing that weight Ω̃(nd) is required to ε-approximate degree-d PTFs
for sufficiently small constant ε; see Section 4.3.

Techniques. An important ingredient in our proof of Theorem 1.1 is a case analysis based on the “critical
index” of a degree-d polynomial (see Section 3 for a formal definition). The critical index measures the
first point (going through the variables from most to least influential) at which the influences “become
small;” it is a natural generalization of the definition of the “critical index” of a linear form [33] that has
been useful in several subsequent works [30, 7, 11]. Roughly speaking we show that

• If the critical index of p is large, then a random restriction fixing few variables (the variables with
largest influence in p) causes sign(p) to become a close-to-constant function with non-negligible
probability; see Section 3.1.

• If the critical index of p is positive but small, then a random restriction as described above causes p
to become regular with non-negligible probability; see Section 3.2.

• If the critical index of p is zero, then p is already a regular polynomial as desired.

Structure of the paper: Section 2 contains notation and background. In Section 3 we prove our main
result (Theorem 1.1). In Section 4 we prove our upper bound regarding integer-weight approximations
(Theorem 1.2) and also give a nearly matching lower bound for any constant accuracy ε > 0.

1.2 Related Work

Theorem 1.1 and the results in Sections 3.1 and 3.2 strengthen earlier results with a similar flavor that
appeared in the work of Diakonikolas et al. [8]. Furthermore, similar structural results were proven
simultaneously and independently by Ben-Eliezer et al. [3] and by Harsha et al. and Meka et al. [17, 25].
We describe each of these works below and their structural results for PTFs as they compare to our
Theorem 1.1.

The results in [8] were obtained simultaneously and independently by Diakonikolas et al. [10] and
Harsha et al. [17], and [8] is the resulting merge (which followed the approach of [10]). A regularity
lemma as in Theorem 1.1 is not explicitly derived in [8]; using their Lemmas 5.10 and 5.9 and the ideas
present here, one may obtain the conclusion of Theorem 1.1, but with depth(d,τ) := 1

τ
(d logn log 1

τ
)O(d).

Note the dependence on n; eliminating this dependence is essential for our low-weight approximator
application and for the applications in [9, 20]. We eliminate the dependence on the dimension partly by
developing dimension-independent versions of Lemmas 5.10 and 5.9, which we do in Lemmas 3.5 and
3.9, respectively.

Harsha et al., [17] give a result which is very similar to Lemma 3.14, the main component in our
proof of Theorem 1.1. By applying the result from [17], Meka and Zuckerman [25] give a dimension-
independent regularity lemma which is quite similar to our Theorem 1.1. They obtain a small-depth
decision tree such that most leaves are ε-close to being ε-regular under a stronger definition of regularity,
which we will call “ε-regularity in l2” to distinguish it from our notion.
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Let p : {−1,1}n→ R be a polynomial and ε > 0. We say that the polynomial p is “ε-regular in l2” if√
n

∑
i=1

Infi(p)2 ≤ ε ·
n

∑
i=1

Infi(p).

Recall that in our definition of regularity, instead of upper bounding the l2-norm of the influence
vector I = (Inf1(p), . . . , Infn(p)) by ε times the total influence of p (i.e., the l1 norm of I), we upper
bound the l∞ norm (i.e., the maximum influence). We may thus call our notion “ε-regularity in l∞”.

Note that if a polynomial is ε-regular in l2, then it is also ε-regular in l∞. (And this implication is
easily seen to be essentially tight, e.g. if we have many variables with tiny influence and one variable
with an ε-fraction of the total influence.) For the other direction, if a polynomial is ε-regular in l∞, then it
is
√

ε-regular in l2. (This is also tight if we have 1/ε many variables with influence ε .)

Meka and Zuckerman prove the following statement:

Every degree-d PTF f = sign(p) can be expressed as a decision tree of depth 2O(d) ·
(1/ε2) log2(1/ε) with variables at the internal nodes and a degree-d PTF fρ = sign(pρ)
at each leaf ρ , such that with probability 1− ε , a random root-to-leaf path reaches a leaf ρ

such that fρ is ε-close to being ε-regular in l2. (In particular, for a “good” leaf ρ , either pρ

will be ε-regular in l2 or fρ will be ε-close to a constant).

Theorem 1.1 shows exactly the same statement as the one above if we replace “l2” by “l∞” and the depth
of the tree by (1/ε) · (d log(1/ε))O(d).

Since ε-regularity in l2 implies ε-regularity in l∞, the result of [25] implies a version of Theorem 1.1
which has depth of 2O(d) · (1/ε2) log2(1/ε). Hence the latter result and our result are quantitatively
incomparable to each other. Roughly, if d is a constant (independent of ε), then our Theorem 1.1 is
asymptotically better when ε becomes small. This range of parameters is quite natural in the context of
pseudo-random generators. In particular, in the proof that poly(1/ε)-wise independence ε-fools degree-2
PTFs [9], using [25] instead of Theorem 1.1, would give a worse bound on the degree of independence
(namely, Õ(ε−18) as opposed to Õ(ε−9)). On the other hand, if d = Ω̃(log(1/ε)), then the result of [25]
is better.

Finally, Ben-Eliezer et al. [3] establish the existence of a decision tree such that most leaves are
τ-regular (as opposed to τ-close to being τ-regular):

Every degree-d PTF f = sign(p) can be expressed as a decision tree of depth 2(d/τ)O(d) ·
log(1/τ) with variables at the internal nodes and a degree-d PTF fρ = sign(pρ) at each leaf
ρ , such that with probability 1− τ , a random root-to-leaf path reaches a leaf ρ such that fρ

is τ-regular.

Note that the depth of their tree is exponential in 1/τ .
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2 Preliminaries

We start by establishing some basic notation. We write [n] to denote {1,2, . . . ,n} and [k, `] to denote
{k,k+1, . . . , `}. We write E[X ] and Var[X ] to denote expectation and variance of a random variable X ,
where the underlying distribution will be clear from the context. For x ∈ {−1,1}n and A⊆ [n] we write
xA to denote (xi)i∈A.

For a function f : {−1,1}n→R and q≥ 1, we denote by ‖ f‖q its lq norm, i.e., ‖ f‖q
def
= Ex[|p(x)|q]1/q,

where the intended distribution over x will always be uniform over {−1,1}n. For Boolean-valued functions
f ,g : {−1,1}n→ {−1,1} the distance between f and g, denoted dist( f ,g), is Prx[ f (x) 6= g(x)] where
the probability is over uniform x ∈ {−1,1}n.

We assume familiarity with the basic elements of Fourier analysis over {−1,1}n; see Section 2.1 for
a concise review. Our proofs will use various analytic and probabilistic bounds, which we collect for easy
reference in Section 2.1 below. We call the reader’s attention in particular to Theorem 2.3; throughout the
paper, C (which will be seen to play an important role in our proofs) denotes C2

0 , where C0 is the universal
constant from that theorem.

