
Learning random monotone DNF

Jeffrey C. Jackson1⋆, Homin K. Lee2, Rocco A. Servedio2⋆⋆, and Andrew Wan2

1 Duquesne University, Pittsburgh, PA 15282
jacksonj@duq.edu

2 Columbia University, New York, NY 10027
homin@cs.columbia.edu, rocco@cs.columbia.edu, atw12@cs.columbia.edu

Abstract. We give an algorithm that with high probability properly
learns random monotone DNF with t(n) terms of length ≈ log t(n) under
the uniform distribution on the Boolean cube {0, 1}n. For any function
t(n) ≤ poly(n) the algorithm runs in time poly(n, 1/ǫ) and with high
probability outputs an ǫ-accurate monotone DNF hypothesis. This is the
first algorithm that can learn monotone DNF of arbitrary polynomial size
in a reasonable average-case model of learning from random examples
only.

1 Introduction

Motivation and background. Any Boolean function f : {0, 1}n → {0, 1} can
be expressed as a disjunction of conjunctions of Boolean literals, i.e. as an OR of
ANDs. Such a logical formula is said to be a disjunctive normal formula, or DNF.
Learning polynomial-size DNF formulas (disjunctions of poly(n) many conjunc-
tions) from random examples is an outstanding open question in computational
learning theory, dating back more than 20 years to Valiant’s introduction of the
PAC (Probably Approximately Correct) learning model [Val84].

The most intensively studied variant of the DNF learning problem is PAC
learning DNF under the uniform distribution. In this problem the learner must
generate a high-accuracy hypothesis with high probability when given uniform
random examples labeled according to the unknown target DNF. Despite much
effort, no polynomial-time algorithms are known for this problem.

A tantalizing question that has been posed as a goal by many authors (see
e.g. [Jac97,JT97,BBL98,Blu03b,Ser04]) is to learn monotone DNF, which only
contain unnegated Boolean variables, under the uniform distribution. Besides
being a natural restriction of the uniform distribution DNF learning problem,
this problem is interesting because several impediments to learning general
DNF under uniform – known lower bounds for Statistical Query based algo-
rithms [BFJ+94], the apparent hardness of learning the subclass of log(n)-juntas
[Blu03a] – do not apply in the monotone case. This paper solves a natural
average-case version of this problem.

⋆ Supported in part by NSF award CCF-0209064
⋆⋆ Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and

by a Sloan Foundation Fellowship.

2

Previous work. Many partial results have been obtained on learning monotone
DNF under the uniform distribution. Verbeurgt [Ver90] gave an nO(log n)-time
uniform distribution algorithm for learning any poly(n)-term DNF, monotone
or not. Several authors [KMSP94,SM00,BT96] have given results on learning
monotone t-term DNF for larger and larger values of t; most recently, [Ser04]

gave a uniform distribution algorithm that learns any 2O(
√

log n)-term monotone
DNF to any constant accuracy ǫ = Θ(1) in poly(n) time. O’Donnell and Serve-
dio [OS06] have recently shown that poly(n)-leaf decision trees that compute
monotone functions (a subclass of poly(n)-term monotone DNF) can be learned
to any constant accuracy under uniform in poly(n) time. Various other problems
related to learning different types of monotone functions under uniform have also
been studied, see e.g. [KLV94,BBL98,Ver98,HM91,AM02].

Aizenstein and Pitt [AP95] first proposed a model of random DNF formulas
and gave an exact learning algorithm that learns random DNFs generated in
this way. As noted in [AP95] and [JS06], this model admits a trivial learning
algorithm in the uniform distribution PAC setting. Jackson and Servedio [JS05]
gave a uniform distribution algorithm that learns log-depth decision trees on
average in a natural random model. Previous work on average-case uniform PAC
DNF learning, also by Jackson and Servedio, is described below.

Our results. The main result of this paper is a polynomial-time algorithm
that can learn random poly(n)-term monotone DNF with high probability. (We
give a full description of the exact probability distribution defining our ran-
dom DNFs in Section 4; briefly, the reader should think of our random t-term
monotone DNFs as being obtained by independently drawing t monotone con-
junctions uniformly from the set of all conjunctions of length log2 t over variables
x1, . . . , xn. Although many other distributions could be considered, this seems a
natural starting point. Some justification for the choice of term length is given
in Sections 4 and 6.)

Theorem 1. [Informally] Let t(n) ≤ poly(n), and let c > 0 be any fixed con-
stant. Then random monotone t(n)-term DNFs are PAC learnable (with failure
probability δ = n−c) to accuracy ǫ in poly(n, 1/ǫ) time under the uniform distri-
bution. The algorithm outputs a monotone DNF as its hypothesis.

In independent and concurrent work, Sellie [Sel08] has given an alternate
proof of this theorem using different techniques.

Our technique. Jackson and Servedio [JS06] showed that for any γ > 0, a result
similar to Theorem 1 holds for random t-term monotone DNF with t ≤ n2−γ .
The main open problem stated in [JS06] was to prove Theorem 1. Our work solves
this problem by using the previous algorithm to handle t ≤ n3/2, developing new
Fourier lemmas for monotone DNF, and using these lemmas together with more
general versions of techniques from [JS06] to handle t ≥ n3/2.

