
Distribution-Free Testing Lower Bounds
for Basic Boolean Functions

Dana Glasner∗
Columbia University
New York, NY 10027

dglasner@cs.columbia.edu

Rocco A. Servedio†

Columbia University
New York, NY 10027

rocco@cs.columbia.edu

April 5, 2007

Abstract

In the distribution-free property testing model, the distance between functions is measured with
respect to an arbitrary and unknown probability distribution D over the input domain. We consider
distribution-free testing of several basic Boolean function classes over {0, 1}n, namely monotone con-
junctions, general conjunctions, decision lists, and linear threshold functions. We prove that for each of
these function classes, Ω((n/ log n)1/5) oracle calls are required for any distribution-free testing algo-
rithm. Since each of these function classes is known to be distribution-free learnable (and hence testable)
using Θ(n) oracle calls, our lower bounds are within a polynomial factor of the best possible.

∗Supported in part by an FFSEAS Presidential Fellowship.
†Supported in part by NSF award CCF-0347282, by NSF award CCF-0523664, and by a Sloan Foundation Fellowship.

1 Introduction

The field of property testing deals with algorithms that decide whether an input object has a certain property
or is far from having the property after reading only a small fraction of the object. Property testing was
introduced in [20] and has evolved into a rich field of study (see [3, 7, 10, 18, 19] for some surveys). A
standard approach in property testing is to view the input to the testing algorithm as a function over some
finite domain; the testing algorithm is required to distinguish functions that have a certain property P from
functions that are ε-far from having property P . In the most commonly considered property testing scenario,
a function f is ε-far from having a property P if f disagrees with every function g that has property P on
at least an ε fraction of the points in the input domain; equivalently, the distance between functions f and
g is measured with respect to the uniform distribution over the domain. The testing algorithm “reads” f by
adaptively querying a black-box oracle for f at points x of the algorithm’s choosing (such oracle calls are
often referred to as “membership queries” in computational learning theory). The main goal in designing
property testing algorithms is to use as few queries as possible to distinguish the two types of functions;
ideally the number of queries should depend only on ε and should be independent of the size of f ’s domain.

One can of course view any property P as a class of functions (the class of those functions that have
property P). In recent years there has been considerable work in the standard “uniform distribution” prop-
erty testing scenario on testing various natural properties of Boolean functions f : {0, 1}n → {0, 1}, i.e.
testing various Boolean function classes. Some classes for which uniform distribution testing results have
been obtained are monotone functions [6, 9, 12]; Boolean literals, monotone conjunctions, general con-
junctions and s-term monotone DNFs [17]; J -juntas [8]; parity functions (which are equivalent to degree-1
polynomials) [4]; degree-d polynomials [2]; decision lists, s-term DNFs, size-s decision trees and s-sparse
polynomials [5]; and linear threshold functions [16].

Distribution-free property testing. A natural generalization of property testing is to consider a broader
notion of the distance between functions. Given a probability distribution D over the domain, we may
define the distance between f and g as the probability that an input x drawn from D has f(x) 6= g(x);
the “standard” notion of property testing described above corresponds to the case where D is the uniform
distribution. Distribution-free property testing is the study of property testers in a setting where distance is
measured with respect to a fixed but unknown and arbitrary probability distribution D. Since the distribution
D is unknown, in this scenario the testing algorithm is allowed to draw random samples from D in addition
to querying a black-box oracle for the value of the function.

Distribution-free property testing is well-motivated by very similar models in computational learning
theory (namely the model of distribution-free PAC learning with membership queries, which is closely
related to the well-studied model of exact learning from equivalence and membership queries), and by
the fact that in various settings the uniform distribution may not be the best way to measure distances.
Distribution-free property testing has been considered by several authors [1, 11, 13, 14, 15]; we briefly
describe some of the most relevant prior work below.

Goldreich et al. [11] introduced the model of distribution-free property testing, and observed that any
proper distribution-free PAC learning algorithm (such a learning algorithm for a class of functions always
outputs a hypothesis function that itself belongs to the class) can be used as a distribution-free property
testing algorithm. They also showed that several graph properties that have testing algorithms with query
complexity independent of input size in the uniform-distribution model (such as bipartiteness, k-colorability,
ρ-clique, ρ-cut and ρ-bisection) do not have distribution-free testing algorithms with query complexity inde-
pendent of input size. In contrast, Halevy and Kushilevitz [14] gave a distribution-free algorithm for testing
connectivity in sparse graphs that has poly(1/ε) query complexity independent of input size.

A range of positive and negative results have been established for distribution-free testing of Boolean
functions over {0, 1}n. [15] showed that any distribution-free monotonicity testing algorithm over {0, 1}n

must make 2Ω(n) queries; this is in contrast with the uniform distribution setting, where monotonicity testing

1

algorithms are known that have query complexity poly(n, 1/ε) [6, 9, 12]. On the other hand, [13] showed
that for several important function classes over {0, 1}n such as juntas, parities, low-degree polynomials and
Boolean literals, there exist distribution-free testing algorithms with query complexity poly(1/ε) indepen-
dent of n; these distribution-free results match the query bounds of uniform distribution testing algorithms
for these classes.

To sum up, the current landscape of distribution-free property testing is intriguingly varied. For some
testing problems (juntas, parities, Boolean literals, low-degree polynomials, connectivity in sparse graphs)
the complexity of distribution-free testing is known to be essentially the same as the complexity of uniform-
distribution testing; but for other natural testing problems (monotonicity, bipartiteness, k-colorability, ρ-
clique, ρ-cut, ρ-bisection), distribution-free testing provably requires many more queries than uniform-
distribution testing.

This work. Our work is motivated by the fact that for many Boolean function classes over {0, 1}n

that are of fundamental interest, a very large gap exists between the query complexities of the best known
distribution-free property testing algorithms (which typically follow trivially from learning algorithms and
have query complexity Ω(n)) and the best known uniform distribution property testing algorithms (which
typically have query complexity poly(1/ε) independent of n). A natural goal is to try to close this gap, either
by developing efficient distribution-free testing algorithms or by proving lower bounds for distribution-free
testing for these classes.

We study distribution-free testability of several fundamental classes of Boolean functions that have
been previously considered in the uniform distribution testing framework, and have been extensively stud-
ied in various distribution-free learning models. More precisely, we consider the following classes (in order
of increasing generality): monotone conjunctions, arbitrary conjunctions, decision lists, and linear thresh-
old functions. Each of these four classes is known to be testable in the uniform distribution setting using
poly(1/ε) many queries, independent of n (see [17] for monotone and general conjunctions, [5] for decision
lists, and [16] for linear threshold functions). On the other hand, for each of these classes the most effi-
cient known distribution-free testing algorithm is simply to use a proper learning algorithm, which requires
Θ(n/ε) oracle calls.

Our main results are strong distribution-free lower bounds for testing each of these four function classes:

Theorem 1 Let T be any algorithm which, given oracle access to an unknown f : {0, 1}n → {0, 1}
and (sampling) oracle access to an unknown distribution D over {0, 1}n, tests whether f is a mono-
tone conjunction versus Θ(1)-far from every monotone conjunction with respect to D. Then T must make
Ω((n/ log n)1/5) oracle calls in total. The same lower bound holds for testing general conjunctions, testing
decision lists, and testing linear threshold functions.

These results show that for these function classes, distribution-free testing is nearly as difficult (from a query
perspective) as distribution-free learning, and is much more difficult than uniform-distribution testing.

Organization. After giving preliminaries in Section 2, in Section 3 we present our construction of
“yes” and “no” (function, distribution) pairs that are used in the lower bound for monotone conjunctions.
The actual lower bound proof is given in Section 4. In Appendix B we give a simple argument that extends
the result to a lower bound for arbitrary conjunctions and for decision lists. In Appendix C we describe a
variant of the construction for linear threshold functions, and in Appendix D we use it to prove the lower
bound for linear threshold functions.

2 Preliminaries

Throughout the paper we deal with Boolean functions over n input variables.