2.1 Useful Background Results

Fourier Analysis over {−1,1}n and Influences. We consider functions f : {−1,1}n→ R (though we
often focus on Boolean-valued functions which map to {−1,1}), and we think of the inputs x to f as
being distributed according to the uniform probability distribution. The set of such functions forms
a 2n-dimensional inner product space with inner product given by 〈 f ,g〉 = E[ f (x)g(x)]. The set of
functions (χS)S⊆[n] defined by χS(x) = ∏i∈S xi forms a complete orthonormal basis for this space. Given

a function f : {−1,1}n→ R we define its Fourier coefficients by f̂ (S) def
= E[ f (x)χS(x)], and we have that

f (x) = ∑S f̂ (S)χS(x). We refer to the maximum |S| over all nonzero f̂ (S) as the Fourier degree of f .
As an easy consequence of orthonormality we have Plancherel’s identity 〈 f ,g〉 = ∑S f̂ (S)ĝ(S),

which has as a special case Parseval’s identity, E[ f (x)2] = ∑S f̂ (S)2. From this it follows that for every
f : {−1,1}n → {−1,1} we have ∑S f̂ (S)2 = 1. We recall the well-known fact (see e.g. [18]) that
the total influence Inf( f ) of any Boolean function equals ∑S f̂ (S)2|S|. Note that, in this setting, the
expectation and the variance can be expressed in terms of the Fourier coefficients of f by E[ f ] = f̂ ( /0)
and Var[ f ] = ∑ /0 6=S⊆[n] f̂ (S)2.

Let f : {−1,1}n→ R and f (x) = ∑S f̂ (S)χS(x) be its Fourier expansion. The influence of variable i

on f is Infi( f ) def
= ∑S3i f̂ (S)2, and the total influence of f is Inf( f ) = ∑

n
i=1 Infi( f ).

Useful Probability Bounds. We first recall the following moment bound for low-degree polynomials,
which is equivalent to the well-known hypercontractive inequality of [4, 16]:

Theorem 2.1. Let p : {−1,1}n→ R be a degree-d polynomial and q > 2. Then

‖p‖q ≤ (q−1)d/2‖p‖2.

The following concentration bound for low-degree polynomials, a simple corollary of hypercontrac-
tivity, is well known (see e.g. [13, 2]):
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Theorem 2.2. Let p : {−1,1}n→ R be a degree-d polynomial. For any t > ed , we have

Prx[|p(x)| ≥ t‖p‖2]≤ exp(−Ω(t2/d)).

We will also need the following weak anti-concentration bound for low-degree polynomials over the
cube:

Theorem 2.3 ([13, 2]). There is a universal constant C0 > 1 such that for any non-zero degree-d
polynomial p : {−1,1}n→ R with E[p] = 0, we have

Prx[p(x)>C−d
0 · ‖p‖2]>C−d

0 .

Throughout this paper, we let C =C2
0 , where C0 is the universal constant from Theorem 2.3. Note that

since C >C0, Theorem 2.3 holds for C as well.

We denote by Nn the standard n-dimensional Gaussian distribution N(0,1)n. The following two facts
will be useful in the proof of Theorem 1.2, in particular in the analysis of the regular case. The first fact
is a powerful anti-concentration bound for low-degree polynomials over independent Gaussian random
variables: EG∼Nn [p(G)2]1/2):

Theorem 2.4 ([6]). Let p : Rn→ R be a nonzero degree-d multilinear polynomial. For all ε > 0 and
t ∈ R we have

PrG∼Nn

[
|p(G)− t| ≤ ε ·

√
Var[p(G)]

]
≤ O(dε

1/d).

We note that the above bound is essentially tight.
The second fact is a version of the invariance principle of Mossel, O’Donnell and Oleszkiewicz,

specifically Theorem 3.19 under hypothesis H4 in [26]:

Theorem 2.5 ([26]). Let p(x)=∑S⊆[n],|S|≤d p̂(S)χS(x) be a degree-d multilinear polynomial with Var[p] =
1. Suppose each coordinate i ∈ [n] has Infi(p)≤ τ . Then,

sup
t∈R
|Prx[p(x)≤ t]−PrG∼Nn [p(G)≤ t]| ≤ O(dτ

1/(8d)).

3 Main Result: a regularity lemma for low-degree PTFs

Let f : {−1,1}n → {−1,1} be a degree-d PTF. Fix a representation f (x) = sign(p(x)), where p :
{−1,1}n → R is a degree-d polynomial which (w.l.o.g.) we may take to have Var[p] = 1. We as-
sume w.l.o.g. that the variables are ordered in such a way that Infi(p)≥ Infi+1(p) for all i ∈ [n−1].

We now define the notion of the τ-critical index of a polynomial [10] and state its basic properties.

Definition 3.1. Let p : {−1,1}n→ R and τ > 0. Assume the variables are ordered such that Inf j(p)≥
Inf j+1(p) for all j ∈ [n−1]. The τ-critical index of p is the least i such that:

Infi+1(p)≤ τ ·
n
∑

j=i+1
Inf j(p). (3.1)

If (3.1) does not hold for any i we say that the τ-critical index of p is +∞. If p has τ-critical index 0, we
say that p is τ-regular.
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Note that if p is a τ-regular polynomial then maxi Infi(p)≤ dτ since the total influence of p is at most
d. If f (x) = sign(p(x)), we say f is τ-regular when p is τ-regular, and we take the τ-critical index of f to
be that of p. 2 The following lemma says that the total influence ∑

n
i= j+1 Infi(p) goes down geometrically

as a function of j prior to the critical index:

Lemma 3.2. Let p : {−1,1}n→ R and τ > 0. Let k be the τ-critical index of p. For j ∈ [0,k] we have

n
∑

i= j+1
Infi(p)≤ (1− τ) j · Inf(p).

Proof. The lemma trivially holds for j = 0. In general, since j is at most k, we have that Inf j(p) ≥
τ ·∑n

i= j Infi(p), or equivalently ∑
n
i= j+1 Infi(p)≤ (1−τ) ·∑n

i= j Infi(p) which yields the claimed bound.

We will use the fact that in expectation, the influence of an unrestricted variable in a polynomial does
not change under random restrictions:

Lemma 3.3. Let p : {−1,1}n→ R. Consider a random assignment ρ to the variables x1, . . . ,xk and fix
` ∈ [k+1,n]. Then Eρ [Inf`(pρ)] = Inf`(p).

Proof. To prove Lemma 3.3, we first recall an observation about the expected value of Fourier coefficients
under random restrictions (see e.g. [23]):

Fact 3.4. Let p : {−1,1}n→ R. Consider a random assignment ρ to the variables x1, . . . ,xk. Fix any
S⊆ [k+1,n]. Then we have p̂ρ(S) = ∑T⊆[k] p̂(S∪T )ρT and therefore Eρ [p̂ρ(S)2] = ∑T⊆[k] p̂(S∪T )2.

In words, the above fact says that all the Fourier weight on sets of the form S ∪ {any subset of restricted
variables} “collapses” down onto S in expectation. Consequently, the influence of an unrestricted variable
does not change in expectation under random restrictions:

We thus have

Eρ

[
Inf`(pρ)

]
= Eρ

[
∑

`∈S⊆[k+1,n]
p̂ρ(S)2

]
= ∑

T⊆[k]
∑

`∈S⊆[k+1,n]
p̂(S∪T )2

= ∑
`∈U⊆[n]

p̂(U)2 = Inf`(p).

Notation: For S⊆ [n], we write “ρ fixes S” to indicate that ρ ∈ {−1,1}|S| is a restriction mapping xS,
i.e., each coordinate in S, to either −1 or 1 and leaving coordinates not in S unrestricted.

