On Learning Random DNF Formulas under the
Uniform Distribution

Jeffrey C. Jackson'* and Rocco A. Servedio?®

! Department of Mathematics and Computer Science, Duquesne University
Pittsburgh, PA 15282
jackson@mathcs.duq.edu
? Department of Computer Science, Columbia University
New York, NY 10027, USA

rocco@cs.columbia.edu

Abstract. We study the average-case learnability of DNF formulas in
the model of learning from uniformly distributed random examples. We
define a natural model of random monotone DNF formulas and give
an efficient algorithm which with high probability can learn, for any
fixed constant v > 0, a random t-term monotone DNF for any ¢t =
O(n*"7). We also define an analogous model of random nonmonotone
DNF and give an efficient algorithm which with high probability can
learn a random t-term DNF for any ¢ = O(n®2~7). Our results have
implications for the construction of cryptographic primitives from hard
learning problems as proposed by Blum et al. [3].

1 Introduction

A disjunctive normal form formula, or DNF, is an AND of ORs of Boolean liter-
als. A longstanding open question in computational learning theory is whether
efficient algorithms exist for learning polynomial size DNF formulas. Many au-
thors have studied this question in different learning models such as the model of
exact learning from membership and equivalence queries [2, 8], the distribution-
free PAC learning model [5, 11], the uniform distribution model [17, 16] and the
model of uniform distribution learning with membership queries [13, 9].

Our focus is on learning DNF formulas under the uniform distribution (with-
out membership queries). In 1990 Verbeurgt [17] gave an algorithm which can
learn any poly(n)-size DNF in this model in time n?{1°€™), No faster algorithms
are known, and the question of whether poly(n)-time algorithms exist is now
widely viewed as an important open problem. Blum et al. [3] showed that no
algorithm which can be recast in the Statistical Query model can learn arbitrary
polynomial-size DNF under the uniform distribution in n°1°8™) time.

The problem of learning monotone DNF formulas under uniform has also
been much studied over the past decade [6, 7, 12, 15, 16, 18]). An algorithm is
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known which learns any 2V°8"_term monotone DNF in poly(n) time [16], but no
algorithm faster than that of [17] is known for arbitrary poly(n)-size monotone
DNF. (The negative results of Blum et al. do not apply for monotone DNF.)

Learning Random DNF formulas: Motivation and Background. In this
paper we study DNF learning from an average-case perspective, i.e. we consider
the problem of learning random DNF formulas. One natural motivation for pur-
suing such a study is that since the problem is interesting and important but the
worst-case version seems quite hard, it is natural to consider the average case.
Additional motivation comes from related work in learning theory:

— Aizenstein & Pitt [1] posed the question of whether random DNF formulas
are efficiently learnable. They proposed a model of random DNF in which
each of the DNF’s t terms is selected independently at random from all
possible terms, and gave a membership and equivalence query algorithm
which with high probability learns a random DNF generated in this way.
As noted in [1], a limitation of this model is that with very high probability
all terms will have length 2(n). They also proposed another model which is
parameterized by the (expected) length k of each term as well as the number
of terms ¢, and asked whether random DNF can be efficiently learned in
such a model. Our work considers a very similar model and gives an efficient
uniform distribution algorithm for many interesting values of k£ and ¢.

— Blum et al. [3] considered the possibility of constructing cryptographic prim-

itives such as pseudorandom generators and one-way functions based on
the presumed intractability of certain learning problems. They defined an
average-case model of learning in which examples are drawn from the uni-
form distribution and the target concept is drawn from some probability
distribution over the concept class. They prove (Theorem 3.3 of [3]) that the
existence of concept classes which are hard to learn in this model implies
the existence of corresponding one-way functions whose circuit complexity
is closely related to the circuit complexity of the concepts in the class. The
motivation of Blum et al. was that since there are learning problems which
seem hard yet have very low circuit complexity, it is possible to thus obtain
cryptographic primitives with low circuit complexity.
The learning model which we consider corresponds exactly to this framework
of Blum et al.: we consider uniform distribution learning of DNFs which are
selected according to a natural probability distribution over DNF formulas.
Our positive learning results thus indicate that certain natural approaches
to constructing cryptographic primitives along the lines suggested by Blum
et al. are in fact not secure.

— Finally, the current work is similar in spirit to recent work by the authors
on learning random decision trees of logarithmic depth under the uniform
distribution [10]. We note that the algorithm in [10] works by construct-
ing a decision tree hypothesis, and its proof of correctness depends heavily
on Fourier properties specific to log-depth DTs. Thus we must use a very
different algorithm and analysis in the current paper.



Our Results. We consider the following natural model for a random ¢-term
k-DNF: each of the ¢ terms is selected independently and uniformly from the
set of all terms of length exactly k. We also consider a monotone version of the
model in which each term is required to be monotone.

Our main results are polynomial time algorithms which with high probability
(over the choice of target function as well as the choice of examples) will suc-
cessfully learn random DNF generated from these models for a fairly wide range
of values of k and t. (As we discuss later, for a given value of ¢ there is only a
small range of values of ¥ which are interesting for uniform distribution learning,
0 in the rest of this section we only discuss t.) In more detail, for the mono-
tone model our algorithm can learn ¢-term monotone DNF for any ¢t = O(n?~7)
where «y > 0; this algorithm can achieve any error rate € > 0 in poly(n, 1/¢) time
with high probability. For the general (nonmonotone) model, our algorithm can
learn ¢-term DNF for any ¢t = O(n2~7); this algorithm cannot achieve arbitrarily
small error but can achieve error € = o(1) for any ¢ = w(1). Detailed statements
of our results are given in Theorems 3 and 6.

Our algorithms work in two stages: we first identify pairs of variables which
cooccur in some term of the target DNF, and then use these pairs to reconstruct
terms. For monotone DNF we can with high probability exactly identify those
pairs of variables which cooccur in some term. For nonmonotone DNF with high
probability we can identify most pairs of variables which cooccur in some term;
this enables us to learn to fairly (but not arbitrarily) high accuracy.

We give preliminaries in Section 2. Section 3 and 4 contain our results for
monotone and nonmonotone DNF respectively. Section 5 concludes.

2 Preliminaries

We first describe our models of random monotone and nonmonotone DNF. Let
MUF be the probability distribution over monotone t-term DNF induced by the
following random process: each term is independently and uniformly chosen at
random from all (}) monotone ANDs of size exactly k over variables vy, ..., vp.
For nonmonotone DNF, we write D5* to denote the following probability dis-
tribution over ¢-term DNF: first a monotone DNF is selected from M&F, and
then each occurrence of each variable in each term is independently negated with
probability 1/2. (Equivalently, a draw from D%* is obtained by independently
selecting t terms from the set of all terms of length exactly k).