2

Definition 2 Let D be a probability distribution over {0, 1}n. Given Boolean functions f, g : {0, 1}n →
{0, 1}, the distance between f and g with respect to D is defined by distD(f, g)

def
= Prx∼D[f(x) 6= g(x)].

If C is a class of Boolean functions over {0, 1}n , we define the distance between f and C with respect
to D to be distD(f, C)

def
= ming∈C distD(f, g).

We say that f is ε-far from C with respect to D if distD(f, C) ≥ ε.

Now we can define the notion of a distribution-free tester for a class of functions C:

Definition 3 A distribution-free tester for class C is a probabilistic oracle machine T which takes as input
a distance parameter ε > 0, is given access to

• a black-box oracle to a fixed (but unknown and arbitrary) function h : {0, 1}n → {0, 1} (when
invoked with input x, the oracle returns the value h(x)); and

• a sampling oracle for a fixed (but unknown and arbitrary) distribution D over {0, 1}n (each time it is
invoked this oracle returns a pair (x, h(x)) where x is independently drawn from D),

and satisfies the following two conditions: for any h : {0, 1}n → {0, 1} and any distribution D,

• If h belongs to C , then Pr[T h,D = Accept] ≥ 2
3 ; and

• If h is ε-far from C w.r.t. D, then Pr[T h,D = Accept] ≤ 1
3 .

This definition allows the tester to be adaptive and to have two-sided error; this is of course the strongest
version for proving lower bounds.

The classes we consider. For completeness we define here all the classes of functions that we will
consider: these are (in order of increasing generality) monotone conjunctions, general conjunctions, decision
lists, and linear threshold functions. We note that each of these function classes is quite basic and natural
and has been studied intensively in fields such as computational learning theory.

The class MCONJ consists of all monotone conjunctions of any set of Boolean variables from x1, . . . , xn,
i.e. all ANDs of (unnegated) Boolean variables.

The class CONJ consists of all conjunctions of any set of Boolean literals over {0, 1}n (a literal is a
Boolean variable or the negation of a variable).

A decision list L of length k over the Boolean variables x1, . . . , xn is defined by a list of k pairs and a
bit (`1, β1), (`2, β2), . . . , (`k, βk), βk+1 where each `i is a Boolean literal and each βi is either 0 or 1. Given
any x ∈ {0, 1}n, the value of L(x) is βi if i is the smallest index such that `i is made true by x; if no `i is
true then L(x) = βk+1. Let DL denote the class of all decision lists of arbitrary length k ≥ 0 over {0, 1}n.

A linear threshold function is defined by a list of n + 1 real values w1, . . . , wn, θ. The value of the
function on input x ∈ {0, 1}n is 1 if w1x1 + · · · + wnxn ≥ θ and is 0 if w1x1 + · · · + wnxn < θ. We write
LTF to denote the class of all linear threshold functions over {0, 1}n.

It is well known and easy to see that MCONJ (CONJ (DL (LTF.
Notation. For a string x ∈ {0, 1}n we write xi to denote the i-th bit of x. For x, y ∈ {0, 1}n we write

x ∧ y to denote the n-bit string z which is the bitwise AND of x and y, i.e. zi = xi ∧ yi for all i. The string
x ∨ y is defined similarly to be the bitwise OR of x and y.

Recall that the total variation distance, or statistical distance, between two random variables X and Y

that take values in a finite set S is dTV (X,Y)
def
= 1

2

∑

ζ∈S |Pr[X = ζ] −Pr[Y = ζ]|.

3

3 The two distributions for monotone conjunctions

In this section we define two distributions, YES and NO, over pairs (h,D) where h : {0, 1}n → {0, 1} is
a Boolean function and D is a distribution over the domain {0, 1}n. We will prove that these distributions
have the following properties:

1. For every pair (g,Dg) in the support of YES , the function g is a monotone conjunction (and hence
any tester for MCONJ must accept every such pair with probability at least 2/3).

2. For every pair (f,Df) in the support of NO, the function f is 1/3-far from MCONJ with respect
to Df (and hence any tester for MCONJ must accept every such pair with probability at most 1/3).

Our constructions are parameterized by three values `,m and s. As we will see the optimal setting of
these parameters (up to multiplicative constants) for our purposes is

`
def
= n2/5(log n)3/5, m

def
= (n/ log n)2/5, s

def
= log n. (1)

To keep the different roles of these parameters clear in our exposition we will present our constructions and
analyses in terms of “`,” “m” and “s” as much as possible and only plug in the values from (1) toward the
end of our analysis.

3.1 The YES distribution.

A draw from the distribution YES over (g,Dg) pairs is obtained as follows:

• Let R ⊂ [n] be a set of size 2`m selected uniformly at random. Randomly partition the set R into
2m subsets A1, B1, . . . , Am, Bm, each of size `. Let ai ∈ {0, 1}n be the string whose j-th bit is 0
iff j ∈ Ai. The string bi is defined similarly. The string ci is defined to be ai ∧ bi, and similarly we
define the set Ci = Ai ∪ Bi. We sometimes refer to ai, bi, ci as the “points of the i-th block.”

• Let g1 be the conjunction of all variables in [n] \ R. Let g2 be a conjunction of length m formed by
taking g = xα(1) ∧ · · · ∧ xα(m) where each α(i) is chosen uniformly at random from the set Ai. The
function g is taken to be g = g1 ∧ g2. For each i = 1, . . . ,m the distribution Dg puts weight 2/(3m)
on bi and puts weight 1/(3m) on ci.

It is clear that for every (g,Dg) in the support of YES , the function g is a monotone conjunction that
contains exactly n − 2m` + m variables, so Property (1) indeed holds.

3.2 The NO distribution.

A draw from the distribution NO of (f,Df) pairs is obtained as follows:

• As in the yes-case, let R ⊂ [n] be a randomly selected set of size 2`m, and randomly partition the set
R into 2m subsets A1, B1, . . . , Am, Bm, each of size `. The points ai, bi, ci and sets Ai, Bi, Ci are
defined as in the yes-case. The distribution Df is uniform over the 3m points a1, . . . , cm.

• Construct the conjunctions g1 and g2 exactly as in the yes-case: g1 is the conjunction of all variables
in [n] \ R and g2 is xα(1) ∧ · · · ∧ xα(m) where each α(i) is chosen uniformly from Ai.

• Define the function f ′ as follows: f ′(x) = 0 if there exists some i ∈ [m] such that

– xα(i) = 0 and

4

PSfrag replacements

11nxα(i)

s 0’s

xα(i) 1
1

` 0’s
ai bi

1 10

2` 0’s
ci

0

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

PSfrag replacements

11nxα(i)

s 0’s

xα(i)

11

` 0’s
ai bi

1 1

0

2` 0’s
ci

0

Figure 1: The left figure shows how a yes-function g labels ci and the points above it (including ai and bi).
Bold print indicate the label that g assigns. Note that every point above bi is labeled 1 by g, and points above
ai are labeled according to xα(i). The right figure shows how a no-function f labels ci and the points above
it (including ai and bi). Again, bold print indicates the label that f assigns. Note that every point above bi is
labeled 1 by f , and points above ai with less than s 0’s are labeled according to xα(i). The i-special points
for block i are shaded and are labeled 1 by f.

– (fewer than s of the elements j ∈ Ai have xj = 0) or (xj = 0 for some j ∈ Bi).

The following terminology will be useful: we say that an input x ∈ {0, 1}n is i-special if (at least s
elements j ∈ Ai have xj = 0) and (xj = 1 for all j ∈ Bi). Thus an equivalent way to define f ′ is
that f ′(x) = g2(x) unless g2(x) = 0 (because some xα(i) = 0) but x is i-special for each i such that
xα(i) = 0; in this case f ′(x) = 1.

• The final function f is defined as f = g1 ∧ f ′.