2Strictly speaking, τ-regularity is a property of a particular representation and not of a PTF f , which could have many
different representations. The particular representation we are concerned with will always be clear from context.
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3.1 The large critical index case

The main result of this section is Lemma 3.5, which says that if the critical index of f is large, then a
noticeable fraction of restrictions ρ of the high-influence variables cause fρ to become close to a constant
function.

Lemma 3.5. Let f : {−1,1}n→ {−1,1} be a degree-d PTF f = sign(p). Fix β > 0 and suppose that

f has τ-critical index at least K
def
= α/τ , where α = Ω(d log log(1/β )+ d logd). Then, for at least a

1/(2Cd) fraction of restrictions ρ fixing [K], the function fρ is β -close to a constant function.

Proof. Partition the coordinates into a “head” part H def
= [K] (the high-influence coordinates) and a “tail”

part T = [n]\H. We can write p(x) = p(xH ,xT ) = p′(xH)+q(xH ,xT ), where p′(xH) is the truncation of
p comprising only the monomials all of whose variables are in H, i.e., p′(xH) = ∑S⊆H p̂(S)χS(xH).

Now consider a restriction ρ of H and the corresponding polynomial pρ(xT ) = p(ρ,xT ). It is clear
that the constant term of this polynomial is exactly p′(ρ). To prove the lemma, we will show that for
at least a 1/(2Cd) fraction of all ρ ∈ {−1,1}K , the (restricted) degree-d PTF fρ(xT ) = sign(pρ(xT ))
satisfies PrxT [ fρ(xT ) 6= sign(p′(ρ))]≤ β . Let us define the notion of a good restriction:

Definition 3.6. A restriction ρ ∈ {−1,1}K that fixes H is called good iff the following two conditions
are simultaneously satisfied: (i) |p′(ρ)| ≥ t∗ def

= 1/(2Cd), and (ii) ‖q(ρ,xT )‖2 ≤ t∗ ·
(
Θ(log(1/β )

)−d/2.

Intuitively condition (i) says that the constant term p′(ρ) of pρ has “large” magnitude, while condition
(ii) says that the polynomial q(ρ,xT ) has “small” l2-norm. We claim that if ρ is a good restriction then
the degree-d PTF fρ satisfies PrxT [ fρ(xT ) 6= sign(p′(ρ))]≤ β . To see this claim, note that for any fixed
ρ we have fρ(xT ) 6= sign(p′(ρ)) only if |q(ρ,xT )| ≥ |p′(ρ)|, so to show this claim it suffices to show that
if ρ is a good restriction then PrxT [|q(ρ,xT )| ≥ |p′(ρ)|]≤ β . But for ρ a good restriction, by conditions
(i) and (ii) we have

PrxT [|q(ρ,xT )| ≥ |p′(ρ)|]≤ PrxT

[
|q(ρ,xT )| ≥ ‖q(ρ,xT )‖2 ·

(
Θ(log(1/β )

)d/2
]
,

which is at most β by the concentration bound (Theorem 2.2), as desired. So the claim holds: if ρ is a
good restriction then fρ(xT ) is β -close to sign(p′(ρ)). Thus to prove Lemma 3.5 it remains to show that
at least a 1/(2Cd) fraction of all restrictions ρ to H are good.

We prove this in two steps. First we show (Lemma 3.7) that the polynomial p′ is not too concentrated:
with probability at least 1/Cd over ρ , condition (i) of Definition 3.6 is satisfied. We then show (Lemma 3.8)
that the polynomial q is highly concentrated: the probability (over ρ) that condition (ii) is not satisfied is
at most 1/(2Cd). Lemma 3.5 then follows by a union bound.

Lemma 3.7. We have that Prρ

[
|p′(ρ)| ≥ t∗

]
≥ 1/Cd .

Proof. Using the fact that the critical index of p is large, we will show that the polynomial p′ has large
variance (close to 1), and hence we can apply the anti-concentration bound Theorem 2.3.

We start by establishing that Var[p′] lies in the range [1/2,1]. To see this, first recall that for
g : {−1,1}n → R we have Var[g] = ∑ /06=S⊆[n] ĝ2(S). It is thus clear that Var[p′] ≤ Var[p] = 1. To
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establish the lower bound we use the property that the “tail” T has “very small” influence in p, which is a
consequence of the critical index of p being large. More precisely, Lemma 3.2 yields

∑
i∈T

Infi(p)≤ (1− τ)K · Inf(p) = (1− τ)α/τ · Inf(p)≤ d · e−α (3.2)

where the last inequality uses the fact that Inf(p)≤ d. Therefore, we have:

Var[p′] = Var[p]− ∑
T∩S 6= /0,S⊆[n]

p̂(S)2 ≥ 1− ∑
i∈T

Infi(p)≥ 1−de−α ≥ 1/2

where the first inequality uses the fact that Infi(p) = ∑i∈S⊆[n] p̂(S)2, the second follows from (3.2) and
the third from our choice of α . We have thus established that indeed Var[p′] ∈ [1/2,1].

At this point, we would like to apply Theorem 2.3 for p′. Note however that E[p′] = E[p] = p̂( /0)
which is not necessarily zero. To address this minor technical point we apply Theorem 2.3 twice: once for
the polynomial p′′ = p′− p̂( /0) and once for −p′′. (Clearly, E[p′′] = 0 and Var[p′′] = Var[p′] ∈ [1/2,1].)
We thus get that, independent of the value of p̂( /0), we have Prρ [|p′(ρ)| > 2−1/2 ·C−d ] ≥ C−d , as
desired.

Lemma 3.8. We have that Prρ

[
‖q(ρ,xT )‖2 > t∗ ·

(
Θ(log(1/β )

)−d/2]≤ 1/(2Cd).

Proof. To obtain the desired concentration bound we must show that the degree-2d polynomial Q(ρ) =
‖q(ρ,xT )‖2

2 has “small” variance. The desired bound then follows by an application of Theorem 2.2.
We thus begin by showing that ‖Q‖2 ≤ 3dde−α . To see this, we first note that Q(ρ) = ∑ /06=S⊆T p̂ρ(S)2.

Hence an application of the triangle inequality for norms and hypercontractivity (Theorem 2.1) yields:

‖Q‖2 ≤ ∑
/0 6=S⊆T

‖ p̂ρ(S)‖2
4 ≤ 3d

∑
/06=S⊆T

‖ p̂ρ(S)‖2
2.

We now proceed to bound from above the RHS term by term:

∑
/0 6=S⊆T

‖ p̂ρ(S)‖2
2 = ∑

/06=S⊆T
Eρ [p̂ρ(S)2] = Eρ

[
∑

/06=S⊆T
p̂ρ(S)2

]
≤ Eρ

[
Inf(pρ)

]
= Eρ

[
∑

i∈T
Infi(pρ)

]
= ∑

i∈T
Eρ

[
Infi(pρ)

]
= ∑

i∈T
Infi(p)≤ de−α (3.3)

where the first inequality uses the fact Inf(pρ) ≥ ∑ /06=S⊆T p̂ρ(S)2, the equality in (3.3) follows from
Lemma 3.3, and the last inequality is Equation (3.2). We have thus shown that ‖Q‖2 ≤ 3dde−α .