Given a Boolean function ¢ : {0,1}" — {0,1}, we write Pr[¢] to denote
Pr,~u, [¢(z) = 1], where U,, denotes the uniform distribution over {0,1}". We
write log to denote log, and In to denote natural log.

We use the following Chernoff bound [Theorem A.12, Alon & Spenser]: Let
B(t,p) denote the binomial distribution with parameter p, i.e. a draw from
B(t,p) is a sum of ¢ independent p-biased 0/1 Bernoulli trials. Then for § > 1,

oD 15> ] < (®188)" < (e/B)™.



The following bound will also be useful:

McDiarmid bound [14]: Let X1, ... X,, be independent random variables tak-
ing values in a set (2. Let F': 2™ — R be such that for all i € [m] we have

|F(.’L‘1,...,;L'm)—F(.’L‘l,...,$1_1,$;,$i+1,...,$m)| SC,’
for all zq,..., 2y and x5 in 2. Let p = E[F(X1,...,Xm)]. Then for all T > 0,

Pr{|F(X1,...,Xm) —p| > 7] < exp(—=72/(c? +---+2)).

Finally, we remind the reader that in the uniform distribution learning model
the learner is given a source of labeled examples (z, f(x)) where each z is
uniformly drawn from {0,1}" and f is the unknown function to be learned.
The goal of the learner is to efficiently construct a hypothesis h which with
high probability has low error relative to f under the uniform distribution, i.e.
Pry~u, [h(z) # f(x)] < € with probability 1 — 4.

3 Learning Random Monotone DNF

3.1 Interesting Parameter Settings

Consider a random draw of f from ME¥. Tt is intuitively clear that if ¢ is too
large relative to k then a random f € M%* will likely have Pr[f] ~ 1; similarly
if ¢ is too small relative to k then a random f € M%F will likely have Pr[f] = 0.
Such cases are not very interesting from a learning perspective since a trivial
algorithm can learn to high accuracy. We are thus led to the following definition:

Definition 1. For 0 < a < 1/2, a pair of values (k,t) is said to be monotone
a-interesting if & <E, o x[Pr[f]] <1-a.

Throughout the paper we will assume that 0 < a < 1/2 is a fixed constant
independent of n and that ¢ < p(n), where p(-) is a fixed polynomial (and we will
also make assumptions about the degree of p). The following lemma proved in
Appendix A gives necessary conditions for (k,t) to be monotone a-interesting:
(As Lemma 1 indicates, we may always think of k as being roughly logt.)

Lemma 1. If (k,t) is monotone a-interesting then a2¥ <t < 2+11n 2,

. K
3.2 Properties of M

Throughout the rest of Section 3 we assume that o > 0 is fixed and (k,t) is a
monotone a-interesting pair where t = O(n?~7) for some v > 0. In this section
we develop some useful probabilistic lemmas regarding M%*. All of the proofs,
which are relatively straightforward, are given in Appendix B.

Our first lemma does not require that f be drawn from M.



Lemma 2. Any monotone DNF f with t > 2 terms each of size k has Pr[f] >

as.

Let f? denote the projected function obtained from f by first removing term
T; from the monotone DNF for f and then restricting all of the variables which
were present in term T; to 1. For £ # i we write T} to denote the term obtained
by setting all variables in T; to 1 in Ty, i.e. T} is the term in f? corresponding
to T;. Note that if T} # T then T} is smaller than T}.

The next two lemmas show that each variable appears in a limited number
of terms and that therefore not too many terms 7T} in f* are smaller than their
corresponding terms Ty in f. In these and later lemmas, “n sufficiently large”
means that n is larger than a constant which depends on a but not on k or ¢.

Lemma 3. For n sufficiently large, with probability at least 1 — dmany = 1—

3/2 k-1 2
(L joat)2" " e /Vilogt gyer the random draw of f from MY* we have that

every variable v;, 1 < j < n, appears in at most 2¥"1a?//tlogt terms of f.

Note that since (k,t) is a monotone a-interesting pair and ¢t = O(n?~7) for some
fixed v > 0, for sufficiently large n this probability bound is non-trivial.

Lemma 4. For n sufficiently large, with probability at least 1 — g = 1-
tk(%)ﬂ/(mgt) over the random draw of f from MEE we have that for
all 1 < i < n at most 28/logt terms T; with £ # i in the projection f* are
smaller than the corresponding terms Ty in f.

There is probably little overlap between any pair of terms in f:

Lemma 5. With probability at least 1 — t2(E)loslost — 1 _ 6.+ over the
random draw of f from MLE, for all 1 < i,5 < t no set of loglogt or more
variables belongs to two distinct terms T; and T in f.

Putting the preceding lemmas together, we can show that for f drawn from
MtE | with high probability each term is “uniquely satisfied” by a noticeable
fraction of assignments. More precisely, we have:

Lemma 6. For n sufficiently large, with probability at least 1 —émany —gmall =
1—Jysat over the random draw of f from MYF | f is such that for alli=1,... .t
we have Pr,[T; is satisfied by x but no other T} is satisfied by x] > 2;"%

On the other hand, we can upper bound the probability that two terms of a
random DNF f will be satisfied simultaneously:

Lemma 7. With probability at least 1 — gy areq Over the random draw of f from
MEF for all 1 <i < j<mn, Pr[T; ATj] < 17°§k—t



3.3 Identifying cooccurring variables

In this section we show how to identify pairs of variables (v;,v;) which cooccur
in some term of f.

First, some notation. Given a monotone DNF f over variables vy,...,vn,
define DNF formulas g.«, 914, 9«1 and gi1 over variables vs, ..., v, as follows:

— g«x 18 the disjunction of the terms in f that contain neither v; nor vs;

— g1+ is the disjunction of the terms in f that contain v; but not vy (but with
v; removed from each of these terms);

— g+ is defined similarly as the disjunction of the terms in f that contain vy
but not v; (but with v, removed from each of these terms);

— g11 is the disjunction of the terms in f that contain both vy and vs (with
both variables removed from each term).

We thus have f = gux V(v1914) V (v2g41) V (V102911 ). Note that any of gux, 914, gx1,
g11 may be an empty disjunction which is identically false.