It is easy to see that in both the yes-case and the no-case, any black-box query that sets any variable in
[n] \ R to 0 will give a 0 response. To give some intuition for our construction, let us explain here the role
that the large conjunction g1 (over n − 2`m variables) plays in both the YES and NO constructions. The
idea is that because of g1, a testing algorithm that has obtained strings z1, . . . , zq from the distribution D
will “gain nothing” by querying any string x that has any bit xi set to 0 that was set to 1 in all of z1, . . . , zq.
This is because such a variable xi will with very high probability (over a random choice of (f,Df) from
NO or a random choice of (g,Dg) from YES) be contained in g1, so in both the “yes” and “no” cases the
query will yield an answer of 0 with very high probability. Consequently there is no point in making such a
query in the first place. (We give a rigorous version of this argument in Section 4.2.2.)

For any (f,Df) drawn from NO, we have f(ai) = f(bi) = 1 and f(ci) = 0 for each i = 1, . . . ,m. It
is noted in [17] (and is easy to check) that any monotone conjunction h must satisfy h(x)∧h(y) = h(x∧y)
for all x, y ∈ {0, 1}n, and thus must satisfy h(ci) = h(ai) ∧ h(bi). Thus any monotone conjunction h
must disagree with f on at least one of ai, bi, ci for all i, and consequently f is 1/3-far from any monotone
conjunction with respect to Df .

Thus we have established properties (1) and (2) stated at the beginning of this section. These give:

5

Lemma 4 Any distribution-free tester for MCONJ that is run with distance parameter ε = 1/3 must
accept a random pair (g,Dg) drawn from YES with probability at least 2/3, and must accept a random
pair (f,Df) drawn from NO with probability at most 1/3.

4 The lower bound for monotone conjunctions

In this section we will prove the following theorem:

Theorem 5 Let q
def
= 1

20(n
log n)1/5. Let T be any probabilistic oracle algorithm that, given a pair (h,D),

makes at most q black-box queries to h and samples D at most q times. Then we have

∣

∣

∣
Pr(g,Dg)∼YES [T g,Dg = Accept] −Pr(f,Df)∼NO[T f,Df = Accept]

∣

∣

∣
≤ 1

4
.

Note that in the above theorem each probability is taken over the draw of the (function,distribution) pair
from the appropriate distribution YES or NO, over the random draws from the distribution Df or Dg , and
over any internal randomness of algorithm T. Lemma 4 and Theorem 5 together immediately imply the first
part of Theorem 1, our lower bound for monotone conjunctions.

4.1 The idea.

Here is some high-level intuition for the proof. If T could find ai, bi and ci for some i then T would know
which case it is in (yes versus no), because h(ai) ∧ h(bi) = h(ci) if and only if T is in the yes-case. Since
T can only make q � √

m draws from D, the birthday paradox tells us that with high probability the
random sample that T draws contains at most one of ai, bi and ci for each i. The ci-type points (with n− 2`
ones) are labeled negative in both the yes- and no- cases, so these “look the same” to T in both cases. And
since the distributions Dg (in the yes-case) and Df (in the no-case) put weight only on the positive ai and
bi-type points (with n − ` ones), these points “look the same” to T as well in both cases. So with high
probability T cannot distinguish between yes-pairs and no-pairs on the basis of the first q random draws
alone. (Corollary 7 formalizes this intuition.)

Of course, though, T can also make q queries. Can T perhaps identify a triple (ai, bi, ci) through these
queries, or perhaps T can otherwise determine which case it is in even without finding a triple? The crux of
the proof is to show that in fact queries actually cannot help T much; we now sketch the idea.

Consider a single fixed block i ∈ [m]. If none of ai, bi or ci are drawn in the initial sample, then by
the argument of Section 3.2 the tester will get no useful information about which case (s)he is in from this
block. By the birthday paradox we can assume that at most one of ai, bi and ci is drawn in the initial sample;
we consider the three cases in turn.

If bi is drawn, then by the Section 3.2 argument all query points will have all the bits in Ai set to 1; such
queries will “look the same” in both the yes- and no- cases as far as the i-th block is concerned.

If ai is drawn (so we are in the no-case), then by the Section 3.2 argument all query points will have all
the bits in Bi set to 1. Using the definition of f ′, as far as the i-th block is concerned with high probability it
will “look like” the initial ai point was a bi-point from the yes-case. This is because the only way the tester
can tell that it is in the no-case is if it manages to query a point which has fewer than s bits from A i set to 0
but α(i) is one of those bits. Such points are hard to find since α(i) is randomly selected from Ai. (See the
“a-witness” case in the proof of Lemma 13.)

Finally, suppose that ci is drawn. The only way a tester can distinguish between the yes- and no- cases
is by finding an i-special point (or determining that no such point exists), but to find such a point it must
make a query with at least s 0’s in Ci, all of which lie in Ai. This is hard to do since the tester does not

6

know how the elements of Ci are divided into the sets Ai and Bi. (See the “c-witness” case in the proof of
Lemma 13.)

4.2 Proof of Theorem 5.

Fix any probabilistic oracle algorithm T that makes at most q black-box queries to h and samples D at most
q times. Without loss of generality we may assume that T first makes exactly q draws from distribution D,
and then makes exactly q (adaptive) queries to the black-box oracle for h.

It will be convenient for us to assume that algorithm T is actually given “extra information” on certain
draws from the distribution D. More precisely, we suppose that each time T calls the oracle for D,

• If a “ci-type” labeled example (ci, h(ci)) is generated by the oracle, algorithm T receives the triple
(ci, h(ci), α(i)) (recall that α(i) is the index of the variable from Ci that belongs to the conjunction
g2);

• If a “non-ci-type” labeled example (x, h(x)) is generated by the oracle where x 6= ci for all i =
1, . . . ,m, algorithm T receives the triple (x, h(x), 0). (Thus there is no “extra information” given on
non-ci points.)

It is clear that proving Theorem 5 for an arbitrary algorithm T that receives this extra information establishes
the original theorem as stated (for algorithms that do not receive the extra information).

Following [15], we now define a knowledge sequence to precisely capture the notion of “what an al-
gorithm learns from its queries.” A knowledge sequence is a sequence of elements corresponding to the
interactions that an algorithm has with each of the two oracles. The first q elements of a knowledge se-
quence are triples as described above; each corresponds to an independent draw from the distribution D.
The remaining elements of the knowledge sequence are input-output pairs corresponding to the algorithm’s
calls to the black-box oracle for h. (Recall that these later oracle calls are adaptive, i.e. each query point can
depend on the answers received from previous oracle calls.)

Notation. For any oracle algorithm ALG, let PALG
yes denote the distribution over knowledge sequences

induced by running ALG on a pair (g,Dg) randomly drawn from YES . Similarly, let PALG
no denote the

distribution over knowledge sequences induced by running ALG on a pair (f,Df) randomly drawn from
NO. For 0 ≤ i ≤ q we write PALG

yes,i to denote the length-(q + i) prefix of PALG
yes , and similarly for PALG

no,i .
We will prove Theorem 5 by showing that the statistical distance dTV (PT

yes,PT
no) between distributions

PT
yes and PT

no is at most 1/4. Because of space constraints some proofs are omitted from the following
presentation; all omitted proofs can be found in Appendix A.

4.2.1 Most sequences of draws are “clean” in both the yes- and no- cases.

The main result of this subsection is Corollary 7; intuitively, this corollary shows that given only q draws
from the distribution and no black-box queries, it is impossible to distinguish between the yes- and no- cases
with high accuracy. This is achieved via a notion of a “clean” sequence of draws from the distribution, which
we now explain.

Let S = (x1, y1), . . . , (x
q, yq) be a sequence of q labeled examples drawn from distribution D, where D

is either Df for some (f,Df) ∈ NO or Dg for some (g,Dg) ∈ YES . In either case there is a corresponding
set of points a1, b1, c1, . . . , am, bm, cm as described in Section 3. We say that S is clean if S does not hit
any block 1, . . . ,m twice, i.e. if the number of different blocks from 1, . . . ,m for which S contains some
point ai, bi or ci is exactly q. With this definition, we have the following claim and its easy corollary:

Claim 6 We have Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Furthermore, the conditional
random variables (PT

yes,0 | PT
yes,0 is clean) and (PT

no,0 | PT
no,0 is clean) are identically distributed.

7

Corollary 7 The statistical distance dTV (PT
yes,0,PT

no,0) is at most q2/m.