We now upper bound Prρ [Q(ρ)> (t∗)2 ·Θ(log(1/β ))−d ]. Since ‖Q‖2 ≤ 3dde−α , Theorem 2.2 im-
plies that for all t > ed we have Prρ [Q(ρ)> t ·3dde−α ]≤ exp(−Ω(t1/d)). Taking t to be Θ(dd lnd C) this
upper bound is at most 1/(2Cd). Our choice of the parameter α gives t ·d3d ·e−α ≤ (t∗)2 ·Θ(log(1/β ))−d .
This completes the proof of Lemma 3.8, and thus also the proof of Lemma 3.5.

3.2 The small critical index case

In this section we show that if the critical index of p is “small”, then a random restriction of “few”
variables causes p to become regular with non-negligible probability. We do this by showing that no
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matter what the critical index is, a random restriction of all variables up to the τ-critical index causes p
to become τ ′-regular, for some τ ′ not too much larger than τ , with probability at least 1/(2Cd). More
formally, we prove:

Lemma 3.9. Let p : {−1,1}n→ R be a degree-d polynomial with τ-critical index k ∈ [n]. Let ρ be a
random restriction that fixes [k], and let τ ′ = (C′ ·d lnd · ln 1

τ
)d ·τ for some suitably large absolute constant

C′. With probability at least 1/(2Cd) over the choice of ρ , the restricted polynomial pρ is τ ′-regular.

Proof. We must show that with probability at least 1/(2Cd) over ρ the restricted polynomial pρ satisfies

Inf`(pρ)/
n
∑

j=k+1
Inf j(pρ)≤ τ

′ (3.4)

for all ` ∈ [k+ 1,n]. Note that before the restriction, we have Inf`(p) ≤ τ ·∑n
j=k+1 Inf j(p) for all ` ∈

[k+1,n] because the τ-critical index of p is k.
Let us give an intuitive explanation of the proof. We first show (Lemma 3.10) that with probability

at least C−d the denominator in (3.4) does not decrease under a random restriction. This is an anti-
concentration statement that follows easily from Theorem 2.3. We then show (Lemma 3.11) that with
probability at least 1−C−d/2 the numerator in (3.4) does not increase by much under a random restriction,
i.e., no variable influence Inf`(pρ), ` ∈ [k+1,n], becomes too large. Thus both events occur (and pρ is
τ ′-regular) with probability at least C−d/2.

We note that while each individual influence Inf`(pρ) is indeed concentrated around its expectation
(see Claim 3.12), we need a concentration statement for n−k such influences. This might seem difficult to
achieve since we require bounds that are independent of n. We get around this difficulty by a “bucketing”
argument that exploits the fact (at many different scales) that all but a few influences Inf`(p) must be
“very small.”

It remains to state and prove Lemmas 3.10 and 3.11. Consider the event

E
def
=

{
ρ ∈ {−1,1}k |

n
∑

`=k+1
Inf`(pρ)≥

n
∑

`=k+1
Inf`(p)

}
.

We first show:

Lemma 3.10. Prρ [E]≥C−d .

Proof. It follows from Fact 3.4 and the Fourier expression of Inf`(pρ) that A(ρ) def
= ∑

n
`=k+1 Inf`(pρ) is

a degree-2d polynomial. By Lemma 3.3 we get that Eρ [A] = ∑
n
`=k+1 Inf`(p) > 0. Also observe that

A(ρ) ≥ 0 for all ρ ∈ {−1,1}k. We may now apply Theorem 2.3 to the polynomial A′ = A−Eρ [A], to
obtain:

Prρ [E] = Pr[A′ ≥ 0]≥ Pr[A′ ≥C−2d
0 ·σ(A′)]>C−2d

0 =C−d .

We now turn to Lemma 3.11. Consider the event J def
=
{

ρ ∈ {−1,1}k | max`∈[k+1,n] Inf`(pρ) >
τ ′∑n

j=k+1 Inf j(p)
}

. We show:

Lemma 3.11. Prρ [J]≤ (1/2) ·C−d .
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The rest of this subsection consists of the proof of Lemma 3.11. A useful intermediate claim is that
the influences of individual variables do not increase by a lot under a random restriction (note that this
claim does not depend on the value of the critical index):

Claim 3.12. Let p : {−1,1}n→ R be a degree-d polynomial. Let ρ be a random restriction fixing [ j].
Fix any t > e2d and any ` ∈ [ j + 1,n]. With probability at least 1− exp(−Ω(t1/d)) over ρ , we have
Inf`(pρ)≤ 3dtInf`(p).

Proof. The identity Inf`(pρ) = ∑`∈S⊆[ j+1,n] p̂ρ(S)2 and Fact 3.4 imply that Inf`(pρ) is a degree-2d
polynomial in ρ . Hence the claim follows from the concentration bound, Theorem 2.2, assuming we can
appropriately upper bound the l2-norm of the polynomial Inf`(pρ). So, to prove Claim 3.12 it suffices to
show that

‖Inf`(pρ)‖2 ≤ 3dInf`(p). (3.5)

The proof of Equation (3.5) is similar to the argument establishing that ‖Q‖2 ≤ 3dde−α in Section 3.1.
The triangle inequality tells us that we may bound the l2-norm of each squared-coefficient separately:

‖Inf`(pρ)‖2 ≤ ∑
`∈S⊆[ j+1,n]

‖ p̂ρ(S)2‖2.

Since p̂ρ(S) is a degree-d polynomial, Theorem 2.1 yields that

‖ p̂ρ(S)2‖2 = ‖ p̂ρ(S)‖2
4 ≤ 3d‖ p̂ρ(S)‖2

2,

hence
‖Inf`(pρ)‖2 ≤ 3d

∑
`∈S⊆[ j+1,n]

‖ p̂ρ(S)‖2
2 = 3dInf`(p),

where the last equality is a consequence of Fact 3.4. Thus Equation (3.5) holds, and Claim 3.12 is
proved.

Claim 3.12 says that for any given coordinate, the probability that its influence after a random
restriction increases by a t factor decreases exponentially in t. Note that Claim 3.12 and a naive union
bound over all coordinates in [k+1,n] does not suffice to prove Lemma 3.11. Instead, we proceed as
follows: We partition the coordinates in [k+1,n] into “buckets” according to their influence in the tail of
p. In particular, the i-th bucket (i≥ 0) contains all variables ` ∈ [k+1,n] such that

Inf`(p)
∑

n
j=k+1 Inf j(p)

∈ [τ/2i+1,τ/2i].

We analyze the effect of a random restriction ρ on the variables of each bucket i separately and then
conclude by a union bound over all the buckets.

So fix a bucket i. Note that, by definition, the number of variables in the i-th bucket is at most 2i+1/τ .
We bound from above the probability of the event B(i) that there exists a variable ` in bucket i that violates
the regularity constraint, i.e., such that Inf`(pρ)> τ ′∑n

`=k+1 Inf`(p). We will do this by a combination of
Claim 3.12 and a union bound over the variables in the bucket. We will show:
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Claim 3.13. We have that Prρ [B(i)]≤ 2−(i+2) ·C−d .

The above claim completes the proof of Lemma 3.11 by a union bound across buckets. Indeed,
assuming the claim, the probability that any variable ` ∈ [k+ 1,n] violates the condition Inf`(pρ) ≤
τ ′∑n

`=k+1 Inf`(p) is at most

∞

∑
i=0

Prρ [B(i)]≤C−d2−2
∞

∑
i=0

(1/2)i = (1/2) ·C−d .