We can empirically estimate each of the following using uniform random
examples (z, f(x)):

poo :==Prlg] = Pr [f(z) =1]z =22 =0]
T zeU,

po1 :=Pr[gux Vg1l = Pr [f(x) =1| 21 =0,22 =1]
T z€UL

pro :=Prlg Vgl = Pr[f(z) =121 =1,25 =0]
z z€U,

P11 =Pr[ges Vga Vg1 Vaguu]l= Pr [f(z) =121 =122 =1].
T z€eU,

It is clear that g;; is nonempty if and only if v; and vy cooccur in some term
of f; thus we would ideally like to obtain Pryep, [g11]- While we cannot ob-
tain this probability from pgg, po1, P10 and pi11, the following lemma, proved in
Appendix C, shows that we can estimate a related quantity:

Lemma 8. Let P denote the sum p11 — pio — Po1 +poo- Then P = Pr[gi1 AGy, A
y*l A y**] - Pr[gl* A gx1 A g**]

More generally, let P;; be defined as P but with v;, z;, v;, and z; substituted
for v, x1, v2, and x3, respectively, throughout the definitions of the g’s and p’s
above. The following lemma shows that, for most random choices of f, for all
1 <4,j < n, the value of P;; is a good indicator of whether or not v; and v;
cooccur in some term of f:

Lemma 9. For n sufficiently large and t > 4, with probability ot least 1 —
Ssmall — Oshared — Ousat over the random draw of f from MLF, we have that for

n
all 1 <i,j <n (i) if v; and v; do not cooccur in some term of f then P;; < 0;

(i) if v; and v; do cooccur in some term of f then P > ‘;—:

Proof. Part (i) holds for any monotone DNF by Lemma 8. For (ii), we first note
that with probability at least 1 — dmany — dgmall — dusat, @ randomly chosen f
will have all of the following properties:



1. Each term in f is uniquely satisfied with probability at least a®/2F+2 (by
Lemma 6);

2. Each pair of terms T; and T} in f are both satisfied with probability at most
logt/2%* (by Lemma 7); and

3. Each variable in f appears in at most 2¥~'a?/v/tlogt terms (by Lemma 3).

We call such an f well-behaved. For the sequel, assume that f is well-behaved
and also assume without loss of generality that i = 1 and j = 2. We consider
separately the two probabilities p1 = Pr[gi1 AG1, A Ju1 A Gss) and py = Prlgis A
9+1/\F,,] whose difference defines P, = P. By property (1) above, p; > a3 /2F+2,
since each instance = that uniquely satisfies a term T} in f containing both v; and
vy also satisfies g11 while falsifying all of g1, g«1, and g.««. Since (k, t) is monotone
a-interesting, this implies that p; > a*/4t. On the other hand, clearly py <
Pr[g1. A g«1]- By property (2) above, for any pair of terms consisting of one term
from g1, and the other from g.1, the probability that both terms are satisfied
is at most logt/22*. Since each of g1, and g.; contains at most 2¥~'a?/v/tlogt
terms by property (3), by a union bound we have ps < a*/(4tlogt), and the
lemma follows given the assumption that ¢ > 4. O

Thus, our algorithm for finding all of the cooccurring pairs of a randomly
chosen monotone DNF consists of estimating P;; for each of the n(n—1)/2 pairs
(4,7) so that all of our estimates are—with probability at least 1 — é—within an
additive factor of a?/16t of their true values. The reader familiar with discrete
multivariate Fourier analysis will readily recognize that Pio is just f (110,,—2)
and that in general all of the P;; are simply second-order Fourier coefficients.
Therefore, by the standard Hoeffding bound, a uniform random sample of size
512t?1In(n?/6)/a® is sufficient to estimate all of the P;;’s to the specified tolerance
with overall probability at least 1 — §. This gives us the following:

Theorem 1. For n sufficiently large and any 6 > 0, with probability at least
1 — dmany — dgmall — Ousat — O over the choice of f from MEE and the choice
of random ezamples, the above algorithm runs in O(n?t*log(n/d)) time and
identifies exactly those pairs (v;,v;) which cooccur in some term of f.

3.4 Forming a hypothesis from pairs of cooccurring variables

In this section we show how to construct an accurate DNF hypothesis for a
random f drawn from M.

Identifying all k-cliques. By Theorem 1, with high probability we have com-
plete information about which pairs of variables (v;,v;) cooccur in some term

of f. We thus may consider the graph G with vertices vy, ...,v, and edges for
precisely those pairs of variables (v;,v;) which cooccur in some term of f. This
graph is a union of ¢ randomly chosen k-cliques from {vq,...,v,} which corre-

spond to the t terms in f. We will show how to efficiently identify (with high
probability over the choice of f and random examples of f) all of the k-cliques



in G. Once these k-cliques have been identified, as we show later it is easy to
construct an accurate DNF hypothesis for f.

The following lemma shows that with high probability over the choice of f,
each pair (v;,v;) cooccurs in at most a constant number of terms:

Lemma 10. Fiz 1 <i < j < n. For any C > 0 and all sufficiently large n, we
have PrfeMt,k[some pair of variables (v;,v;) cooccur in more than C terms of

1< (%)9 = éc.

Proof. For any fixedr € {1,...,t} we have that Pr[v; and v; cooccur in term 7]
ﬁ Efl:ll)) < ﬁ—z Since these events are independent for all r, the probability that
there is any collection of C' terms such that v; and v; cooccur in all C' of these

terms is at most (}) - (%25)0 < (%;)C =

By Lemma 10 we know that, for any given pair (v;,v;) of variables, with
probability at least 1 — §o there are at most Ck other variables v, such that
(vi,vj,ve) all cooccur in some term of f. Suppose that we can efficiently (with
high probability) identify the set S;; of all such variables vy. Then we can perform
an exhaustive search over all (k — 2)-element subsets S’ of S;; in at most ((’;ck) <
(eC)k = nPU0eC) time, and can identify exactly those sets S’ such that S’ U
{vi,v;} is a clique of size k in G. Repeating this over all pairs of variables
(vs,v5), we can with high probability identify all k-cliques in G.

Thus, to identify all k-cliques in G it remains only to show that for every pair
of variables v; and v;, we can determine the set S;; of those variables v, that
cooccur in at least one term with both v; and v;. Assume that f is such that all
pairs of variables cooccur in at most C' terms, and let 7" be a set of variables of
cardinality at most C having the following properties:

— In the projection fr.o of f in which all of the variables of T are fixed to 0,
v; and v; do not cooccur in any term; and
— For every set 7' C T such that |T'| = |T'|—1, v; and v; do cooccur in frr .

Then T is clearly a subset of S;;. Furthermore, if we can identify all such sets T',
then their union will be S;;. There are only O(n®) possible sets to consider, so
our problem now reduces to the following: given a set 7" of at most C' variables,
determine whether or not v; and v; cooccur in fr. .