The crux of our strategy is to establish a connection between the term struc-
ture of certain monotone DNFs and their low-order Fourier coefficients. There is
an extensive body of research on Fourier properties of monotone Boolean func-
tions [BT96,MO03,BBL98], polynomial-size DNF [Jac97,Man95], and related

3

classes. These results typically establish that every function in the class has a
Fourier spectrum with certain properties; unfortunately, the Fourier properties
that have been obtainable to date for general statements of this sort have not
been sufficient to yield polynomial-time learning algorithms.

We take a different approach by carefully defining a set of conditions, and
showing that if a monotone DNF f satisfies these conditions then the structure
of the terms of f will be reflected in the low-order Fourier coefficients of f . In
[JS06], the degree two Fourier coefficients were shown to reveal the structure of
the terms for certain (including random) monotone DNFs having at most n2−γ

terms. In this work we develop new lemmas about the Fourier coefficients of more
general monotone DNF, and use these new lemmas to establish a connection
between term structure and constant degree Fourier coefficients for monotone
DNFs with any polynomial number of terms. Roughly speaking, this connection
holds for monotone DNF that satisfy the following conditions:

– each term has a reasonably large fraction of assignments which satisfy it and
no other term;

– for each small tuple of distinct terms, only a small fraction of assignments
simultaneously satisfy all terms in the tuple; and

– for each small tuple of variables, only a few terms contains the entire tuple.

The “small” tuples referred to above should be thought of as tuples of constant
size. The constant degree coefficients capture the structure of the terms in the
following sense: tuples of variables that all co-occur in some term will have a large
magnitude Fourier coefficient, and tuples of variables that do not all co-occur in
some term will have a small magnitude Fourier coefficient (even if subsets of the
tuple do co-occur in some terms). We show this in Section 2.

Next we show a reconstruction procedure for obtaining the monotone DNF
from tuple-wise co-occurrence information. Given a hypergraph with a vertex for
each variable, the procedure turns each co-occurrence into a hyperedge, and then
searches for all hypercliques of size corresponding to the term length. The hyper-
cliques that are found correspond to the terms of the monotone DNF hypothesis
that the algorithm constructs. This procedure is described in Section 3; we show
that it succeeds in constructing a high-accuracy hypothesis if the monotone DNF
f satisfies a few additional conditions. This generalizes a reconstruction proce-
dure from [JS06] that was based on finding cliques in a graph (in the n2−γ-term
DNF setting, the algorithm deals only with co-occurrences of pairs of variables
so it is sufficient to consider only ordinary graphs rather than hypergraphs).

The ingredients described so far thus give us an efficient algorithm to learn
any monotone DNF that satisfies all of the required conditions. Finally, we show
that random monotone DNF satisfy all the required conditions with high prob-
ability. We do this in Section 4 via a fairly delicate probabilistic argument. Sec-
tion 5 combines the above ingredients to prove Theorem 1. We close the paper
by showing that our technique lets us easily recapture the result of [HM91] that
read-k monotone DNF are uniform-distribution learnable in polynomial time.

Preliminaries. We write [n] to denote the set {1, . . . ,n} and use capital letters
for subsets of [n]. We will use calligraphic letters such as C to denote sets of

4

sets and script letters such as X to denote sets of sets of sets. We write log to
denote log2 and ln to denote the natural log. We write Un to denote the uniform
distribution over the Boolean cube {0, 1}n.

A Boolean function f : {0, 1}n → {0, 1} is monotone if changing the value
of an input bit from 0 to 1 never causes the value of f to change from 1 to
0. We denote the input variables to f as x1, . . . , xn. A t-term monotone DNF
is a t-way OR of ANDs of Boolean variables (no negations). Recall that every
monotone Boolean function has a unique representation as a reduced monotone
DNF. We say that a term T of such a monotone DNF is uniquely satisfied by
input x if x satisfies T and no other term of f.

Our learning model is an “average-case” variant of the well-studied uniform
distribution PAC learning model. Let DC be a probability distribution over some
fixed class C of Boolean functions over {0, 1}n

, and let f (drawn from DC) be
an unknown target function. A learning algorithm A for DC takes as input an
accuracy parameter 0 < ǫ < 1 and a confidence parameter 0 < δ < 1. During
its execution, algorithm A has access to a random example oracle EX(f, Un),
which, when queried generates a random labeled example (x, f(x)), where x
is drawn from Un. The learning algorithm outputs a hypothesis h, which is
a Boolean function over {0, 1}n

. The error of this hypothesis is defined to be
PrUn

[h(x) 6= f(x)]. We say that A learns DC under Un if for every 0 < ǫ, δ < 1,
with probability at least 1− δ (over both the random examples used for learning
and the random draw of f from DC) algorithm A outputs a hypothesis h which
has error at most ǫ.

2 Fourier coefficients and monotone DNF term structure

Throughout this section let f(x1, . . . , xn) be a monotone DNF and let S ⊆
{1, . . . , n} be a fixed subset of variables. We write s to denote |S| throughout this

section. The Fourier coefficient, written f̂(S), measures the correlation between
f and the parity of the variables in S.

