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A major open problem in the theory of machine learning is to develop an efficient
algorithm for learning Boolean formulas in Disjunctive Normal Form (DNF). This
thesis reports progress towards such an algorithm. We derive a new algebraic char-
acterization of DNF formulas and use this characterization to obtain a DNF learning
algorithm which is substantially faster than the best previous approaches. The run-
ning time of our algorithm is exponential in the cube root of the number of variables
in the DNF formula, as opposed to previous bounds which were exponential in the
square root of the number of variables.

The two most important resources for a learning algorithm are computation time
and input data; an ideal learning algorithm would simultaneously optimize its use
of both resources. Using techniques from cryptography, we show that even very
simple learning problems can exhibit strong inherent tradeoffs between these two
resources. We describe a class of decision lists and prove that these structures can be
learned in polynomial time from a large data set but cannot be learned in polynomial
time using a minimal (constant size) data set. These results establish that for some
natural learning problems “ideal” learning algorithms simultaneously optimizing both
resources cannot exist.

Perceptron and Winnow are two classical algorithms for learning a linear separator
which have some remarkable properties. We demonstrate a close connection between
boosting, a learning technique which has gained wide use in recent years, and these

algorithms for learning linear classifiers. Using boosting we construct a new family of

il



learning algorithms for linear classifiers which closely match the sample complexity
and noise tolerance of algorithms such as Perceptron and Winnow. We thus help unify
the seemingly disparate topics of boosting and these classical learning algorithms.
We also present new algorithms which give quantitative performance improve-
ments for a range of well-studied problems in learning theory. We present a new
boosting algorithm which is guaranteed to use intermediate probability distributions
which are optimally smooth. We use this smooth boosting algorithm to give the
fastest known algorithm for learning DNF under the uniform distribution using mem-
bership queries, and also to improve on known hard-core set constructions in complex-
ity theory. We also describe a fast, noise tolerant algorithm for learning linear classi-
fiers under symmetric distributions. Finally, we give the fastest known algorithm for

learning monotone DNF under the uniform distribution without membership queries.

v



Acknowledgements

“My friend,” said I, “what a charming morning! How sweet the country
looks! Pray, did you hear that extraordinary cock-crow this morning? Take a
glass of my stout!”

“Yours? First pay your debts before you offer folks your stout!”

— Herman Melville, “Cock-A-Doodle-Doo! OR
The Crowing of the Noble Cock Beneventano”!

I am very grateful to Les Valiant, my advisor, whose course on computational learning
theory inspired me to do research in this field. Les has always been generous with his time,
advice, encouragement and support. His suggestions and insights have been invaluable to
me in my work, and his research has been an inspiration. I thank Les for making my
graduate experience so rewarding and enjoyable.

I thank my wife Jenny for all of her love, support, and patience over the years, without
which this thesis never would have been written. I thank my son Nicholas, whose recent
arrival made this past year infinitely more interesting and enjoyable. I thank my mother,
Margaret Servedio, and my sister, Maria Servedio, for their love and support over the years.

Special thanks go to Adam Klivans, who collaborated with me on the research described
in Chapters 3 and 8. It has been a pleasure to work with Adam and to know him as a friend.

Many colleagues and friends have helped make my time in graduate school productive,
memorable and enjoyable. There are too many to name, but among them I would like to
single out Adam Deaton (for the lunches), Amos Beimel (for the coffee), Kostas Magoutis
(for the volleyball) and Steven Gortler (for the baseball). I also thank Carol Harlow, Ronda
Scott, Eleni Drinea, Lillian Lee, Michael Bender, Roni Khardon, Dan Roth, Wheeler Ruml,
Luke Hunsberger, Rebecca Hwa, Yan Zong Ding, John Dunagan, Venkatesan Guruswami,
Jeffrey Jackson, Richard Beigel, Avrim Blum, Santosh Vempala, and many others. Thanks
to Michael Mitzenmacher, Michael Rabin, and Salil Vadhan for serving on my thesis com-
mittee.

This thesis is dedicated to the memory of my father, Frank Servedio.

This research was supported by a National Science Foundation Graduate Research Fellow-
ship, by ONR grant N00014-96-1-0550, by NSF grant CCR-95-04436, and by NSF grant
CCR-98-77049.

L«COCK-A-DOODLE-DOO!—00!-00!-00!-00!”



Bibliographic Note

Most of the research presented in this thesis has appeared elsewhere in some form.

Chapter 3 is based on the paper “Learning DNF in Time 20('"*)” which is joint
work with Adam Klivans and appeared in the Proceedings of the 2001 Symposium
on Theory of Computing (Klivans and Servedio, 2001).