The proof of Lemma, 9 shows that f is well-behaved with probability at least
1 —dmany — gmall — Susat over the choice of f. Furthermore, if f is well-behaved
then it is easy to see that for every |T'| < C, fro is also well-behaved, since fr. o
is just f with O(v/t) terms removed (by Lemma 3). That is, removing terms from
f can only make it more likely that the remaining terms are uniquely satisfied,
does not change the bound on the probability of a pair of remaining terms being
satisfied, and can only decrease the bound on the number of remaining terms
in which a remaining variable can appear. Furthermore, Lemma 8 holds for any
monotone DNF f. Therefore, if f is well-behaved then the proof of Lemma 9
also shows that for every |T'| < C, the P;;’s of fr.o can be used to identify the



cooccurring pairs of variables within fr. o. What remains is to show that we
can efficiently simulate a uniform example oracle for fr. o so that these P;;’s
can be accurately estimated.

In fact, for a given set 7', we can simulate a uniform example oracle for fr. ¢
by filtering the examples from the uniform oracle for f so that only examples
setting the variables in T to 0 are accepted. Since |T'| < C, the filter accepts with
constant probability at least 1/2°. A Chernoff argument shows that if all P;;’s
are estimated using a single sample of size 29112 1In(2(C + 2)n®/§)/a® (fil-
tered appropriately when needed) then all of the estimates will have the desired
accuracy with probability at least 1 — 4.

This gives us the following:

Theorem 2. For n sufficiently large, any § > 0, and any fized C > 2, with
probability at least 1 — dgman — Oshared — Susat — 0c — 0 over the random draw
of f from MYE and the choice of random examples, all of the k-cliques of the
graph G can be identified in time O(n°t3k?log(n/d)).

The main learning result for monotone DNF. We now have alist T7,..., Ty
(with N = O(n%)) of length-k monotone terms which contains all ¢ true terms
Ti,...,T; of f. Now observe that the target function f is simply an OR of some
subset of these N “variables” Ti,..., T, so the standard elimination algorithm
can be used to PAC learn the target function.

Call the above described entire learning algorithm A. In summary, we have
proved the following:

Theorem 3. Fiz v, a > 0 and C > 2. Let (k,t) be a monotone a-interesting
pair. For any e > 0,8 > 0, and t = O(n?7"), algorithm A will with probability
at least 1 — dmany — dgmall — dusat — ¢ — 0 (over a random choice of DNF from
MEE and the randomness of the example oracle) produce a hypothesis h that
e-approrimates the target with respect to the uniform distribution. Algorithm A
runs in time polynomial in n, log(1/d), and 1/e.

4 Nonmonotone DNF

4.1 Interesting Parameter Settings

As with M4k we are interested in pairs (k, t) for which E rept+[Pr[f]] is between
aand1l—a:

Definition 2. For a > 0, the pair (k,t) is said to be a-interesting if a <

E; pir[Prf]] <1-a.

It is easy to give an explicit formula for E ;_..» [Pr[f]] which will be useful later.
For any fixed = € {0,1}" we have Pr . p.«[f(z) = 0] = (1 — 5)*, and thus by
linearity of expectation we have E o #[Pr{f]] =1 — (1 — 5)".

Throughout the rest of Section 4 we assume that a > 0 is fixed and (k, 1) is
an a-interesting pair where t = O(n3/2~7) for some v > 0.



4.2 Properties of ’Dfl’k

In this section we develop analogues of Lemmas 6 and 7 for DL*. The D4LE
analogue of Lemma 7 follows directly from the proof of Lemma 7, and we have:

Lemma 11. With probebility at least 1 — dgpareq Over the random draw of f
from D%, for all 1 <i < j <n, Pr[T; AT;) < '%L.

In Appendix D we use McDiarmid’s bound to prove a D%* version of Lemma 6:

Lemma 12. With probability at least 1—t ((t — 1)(%)10g log? 4 exp (mﬁ#itlogg—t))

=1—0y4.t> @ random f drawn from DLE s such that for each i =1,...,t, we
have P; = Pr.[T; is satisfied by x but no other T; is satisfied by x] > 52=.

4.3 Identifying (most pairs of) cooccurring variables

Recall that in Section 3.3 we partitioned the terms of our monotone DNF into
four disjoint groups f = gux V (v1g14) V (v2g41) V (v1v2911). depending on what
subset of {v;,v2} was present in each term. Now, in the nonmonotone case, we
will partition the terms of our general DNF f into nine disjoint groups depending
on whether each of vy, vy is unnegated, negated, or absent:

f = g V(v1914) V(U1 g0x )V (V2941 )V (0102911) V(T1V2901) V (V2940) V (v172910) V (T1U2900)

Thus g.. contains those terms of f which contain neither v; nor vy in any form;
go« contains the terms of f which contain 77 but not v, in any form (with oy
removed from each term); g.; contains the terms of f which contain vs but not
v in any form (with vo removed from each term); and so on. Each g. . is thus a
DNF (possibly empty) over literals formed from wvs, ..., v,.

We can empirically estimate each of

Poo := Pr{gax V gox V gu0 V goo

n

) (@)
)= Pr /@ =12 =0z =1
) (@)
) @)

Po1 1= lzcr[g** V gox V gx1 V go1
Pio == ].:;r[g** Vv 91« Vv gx0 \ gio

P11 = IZr[g** V gix V gs1 V911

It is easy to see that Pr[gq1] is either O or else at least % depending on whether
g11 is empty or not. Thus, ideally we would like to be able to accurately estimate
each of Pr[goo], Pr[go1], Pr[g10] and Pr[g;1]; if we could do this then we would have
complete information about which pairs of literals involving variables v; and v
cooccur in terms of f. Unfortunately, the probabilities Pr[goo], Pr[go1], Pr[g10]
and Pr[g;1] cannot in general be obtained from poo, po1, P10 and p11. However, we
will show that we can efficiently obtain some partial information which enables
us to learn to fairly high accuracy.

As before, our approach is to accurately estimate the quantity P = py1 —
P10 — Po1 + Poo- We have the following lemmas proved in Appendix E:



Lemma 13. If all four of goo, go1, 910 and gi11 are empty, then P equals

Pr[g1« A g0 A ( no other g..)] + Pr[go« A g«1 A ( no other g..)]
—Pr[gi« A g A ( no other g..)] — Pr[go.« A g«o A ( no other g..)]. (1)

Lemma 14. If exactly one of goo, go1,g10 and g11 is nonempty (say gi1), then
P equals (1) plus

Prgi1 A g1« A g«o A ( n0 other g..)] + Pr[gi1 A gox A gs1 A ( no other g..)]
—Pr[g11 A g1+ A ge1 A ( 10 other g..)] — Prlg11 A gox A g«0 A ( no other g..)]
+Prfg11 A gox A ( no other g..)] + Pr[gi1 A g«o A ( no other g..)] + Pr[gi1 A ( no other g..)].