The main result of this section is Lemma 3, which shows that under suitable
conditions on f , the value |f̂(S)| is “large” if and only if f has a term containing
all the variables of S. To prove this, we observe that the inputs which uniquely
satisfy such a term will make a certain contribution to f̂(S). (In Section 2.1 we

explain this in more detail and show how to view f̂(S) as a sum of contributions
from inputs to f .) It remains then to show that the contribution from other
inputs is small. The main technical novelty comes in Sections 2.2 and 2.3, where
we show that all other inputs which make a contribution to f̂(S) must satisfy
the terms of f in a special way, and use this property to show that under suitable
conditions on f , the fraction of such inputs must be small.

2.1 Rewriting f̂(S).

We observe that f̂(S) can be expressed in terms of 2s conditional probabilities,
each of which is the probability that f is satisfied conditioned on a particular

5

setting of the variables in S. That is:

f̂(S)
def
= Ex∈Un

[

(−1)
P

i∈S xi · f(x)
]

=
1

2n

∑

x∈{0,1}n
(−1)

P

i∈S xi · f(x)

=
1

2n

∑

U⊆S

(−1)|U|
∑

x∈ZS(U)

f(x) =
1

2s

∑

U⊆S

(−1)|U| Pr
x

[f(x) = 1 | x ∈ ZS(U)],

where ZS(U) denotes the set of those x ∈ {0, 1}n
such that xi = 1 for all

i ∈ U and xi = 0 for all i ∈ S \ U . If f has some term T containing all
the variables in S, then Prx[f(x) = 1 | x ∈ ZS(S)] is at least as large as
Prx[T is uniquely satisfied in f |x ∈ ZS(S)]. On the other hand, if f has no
such term, then Prx[f(x) = 1 | x ∈ ZS(S)] does not receive this contribution.
We will show that this contribution is the chief determinant of the magnitude
of f̂(S).

It is helpful to rewrite f̂(S) as a sum of contributions from each input x ∈
{0, 1}n. To this end, we decompose f according to the variables of S. Given a
subset U ⊆ S, we will write gU to denote the disjunction of terms in f that
contain every variable indexed by U ⊆ S and no variable indexed by S \ U ,
but with the variables indexed by U removed from each term. (So for example
if f = x1x2x4x6 ∨ x1x2x5 ∨ x1x2x3 ∨ x3x5 ∨ x1x5x6 and S = {1, 2, 3} and
U = {1, 2}, then gU = x4x6∨x5.) Thus we can split f into disjoint sets of terms:
f =

∨

U⊆S(tU ∧ gU), where tU is the term consisting of exactly the variables
indexed by U .

Suppose we are given U ⊆ S and an x that belongs to ZS(U). We have
that f(x) = 1 if and only if gU ′(x) is true for some U ′ ⊆ U . (Note that tU ′(x)
is true for every U ′ ⊆ U since x belongs to ZS(U).) Thus we can rewrite the

Fourier coefficients f̂(S) as follows: (Below we write I(P) to denote the indicator
function that takes value 1 if predicate P is true and value 0 if P is false.)

f̂(S) =
1

2n

∑

U⊆S

(−1)|U|
∑

x∈ZS(U)

f(x) =
∑

U⊆S

(−1)|U|
1

2n

∑

x∈ZS(U)

I

∨

U ′⊆U

gU ′(x)

=
∑

x∈{0,1}n

1

2s

1

2n

∑

U⊆S

(−1)|U|I

∨

U ′⊆U

gU ′(x)

 .

We can rewrite this as f̂(S) =
∑

x∈{0,1}n ConS(x), where

ConS(x)
def
=

1

2s

1

2n

∑

U⊆S

(−1)|U|I

∨

U ′⊆U

gU ′(x)

 . (1)

The value ConS(x) may be viewed as the “contribution” that x makes to f̂(S).
Recall that when f has a term T which contains all the variables in S, those
x ∈ ZS(S) which uniquely satisfy T will contribute to f̂(S). We will show that
under suitable conditions on f , the other x’s make little or no contribution.

6

2.2 Bounding the contribution to f̂(S) from various inputs.

The variable C will denote a subset of P(S), the power set of S; i.e. C denotes
a collection of subsets of S. We may view C as defining a set of gU ’s (those gU ’s
for which U belongs to C).

We may partition the set of inputs {0, 1}n into 2|P(S)| = 22s

parts according
to what subset of the 2s functions {gU}U⊆S each x ∈ {0, 1}n satisfies. For C
a subset of P(S) we denote the corresponding piece of the partition by PC ; so

PC consists of precisely those x ∈ {0, 1}n that satisfy
(
∧

U∈C gU

)

∧
(

∧

U 6∈C gU

)

.

Note that for any given fixed C, each x in PC has exactly the same contribution
ConS(x) to the Fourier coefficient f̂(S) as every other x′ in PC ; this is simply
because x and x′ will satisfy exactly the same set of gU ′ ’s in (1). More generally,
we have the following (proved in the full version):

Lemma 1. Let C be any subset of P(S). Suppose that there exist U1, U2 ∈ C
such that U1 (U2. Then for any y, z where y ∈ PC and z ∈ PC\U2

, we have that:
ConS(y) = ConS(z).