4.2.2 Eliminating foolhardy queries.

Let T ′ denote a modified version of algorithm T which works as follows: like T , it starts out by making q
draws from the distribution. Let Q be the set of all indices i such that all q draws from the distribution have
the i-th bit set to 1. We say that any query string x ∈ {0, 1}n that has xj = 0 for some j ∈ Q is foolhardy.
After making its q draws from D, algorithm T ′ simulates algorithm T for q black-box queries, except that
for any foolhardy query that T makes, T ′ “fakes” the query in the following sense: it does not actually make
the query but instead proceeds as T would proceed if it made the query and received the response 0.

Our goal in this subsection is to show that in both the yes- and no- cases, the executions of T and T ′ are
statistically close. (Intuitively, this means that we can w.l.o.g. assume that the testing algorithm T does not
make any foolhardy queries.) To analyze algorithm T ′ it will be useful to consider some other algorithms
that are intermediate between T and T ′, which we now describe.

For each value 1 ≤ k ≤ q, let Uk denote the algorithm which works as follows: Uk first makes q draws
from the distribution D, then simulates algorithm T for k queries, except that for each of the first k − 1
queries that T makes, if the query is foolhardy then Uk “fakes” the query as described above. Let U ′

k denote
the algorithm which works exactly like Uk, except that if the k-th query made by Uk is foolhardy then U ′

k

fakes that query as well. We have the following:

Lemma 8 For all k ∈ [q], the statistical distance dTV ((PUk
yes | PUk

yes,0 is clean), (PU ′
k

yes | PU ′
k

yes,0 is clean)) is

at most 2`m/n, and similarly dTV ((PUk
no | PUk

no,0 is clean), (PU ′
k

no | PU ′
k

no,0 is clean)) is also at most 2`m/n.

Now a hybrid argument using Lemma 8 lets us bound the statistical distance between the executions of
T and T ′.

Lemma 9 The statistical distance dTV (PT ′

yes,PT
yes) is at most 2`mq/n + q2/m, and the same bound holds

for dTV (PT ′

no ,PT
no).

4.2.3 Bounding the probability of finding a witness.

Let T ′′ denote an algorithm that is a variant of T ′, modified as follows. T ′′ simulates T ′ except that T ′′ does
not actually make queries on non-foolhardy strings; instead T ′′ simulates the answers to those queries “in
the obvious way” that they should be answered if the target function were a yes-function and hence all of the
draws from D that yielded strings with ` zeros were in fact bi-type points. More precisely, assume that there
are r distinct ci-type points in the initial sequence of q draws from the distribution. Since for each ci-type
point the algorithm is given α(i), the algorithm “knows” r variables xα(i) that are in the conjunction. To
simulate an answer to a non-foolhardy query x ∈ {0, 1}n, T ′′ answers with 0 if any of the r xα(i) variables
are set to 0 in x, and answers with 1 otherwise. Note that consequently T ′′ does not actually make any
black-box queries at all.

In this subsection we will show that in both the yes- and no- cases, the executions of T ′ and T ′′ are
statistically close; once we have this it is not difficult to complete the proof of Theorem 5. In the yes-case
these distributions are in fact identical (Lemma 10), but in the no-case these distributions are not identical;
we will argue that they are close using properties of the function f ′ from Section 3.2.

We first address the easier yes-case:

Lemma 10 The statistical distance dTV (PT ′

yes,PT ′′

yes) is zero.

8

Proof: We argue that T ′ and T ′′ answer all queries in exactly the same way. Fix any 1 ≤ i ≤ q and let z
denote the ith query made by T .

If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z is not a foolhardy
query. Then any 0’s that z contains must be in positions from points that were sampled in the first stage.
Consequently the only variables that can be set to 0 that are in the conjunction g are the xα(i) variables from
the Ci sets corresponding to the ci points in the draws. All the other variables that were “seen” are not in
the conjunction so setting them to 0 or 1 will not affect the value of g(z). Therefore, g(z) (and hence T ′’s
response) is 0 if any of the xσ(i) variables are set to 0 in z, and is 1 otherwise. This is exactly how T ′′

answers non-foolhardy queries as well.

To handle the no-case, we introduce the notion of a “witness” that the black-box function is a no-
function.

Definition 11 We say that a knowledge sequence contains a witness for (f,Df) if elements q +1, . . . of the
sequence (the black-box queries) contain either of the following:

1. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ai was sampled in the first q draws,
the bit zα(i) is 0 but fewer than s of the elements j ∈ Ai have zj = 0. We refer to such a point as an
a-witness for block i.

2. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ci was sampled in the first q draws, z is
i-special. We refer to such a point as a c-witness for block i.

The following lemma implies that it is enough to bound the probability that P T
no contains a witness:

Lemma 12 The statistical distance dTV ((PT ′

no | PT ′

no does not contain a witness and PT ′

no,0 is clean), (PT ′′

no | PT ′′

no

does not contain a witness and PT ′′

no,0 is clean)) is zero.

Proof: Claim 6 implies that (PT ′

no,0 | PT ′

no,0 is clean) and (PT ′′

no,0 | PT ′′

no,0 is clean) are identically distributed.
We show that if there is no witness then T ′ and T ′′ answer all queries in exactly the same way; this gives the
lemma. Fix any 1 ≤ i ≤ q and let z denote the ith query.

If z is a foolhardy query, then both T ′ and T ′′ answer z with 0. So suppose that z is not a foolhardy
query and not a witness. Then any 0’s that z contains must be in positions from points that were sampled in
the first stage.

First suppose that one of the xα(i) variables from some ci that was sampled is set to 0 in z. Since z is
not a witness, either z has fewer than s zeros from Ai or some variable from Bi is set to zero in z. So in this
case we have f(xi) = g2(xi) = 0.

Now suppose that none of the xα(i) variables from the ci’s that were sampled are set to 0 in z. If no
variable xα(i) from any ai that was sampled is set to 0 in z, then clearly f(z) = g(z) = 1. If any variable
xα(i) from an ai that was sampled is set to 0 in z, then since z is not a witness there must be at least s
elements of Ai set to 0 and every element of Bi set to 1 for each such xα(i). Therefore, f(z) = 1.

Thus f(z) evaluates to 0 if any of the xσ(i) variables from the ci’s that were sampled is set to 0 and
evaluates to 1 otherwise. This is exactly how T ′′ answers queries as well.

Let us consider a sequence of algorithms that hybridize between T ′ and T ′′, similar to the previous
section. For each value 1 ≤ k ≤ q, let Vk denote the algorithm which works as follows: Vk first makes q
draws from the distribution D, then simulates algorithm T ′ for k queries, except that each of the first k − 1
queries is faked (foolhardy queries are faked as described in the previous subsection, and non-foolhardy
queries are faked as described at the start of this subsection). Thus algorithm Vk actually makes at most one
query to the black-box oracle, the k-th one (if this is a foolhardy query then this one is faked as well). Let V ′

k

9

denote the algorithm which works exactly like Vk, except that if the k-th query made by Vk is non-foolhardy
then V ′

k fakes that query as well as described at the start of this subsection.

Lemma 13 For each value 1 ≤ k ≤ q, the statistical distance dTV ((PVk
no | PVk

no,0 is clean), (PV ′
k

no | PV ′
k

no,0 is
clean)) is at most max{ qs

` , q
2s } = qs/`.

Proof: By Lemma 12, the executions of Vk and V ′
k are identically distributed unless the k-th query string

(which we denote z) is a witness for (f,Df). Since neither Vk nor V ′
k makes any black-box query prior to

z, the variation distance between PVk
no and PV ′

k
no is at most Pr[z is a witness] where the probability is taken

over a random draw of (f,Df) from NO conditioned on (f,Df) being consistent with the q draws from
the distribution and with those first q draws being clean. We bound the probability that z is a witness by
considering both possibilities for z (an a-witness or a c-witness) in turn.