Using the above two lemmas we can show that the value of P is a good indi-
cator for distinguishing between all four of goo, go1, 910,911 being empty versus
exactly one of them being nonempty:

Lemma 15. For n sufficiently large and t > 4, with probability at least 1 —
Olsat — Oshared — Omany over a random draw of f from D we have that: (i)

if v1 and vy do not cooccur in any term of f then P < $7.; (i) if vy and vy do
cooccur in some term of f and exactly one of goo, 901,910 and g11 is nonempty,

3
then P > l‘gt

n

Proof. With probability at least 1 —d; ..; — dshared — dmany a randomly chosen

f from DL* will have all of the following properties:

1. Each term in f is uniquely satisfied with probability at least a/2*+1 (by
Lemma 12);

2. Each variable in f appears in at most 2°~'a?/v/tlogt terms (by Lemma 3);
and

3. Each pair of terms T; and T} in f are both satisfied with probability at most
logt/2%* (by Lemma 11).

For the sequel assume that we have such an f. We first prove (i) by showing
that P—as represented by (1) of Lemma 13—is at most “0 ;- By property 3
above, for any pair of terms consisting of one term from gy, and the other from
g0, the probability that both terms are satisfied is at most log#/22*. Since each
of g1« and g.«o contains at most 2¥"1a?//tlogt terms by property 2, a union

bound gives Prfgi« A g«0 A (no other g..)] < Prlgix A gwo] < iz A similar
argument holds for the three other summands in (1), so P is at most tlog ;< g 0‘

since & < 1/2 and ¢t > 4.

We now prove (ii). By an argument similar to the above we have that the
first six summands in the expression of Lemma 14 are each at most gi—
magnitude. Now observe that each instance = that uniquely satisfies a term%“ in
f containing both v; unnegated and v, unnegated must satisfy g1 and no other

g.,.- Thus under the conditions of (ii) the last summand in Lemma 14 is at least

5

37 log 7 Since

sier by property 1 above, so we have that (ii) is at least 5% —



(k,t) is a-interesting we have & > a, and from this and the constant bounds

2 4 2
e, . . o a 5_« Sa 3
on « and ¢ it is easily shown that 5% > 5; and 3 Tlog? < 957> from which the

lemma follows after simplifying the difference of these quantities. O

It is clear that an analogue of Lemma 15 holds for any pair of variables v;, v;
in place of vy, vs. Thus, for each pair of variables v;, v;, if we decide whether v;
and v; cooccur (negated or otherwise) in any term on the basis of whether P;; is
large or small, we will err only if two or more of ggo, go1, 910,911 are nonempty.

We now show that for f € DL¥ ) with very high probability there are not too
many pairs of variables (v;,v;) which cooccur (with any sign pattern) in at least
two terms of f. (Note that this immediately bounds the number of pairs (v;, v;)
which have two or more of the corresponding goo, go1, g10, g11 nonempty.)

Lemma 16. Let d > 0 and f € DLX. The probability that more than (d +
1)t2k* /n? pairs of variables (v;,v;) each cooccur in two or more terms of f is at
most exp(—d?t3k* /nt).

Proof. We use McDiarmid’s inequality, where the random variables are the terms
Ti,...,T; chosen independently from the set of all possible terms of length £ and
F(Ty,...,T;) denotes the number of pairs of variables (v;, v;) that cooccur in at
least two terms. For each £ =1,...,¢ we have Pr[T} contains both v; and vy] <
ﬁ—z, so by a union bound we have Pr[f contains at least two terms which contain

both v1 and vs in any form] < ti—’ff By linearity of expectation we have y =

E[F] < ti’f. Since each term involves at most k? pairs of cooccurring variables,
we have |F(T1,...,T;) — F(T1,...,Ti—1,T!,Tit1,---,Tt)| < ¢i = k*. We thus
have by McDiarmid’s inequality that Pr[F > t?k*/n% + 7] < exp(—72/(tk?)).

Taking 7 = dt?k*/n?, we have Pr[F > (d + 1)t?k*/n?] < exp(—-d?t3k*/n?). O

Taking d = n?/(t>/*k*) in the above lemma (note that d > 1 for n sufficiently
large since t3/4 = O(n'%/8)), we have (d+1)t?k*/n? < 2t3/* and the failure prob-
ability is at most exp(—+v/t/k*) = dcooccur. The results of this section (together
with a standard analysis of error in estimating each P;;) thus yield:

Theorem 4. For n sufficiently large and for any d > 0, with probability at least
1 = dcooccur — 03160t — Oshared — Omany — & over the random draw of f from DLk
and the choice of random examples, the above algorithm runs in O(n%t?log(n/d))
time and outputs a list of pairs of variables (v;,v;) such that: (i) if (vi,v;) is in
the list then v; and v; cooccur in some term of f; and (ii) at most Ng = 2t3/4
pairs of variables (v;,v;) which do cooccur in f are not on the list.

4.4 Reconstructing an accurate DNF hypothesis

Now we show how to construct a good hypothesis for the target DNF from a
list of pairwise cooccurrence relationships as provided by Theorem 4. As in the
monotone case, we consider the graph G with vertices v1,...,v, and edges for
precisely those pairs of variables (v;,v;) which cooccur (with any sign pattern)



in some term of f. As before this graph is a union of ¢ randomly chosen k-cliques
S1,--.,S; which correspond to the ¢ terms in f, and as before we would like
to find all k-cliques in G. However, there are two differences now: the first is
that instead of having the true graph G, we instead have access only to a graph
G' which is formed from G by deleting some set of at most Ny = 2t3/* edges.
The second difference is that the final hypothesis must take the signs of literals
in each term into account. To handle these two differences, we use a somewhat
different reconstruction procedure than we used for monotone DNF in Section
3.4; this reconstruction procedure only works for t = O(n3/2-7) where v > 0.
We first show how to identify (with high probability over the choice of f) We
then show how to form a DNF hypothesis from the set of all k-cliques in G'.
We now describe an algorithm which, for t = O(n®/2=7) with v > 0, with
high probability runs in polynomial time and identifies all the k-cliques in G’
which contain edge (vy,v2). Running the algorithm at most tk? times on all edges
in G' will give us with high probability all the k-cliques in G'. The algorithm is:

— Let A be the set of vertices v; such that v1,vs,v; form a triangle in G'. Run
a brute-force algorithm to find all (k — 2)-cliques in the graph induced by A.