Given a collection C of subsets of S, let ConS(C) denote
∑

x∈PC
ConS(x),

and we refer to this quantity as the contribution that C makes to the Fourier
coefficient f̂(S). It is clear that we have f̂(S) =

∑

C⊆P(S) ConS(C).
The following lemma, proved in the full version establishes a broad class of

C’s for which ConS(C) is zero:

Lemma 2. Let C be any collection of subsets of S. If
⋃

U∈C U 6= S then ConS(x) =
0 for each x ∈ PC and hence ConS(C) = 0.

It remains to analyze those C’s for which
⋃

U∈C U = S; for such a C we say
that C covers S.

Recall from the previous discussion that ConS(C) = |PC | · ConS(x) where x
is any element of PC . Since |ConS(x)| ≤ 1

2n for all x ∈ {0, 1}n
, for any collection

C, we have that

|ConS(C)| ≤ Pr
x∈Un

[x ∈ PC] = Pr
x∈Un

[(
∧

U∈C
gU) ∧ (

∧

U 6∈C
gs)] ≤ Pr

x∈Un

[(
∧

U∈C
gU)].

We are interested in bounding this probability for C 6= {S} (we will deal with
the special case C = {S} separately later). Recall that each gU is a disjunction
of terms; the expression

∧

U∈C gU is satisfied by precisely those x that satisfy at
least one term from each gU as U ranges over all elements of C. For j ≥ 1 let us
define a quantity Bj as follows

Bj
def
= max

i1,...,ij

Pr
x∈Un

[x simultaneously satisfies terms Ti1 , . . . , Tij
in ∨U⊆S(gU)]

where the max is taken over all j-tuples of distinct terms in ∨U⊆S(gU). Then it
is not hard to see that by a union bound, we have

|ConS(C)| ≤ B|C|
∏

U∈C
(#gU), (2)

7

where #gU denotes the number of terms in the monotone DNF gU .
The idea of why (2) is a useful bound is as follows. Intuitively, one would

expect that the value of Bj decreases as j (the number of terms that must be
satisfied) increases. One would also expect the value of #gU to decrease as the
size of U increases (if U contains more variables then fewer terms in f will
contain all of those variables). This means that there is a trade-off which helps
us bound (2): if |C| is large then B|C| is small, but if |C| is small then (since we
know that

⋃

U∈C U = S) some U is large and so
∏

U∈C #gU will be smaller.

2.3 Bounding f̂(S) based on whether S co-occurs in a term of f .

We are now ready to state formally the conditions on f̂ that allow us to detect a
co-occurrence of variables in the value of the corresponding Fourier coefficient.

Lemma 3. Let f : {0, 1}n → {−1, 1} be a monotone DNF. Fix a set S ⊂ [n] of
size |S| = s and let

Y = {C ⊆ P(S) : C covers S and S /∈ C}.

Suppose that we define α, β1, . . . , β2s and Φ : Y →R so that:

C1 Each term in f is uniquely satisfied with probability at least α;
C2 For 1 ≤ j ≤ 2s, each j-tuple of terms in f is simultaneously satisfied with

probability at most βj; and
C3 For every CY ∈ Y we have

∏

U∈CY
(#gU) ≤ Φ(CY).

Then

1. If the variables in S do not simultaneously co-occur in any term of f , then

|f̂(S)| ≤ Υ where Υ :=
∑

CY ∈Y

(

2sβ|CY |Φ(CY)
)

;

2. If the variables in S do simultaneously co-occur in some term of f , then
|f̂(S)| ≥ α

2s − 2 · Υ.

Using Lemma 3, if f satisfies conditions C1 through C3 with values of βj and
Φ(·) so that there is a “gap” between α/2s and 3Υ , then we can determine
whether all the variables in S simultaneously co-occur in a term by estimating
the magnitude of f̂(S).

Proof. Let C⋆ denote the ‘special’ element of P (S) that consists solely of the
subset S, i.e. C⋆ = {S}, and let X = {C ⊆ P(S) : C covers S and S ∈ C and C 6=
C⋆}. Using Lemma 2, we have

f̂(S) = ConS(C⋆) +
∑

CY ∈Y

ConS(CY) +
∑

CX∈X

ConS(CX). (3)

We first prove point 1. Suppose that the variables of S do not simultaneously
co-occur in any term of f . Then gS is the empty disjunction and #gS = 0,

8

so ConS(C) = 0 for any C containing S. Thus in this case we have f̂(S) =
∑

CY ∈Y
ConS(CY); using (2) and condition C3, it follows that |f̂(S)| is at most

∑

CY ∈Y
B|CY |Φ(CY). It is not hard to see that B|CY | ≤ 2sβ|CY | (we give a proof

in the full version). So in this case we have

|f̂(S)| ≤
∑

CY ∈Y

|ConS(CY)| ≤
∑

CY ∈Y

B|CY |Φ(CY) ≤
∑

CY ∈Y

(

2sβ|CY |Φ(CY)
)

= Υ.