• We first bound the probability that z is an a-witness. So fix some i ∈ [m] and let us suppose that ai

was sampled in the first stage of the algorithm. We will bound the probability that z is an a-witness
for block i; once we have done this, a union bound over the (at most q) blocks such that ai is sampled
in the first stage gives a bound on the overall probability that z is an a-witness.
Fix any possible outcome for z. In order for z to be an a-witness for block i, it must be the case that
fewer than s of the ` elements in Ai are set to 0 in z, but the bit zα(i) is set to 0. For a random choice
of (f,Df) as described above, since we are conditioning on the q draws from the distribution being
clean, the only information that these q draws reveal about the index α(i) is that it is some member of
the set Ai. Consequently for a random (f,Df) as described above, each bit in Ai is equally likely to
be chosen as α(i), so the probability that α(i) is chosen to be one of the at most s bits in Ai that are
set to 0 in z is at most s/`. Consequently the probability that z is an a-witness for block i is at most
s/`, and a union bound gives that the overall probability that z is an a-witness is at most qs/`.

• Now we bound the probability that z is a c-witness. Fix some i ∈ [m] and let us suppose that ci was
sampled in the first stage of the algorithm. We will bound the probability that z is a c-witness for
block i and then use a union bound as above.
Fix any possible outcome for z; let r denote the number of 0’s that z has in the bit positions in Ci. In
order for z to be a c-witness for block i it must be the case that z is i-special, i.e. r ≥ s and all r of
these 0’s in fact belong to Ai. For a random choice of (f,Df) conditioned on being consistent with the
q samples from the distribution and with those q samples being clean, the distribution over possible
choices of Ai is uniform over all

(

2`
`

)

possibilities for selecting a size-` subset of Ci. Consequently
the probability that all r 0’s belong to Ai is at most

(2`−r
`−r

)

(2l
`

) =
`(` − 1) · · · (` − r + 1)

2`(2` − 1) · · · (2` − r + 1)
<

1

2r
≤ 1

2s
.

So the probability that z is a c-witness for block i is at most 1/2s, and by a union bound the overall
probability that z is a c-witness is at most q/2s.

So the overall probability that z is a witness is at most max{ qs
` , q

2s }. Using (1) we have that the maximum
is qs/`, and the lemma is proved.

Now similar to Section 4.2.2, a hybrid argument using Lemma 13 lets us bound the statistical distance
between the executions of T ′ and T ′′. The proof of the following lemma is entirely similar to that of Lemma 9
so we omit it.

Lemma 14 The statistical distance dTV (PT ′

no ,PT ′′

no) is at most q2s/` + q2/m.

10

4.2.4 Putting the pieces together.

At this stage, we have that T ′′ is an algorithm that only makes draws from the distribution and makes no
queries. It follows that the statistical distance dTV (PT ′′

yes,PT ′′

no) is at most dTV (PT
yes,0,PT

no,0). So we have
that dTV (PT

yes,PT
no) is at most

dTV (PT
yes,PT ′

yes) + dTV (PT ′

yes,PT ′′

yes) + dTV (PT ′′

yes,PT ′′

no) + dTV (PT ′′

no ,PT ′

no) + dTV (PT ′

no ,PT
no)

≤ dTV (PT
yes,PT ′

yes) + dTV (PT ′

yes,PT ′′

yes) + dTV (PT
yes,0,PT

no,0) + dTV (PT ′′

no ,PT ′

no) + dTV (PT ′

no ,PT
no)

≤ 4q2/m + 4q`m/n + q2s/`

where the final bound follows by combining Corollary 7, Lemma 9, Lemma 10 and Lemma 14. Recalling
the parameter settings ` = n2/5(log n)3/5, m = (n/ log n)2/5, and s = log n from (1) and the fact that
q = 1

20 (n
log n)1/5, this bound is less than 1/4. This concludes the proof of Theorem 5.

References

[1] N. Ailon and B. Chazelle. Information theory in property testing and monotonicity testing in higher
dimension. Information and Computation, 204:1704–1717, 2006.

[2] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing low-degree polynomials over
gf(2). In Proceedings of RANDOM-APPROX, pages 188–199, 2003.

[3] N. Alon and A. Shapira. Homomorphisms in Graph Property Testing - A Survey. Topics in Discrete
Mathematics (to appear), available at http://www.math.tau.ac.il/ãsafico/nesetril.pdf, 2007.

[4] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems.
J. Comp. Sys. Sci., 47:549–595, 1993. Earlier version in STOC’90.

[5] I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. Testing Rich
Representation Classes by Implicit Learning. Manuscript, 2007.

[6] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorodnitsky. Improved
testing algorithms for monotonocity. In Proceedings of RANDOM, pages 97–108, 1999.

[7] E. Fischer. The art of uninformed decisions: A primer to property testing. In Computational Complex-
ity Column of The Bulletin of the European Association for Theoretical Computer Science 75, pages
97–126, 2001.

[8] E. Fischer, G. Kindler, D. Ron, S. Safra, and A. Samorodnitsky. Testing juntas. In Proceedings of the
43rd IEEE Symposium on Foundations of Computer Science, pages 103–112, 2002.

[9] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samrodnitsky. Mono-
tonicity testing over general poset domains. In Proc. 34th Annual ACM Symposium on the Theory of
Computing, pages 474–483, 2002.

[10] O. Goldreich. Combinatorial property testing – a survey. In “Randomized Methods in Algorithms
Design”, AMS-DIMACS, 45–61, 1998.

[11] O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning and approxi-
mation. Journal of the ACM, 45:653–750, 1998.

11

[12] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samordinsky. Testing monotonicity. Com-
binatorica, 20(3):301–337, 2000.

[13] S. Halevy and E. Kushilevitz. Distribution-Free Property Testing. In Proceedings of the Seventh
International Workshop on Randomization and Computation, pages 302–317, 2003.

[14] S. Halevy and E. Kushilevitz. Distribution-Free Connectivity Testing. In Proceedings of the Eighth
International Workshop on Randomization and Computation, pages 393–404, 2004.

[15] S. Halevy and E. Kushilevitz. A lower bound for distribution-free monotonicity testing. In Proceedings
of the Ninth International Workshop on Randomization and Computation, pages 330–341, 2005.

[16] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing Linear Threshold Functions.
Manuscript, 2007.

[17] M. Parnas, D. Ron, and A. Samorodnitsky. Testing basic boolean formulae. SIAM J. Disc. Math.,
16:20–46, 2002.

[18] D. Ron. Property testing (a tutorial). In “Handbook of Randomized Computing, Volume II”, S. Ra-
jasekaran and P. M. Pardalos and J. H. Reif and J. D. P. Rolim, editors, Kluwer, 2001.

[19] R. Rubinfeld. Sublinear time algorithms. available at http://theory.csail.mit.edu/˜ronitt/papers/icm.ps,
2006.

[20] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program
testing. SIAM J. on Comput., 25:252–271, 1996.

A Proofs from Section 4.2

A.1 Proof of Claim 6:

We first show that Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Fix any (g,Dg) in the support
of YES , and consider the outcomes of PT

yes,0 corresponding to this (g,Dg) being drawn from YES. Since
each independent draw from Dg hits each block 1, . . . ,m with probability 1/m, the probability that PT

yes,0

is clean is
∏q

i=1

(

1 − i−1
m

)

≥ 1 − q2/m. The same argument shows that Pr[PT
no,0 is clean] also equals

∏q
i=1

(

1 − i−1
m

)

.
Now we show that the conditional random variables are identically distributed. It is not difficult to see

that for any 0 ≤ j ≤ q−1, given any particular length-j prefix of PT
yes,0, conditioned on PT

yes,0 being clean,
the (j + 1)-st element of PT

yes,0 has

• a 2/3 chance of being a triple (x, 1, 0) where x ∈ {0, 1}n has ` zeros and the locations of the ` zeros
are selected uniformly at random (without replacement) from the set of those bit positions that had
value 1 in all j of the previous draws;

• a 1/3 chance of being a triple (x, 0, α) where x has 2` zeros, the locations of the 2` zeros are selected
uniformly at random (without replacement) from the same set of bit positions described above, and α
is an index drawn uniformly at random from the indices of the 2` zeros in x.

It is also not difficult to see that given any particular length-j prefix of P T
no,0, conditioned on PT

no,0 being
clean, the (j + 1)-st element of PT

no,0 is distributed in the exact same way. This proves Claim 6.