It is clear that the algorithm finds every k-clique which contains edge (vy,v2).
To bound the algorithm’s running time, it suffices to give a high probability
bound on the size of A in the graph G (clearly A only shrinks in passing from
G to G'). The following lemma (proved in Appendix F) gives such a bound:

Lemma 17. Let G be a random graph as described above and let 0 < v < %. For
any t = O(n®/2=7) and any C > 0 we have that with probability 1 — O (l‘fi,cc")
the size of A in G is at most Ck.

By Lemma 17, doing a brute-force search which finds all k-cliques in the graph
induced by A takes at most () < (%)k = (eC)OWlogn) = 0108 C) time steps.
Thus we can efficiently with high probability identify all the k-cliques in G'. How
many of the “true” cliques Si,...,S; in G are not present as k-cliques in G'? By
Lemma 10, with probability at least 1 — t2(t7’f—22)0 each edge (v;,v;) participates
in at most C cliques from Si,...,S;. Since G’ is missing at most Ny edges from
G', with probability at least 1 — t2(tn%2)0 the set of all k-cliques in G' is missing
at most C Ny “true” cliques from Si,...,.S;.

Summarizing the results of this section so far, we have:

Theorem 5. Fiz C > 2. Given a DNF formula f drawn from D% and a list of
pairs of cooccurring variables as described in Theorem 4, with probability at least
1 — 1/n(©) the above procedure runs in n®1°8C) time and constructs a a list
Zi,...,Zn (where N' = nPU8C)) of k-cliques which contains all but at most
CNy of the cliques Sy, ..., S;.

We construct a hypothesis DNF from the list Z,..., Zns of candidate k-
cliques as follows: for each Z; we form all 2* possible terms which could have
given rise to Z; (corresponding to all 2% sign patterns on the k variables in



Z;). We then test each of these 2¥ N’ potential terms against a sample of M
randomly drawn negative examples and discard any terms which output 1 on
any negative example; the final hypothesis A is the OR of all surviving terms.
Any candidate term T” which has Pryep, [T'(z) = 1 & f(z) = 0] > 5575 will
survive this test with probability at most exp(—eM/2FT1N'). Taking e = 1/2F
and M = (1/€)2*t1N'log? n we have that with probability 1 —1/n“() each term
in the final hypothesis contributes at most ¢/2*¥+1 N’ toward the false positive
rate of h, so with high probability the false positive rate of h is at most € = 1/2F.

The false negative rate of h is at most 5 times the number of terms in f
which are missing in h. Since the above algorithm clearly will not discard any
term in f (since such a term will never cause a false negative mistake), we need
only bound the number of terms in f which are not among our 2 N’ candidates.
With probability at least 1 — /(%) = 1 — dlique €ach true clique Sy, ...,S; in
G gives rise to exactly one term of f (the only way this does not happen is if
two terms consist of literals over the exact same set of k variables), so Theorem
5 implies that h is missing at most C'Ny terms of f. Thus the false negative rate
is at most CNy/2F < 2Ct3/4/2F = 1/0(t'/4).

All in all the following is our main learning result for nonmonotone DNF:

Theorem 6. Fiz v, a > 0 and C > 2. Let (k,t) be a monotone a-interesting
pair. For f randomly chosen from DL*, with probability at least 1 — dcooccur —
8 sat — Fshared — Smany — Oclique — 1/n?(“) the above algorithm runs in O(n*t> +
nCUee ) time and outputs a hypothesis h whose error rate relative to f under
the uniform distribution is at most 1/0Q(t'/4).

One can straightforwardly verify from the definitions of the various §’s that for
any t = w(1l) as a function of n, the failure probability of the algorithm is o(1)
and the algorithm learns to accuracy 1 — o(1).

5 Discussion and Conclusions

We have shown that several natural models of random DNF formulas can be
efficiently learned to high accuracy under the uniform distribution.

Several directions for future work present themselves. We can currently only
learn random DNFs with o(n3/?) terms (o(n?) terms for monotone DNF); can
stronger results be obtained which hold for all polynomial-size DNF? Also, our
current results for ¢ = w(1)-term DNF let us learn to some 1 — o(1) accuracy
but we cannot yet achieve an arbitrary inverse polynomial error rate for non-
monotone DNF. Finally, another interesting direction is to explore other natural
models of random DNF formulas, perhaps by allowing some variation among
term sizes or dependencies between terms.

Acknowledgement. Avrim Blum suggested to one of us (JCJ) the basic strat-
egy that learning monotone DNF with respect to uniform might be reducible to
finding the cooccurring pairs of variables in the target function.
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A  Proof of Lemma 1

Proof of Lemma 1: One side is easy: if ¢ < a2* then each of the ¢ terms of
f is satisfied by a uniform random example with probability at most a/t, and
consequently Pr[f(x) = 1] < a. Note that by our assumptions on ¢ and a we
thus have that k = O(logn) for any monotone a-interesting pair (k,t).

We now show that if ¢ > 2¥*'log 2, then E 0 [Pr[f]] > 1 — a. Let us
write |z| to denote x1 +- - -+z, for z € {0,1}™. It is easy to see that Pr[f(z) = 1],
viewed as a random variable over the choice of f € M%¥ depends only on the
value of |z|. We have

n

B pt P = OBy e [Pr[f(@) = 1| Jo| = ] - Prfla] = r].
r=0

A standard tail bound on the binomial distribution implies that

mlejtl;n [|IL‘| <n/2- nlog(2/a)] <af2.

Thus it suffices to show that for any z with |z| > n/2 — \/nlog(2/a), we have
PrfeMtn,k[f(m) =1]>1-a/2.

Fix an z € {0,1}" with |z] = w > n/2 — y/nlog(2/a). Let T} be a random
monotone term of length k. We have

ww-1-w-k+1) _ 1
nn—1)---(n—k+1) = 2k+1

l;lr[Tl(x) =1]=

where the inequality is implied by our conditions on k and «. Since the terms of
f are chosen independently, this implies that

Pi{f(@) = 0] < (1 - 2%) < exp (2‘—f) |

If t/2¥+1 > In 2 then this bound is at most /2. O

B Proof of Lemmas 2, 3, 4, 5, 6, and 7

Proof of Lemma 2:
We write 11,75, ...,T; to denote the terms of f. We have

Pr{f] = PrTLATs A--- AT} = Pr[Ty | To A - - T Pr{T5 | Ty A---Ty) -+~ Pr[Ty 1 | T3] Pr(T]
(=) A o 1\ 1 2kt 1n(2/a) 1 2In 2
> [T =(1-=) >(1-= > (= 3,
rm-(-z) 2 (-5) 0 =2(3) e

The first inequality holds since Pr[f(z) = 1|g(z) = 1] > Pr[f(z) = 1] for any
monotone Boolean functions f, g on {0,1}" (see e.g. Corollary 7, p. 149 of [4]).