Now we turn to point 2. Suppose that the variables of S do co-occur in some
term of f . Let x be any element of PC⋆ , so x satisfies gU if and only if U = S.
It is easy to see from (1) that for such an x we have ConS(x) = (−1)|S|/(2n2s).
We thus have that

ConS(C⋆) =
(−1)|S|

2s
· Pr[x ∈ PC⋆] =

(−1)|S|

2s
Pr[gS ∧ (

∧

U(S

gU)]. (4)

Since S co-occurs in some term of f , we have that gS contains at least one term
T . By condition C1, the corresponding term (T ∧ (∧i∈Sxi)) of f is uniquely
satisfied with probability at least α. Since each assignment that uniquely satisfies
(T ∧ (∧i∈Sxi)) (among all the terms of f) must satisfy gS ∧ (

∧

U(S gU), we have
that the magnitude of (4) is at least α/2s.

We now show that |
∑

CX∈X
ConS(CX)| ≤ Υ , which completes the proof,

since we already have that |∑CY ∈Y
ConS(CY)| ≤ ∑

CY ∈Y
|ConS(CY)| ≤ Υ .

First note that if the set CX \{S} does not cover S, then by Lemmas 1 and 2 we
have that ConS(x) = 0 for each x ∈ PCX

and thus ConS(CX) = 0. So we may
restrict our attention to those CX such that CX \ {S} covers S. Now since such
a CX \ {S} is simply some CY ∈ Y , and each CY ∈ Y is obtained as CX \ {S}
for at most one CX ∈ X , we have

∣

∣

∣

∣

∣

∣

∑

CX ∈X

ConS(CX)

∣

∣

∣

∣

∣

∣

≤
∑

CY ∈Y

|ConS(CY)| ≤ Υ.

3 Hypothesis formation

In this section, we show that if a target monotone DNF f satisfies the conditions
of Lemma 3 and two other simple conditions stated below (see Theorem 2), then
it is possible to learn f from uniform random examples.

Theorem 2. Let f be a t-term monotone DNF. Fix s ∈ [n]. Suppose that

– For all sets S ⊂ [n], |S| = s, conditions C1 through C3 of Lemma 3 hold
for certain values α, βj, and Φ(·) satisfying ∆ > 0, where ∆ := α/2s −
3 · Υ . (Recall that Υ :=

∑

CY ∈Y

(

2sβ|CY |Φ(CY)
)

, where Y = {C ⊆ P(S) :
C covers S and S /∈ C}.)

C4 Every set S of s co-occurring variables in f appears in at most γ terms (here
γ ≥ 2); and

9

C5 Every term of f contains at most κ variables (note that s ≤ κ ≤ n).

Then algorithm A (described formally in the full version) PAC learns f to ac-
curacy ǫ with confidence 1 − δ given access to EX(f, Un), and runs in time
poly(ns+γ , t, 1/∆, γκ, 1/ǫ, log(1/δ)).

Proof. Lemma 3 implies that for each set S ⊂ [n], |S| = s,

– if the variables in S all co-occur in some term of f , then |f̂(S)| is at least
∆/2 larger than Υ + ∆/2;

– if the variables in S do not all co-occur in some term of f , then |f̂(S)| is at
least ∆/2 smaller than Υ + ∆/2.

A straightforward application of Hoeffding bounds (to estimate the Fourier co-
efficients using a random sample of uniformly distributed examples) shows that
Step 1 of Algorithm A can be executed in poly(ns, 1/∆, log(1/δ)) time, and that
with probability 1− δ/3 the S’s that are marked as “good” will be precisely the
s-tuples of variables that co-occur in some term of f .

Conceptually, the algorithm next constructs the hypergraph Gf that has one
vertex per variable in f and that includes an s-vertex hyperedge if and only
if the corresponding s variables co-occur in some term of f . Clearly there is
a k-hyperclique in Gf for each term of k variables in f . So if we could find
all of the k-hypercliques in Gf (where again k ranges between s and κ), then
we could create a set HCf of monotone conjunctions of variables such that f
could be represented as an OR of t of these conjunctions. Treating each of the
conjunctions in HCf as a variable in the standard elimination algorithm for
learning disjunctions (see e.g. Chapter 1 of [KV94]) would then enable us to
properly PAC learn f to accuracy ǫ with probability at least 1 − δ/3 in time
polynomial in n, t, |HCf |, 1/ǫ, and log(1/δ). Thus, A will use a subalgorithm A′
to find all the k-hypercliques in Gf and will then apply the elimination algorithm
over the corresponding conjunctions to learn the final approximator h.

We now explain the subalgorithmA′ for locating the set HCf of k-hypercliques.
For each set S of s co-occurring variables, let NS ⊆ ([n] \ S) be defined as fol-
lows: a variable xi is in NS if and only if xi is present in some term that contains
all of the variables in S. Since by assumption there are at most γ terms con-
taining such variables and each term contains at most κ variables, this means
that |NS | < κγ. The subalgorithm will use this bound as follows. For each set S
of s co-occurring variables, A′ will determine the set NS using a procedure A′′
described shortly. Then, for each s ≤ k ≤ κ and each (k − s)-element subset N ′

of NS, A′ will test whether or not N ′ ∪S is a k-hyperclique in Gf . The set of all
k-hypercliques found in this way is HCf . For each S, the number of sets tested
in this process is at most

κ
∑

i=0

(|NS |
i

)

≤
κ

∑

i=0

(

κγ

i

)

≤
(eκγ

κ

)κ

= (eγ)κ.