12

A.2 Proof of Corollary 7:

We can express the statistical distance between PT
yes,0 and PT

no,0 as

1

2

∑

ζ

∣

∣Pr[(PT
yes,0 = ζ) & (PT

yes,0 is clean)] + Pr[(PT
yes,0 = ζ) & (PT

yes,0 not clean)]

− Pr[PT
no,0 = ζ) & (PT

no,0 is clean)] −Pr[(PT
no,0 = ζ) & (PT

no,0 not clean)]
∣

∣ .

By parts (1) and (2) of the claim, we have that Pr[(PT
yes,0 = ζ) & (PT

yes,0 is clean)] equals Pr[(PT
no,0 =

ζ) & (PT
no,0 is clean)] for all ζ . Thus we can reexpress the statistical distance as

1

2

∑

ζ

∣

∣Pr[(PT
yes,0 = ζ) & (PT

yes,0 not clean)] −Pr[PT
no,0 = ζ) & (PT

no,0 not clean)]
∣

∣ .

This is at most 1
2(Pr[PT

yes,0 not clean]+Pr[PT
no,0 not clean]) which is at most q2/m by part (1) of the claim.

A.3 Proof of Lemma 8:

We consider the yes-case; the no-case follows by an essentially identical argument.
The executions of Uk and U ′

k are identically distributed unless the k-th query string (which we de-
note z) is foolhardy and the black-box function g has g(z) = 1. Consequently the variation distance
dTV (PUk

yes,P
U ′

k
yes) is at most

Pr[(z is foolhardy) & (g(z) = 1)] ≤ Pr[(g(z) = 1) | (z is foolhardy)],

where the probabilities are taken over a random draw of (g,Dg) from YES conditioned on (g,Dg) being
consistent with the q draws from the distribution and with the first k − 1 queries, and with the q draws from
the distribution being clean.

Since the first k−1 queries do not involve any variables in Q (because foolhardy queries are faked for the
first k − 1 queries) and our analysis will only concern variables in Q, to analyze this conditional probability
it is enough to consider (g,Dg) drawn from YES conditioned on (g,Dg) being consistent with the q draws
from the distribution and with these q draws being clean. Suppose that these draws from the distribution
yield r ci-type points (each with 2` zeros) and (q − r) bi-type points (each with ` zeros). Then after these
draws, the algorithm “knows” (r + q)` elements of R. Let Z denote the set of these (r + q)` elements of
R. The set R also contains 2`m − (r + q)` other “unknown” variables from among the |Q| = n − (r + q)`
variables in [n] \ Z.

We would like to find the probability, over random (g,Dg) drawn from YES consistent with the draws
from the distribution, that g(z) = 1 given that z is foolhardy. Since z is foolhardy there must be at least one
index j ∈ [n] \ Z such that zj = 0. So the desired probability is at most the probability that j belongs to R,
since if j /∈ R the conjunction g1 will evaluate to 0 on z. For a random (g,Dg) that is consistent with the
draws from the distribution, the remaining 2`m− (r + q)` elements of R \Z are chosen randomly from the
n− (r+q)` elements of [n]−Z . Consequently the probability that j belongs to R\Z is 2`m−(r+q)`

n−(r+q)` ≤ 2`m
n ,

and the lemma is proved.

A.4 Proof of Lemma 9:

We prove the yes-case; the no-case follows by an identical argument.

13

By Claim 6, at the cost of q2/m in dTV (PT ′

yes,PT
yes) we may assume that the draws from the distribution

are clean. So we henceforth in the proof always condition on the draws from the distribution being clean,
and we will bound dTV (PT ′

yes,PT
yes) by 2`mq/n under this conditioning on each argument to dTV .

We use induction on i to show that dTV (PT
yes,i,PT ′

yes,i) is at most 2`lmi/n for all i. Once we have this,
taking i = q and recalling that PT

yes,q = PT
yes and PT ′

yes,q = PT ′

yes gives the desired bound.
The base case i = 0 is clear since in this case no black-box queries are made by either T or T ′.
For the induction step we assume that dTV (PT

yes,i,PT ′

yes,i) ≤ 2`mi/n, and we will show that dTV (PT
yes,i+1,

PT ′

yes,i+1) ≤ 2`m(i + 1)/n. We first note that the random variables PT ′

yes,i+1 and PU ′
i+1

yes are identically dis-
tributed, i.e. they have statistical distance zero. Lemma 8 now implies that dTV (PT ′

yes,i+1,P
Ui+1

yes) is at most
2`m/n. Since

dTV (PT ′

yes,i+1,PT
yes,i+1) ≤ dTV (PT ′

yes,i+1,P
Ui+1
yes) + dTV (PUi+1

yes ,PT
yes,i+1),

it is enough to bound dTV (PUi+1
yes ,PT

yes,i+1) by 2`mi/n. But since the first q + i elements of PUi+1
yes are

distributed according to PT ′

i (and the last element is obtained by performing the i-th query of T), the bound
dTV (PUi+1

yes ,PT
yes,i+1) ≤ 2`mi/n follows from the induction hypothesis. This concludes the proof.

B Extending the lower bound to conjunctions and decision lists

The construction and analysis from the previous sections easily give a lower bound for testing decision lists
via the following lemma:

Lemma 15 For any pair (f,Df) in the support of NO and any decision list h, the function f is at least
1/6-far from h w.r.t. Df .

Proof: Fix any (f,Df) in the support of NO and any decision list h = (`1, β1), (`2, β2), . . . , (`k, βk),
βk+1. We will show that at least one of the six points a1, b1, c1, a2, b2, c2 is labeled differently by h and f .
Grouping all m blocks into pairs and applying the same argument to each pair gives the lemma.

Let `a1
be the first literal in h that is satisfied by a1, so the value h(a1) equals βa1

. Define `b1 , `c1 , `a2
,

`b2 , and `c2 similarly. We will assume that h and f agree on all six points, i.e. that βa1
= βb1 = βa2

=
βb2 = 1 and βc1 = βc2 = 0, and derive a contradiction.

We may suppose w.l.o.g. that a1 = min{a1, b1, a2, b2}. We now consider two cases depending on
whether or not c1 < a1. (Note that a1 cannot equal c1 since f(a1) = 1 but f(c1) = 0.)

Suppose first that c1 < a1. No matter what literal `c1 is, since c1 satisfies `c1 at least one of a1, b1

must satisfy it as well. But this means that min{a1, b1} ≤ c1, which is impossible since c1 < a1 and
a1 ≤ min{a1, b1}.

Now suppose that a1 < c1; then it must be the case that `a1
is a literal “xj” for some j ∈ B1. (The only

other possibilities are that `a1
is “xj” for some j ∈ Ai or is “xj” for some j ∈ ([n] \C1); in either case, this

would imply that f(c1) = 1, which does not hold.) Since f(c2) = 0 and (c2)j = 1, it must be the case that
c2 < a1. But no matter what literal `c2 is, since c2 satisfies it at least one of a2, b2 must satisfy it as well.
This means that min{a2, b2} ≤ c2 < a1 ≤ min{a2, b2}, which is a contradiction.

Since monotone conjunctions are a subclass of decision lists, for every (g,Dg) in the support of YES
we have that g is computed by a decision list. We thus have the obvious analogue of Lemma 4 for decision
lists; together with Theorem 5, this gives the Ω((n/ log n)1/5) lower bound for decision lists that is claimed
in Theorem 1.

Since any conjunction (not necessarily monotone) can be expressed as a decision list, we immediately
have an analogue of Lemma 15 for general conjunctions. The same line of reasoning described above now
gives the Ω((n/ log n)1/5) lower bound for general conjunctions that is claimed in Theorem 1.

14

C The two distributions for linear threshold functions

Now we would like to prove a lower bound for distribution-free testing of the class LTF. The construction
from Section 3 is not suited for a lower bound on LTF (observe that for any (f,Df) in the support of NO
the function f is 0-far from the linear threshold function x1 + · · · + · · · xn ≥ n− 3`/2 with respect to Df),
so we need a different approach.