The second inequality holds by Lemma 1, and the third holds since (1 —1/z)* >
1/4 for all z > 2. o

Proof of Lemma 3:

Fix any variable v;. For each term Ty we have that v; occurs in T, with
probability k/n. Since the terms are chosen independently, the number of oc-
currences of v; is binomially distributed according to B(t,p) with p = k/n.
Taking 8 = n2¥~'a?/kt3/?logt in the Chernoff bound (which is greater than 1
for sufficiently large n), the probability that v; appears in fpt = 28~1a?/\/tlogt

oo 25102/ Vi log ¢
or more terms is at most (%%—t)
union bound over the n variables v;. O

. The lemma follows by the

Proof of Lemma 4:

We will modify the proof of the previous lemma slightly. We first fix a value
1 < i <t which will act as the index of a distinguished term T}, and we also fix a
value 1 < j < k which will be the index of a distinguished variable within T;. By
taking 8 = #;logt in the Chernoff bound we have that the probability over

the choice of the ¢t —1 terms other than T; that v; also appears in Bp(t—1) = 13; :

k
ek(t—1)logt 2"/ (logt)
n2k

or more terms is at most ( . We then again apply the union

bound, this time over tk different choices of ¢ and j. O

Proof of Lemma 5:

We are interested in upper bounding the probability p; that loglogt or more
of the variables in a fixed term T; belonging to f also appear in some other
term Ty of f, for any £ # i. First, a simple counting argument shows that the
probability that a fixed set of loglogt variables appears in a set of k variables
randomly chosen from among n variables is at most (k/n)!°&1°8t, Since there are

(log’fog t) ways to choose a fixed set of loglogt variables from term T;, we have
pi < (i ﬁ)g ;) (%)10g los (t —1). The lemma follows by the union bound over the
t probabilities p;. O

Proof of Lemma 6:

Given an f drawn according to M4% and given any term T; in f, we are
interested in the probability over uniformly drawn instances that Tj is satisfied
and T is not satisfied for all £ # i. Let Tj; represent the formula that is satisfied
by an assignment z if and only if all of the T, with ¢ # i are not satisfied by z.
We want a lower bound on

PI‘[Tz A Tg#i] = PI‘[T@#I' | T,] . PI‘[Tz]

Since Pr[T;] = 1/2*, what remains is to show that with very high probability
over random draw of f, Pr[T;»; | T;] is bounded below by a®/4 for all T;. That
is, we need to show that Pr[f{] > a?/4 with very high probability.

We have that all of the following statements hold with probability at least

1 — dysat for every 1 < i < n for a random f from MEF:



L Prff] > [1.en Pr[T}]: this follows from Equation () in the proof of Lemma

2.

2. Hé:T;’sz Pr[T}] > a®. This holds because the terms in this product are a
subset of the terms in Equation (%) (in the proof of Lemma 2).

3. At most 2¥/logt terms Ty with £ # i are smaller in f* than they are in f
(by Lemma 4).

4. No term in f? has fewer than k — loglogt variables (by Lemma 5).

These conditions together imply that Pr[fi] > a3 (1 — logt > a®/4
using the fact that (1 — 1)" > 1/4 for all z > 2. O

)2k/logt

Proof of Lemma 7:

By Lemma 5, with probability at least 1 — dgpareq f is such that, for all
1 <i < j <n,terms T; and T; share at most loglogt variables. Thus for
each pair of terms a specific set of at least 2k — loglogt variables must be
simultaneously set to 1 in an instance in order for both terms to be satisfied. O

C Proof of Lemma 8:

P gets a net contribution of 0 from those 2 which belong to g. . (since each
such z is added twice and subtracted twice in P). We proceed to analyze the
contributions to P from the remaining 8 subsets of the events g11, g1, and gu1:

— P gets a net contribution of 0 from those x which are in g1, Ag,; AJ,, since
each such z is counted in pi; and pjp but not in pg; or poo. Similarly P gets
a net contribution of 0 from those x which are in g.«1 A Gy, A Gy

— P gets a net contribution of Pr[gi1 A G;, A J.1 A Jus) since each such z is
counted in pq;.

— P gets a net contribution of — Pr[g1. A g«1 AG,,] since each such z is counted

in po1,p10 and p11. O

D Proof of Lemma 12

We show that Py > 52+ with probability at least 1 —4;,,¢ /t ; the lemma follows
by a union bound. We first show that E feDtn,k[P]_] > . For any fixed = € T1,
we have Pr[Ta(z) A ------ ATy(z)] = (1 =271 > (1 - 27%)t > o where
the last inequality holds since (k,t) is a-interesting. Since a 27* fraction of all
z € {0,1}" belong to Ti, by linearity of expectation we have E fE,D:L,k[Pl] > 5.

Now we show that with high probability the deviation of P; from its expected
value is low. Given any fixed length-k term 77, let {2 denote the set of all length-k
terms T which satisfy Pr[Th AT| < lgzgkt. By reasoning as in the proof of Lemma
11, with probability at least 1 — (t — 1)(%)lOg logt each of Tb,...,T; belongs to
(2, so we henceforth assume that this is in fact the case, i.e. we condition on the




event {T5,...,T;} C {2. Note that under this conditioning we have that each of
T, ..., Ty is selected uniformly and independently from (2.

We now use McDiarmid’s inequality where the random variables are the
randomly selected terms Ty, ..., T; from 2 and F(Ts,...,T;) denotes Py, i.e.

F(Ty,...,T;) = Pr[T} is satisfied by = but no T; with j > 2 is satisfied by z].
x

Since each T} belongs to 2, we have |F/(Ty, ..., T;)—F(Ta,...,Tj 1,7}, Tj41,-- -, Ty)| <

c; = %’Ek—t for all j = 2,...,t. Taking 7 = 5%+, McDiarmid’s inequality implies
that Pr |:P1 > 2,5%] is at most

—02/(4 i 22k) _a222k _a222k _a2t
XP | oeing | — P\ Tty ) SOP\ ooy ) SOP S E g ey
(t—1)(Fe)? 4t —1)log™t 2tlog”t 2In"(1/a)log"t

where the last inequality holds since (k,t) is a-interesting. Combining all the
failure probabilities, the lemma is proved. O

E Proof of Lemmas 13 and 14

Proof of Lemma 13: Since all four of ggg, go1, 910 and g11 are empty we need
only consider the five events gu.«, g«0, gox, 9«1 and gi». We now analyze the con-
tribution to P from each possible subset of these 5 events:

— P gets a net contribution of 0 from those 2 which belong to g. . (and to any
other subset of the remaining four events) since each such z is counted in
each of pgo, po1, p1o and p11. It remains to consider all 16 subsets of the four
events g.o0, gox, g«1 and gi«.