Thus, |HCf | = O(ns(eγ)κ), and this is an upper bound on the time required to
execute Step 2 of subalgorithm A′.

10

Finally, we need to define the procedure A′′ for finding NS for a given set
S of s co-occurring variables. Fix such an S and let Nγ be a set of at most γ
variables in ([n] \ S) having the following properties:

P1 In the projection fNγ←0 of f in which all of the variables of Nγ are fixed to
0, the variables in S do not co-occur in any term; and

P2 For every set N ′γ ⊂ Nγ such that |N ′γ | = |Nγ | − 1, the variables in S do
co-occur in at least one term of fN ′

γ←0.

We will use the following claim (proved in the full version):

Claim. NS is the union of all sets Nγ of cardinality at most γ that satisfy P1
and P2.

There are only O(nγ) possible candidate sets Nγ to consider, so our problem
now reduces to the following: given a set N of at most γ variables, determine
whether the variables in S co-occur in fN←0.

Recall that since f satisfies the three conditions C1, C2 and C3, Lemma 3
implies that |f̂(S)| is either at most Υ (if the variables in S do not co-occur in any
term of f) or at least α

2s − 2 · Υ (if the variables in S do co-occur in some term).

We now claim that the function fN←0 has this property as well: i.e., |f̂N←0(S)|
is either at most the same value Υ (if the variables in S do not co-occur in any
term of fN←0) or at least the same value α

2s − 2 · Υ (if the variables in S do
co-occur in some term of fN←0). To see this, observe that the function fN←0

is just f with some terms removed. Since each term in f is uniquely satisfied
with probability at least α (this is condition C1), the same must be true of
fN←0 since removing terms from f can only increase the probability of being
uniquely satisfied for the remaining terms. Since each j-tuple of terms in f is
simultaneously satisfied with probability at most βj (this is condition C2), the
same must be true for j-tuples of terms in fN←0. Finally, for condition C3, the
value of #gU can only decrease in passing from f to fN←0. Thus, the upper
bound of Υ that follows from applying Lemma 3 to f is also a legitimate upper

bound when the lemma is applied to |f̂N←0(S)|, and similarly the lower bound
of α

2s −2 ·Υ is also a legitimate lower bound when the lemma is applied to fN←0.
Therefore, for every |N | ≤ γ, a sufficiently accurate (within ∆/2) estimate of

f̂N←0(S) (as obtained in Step 1 of subalgorithm A′′) can be used to determine
whether or not the variables in S co-occur in any term of fN←0.

To obtain the required estimate for f̂N←0, observe that for a given set N , we
can simulate a uniform example oracle for fN←0 by filtering the examples from
the uniform oracle for f so that only examples setting the variables in N to 0
are accepted. Since |N | ≤ γ, the filter accepts with probability at least 1/2γ.

A Hoeffding bound argument then shows that the Fourier coefficients f̂N←0(S)
can be estimated (with probability of failure no more than a small fraction of δ)
from an example oracle for f in time polynomial in n, 2γ , 1/∆, and log(1/δ).

Algorithm A′′, then, estimates Fourier coefficients of restricted versions of f ,
using a sample size sufficient to ensure that all of these coefficients are sufficiently

11

accurate over all calls to A′′ with probability at least 1 − δ/3. These estimated
coefficients are then used by A′′ to locate the set NS as just described. The
overall algorithm A therefore succeeds with probability at least 1 − δ, and it is
not hard to see that it runs in the time bound claimed.

Required parameters. In the above description of Algorithm A, we assumed
that it is given the values of s, α, Υ, γ, and κ. In fact it is not necessary to
assume this; a standard argument gives a variant of the algorithm which succeeds
without being given the values of these parameters.

The idea is simply to have the algorithm “guess” the values of each of these
parameters, either exactly or to an adequate accuracy. The parameters s, γ and
κ take positive integer values bounded by poly(n). The other parameters α, Υ
take values between 0 and 1; a standard argument shows that if approximate
values α′ and Υ ′ (that differ from the true values by at most 1/poly(n)) are used
instead of the true values, the algorithm will still succeed. Thus there are at most
poly(n) total possible settings for (s, γ, κ, α, Υ) that need to be tried. We can
run Algorithm A for each of these candidate parameter settings, and test the
resulting hypothesis; when we find the “right” parameter setting, we will obtain
a high-accuracy hypothesis (and when this occurs, it is easy to recognize that it
has occurred, simply by testing each hypothesis on a new sample of random la-
beled examples). This parameter guessing incurs an additional polynomial factor
overhead. Thus Theorem 2 holds true for the extended version of Algorithm A
that takes only ǫ, δ as input parameters.

4 Random Monotone DNF

The random monotone DNF model. Let Mt,k
n be the probability distribu-

tion over monotone t-term DNF induced by the following process: each term is
independently and uniformly chosen at random from all

(

n
k

)

monotone ANDs of
size exactly k over x1, . . . ,xn.