It thus remains to prove Claim 3.13. Fix a variable ` in the i-th bucket. We apply Claim 3.12 selecting
a value of t = t̃ def

= (ln Cd4i+2

τ
)d . It is clear that t̃ ≤ c′d(d + i+ ln 1

τ
)d for some absolute constant c′. As a

consequence, there is an absolute constant C′ such that for every i,

t̃ ≤ 3−dC′d2i(d lnd ln
1
τ

)d
. (3.6)

(To see this, note that for i≤ 10d lnd we have d+ i+ ln 1
τ
< 11d lnd ln 1

τ
, from which the claimed bound is

easily seen to hold. For i > 10d lnd, we use d+ i+ ln 1
τ
< di ln 1

τ
and the fact that id < 2i for i > 10d lnd.)

Inequality (3.6) can be rewritten as 3d · t̃ · τ

2i ≤ τ ′. Hence, our assumption on the range of Inf`(p)
gives

3d · t̃ · Inf`(p)≤ τ
′ ·

n
∑

j=k+1
Inf j(p).

Therefore, by Claim 3.12, the probability that coordinate ` violates the condition Inf`(pρ)≤ τ ′∑n
j=k+1 Inf j(p)

is at most τ/(Cd4i+2) by our choice of t̃. Since bucket i contains at most 2i+1/τ coordinates, Claim 3.13
follows by a union bound. Hence Lemma 3.11, and thus Lemma 3.9, is proved.

3.3 Putting Everything Together: Proof of Theorem 1.1

The following lemma combines the results of the previous two subsections:

Lemma 3.14. Let p : {−1,1}n→R be a degree-d polynomial and 0< τ̃,β < 1/2. Fix α =Θ(d log log(1/β )+
d logd) and τ̃ ′ = τ̃ · (C′d lnd ln(1/τ̃))d , where C′ is a universal constant. (We assume w.l.o.g. that the
variables are ordered s.t. Infi(p)≥ Infi+1(p), i ∈ [n−1].) One of the following statements holds true:

1. The polynomial p is τ̃-regular.

2. With probability at least 1/(2Cd) over a random restriction ρ fixing the first α/τ̃ (most influential)
variables of p, the function sign(pρ) is β -close to a constant function.

3. There exists a value k≤ α/τ̃ , such that with probability at least 1/(2Cd) over a random restriction
ρ fixing the first k (most influential) variables of p, the polynomial pρ is τ̃ ′-regular.

Proof. The proof is by case analysis based on the value ` of the τ̃-critical index of the polynomial p. If
`= 0, then by definition p is τ̃-regular, hence the first statement of the lemma holds. If ` > α/τ̃ , then we
randomly restrict the first α/τ̃ many variables. Lemma 3.5 says that for a random restriction ρ fixing
these variables, with probability at least 1/(2Cd) the (restricted) degree-d PTF sign(pρ) is β -close to
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a constant. Hence, in this case, the second statement holds. To handle the case ` ∈ [1,α/τ̃], we apply
Lemma 3.9. This lemma says that with probability at least 1/(2Cd) over a random restriction ρ fixing
variables [`], the polynomial pρ is τ̃ ′-regular, so the third statement of Lemma 3.14 holds.

Proof of Theorem 1.1. We begin by observing that any function f on {−1,1}n is equivalent to a decision
tree where each internal node of the tree is labeled by a variable, every root-to-leaf path corresponds
to a restriction ρ that fixes the variables as they are set on the path, and every leaf is labeled with the
restricted subfunction fρ . Given an arbitrary degree-d PTF f = sign(p), we will construct a decision tree
T of the form described in Theorem 1.1. It is clear that in any such tree every leaf function fρ will be a
degree-d PTF; we must show that T has depth depth(d,τ) and that with probability 1− τ over the choice
of a random root-to-leaf path ρ , the restriction ρ is such that either fρ = sign(pρ) is τ-close to a constant
function, or pρ is τ-regular.

For a tree T computing f = sign(p), we denote by N(T ) its set of internal nodes and by L(T ) its set
of leaves. We call a leaf ρ ∈ L(T ) “good” if either fρ is τ-close to a constant function or pρ is τ-regular.
We call a leaf “bad” otherwise. Let GL(T ) and BL(T ) be the sets of “good” and “bad” leaves in T
respectively.

The basic approach for the proof is to invoke Lemma 3.14 repeatedly in a sequence of at most
2Cd ln(1/τ) stages. In the first stage we apply Lemma 3.14 to f itself; this gives us an initial decision
tree. In the second stage we apply Lemma 3.14 to the restricted subfunctions fρ corresponding to leaves
of the initial decision tree that are bad; this “grows” our initial decision tree. Subsequent stages continue
similarly; we will argue that after at most 2Cd ln(1/τ) stages, the resulting tree satisfies the required
properties for T. In every application of Lemma 3.14 the parameters β and τ̃ ′ are both taken to be τ ; note
that taking τ̃ ′ to be τ sets the value of τ̃ in Lemma 3.14 to a value that is less than τ .

We now provide the details. In the first stage, the initial application of Lemma 3.14 results in a tree
T1. This tree T1 may consist of a single leaf node that is τ̃-regular (if f is τ̃-regular to begin with – in this
case, since τ̃ < τ , we are done), or a complete decision tree of depth α/τ̃ (if f had large critical index),
or a complete decision tree of depth k < α/τ̃ (if f had small critical index). Note that in each case the
depth of T1 is at most α/τ̃ . Lemma 3.14 guarantees that:

Prρ∈T1 [ρ ∈ BL(T1)]≤ 1−1/(2Cd),

where the probability is over a random root-to-leaf path ρ in T1.
In the second stage, the “good” leaves ρ ∈ GL(T1) are left untouched; they will be leaves in the final

tree T. For each “bad” leaf ρ ∈ BL(T1), we order the unrestricted variables in decreasing order of their
influence in the polynomial pρ , and we apply Lemma 3.14 to fρ . This “grows” T1 at each bad leaf by
replacing each such leaf with a new decision tree; we call the resulting overall decision tree T2.

A key observation is that the probability that a random path from the root reaches a “bad” leaf is
significantly smaller in T2 than in T1; in particular

Prρ∈T2 [ρ ∈ BL(T2)]≤ (1−1/(2Cd))2.

We argue this as follows: Let ρ be any fixed “bad” leaf in T1, i.e., ρ ∈ BL(T1). The function fρ is not
τ̃ ′-regular and consequently not τ̃-regular. Thus, either statement (2) or (3) of Lemma 3.14 must hold
when the Lemma is applied to fρ . The tree that replaces ρ in T0 has depth at most α/τ̃ , and a random
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root-to-leaf path ρ1 in this tree reaches a “bad” leaf with probability at most 1−1/(2Cd). So the overall
probability that a random root-to-leaf path in T2 reaches a “bad” leaf is at most (1−1/(2Cd))2.

Continuing in this fashion, in the i-th stage we replace all the bad leaves of Ti−1 by decision trees
according to Lemma 3.14 and we obtain the tree Ti. An inductive argument gives that

Prρ∈Ti [ρ ∈ BL(Ti)]≤ (1−1/(2Cd))i,

which is at most τ for i∗ def
= 2Cd ln(1/τ).

The depth of the overall tree will be the maximum number of stages (2Cd ln(1/τ)) times the maximum
depth added in each stage (at most α/τ̃ , since we always restrict at most this many variables), which is at
most (α/τ̃) · i∗. Since β = τ , we get α = Θ(d log log(1/τ)+d logd). Recalling that τ̃ ′ in Lemma 3.14 is
set to τ , we see that

τ̃ =
τ

(C′d lnd ln(1/τ))O(d)
.