— P gets a net contribution of 0 from those z which are in at least 3 of the
four events g.o, go«, g«1 and g1, since each such z is counted in each of pqo,
Po1, p1o and p11. P also gets a net contribution of 0 from those z which are
in exactly one of the four events g.o, go«, g+«1 and gi.. It remains to consider
those  which are in exactly two of the four events gi«, go«, 9«1 and g«o-

— P gets a net contribution of 0 from those z which are in g1, and go« and no
other events, since each such z is counted in each of pgg, po1, p1o and pi1.
The same is true for those z which are in g.; and g.o and no other events.

— P gets a net contribution of —Pr[gi« A g« A ( no other g.. occurs)] from
those z which are in g1, and g,; and no other event. Similarly, P gets a net
contribution of — Pr[go« A g«oA( no other g.. occurs)] from those z which are
in go« and g.o and no other event. P gets a net contribution of Pr[g1. A g«o A
( no other g... occurs)] from those « which are in g;, and g.o and no other
event, and gets a net contribution of Pr[go« A gi«1 A ( no other g.. occurs)]
from those x which are in gg« and g,1 and no other event. O

Proof of Lemma 14: We suppose that g1 is nonempty. We wish to analyze
the contribution to P from all 64 subsets of the six events gu«, g1x, Jox, 9«1, g«0
and g11. From Lemma 13 we know this contribution for the 32 subsets which do
not include g¢11 is (1) so only a few cases remain:

)



— P gets a net contribution of 0 from those x which are in g;; and in g.. and
in any other subset of events (each such z is counted in each of p11,po1, p1o
and pgo). Similarly, P gets a contribution of 0 from those z which are in
g11 and in at least three of g14, gox, 9«1, gx0- SO it remains only to analyze
the contribution from subsets which contain g1, contain at most two of
J1%, 9o« 9«1 9«0, and contain nothing else.

— An analysis similar to that of Lemma, 13 shows that P gets a net contribution
of Prfgi1 A g1« A gso A ( no other g..)]+ Pr[gi1 A go« A g«1 A ( no other g..)]—
Pr[g11 A g1« A g1 A( no other g..)] —Pr[gi1 Agox Agso A( no other g..)] from
those z which are in g;1, in exactly two of {g1«, gox, 9«1, g+0 }, and in no other
events. So it remains only to consider subsets which contain g;; and at most
one of g1, gox, 9«1, gso and nothing else.

— P gets a contribution of 0 from z which are in ¢g1; and ¢y, and in nothing
else; likewise from z which are in g;; and g¢,; and in nothing else. P gets a
contribution of Pr[gi; A gos A ( no other g..)] from z which are in g1; and
9o« and in nothing else, and a contribution of Pr[gi1 A g«o A ( no other g..)]
from z which are in g;; and g.¢ and in nothing else.

— P gets a net contribution of Pr[gi; A ( no other g..)] from those z which are
in g11 and in no other event. O

F Proof of Lemma 17

In order for vy, vs,v; to form a triangle in G, it must be the case that either (i)
some clique S; contains {1,2,j}; or (ii) there is some pair of cliques S,, Sy with
2¢ S, and {1,j} C S, and 1 ¢ Sy and {2,j} C S.

For (i), we have from Lemma 10 that vy and v2 cooccur in more than C terms
with probability at most (%:—)C Since each term in which v; and vs cooccur
contributes at most k — 2 vertices v; to condition (i), the probability that more

c
than C'(k — 2) vertices v; satisfy condition (i) is at most (i’f—j) = 0(1/n%/?).

For (ii), let A be the set of those indices a € {1,...,t} such that 2 ¢ S, and
1€ S,, and let S4 be Ugc4S,- Similarly let B be the set of indices b such that
1¢ Sy, and 2 € S, and let Sp be UpepSp. It is clear that A and B are disjoint.
For each £ = 1,...,t we have that £ € A independently with probability at most
p=%,s0 E[|A] < tk/n. We now consider two cases:

Case 1: ¢t < n/logn. In this case we may take 8 = ”—lt"kg—” in the Chernoff
bound, and we have that Pr[|A| > fpt] equals

Bpt logn logn
e ek e 1
Pr[|A| > 1 <|{-= < | —— = — )
i) 2 logn] < (ﬂ> - <log2n> (Q(IOgn)> ne(®)

The same bound clearly holds for B. Note that in Case 1 we thus have [Sa|, |SB| <
klogn with probability 1 — 1/n<().




Case 2: t > n/logn. In this case we may take f =logn in the Chernoff bound
and we obtain

tklogn e | Floam/n e \* 1
Pr[|A| > = Pr[|4] > < -
r[|A| > Bpt] r[|A] > n ] < <logn) < logn ne (1)

where the last inequality holds since k = 2(logn) (since t > n/logn and (k,t)
is a-interesting). In Case 2 we thus have |S4|,|Sp| < W—fg—" with probability
1—1/neM).

Let S’y denote S4— {1} and S5 denote Sp — {2}. Since A and B are disjoint,
it is easily seen that conditioned on S’ being of some particular size s'y, all (’;;2)
s'y-element subsets of {3,...,n} are equally likely for S’;. Likewise, conditioned
on S being of size s, all (2;2) sp-element subsets of {3,...,n} are equally
likely for S%. Thus, the probability that |Sy N S%| > C is at most

(&) () <(2%) @

(since the expression on the left is an upper bound on the probability that any
collection of C' elements in S} all coincide with elements of S’).
In Case 1 (t < n/logn) we may assume that sy, s’z are each at most klogn,

and thus (2) is at most (@)C. In Case 2 (t > n/logn) we may assume

that sy, s < ““2—2)52, and thus (2) is at most (%i)c = O(l%bgf.,c—cn)
Thus all in all, we have that except with probability O(1/n°/?) event (i)

contributes at most C(k — 2) vertices v; such that {1,2, j} forms a triangle, and

except with probability O (l‘fjfcn) event (ii) contributes at most C vertices v;

such that {1,2,j} forms a triangle. This proves the lemma. O