Given a value of t, throughout this section we consider the Mt,k
n distribution

where k = ⌊log t⌋ (we will relax this and consider a broader range of values for k
in Section 6). To motivate this choice, consider a random draw of f from Mt,k

n . If
k is too large relative to t then a random f ∈ Mt,k

n will likely have Prx∈Un
[f(x) =

1] ≈ 0, and if k is too small relative to t then a random f ∈ Mt,k
n will likely have

Prx∈Un
[f(x) = 1] ≈ 1; such functions are trivial to learn to high accuracy using

either the constant-0 or constant-1 hypothesis. A straightforward analysis (see
e.g. [JS06]) shows that for k = ⌊log t⌋ we have that Ef∈Mt,k

n
[Prx∈Un

[f(x) = 1]]
is bounded away from both 0 and 1, and thus we feel that this is an appealing
and natural choice.

Probabilistic analysis. In this section we will establish various useful proba-
bilistic lemmas regarding random monotone DNF of polynomially bounded size.

Assumptions: Throughout the rest of Section 4 we assume that t(n) is any
function such that n3/2 ≤ t(n) ≤ poly(n). To handle the case when t(n) ≤ n3/2,
we will use the results from [JS06]. Let a(n) be such that t(n) = na(n). For

12

brevity we write t for t(n) and a for a(n) below, but the reader should keep in
mind that a actually denotes a function 3

2 ≤ a = a(n) ≤ O(1). Because of space
limitations all proofs are given in the full version.

The first lemma provides a bound of the sort needed by condition C3 of
Lemma 3:

Lemma 4. Let |S| = s = ⌊a⌋ + 2. Fix any CY ∈ Y . Let δterms = n−Ω(log n).
With probability at least 1 − δterms over the random draw of f from Mt,k

n , we
have that for some absolute constant c and all sufficiently large n,

∏

U∈CY

(#gU) ≤ c · t|CY |−1k2s

√
n

. (5)

The following lemma shows that for f drawn from Mt,k
n , with high probabil-

ity each term is “uniquely satisfied” by a noticeable fraction of assignments as
required by condition C1. (Note that since k = O(log n) and t > n3/2, we have
δusat = n−Ω(log log n) in the following.)

Lemma 5. Let δusat := exp(−tk
3n) + t2(k

n)log log t. For n sufficiently large, with
probability at least 1 − δusat over the random draw of f = T1 ∨ · · · ∨ Tt from
Mt,k

n , f is such that for all i = 1, . . . , t we have Prx[Ti is satisfied by x but no

other Tj is satisfied by x] ≥ Θ(1)
2k .

We now upper bound the probability that any j distinct terms of a random
DNF f ∈ Mt,k

n will be satisfied simultaneously (condition C2). (In the following
lemma, note that for j = Θ(1), since t = nΘ(1) and k = Θ(log n) we have that
the quantity δsimult is n−Θ(log log n).)

Lemma 6. Let 1 ≤ j ≤ 2s, and let δsimult := tjejk−log k(jk−log k)log k

nlog k . With
probability at least 1 − δsimult over the random draw of f = T1 ∨ · · · ∨ Tt from
Mt,k

n , for all 1 ≤ ι1 < · · · < ιj ≤ t we have Pr[Tι1 ∧ . . . ∧ Tιj
] ≤ βj, where

βj := k
2jk .

Finally, the following lemma shows that for all sufficiently large n, with high
probability over the choice of f , every set S of s variables appears in at most γ
terms, where γ is independent of n (see condition C4).

Lemma 7. Fix any constant c > 0. Let s = ⌊a⌋ + 2 and let γ = a + c + 1. Let
δγ = n−c. Then for n sufficiently large, with probability at least 1 − δγ over the
random draw of f from Mt,k

n , we have that every s-tuple of variables appears in
at most γ terms of f .

5 Proof of Theorem 1

Theorem 1 [Formally] Let t(n) be any function such that t(n) ≤ poly(n), let
a(n) = O(1) be such that t(n) = na(n), and let c > 0 be any fixed constant. Then

for any n−c < δ < 1 and 0 < ǫ < 1, Mt(n),⌊log t(n)⌋
n is PAC learnable under Un

in poly(n2a(n)+c+3,(a(n) + c + 1)log t(n),t(n),1/ǫ, log 1/δ) time.

13

Proof. The result is proved for t(n) ≤ n3/2 already in [JS06], so we henceforth
assume that t(n) ≥ n3/2. We use Theorem 2 and show that for s = ⌊a(n)⌋ + 2,
random monotone t(n)-term DNFs, with probability at least 1 − δ, satisfy con-
ditions C1–C5with values α, βj , Φ(·), ∆, γ, and κ such that ∆ > 0 and the
quantities ns+γ , 1/∆, and γκ are polynomial in n. This will show that the ex-
tended version of Algorithm A defined in Section 3 PAC learns random mono-
tone t(n)-term DNFs in time poly(n, 1/ǫ). Let t = t(n) and k = ⌊log t⌋, and
let f be drawn randomly from Mt,k

n . By Lemmas 4–7, with probability at least
1 − δusat − δγ − 22s

δterms − δsimult, f will satisfy C1–C5 with the following
values:

C1 α > Θ(1)
2k ; C2 βj ≤ k

2jk for 1 ≤ j ≤ 2s;

C3 Φ(CY) ≤ O(1) t|CY |−1k2s

√
n

for all CY ∈ Y ; C4 γ ≤ a(n) + c + 1;

C5 κ = k = ⌊log t⌋,

which gives us that ns+γ = n2a+c+3 and γκ = (a + c + 1)⌊log t⌋. Finally, we
show that ∆ = Ω(1/t) so 1/∆ is polynomial in n:

∆ = α/2s − 3 · Υ =
Θ(1)

t2s
− 3

∑

CY ∈Y

2sβ|CY |Φ(CY)

≥ Θ(1)

t2s
− Θ(1)

∑

CY ∈Y

2s k

t|CY | ·
t|CY |−1k2s

√
n

=
Θ(1)

t2s
− Θ(1)k2s+1

t
√

n
= Ω(1/t).