By substitution we get that the depth of the tree is upper bounded by dO(d) · (1/τ) · log(1/τ)O(d) which
concludes the proof of Theorem 1.1.

4 Every degree-d PTF has a low-weight approximator

In this section we apply Theorem 1.1 to prove Theorem 1.2, which we restate below:

Theorem 1.2. Let f (x) = sign(p(x)) be any degree-d PTF. Fix any ε > 0 and let τ = (Θ(1) · ε/d)8d .
Then there is a polynomial q(x) of degree D = d + depth(d,τ) and weight nd · 24depth(d,τ) · (d/ε)O(d),
which is such that the PTF sign(q(x)) is ε-close to f .

To prove Theorem 1.2, we first show that any sufficiently regular degree-d PTF over n variables has a
low-weight approximator, of weight roughly nd . Theorem 1.1 asserts that almost every leaf ρ of T is a
regular PTF or close to a constant function; at each regular leaf ρ we use the low-weight approximator of
the previous sentence to approximate fρ . Finally, we combine all of these low-weight polynomials to get
an overall PTF of low weight which is a good approximator for f . We give details below.

4.1 Low-weight approximators for regular PTFs

In this subsection we prove that every sufficiently regular PTF has a low-weight approximator of degree
d:

Lemma 4.1. Given ε > 0, let τ = (Θ(1) · ε/d)8d . Let p : {−1,1}n→ R be a τ-regular degree-d polyno-
mial with Var[p] = 1. There exists a degree-d polynomial q : {−1,1}n→ R of weight nd · (d/ε)O(d) such
that sign(q(x)) is an ε-approximator for sign(p(x)).

Proof. The polynomial q is obtained by rounding the weights of p to an appropriate granularity, similar
to the regular case in [33] for the d = 1 case. To show that this works, we use the fact that regular PTFs
have very good anti-concentration. In particular we will use the following claim, which follows easily by
combining the invariance principle [26] and Gaussian anti-concentration [6]:
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Claim 4.2. Let p : {−1,1}n→R be a τ-regular degree-d polynomial with Var[p] = 1. Then Prx[|p(x)| ≤
τ]≤ O(dτ1/8d).

Proof. We recall that, since Var[p] = 1 and p is of degree d, it holds Inf(p) ≤ d. Thus, since p is
τ-regular, we have that maxi∈[n] Infi(p)≤ dτ. An application of the invariance principle (Theorem 2.5) in
tandem with anti-concentration in gaussian space (Theorem 2.4) yields

Prx[|p(x)| ≤ τ]≤ O(d · (dτ)1/8d)+PrG∼Nn [|p(G)| ≤ τ]

≤ O(dτ
1/8d)+O(dτ

1/d) = O(dτ
1/8d),

and the claim follows.

We turn to the detailed proof of Lemma 4.1. We first note that if the constant coefficient p̂( /0) of P
has magnitude greater than (O(log(1/ε)))d/2, then Theorem 2.2 (applied to p(x)− p̂( /0)) implies that
sign(p(x)) agrees with sign(p̂( /0)) for at least a 1− ε fraction of inputs x. So in this case sign(p(x)) is
ε-close to a constant function, and the conclusion of the Lemma certainly holds. Thus we henceforth
assume that |p̂( /0)| is at most (O(log(1/ε)))d/2.

Let
α =

τ

(Kn · ln(4/ε))d/2

where K > 0 is an absolute constant (specified later). For each S 6= /0 let q̂(S) be the value obtained
by rounding p̂(S) to the nearest integer multiple of α , and let q̂( /0) equal p̂( /0). This defines a degree-d
polynomial q(x) = ∑S q̂(S)χS(x). It is easy to see that rescaling by α , all of the non-constant coefficients
of q(x)/α are integers. Since each coefficient q̂(S) has magnitude at most twice that of p̂(S), we may
bound the sum of squares of coefficients of q(x)/α by

p̂( /0)2

α2 +
∑S 6= /0 4 p̂(S)2

α2 ≤ (O(log(1/ε)))d

α2 ≤ nd · (d/ε)O(d).

We now observe that the constant coefficient p̂( /0) of q(x) can be rounded to an integer multiple of α

without changing the value of sign(q(x)) for any input x. Doing this, we obtain a polynomial q′(x)/α

with all integer coefficients, weight nd · (d/ε)O(d), and which has sign(q′(x)) = sign(q(x)) for all x.
In the rest of our analysis we shall consider the polynomial q(x) (recall that the constant coefficient of

q(x) is precisely p̂( /0)). It remains to show that sign(q) is an ε-approximator for sign(p). For each S 6= /0
let ê(S) equal p̂(S)− q̂(S). This defines a polynomial (with constant term 0) e(x) = ∑S ê(S)xS, and we
have q(x)+ e(x) = p(x). (The coefficients ê(S) are the “errors” induced by approximating p̂(S) by q̂(S).)

Recall that τ = (Θ(1) · ε/d)8d . For any input x, we have that sign(q(x)) 6= sign(p(x)) only if either

(i) |e(x)| ≥ τ, or

(ii) |p(x)| ≤ τ.

Since each coefficient of e(x) satisfies

|ê(S)| ≤ α

2
≤ τ

2(Kn · ln(4/ε))d/2 ,
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the sum of squares of all (at most nd) coefficients of e is at most

∑
S

ê(S)2 ≤ τ2

4(K ln(4/ε))d , and thus ‖e‖2 ≤
τ

2(K ln(4/ε))d/2 .

Applying Theorem 2.2, we get that Prx[|e(x)| ≥ τ]≤ ε/2 (for a suitable absolute constant choice of K),
so we have upper bounded the probability of (i).

For (ii), we use the anti-concentration bound for regular polynomials, Claim 4.2. This directly gives
us that Prx[|p(x)| ≤ τ]≤ O(dτ1/8d)≤ ε/2.

Thus the probability, over a random x, that either (i) or (ii) holds is at most ε . Consequently sign(q)
is an ε-approximator for sign(p), and Lemma 4.1 is proved.

4.2 Proof of Theorem 1.2

Let f = sign(p) be an arbitrary degree-d PTF over n Boolean variables, and let ε > 0 be the desired
approximation parameter. We invoke Theorem 1.1 with its “τ” parameter set to τ = (Θ(1) · (ε/2)/d)8d

(i.e., our choice of τ is obtained by plugging in “ε/2” for ε in the first sentence of Lemma 4.1). Each leaf
ρ of the tree T as described in Theorem 1.1 (we call these ”good” leaves) is either a τ-regular degree-d
PTF or τ-approximated by a constant function. By Lemma 4.1, for each regular leaf ρ there is a degree-d
polynomial of weight nd · (d/ε)O(d), which we denote q(ρ), such that fρ is ε/2-close to sign(q(ρ)). For
each of the other leaves in T (which are reached by at most a τ fraction of all inputs to T – we call
these “bad” leaves), for which fρ is not τ-close to any τ-regular degree-d PTF, let q(ρ) be the constant-1
function.