In the rest of this section we define two distributions YES and NO over pairs (h,D) and prove that
these distributions have the following properties:

1. For every pair (g,Dg) in the support of YES , the function g is a linear threshold function;

2. For every pair (f,Df) in the support of NO, the function f is 1/4-far from LTF with respect to Df

(and hence any tester for LTF must accept every such pair with probability at most 1/3).

In Section D we use these distributions to prove a lower bound for LTF.
Before giving the precise construction, here is a very rough first intuition for how it works. Recall

that in the earlier construction, we relied on the fact that no monotone conjunction h can satisfy h(1, 0) =
h(0, 1) = 1 but h(0, 0) = 0. For linear threshold functions, we will instead rely on the fact that no linear
threshold function can satisfy h(0, 0) = h(1, 1) = 0 but h(1, 0) = h(0, 1) = 1.

C.1 The YES distribution.

As in Sections 3 and 4 our constructions are parameterized by values `,m and s that are set according to
(1). A draw from the distribution YES over (g,Dg) pairs is obtained as follows:

• As before let R ⊂ [n] be a set of size 2`m selected uniformly at random.

• As before, randomly partition the set R into 2m subsets A1, B1, . . . , Am, Bm, each of size `. Let
Ci = Ai ∪ Bi and let ai, bi, ci be defined as before. As before, for each i = 1, . . . ,m choose α(i) to
be a random element of the set Ai.

• The distribution Dg puts 1/4 weight on the point 1n, and puts weight 1/(2m) on bi and 1/(4m) on ci

for all i = 1, . . . ,m.

• The function g is defined as follows: g(x) equals 1 if u(x) ≥ θ and equals 0 if u(x) < θ, where

u(x)
def
= 10n2

∑

j∈([n]\R)

xj + 5n
m

∑

i=1

xα(i) −
m

∑

i=1

∑

k∈Ci,k 6=α(i)

xk, (2)

θ
def
= 10n2(n − 2`m) + 5nm − m(2` − 1) + s. (3)

An equivalent way to define g is that g(x) = 1 if and only if all three of the following conditions hold:

1. xj = 1 for all j ∈ ([n] \ R);
2. xj = 1 for all j = α(1), . . . , α(m); and
3.

∑m
i=1

∑

k 6=α(i) xk ≤ m(2` − 1) − s.

Fix any (g,Dg) in the support of YES. It is clear that g is a linear threshold function. It is straightforward
to check that u(1n) = 10n2(n − 2`m) + 5nm − m(2` − 1), u(ci) = 10n2(n − 2`m) + 5n(m − 1) −
(m − 1)(2` − 1), and u(bi) = 10n2(n − 2`m) + 5nm − m(2` − 1) + `, and consequently we have
g(1n) = g(ci) = 0, g(bi) = 1.

15

C.2 The NO distribution.

A draw from the distribution NO of (f,Df) pairs is obtained as follows:

• As in the yes-case, let R ⊂ [n] be a randomly selected set of size 2`m, and randomly partition the
set R into 2m subsets A1, B1, . . . , Am, Bm, each of size `. The points ai, bi, ci, sets Ai, Bi, Ci, and
indices α(i) are defined as in the yes-case. The distribution Df puts weight 1/4 on 1n, puts 1/4
weight uniformly over the m points c1, . . . , cm, and puts 1/2 weight uniformly over the 2m points
a1, b1, . . . , am, bm.

• The function f is defined as follows: f(x) equals 1 if v(x) ≥ θ and equals 0 if v(x) < θ. Here θ is
defined as in (3) and v(x) is defined as follows: given input x, let J(x) ⊆ [m] be the set of those i
such that x is i-special as defined in Section 3.2 (i.e. the i-th block of x has no zeros in B i but has at
least s zeros in Ai.) The function v(x) is

v(x)
def
= 10n2

∑

j∈([n]\R)

xj + 5n



|J(x)| +
∑

i∈([m]\J)

xα(i)





−|J(x)|(` − 1) −
∑

i∈J

∑

k∈Ai

xk −
∑

i∈([m]\J)

∑

k∈Ci,k 6=α(i)

xk. (4)

Here is some intuition for the definition of f . Suppose that testing algorithm T manages to query an
input string x which has xj = 1 for all j ∈ Bi but also has at least d bits in Ai set to 0. Then as we will
see, it must be the case that the algorithm actually drew the point ai in its sample from Df . So in order for
T to be “fooled” into thinking that the function is a YES function, we want the contribution from the bits
of Ai and Bi for this input to “look like” the function is a YES function for which the point ai that was
drawn from Df is actually a point bi drawn from Dg. This is the rationale behind the definition of f ; instead
of computing u(x) and comparing it with θ, we compute v(x), which reverses the role of Ai and Bi bits on
those blocks.

It is easy to see that in both the yes-case and the no-case, any black-box query that sets any variable in
[n] \ R to 0 will give a 0 response. As in the earlier construction, intuitively this will let us assume that any
testing algorithm that has obtained strings z1, . . . , zq from the distribution D never queries any string x that
has any bit xi set to 0 that was set to 1 in all of z1, . . . , zq.

Finally, it is easy to check that for any (f,Df) drawn from NO, we have v(1n) = 10n2(n − 2`m) +
5nm − m(2` − 1), v(ci) = 10n2(n − 2`m) + 5n(m − 1) − (m − 1)(2` − 1), and v(ai) = v(bi) =
10n2(n − 2`m) + 5nm − m(2` − 1) + `. (Note that these values on 1n, ci and bi are the same that
the corresponding functions u(x) would take in the yes-case.) Thus we have f(1n) = f(ci) = 0 and
f(ai) = f(bi) = 1 for each i = 1, . . . ,m. It is easy to see that any linear threshold function must disagree
with f on at least one of the four points 1n, ai, bi, ci for each i. Consequently f is at least 1/4-far from any
linear threshold function with respect to Df .

Thus we have established properties (1) and (2) stated at the beginning of this section. These yield:

Lemma 16 Any distribution-free tester for LTF that is run with distance parameter ε = 1/4 must accept a
random pair (g,Dg) drawn from YES with probability at least 2/3, and must accept a random pair (f,Df)
drawn from NO with probability at most 1/3.

D A lower bound for linear threshold functions

The basic approach is similar to that of Section 4, and indeed several ingredients from the earlier proof can
be directly reused; we focus our discussion on the points where the approaches differ. We shall prove the

16

following:

Theorem 17 Let q
def
= 1

20(n
log n)1/5. Let T be any probabilistic oracle algorithm that, given a pair (h,D),

makes at most q black-box queries to h and samples D at most q times. Then we have

∣

∣

∣Pr(g,Dg)∼YES [T g,Dg = Accept] −Pr(f,Df)∼NO[T f,Df = Accept]
∣

∣

∣ ≤ 1

4
.

Note that this statement is identical to Theorem 5, but here the YES and NO distributions refer to the
distributions defined in Section C.

As in Section 4.2, let T be any fixed oracle algorithm that makes exactly q draws from the distribu-
tion and then makes exactly q black-box queries. We again assume that T is given “extra information”
as described earlier when it draws ci-type examples from the distribution. Our definition of a knowledge
sequence and of a “clean” sequence of draws are the same as before.

The following easy claim is an analogue of Claim 6:

Claim 18 We have Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Furthermore, the conditional
random variables (PT

yes,0 | PT
yes,0 is clean) and (PT

no,0 | PT
no,0 is clean) are identically distributed.

Proof: We first show that Pr[PT
yes,0 is clean] = Pr[PT

no,0 is clean] ≥ 1 − q2/m. Fix any (g,Dg) in the
support of YES , and consider the outcomes of PT

yes,0 corresponding to this (g,Dg) being drawn from YES.
Since each independent draw from Dg hits each block 1, . . . ,m with probability 3/4m, the probability that
PT

yes,0 is clean is
∏q

i=1

(

1 − 3(i−1)
4m

)

≥ 1− 3q2/4m ≥ 1− q2/m. The same argument shows that Pr[PT
no,0

is clean] also equals
∏q

i=1

(

1 − 3(i−1)
4m

)

.