6 Discussion

Robustness of parameter settings. Throughout Sections 4 and 5 we have
assumed for simplicity that the term length k in our random t-term monotone
DNF is exactly ⌊log t⌋. In fact, the results extend to a broader range of k’s;
one can straightforwardly verify that by very minor modifications of the given
proofs, Theorem 1 holds for Mt,k

n for any (log t) − O(1) ≤ k ≤ O(log t).

Relation to previous results. Our results are powerful enough to subsume
some known “worst-case” results on learning restricted classes of monotone DNF
formulas. Hancock and Mansour [HM91] have shown that read-k monotone DNF
(in which each Boolean variable xi occurs in at most k terms) are learnable under
the uniform distribution in poly(n) time for constant k. Their result extends an
earlier result of Kearns et al. [KLV94] showing that read-once DNF (which can
be assumed monotone without loss of generality) are polynomial-time learnable
under the uniform distribution. It is not hard to see that (a very restricted special
case of) our algorithm can be used to learn read-k monotone DNF in polynomial
time; we give some details in the full version.

14

References

[AM02] K. Amano and A. Maruoka. On learning monotone boolean functions under
the uniform distribution. In Proc. 13th ALT, pages 57–68, 2002.

[AP95] H. Aizenstein and L. Pitt. On the learnability of disjunctive normal form
formulas. Machine Learning, 19:183–208, 1995.

[BBL98] A. Blum, C. Burch, and J. Langford. On learning monotone boolean func-
tions. In Proc. 39th FOCS, pages 408–415, 1998.

[BFJ+94] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich.
Weakly learning DNF and characterizing statistical query learning using
Fourier analysis. In Proc. 26th STOC, pages 253–262, 1994.

[Blu03a] A. Blum. Learning a function of r relevant variables (open problem). In
Proc. 16th COLT, pages 731–733, 2003.

[Blu03b] A. Blum. Machine learning: a tour through some favorite results, directions,
and open problems. FOCS 2003 tutorial slides, 2003.

[BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.
Journal of the ACM, 43(4):747–770, 1996.

[HM91] T. Hancock and Y. Mansour. Learning monotone k-µ DNF formulas on
product distributions. In Proc. 4th COLT, pages 179–193, 1991.

[Jac97] J. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. JCSS, 55:414–440, 1997.

[JS05] J. Jackson and R. Servedio. Learning random log-depth decision trees under
the uniform distribution. SICOMP, 34(5):1107–1128, 2005.

[JS06] J. Jackson and R. Servedio. On learning random DNF formulas under the
uniform distribution. Theory of Computing, 2(8):147–172, 2006.

[JT97] J. Jackson and C. Tamon. Fourier analysis in machine learning.
ICML/COLT 1997 tutorial slides, 1997.

[KLV94] M. Kearns, M. Li, and L. Valiant. Learning Boolean formulas. Journal of

the ACM, 41(6):1298–1328, 1994.
[KMSP94] L. Kučera, A. Marchetti-Spaccamela, and M. Protassi. On learning mono-

tone DNF formulae under uniform distributions. Information and Compu-

tation, 110:84–95, 1994.
[KV94] M. Kearns and U. Vazirani. An introduction to computational learning the-

ory. MIT Press, Cambridge, MA, 1994.
[Man95] Y. Mansour. An O(nlog log n) learning algorithm for DNF under the uniform

distribution. JCSS, 50:543–550, 1995.
[MO03] E. Mossel and R. O’Donnell. On the noise sensitivity of monotone functions.

Random Structures and Algorithms, 23(3):333–350, 2003.
[OS06] R. O’Donnell and R. Servedio. Learning monotone decision trees in poly-

nomial time. In Proc. 21st CCC, pages 213–225, 2006.
[Sel08] L. Sellie. Learning Random Monotone DNF Under the Uniform Distribu-

tion. In Proc. 21st COLT, to appear, 2008.
[Ser04] R. Servedio. On learning monotone DNF under product distributions. In-

formation and Computation, 193(1):57–74, 2004.
[SM00] Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas under

the uniform distribution. Theory of Computing Systems, 33:17–33, 2000.
[Val84] L. Valiant. A theory of the learnable. CACM, 27(11):1134–1142, 1984.
[Ver90] K. Verbeurgt. Learning DNF under the uniform distribution in quasi-

polynomial time. In Proc. 3rd COLT, pages 314–326, 1990.
[Ver98] K. Verbeurgt. Learning sub-classes of monotone DNF on the uniform dis-

tribution. In Proc. 9th ALT, pages 385–399, 1998.