For each leaf ρ of depth r in T , let Pρ(x) be the unique multilinear polynomial of degree r which
outputs 2r iff x reaches ρ and outputs 0 otherwise. (As an example, if ρ is a leaf which is reached by the
path “x3 =−1, x6 = 1, x2 = 1” from the root in T , then Pρ(x) would be (1− x3)(1+ x6)(1+ x2).) Our
final PTF is

g(x) = sign(Q(x)), where Q(x) = ∑
ρ

Pρ(x)q(ρ)(x).

It is easy to see that on any input x, the value Q(x) equals 2|ρx| ·q(ρx)(x), where we write ρx to denote the
leaf of T that x reaches and |ρx| to denote the depth of that leaf. Thus sign(Q(x)) equals sign(q(ρx)(x))
for each x, and from this it follows that Prx[g(x) 6= f (x)] is at most τ + τ + ε/2 < ε. Here the first τ is
because a random input x may reach a bad leaf with probability up to τ , and the τ + ε/2 is because for
each good leaf ρ , the function is either τ-approximated by a constant function or ε/2-approximated by
sign(q(ρ)).

Since T has depth depth(d,τ), it is easy to see that Q has degree at most depth(d,τ) + d. It is
clear that the coefficients of Q are all integers, so it remains only to bound the sum of squares of these
coefficients. Each polynomial addend Pρ(x)q(ρ)(x) in the sum is easily seen to have sum of squared
coefficients

∑
S

P̂ρq(ρ)(S)2 = E[(Pρ ·q(ρ))2]≤
(

max
x

Pρ(x)2
)
·E[q(ρ)(x)2]≤ 22depth(d,τ) ·nd · (d/ε)O(d). (4.1)
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Since T has depth depth(d,τ), the number of leaves ρ is at most 2depth(d,τ), and hence for each S by
Cauchy-Schwarz we have

Q̂(S)2 =

(
∑
ρ

P̂ρq(ρ)(S)
)2

≤ 2depth(d,τ) ·∑
ρ

P̂ρq(ρ)(S)2. (4.2)

This implies that the total weight of Q is

∑
S

Q̂(S)2 ≤ 2depth(d,τ) · ∑
ρ,S

P̂ρq(ρ)(S)2 (using (4.2))

≤ 22depth(d,τ) max
ρ

(
∑
S

P̂ρq(ρ)(S)2
)

≤ 24depth(d,τ) ·nd · (d/ε)O(d), (using (4.1))

and Theorem 1.2 is proved.

4.3 Degree-d PTFs require Ω̃(nd)-weight approximators

In this section we give two lower bounds on the weight required to ε-approximate certain degree-d PTFs.
(We use the notation Ωd() below to indicate that the hidden constant of the big-Omega depends on d.)

Theorem 4.3. For all sufficiently large n, there is a degree-d n-variable PTF f (x) with the following
property: Let K(d) be any positive-valued function depending only on d. Suppose that g(x) = sign(q(x))

is a degree-K(d) PTF with integer coefficients q̂(S) such that dist( f ,g)≤ ε? where ε? def
= C−d/2. Then

the weight of q is Ωd(nd/ logn).

Theorem 4.4. For all sufficiently large n, there is a degree-d n-variable PTF f (x) with the following
property: Suppose that g(x) = sign(q(x)) is any PTF (of any degree) with integer coefficients q̂(S) such

that dist( f ,g)≤ ε? where ε? def
= C−d/2. Then the weight of q is Ωd(nd−1).

Viewing d and ε as constants, Theorem 4.3 implies that the O(nd) weight bound of our ε-approximator
from Theorem 1.2 (which has constant degree) is essentially optimal for any constant-degree ε-approximator.
Theorem 4.4 says that there is only small room for improving our weight bound even if arbitrary-degree
PTFs are allowed as approximators.

Theorems 4.3 and 4.4 are both consequences of the following theorem:

Theorem 4.5. There exists a set C = { f1, . . . , fM} of M = 2Ωd(nd) degree-d PTFs fi such that for any
1≤ i < j ≤M, we have dist( fi, f j)≥C−d .

Proof of Theorems 4.3 and 4.4 assuming Theorem 4.5: First we prove Theorem 4.3. We begin by

claiming that there are at most
(

3
( n
≤K(d)

))A
many integer-weight PTFs of degree K(d) and weight at

most A. This is because any such PTF can be obtained by making a sequence of A steps, where at each
step either −1, 0, or 1 is added to one of the

( n
≤K(d)

)
many monomials of degree at most K(d). Each step

can be carried out in 3
( n
≤K(d)

)
ways, giving the claimed bound.
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By Theorem 4.5, there are M distinct degree-d PTFs f1, . . . , fM any two of which are C−d-far from
each other. Consequently any Boolean function (in particular, any weight-A degree-K(d) PTF g) can have

dist(g, fi) ≤C−d/2 for at most one fi. Since there are only
(

3
( n
≤K(d)

))A
many weight-A degree-K(d)

PTFs, and
(

3
( n
≤K(d)

))A
is less than M for some A = Ωd(nd/ logn), it follows that some fi must have

distance at least C−d/2 from every weight-A, degree-K(d) PTF. This gives Theorem 4.3.
The proof of Theorem 4.4 is nearly identical. We now use the fact that there are at most (3 · 2n)A

many integer-weight PTFs of weight at most A (and any degree), and use the fact that (3 ·2n)A is less than
M for some A = Ωd(nd−1).

It remains to prove Theorem 4.5.

4.3.1 Proof of Theorem 4.5

The proof is by the probabilistic method. We define the following distribution D over n-variable degree-d
polynomials. A draw of p(x) = ∑S⊂[n],|S|=d p̂(S)χS(x) from D is obtained in the following way: each of
the
(n

d

)
coefficients p̂(S) is independently and uniformly selected from {−1,1}.

We will prove Theorem 4.5 using Lemma 4.6, which says that it is extremely likely the polynomial c
– the product of two independent draws a and b from D – will have both small bias and large variance.

Lemma 4.6. Let a(x) and b(x) be two degree-d polynomials drawn independently from D, and let
c(x) = a(x)b(x). Then with probability at least 1−2−Ωd(nd) we have:

1. |ĉ( /0)| ≤ 1
4C−d

(n/2
d

)
, and

2. Var[c] = ∑|S|>0 ĉ(S)2 ≥ 1
12

(n/2
d

)2
.

Suppose that Lemma 4.6 holds. Let a(x) and b(x) be independent draws from D and let c(x) =
a(x)b(x) which satisfies the conclusions of the lemma. Then the constant term ĉ( /0) is small compared
with the variance of c(x). Let us rescale so the variance is 1; i.e., define the polynomial

e(x) def
=

c(x)
Var[c]1/2

so Var[e] = 1 and |ê( /0)| < C−d . We now apply Theorem 2.3 to the degree-2d polynomial q(x) =
−e(x)+ ê( /0), and we see that with probability at least C−d (over a random uniform draw of x) we have
−e(x)+ ê( /0)>C−d , and hence Prx[sign(e(x))< 0]>C−d .

We now observe that sign(e(x)) < 0 if and only if sign(a(x)) 6= sign(b(x)), and consequently
Prx[sign(e(x)) < 0] is precisely dist(sign(a),sign(b)). We thus have that for a(x),b(x) drawn from
D as described above, the probability that dist(sign(a),sign(b)) is less than C−d is at most 2−αdnd

for
some absolute constant αd > 0 (depending only on d).