Now we show that the conditional random variables are identically distributed. It is not difficult to see
that for any 0 ≤ j ≤ q−1, given any particular length-j prefix of PT

yes,0, conditioned on PT
yes,0 being clean,

the (j + 1)-st element of PT
yes,0 has

• a 1/4 chance of being the triple (1n, 0, 0);

• a 1/2 chance of being a triple (x, 1, 0) where x ∈ {0, 1}n has ` zeros and the locations of the ` zeros
are selected uniformly at random (without replacement) from the set of those bit positions that had
value 1 in all j of the previous draws;

• a 1/4 chance of being a triple (x, 0, α) where x has 2` zeros, the locations of the 2` zeros are selected
uniformly at random (without replacement) from the same set of bit positions described above, and α
is an index drawn uniformly at random from the indices of the 2` zeros in x.

It is also not difficult to see that given any particular length-j prefix of P T
no,0, conditioned on PT

no,0 being
clean, the (j + 1)-st element of PT

no,0 is distributed in the exact same way. This proves the lemma.

The proof of the following corollary is identical to the proof of Corollary 7:

Corollary 19 The statistical distance dTV (PT
yes,0,PT

no,0) is at most q2/m.

Foolhardy queries can be handled just as before. Let the algorithms T ′, Uk and U ′
k be defined precisely

as in Section 4.2.2. The arguments of subsection 4.2.2 immediately yield:

Lemma 20 For all k ∈ [q], the statistical distance dTV ((PUk
yes | PUk

yes,0 is clean), (PU ′
k

yes | PU ′
k

yes,0 is clean)) is

at most 2`m/n, and similarly dTV ((PUk
no | PUk

no,0 is clean), (PU ′
k

no | PU ′
k

no,0 is clean)) is also at most 2`m/n.

17

Lemma 21 The statistical distance dTV (PT ′

yes,PT
yes) is at most 2`mq/n+q2/m, and the same bound holds

for dTV (PT ′

no ,PT
no).

As we now describe, the details of how non-foolhardy queries are handled are different from Sec-
tion 4.2.3.

Let T ′′ denote an algorithm that is a variant of T ′, modified as follows. T ′′ simulates T ′ except that T ′′

does not actually make queries on non-foolhardy strings; instead T ′′ simulates the answers to those queries
“in the obvious way” that they should be answered if the target function were a yes-function and hence all
of the draws from D that yielded strings with ` zeros were in fact bi-type points. More precisely, assume
that there are r distinct ci-type points in the initial sequence of q draws from the distribution. Since for each
ci-type point the algorithm is given α(i), the algorithm “knows” r variables xα(i) that are in the conjunction.
To simulate an answer to a non-foolhardy query z ∈ {0, 1}n , T ′′ computes

u′(z) = 10n2(n − 2`m) + 5n(m − |I ′|) − m(2` − 1) + |K \ I ′|

where:

• K is the set of all variables xi set to 0 in z, and

• I ′ is the set of “known” xα(i) variables that are set to 0 in z

and answers 1 if u′(z) ≥ θ, and answers 0 otherwise.

Lemma 22 The statistical distance dTV (PT ′

yes,PT ′′

yes) is zero.

Proof: We argue that T ′ and T ′′ answer all queries in exactly the same way. Fix any 1 ≤ i ≤ q and let z
denote the ith query made by T .

If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z is not a foolhardy
query. By inspection of (2), we can reexpress u(z) as

u(z) = 10n2(n − 2`m) + 5n(m − |I|) − m(2` − 1) + |K \ I|

where:

• K is the set of all variables xi set to 0 in z, and

• I is the set of xα(i) variables that are set to 0 in z

and g(z) equals 1 if u(z) ≥ θ and equals 0 if u(z) < θ.
Since z is not foolhardy, the only zeros in z must be in positions from points that were sampled in

the first stage. Consequently the only xα(i) variables in I are the xα(i) variables set to 0 in z from the Ci

sets corresponding to the ci points in the draws (these are the “known” xα(i) variables). So I = I ′ and
K \ I = K \ I ′.

Therefore, u(z) = u′(z) and hence T ′’s response is 0 if u′(z) < θ, and is 1 otherwise. This is exactly
how T ′′ answers non-foolhardy queries as well.

We define witnesses in exactly the same way as before:

Definition 23 We say that a knowledge sequence contains a witness for (f,Df) if elements q +1, . . . of the
sequence (the black-box queries) contain either of the following:

1. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ai was sampled in the first q draws,
the bit zα(i) is 0 but fewer than s of the elements j ∈ Ai have zj = 0. We refer to such a point as an
a-witness for block i.

18

2. A point z ∈ {0, 1}n such that for some 1 ≤ i ≤ m for which ci was sampled in the first q draws, z is
i-special. We refer to such a point as a c-witness for block i.

The following lemma is analogous to Lemma 12; it makes essential use of the way our no-functions f
are defined in Section C.2.

Lemma 24 The statistical distance dTV ((PT ′

no | PT ′

no does not contain a witness and PT ′

no,0 is clean), (PT ′′

no | PT ′′

no

does not contain a witness and PT ′′

no,0 is clean)) is zero.

Proof: As in the proof of Lemma 12, we show that if there is no witness then T ′ and T ′′ answer all queries
in exactly the same way. Fix any 1 ≤ i ≤ q and let z denote the ith query.

If z is a foolhardy query then both T ′ and T ′′ answer z with 0. So suppose that z is not a foolhardy
query and not a witness. By inspection of (4), for any non-foolhardy point z we can express v(z) as

v(z) = 10n2(n − 2`m) + 5n(m − |L|) − m(2` − 1) + |K \ L|
where

• K is the set of all variables xi set to 0 in z and

• L is the set of xα(i) variables set to 0 in z such that i /∈ J(z) (i.e. z is not i-special).
Recall that:

u′(z) = 10n2(n − 2`m) + 5n(m − |I ′|) − m(2` − 1) + |K \ I ′|
where

• K is the set of all variables xi set to 0 in z and

• I ′ is the set of “known” xα(i) variables that are set to 0 in z.
We will show that if z is not a witness and not foolhardy then L = I ′. This implies that v(z) = u′(z),

so T ′ and T ′′ will respond to such queries in exactly the same way.
First we show that I ′ ⊆ L. Fix any xα(i) that belongs to I ′; such a variable is set to 0 in z and is

“known,” so ci must have been sampled in the first stage. Since z is not a witness, z must not be i-special,
i.e. i /∈ J(z); so xα(i) must belong to L.

Next we show that L ⊆ I ′. Fix any xα(i) that belongs to L; such a variable is set to 0 in z and i /∈ J(z).
This means z is not i-special, so z either has a zero from Bi or fewer than s zeros from Ai. Since the initial
draws from D were clean and z is not foolhardy, it cannot be the case that ai was drawn in the sample, for
if it were drawn then z could not have a zero from Bi and also could not have fewer than s zeros from Ai

(since if it had fewer than s zeros from Ai then z would be an a-witness for block i, which contradicts the
fact that z is not a witness). Since ai was not drawn in the sample but the bit α(i) is set to 0 in z and z is
not foolhardy, it must be the case that ci was drawn in the sample. But this means that xα(i) is “known,” and
consequently xα(i) belongs to I .

So we have shown that I ′ = L, and the lemma is proved.
From this point on the rest of the argument from Section 4.2 can be used without modification. We

define hybrid algorithms Vk, V ′
k exactly as in Section 4.2, and the exact proof of Lemma 13 now yields:

Lemma 25 For each value 1 ≤ k ≤ q, the statistical distance dTV ((PVk
no | PVk

no,0 is clean), (PV ′
k

no | PV ′
k

no,0 is
clean)) is at most max{ qs

` , q
2s } = qs/`.

Exactly as in Section 4.2, we obtain:
Lemma 26 The statistical distance dTV (PT ′

no ,PT ′′

no) is at most q2s/` + q2/m.

With all the pieces in place, the arguments from Section 4.2.4 go through unchanged to complete the
proof of Theorem 17, and we are done.

19