Now let us consider M = 2(αd/2)nd
many independent draws of polynomials a1,a2, . . . ,aM from

D. A union bound over all the
(M

2

)
< 2αdnd

pairs (i, j) with 1 ≤ i < j ≤ M gives that with nonzero
probability, every ai,a j pair satisfies dist(sign(ai),sign(a j))≥C−d . Thus there must be some outcome
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for the polynomials a1,a2, . . . ,aM such that dist(sign(ai),sign(a j))≥C−d for all 1≤ i < j ≤M. Setting
fi = sign(ai) for this outcome, Theorem 4.5 is proved.

It remains only for us to prove Lemma 4.6.

4.3.2 Proof of Lemma 4.6

Let us consider a(x) = ∑|S|=d â(S)χS(x) and b(x) = ∑|S|=d b̂(S)χS(x) drawn independently from D. We
will show that the bias of the polynomial c(x) = a(x)b(x) fails to satisfy the bound in item 1 with
probability 2−Ωd(nd). Then we show the variance of c fails to satisfy item 2 with probability 2−Ωd(nd), and
the lemma follows from a union bound.

To bound the bias of c, we begin by noting that:

ĉ( /0) = ∑
S⊆[n]

â(S)b̂(S).

Each term â(S)b̂(S) in the summand is uniform, i.i.d in {−1,1}. Define the random variable XS =
1/2− (1/2)â(S)b̂(S). Then ∑S⊆[n] XS is binomially distributed and setting t = 1

4C−d( n
2d )

d , we may apply
the Chernoff bound to obtain:

Pr[ĉ( /0)<−1
4

C−d(
n

2d
)d ] = Pr[X > E[X ]+ t]≤ exp(−2

t2(n
d

)) = 2−Ωd(nd)

The same analysis gives a bound on the magnitude in the negative direction. Since
(n/2

d

)
≥ ( n

2d )
d , this

concludes the analysis for the first item of the lemma.
Now we show that item 2 of the lemma also fails with very small probability. The following

terminology will be useful. Let T ⊂ [n] be a subset of size exactly |T | = 2d (we think of T as the
set of variables defining some monomial of degree 2d). For such a T we let first(T ) def

= T ∩ [n/2] and
second(T ) def

= T ∩ [n/2+ 1,n]. We say that such a T is balanced if |first(T )| = |second(T )| = d. Note

that there are exactly
(n/2

d

)2
many balanced subsets T .

We say that a subset U ⊂ [n], |U |= d is pure if U is contained entirely in [n/2+1,n].

Let us consider a(x) = ∑|S|=d â(S)χS(x) and b(x) = ∑|S|=d b̂(S)χS(x) drawn independently from D.

Fix any outcome for a (i.e., for the values of all
(n

d

)
coefficients â(S)), and fix any outcome for b̂(U) for

every U which is not pure. Thus the only “remaining randomness” is the value (drawn uniformly from
{−1,1}}) for each of the

(n/2
d

)
coefficients b̂(U) for pure U. We will show that with probability at least

1−2−Ωd(nd) over the remaining randomness, at least 1
6

(n/2
d

)2
of the

(n/2
d

)2
many balanced subsets T have

ĉ(T ) 6= 0. Since each value ĉ(T ) which is nonzero is at least 1 in magnitude, this suffices to prove the
lemma.

Consider any fixed pure subset U ⊂ [n], |U | = d (for example U = {n−d +1, . . . ,n}). Let T be a
balanced subset of n (so |T | = 2d) such that second(T ) equals U . (There are precisely

(n/2
d

)
balanced

subsets T with this property; let TU denote the collection of all
(n/2

d

)
of them.) Consider the value ĉ(T ):

this is
ĉ(T ) = ∑

S⊆T,|S|=d
â(S)b̂(T −S).

THEORY OF COMPUTING 20

http://dx.doi.org/10.4086/toc


A REGULARITY LEMMA FOR LOW-DEGREE PTFS

The only “not-yet-fixed” part of the above expression is the single coefficient b̂(U); everything else has
been fixed. Since the coefficient â(T −U) of b̂(U) is a nonzero integer, there are two possible outcomes
for the value of ĉ(T ), depending on whether b̂(U) is set to +1 or -1. These two possible values differ by
2; consequently, there is at most one possible outcome of b̂(U) that will cause ĉ(T ) to be zero. (Note that
it may well be the case that no outcome for b̂(U) would cause ĉ(T ) to become zero.)

Let us say that an outcome of b̂(U) is pernicious if it has the following property: at most 1
3

(n/2
d

)
of

the
(n/2

d

)
elements T ∈ TU have ĉ(T ) take a nonzero value under that outcome of b̂(U). (Equivalently, at

least 2
3

(n/2
d

)
of the

(n/2
d

)
elements T ∈ TU have ĉ(T ) become zero under that outcome of b̂(U).) It may

be the case that neither outcome in {−1,1} for b̂(U) is pernicious (e.g. if each outcome makes at least
95% of the ĉ(T ) values come out nonzero). It cannot be the case that both outcomes {−1,1} for b̂(U) are
pernicious (for if there were two pernicious outcomes, this would mean that at least 1

3 of the ĉ(T ) values
evaluate to 0 under both outcomes for b̂(U), but it is impossible for any ĉ(T ) to evaluate to 0 under two
outcomes for b̂(U)). Consequently we have

Pr[the outcome of b̂(U) is pernicious]≤ 1/2.

This is true independently for each of the
(n/2

d

)
many pure subsets U. As a result, a simple analysis

gives

Pr[at least 3/4 of the
(

n/2
d

)
pure subsets U have a pernicious outcome]≤ 2−Ωd(nd).

Thus we may assume that fewer than 3/4 of the
(n/2

d

)
pure subsets U have a pernicious outcome. So

at least 1
4

(n/2
d

)
of the pure subsets U are non-pernicious. For each such non-pernicious U , more than

1
3

(n/2
d

)
of the

(n/2
d

)
elements in TU have ĉ(T ) take a nonzero value. Consequently, at least 1

12

(n/2
d

)2
many

balanced subsets T overall have ĉ(T ) 6= 0. This proves the lemma.

5 Conclusions and Open Problems

In this paper, we gave a regularity lemma for low-degree PTFs. Our lemma roughly says that any
low-degree PTF can be decomposed as a shallow binary decision tree T, such that “most” leaves of T
correspond to “regular” low-degree PTFs (or constant functions). As an application, we showed that any
constant-degree PTF is well-approximated by a constant-degree PTF with low integer weights. Our result
has also been used as an essential ingredient in the recent line of work [9, 20] establishing that bounded
independence fools low-degree PTFs.

We conclude this paper by mentioning a few relevant open problems. At the quantitative level, an
obvious question is whether the depth of the tree T must depend exponentially on the degree parameter d.
It is plausible to conjecture that such a dependence on d is inherent. It would also be very interesting
to devise qualitatively improved “regularity lemmas” for PTFs (e.g. using a more refined notion of
regularity) that may result in improved bounds for applications; see [21] for a first important step in this
direction.
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We believe that our regularity lemma may find other applications. For example, it may be useful in
the problem of algorithmically reconstructing a degree-d PTF from its Fourier coefficients of degree at
most d (see [30] for a solution to the d = 1 version of this problem). Finally, regarding integer-weight
approximations, say that an integer weight approximator to a degree-d PTF is proper if its degree
is (at most) d. Clearly, the approximators that we obtain are not proper; constructing proper such
approximations is left as an interesting open problem.
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