Chapter 4 is based on the paper “Computational Sample Complexity and Attribute-
Efficient Learning” which appeared in the Journal of Computer and System Sciences
(Servedio, 2000a); a preliminary version of this paper appeared in the Proceedings of
the 1999 Symposium on Theory of Computing (Servedio, 1999a).

Chapters 5 and 6 are based on the paper “On PAC Learning using Winnow,
Perceptron, and a Perceptron-like Algorithm” which appeared in the Proceedings of
the 1999 Conference on Computational Learning Theory (Servedio, 1999b).

Chapter 7 is based on the paper “PAC Analogues of Perceptron and Winnow via
Boosting the Margin” which will appear in Machine Learning (Servedio, 2001b); a
preliminary version of this paper appeared in the Proceedings of the 2000 Conference
on Computational Learning Theory (Servedio, 2000Db).

Chapter 8 is based on the paper “Boosting and Hard-Core Sets” which is joint
work with Adam Klivans and appeared in the 1999 Symposium on Foundations of
Computer Science (Klivans and Servedio, 1999).

Chapter 9 is based on the paper “Smooth Boosting and Learning with Malicious
Noise” which appeared in the Proceedings of the 2001 Conference on Computational
Learning Theory (Servedio, 2001c).

Chapter 10 is based on the paper “On Learning Monotone DNF under Product
Distributions” which appeared in the Proceedings of the 2001 Conference on Com-
putational Learning Theory (Servedio, 2001a).

vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . .. 1
1.2 Summary of Thesis Contributions . . . . . .. .. ... ... ... .. 3
1.3 Outline of the Thesis . . . . . . . .. ... .. ... ... ....... 5

2 Models and Background 10
2.1 Concepts and Representations . . . . .. . .. ... ... ....... 10
2.2 PAC Learning . . . . . . . . . . e 11
2.3 Variations and Extensions of the PAC Model . . . . . . . ... . ... 13
2.4 The Online Learning Model . . . . . . . ... ... .. ... ... 14
2.5 Mathematical Background . . . . . . ... ... 15

3 Faster Learning of DNF via Polynomial Threshold Functions 17
3.1 Imtroduction . . . . . . . . ... Lo 17

3.1.1 Polynomial Threshold Functions . . . . . . ... ... ... .. 17
3.1.2 Learning DNF . . . . . ... ... oo 18
3.1.3 A New Approach: Learning DNF via Polynomial Threshold
Functions . . . . . .. .. . L oL 19
314 OurResults . . . ... ... oo 20
3.2 Preliminaries . . . . . . .. .. L Lo oo 21
3.2.1 Efficient Algorithms for Learning Linear Threshold Functions 22
3.2.2 The Minsky-Papert Lower Bound . . . . . .. ... ... ... 23
3.3 An Optimal Bound for Representing DNF by Polynomial Threshold
Functions . . . . . . . . . L 24
3.3.1 Low-Order Polynomial Threshold Functions for DNF with Small
Terms . . . . . . . 24
3.3.2 From DNF to Decision Trees . . . . . . .. . ... ... .... 26
3.3.3  An Optimal Bound for Representing DNF by Polynomial Thresh-
old Functions . . . . . .. .. ..o oo 27
3.4 Discussion . . . . ... oL e 29
3.5 Low-Degree Polynomial Threshold Functions for Read-Once DNF . . 31
3.6 Low-Order Polynomial Threshold Functions for Read-Once Constant
Depth Formulae . . . . . . . . ... .o o o oo 32

vii



4 Computational Sample Complexity and Attribute-Efficient Learn-

ing 34
4.1 Introduction . . . . . . . . . ... e 34
4.1.1 Motivation . . . . . .. ..o 35
4.1.2 Computational Sample Complexity versus Sample Complexity 36
41.3 Our Approach . . . . . .. ... ... .o 38

4.2 Preliminaries . . . . . . . ..o 38
4.3 A Construction Using Error-Correcting Codes . . . . . . .. ... .. 39
4.3.1 Error-Correcting Codes . . . . . . ... .. ... ... ..... 40
4.3.2 The Concept Class C, . . . . . . . .. ... ... ....... 41
4.3.3 Proof of Theorem 4.3 . . . . . ... .. ... ... ....... 42

44 A Stronger Gap . . . . . ... L e 45
4.4.1 Cryptographic Preliminaries . . . . . . . . ... ... .. ... 45
4.42 The Concept Class Cy, . . . . . . . . . .. ... ... .... 48
4.4.3 Proof of Theorem 4.9 . . . . . ... .. .. ... .. ... 48
444 AnOptimal Gap . ... ... ... ... ... ..., 49

4.5 Hardness of Attribute-Efficient Learning . . . . . ... ... ... .. 50
4.5.1 Proof of Theorem 4.16 . . . . .. . .. .. ... ... ..... 52
4.5.2 Plausibility of the Cryptographic Assumption . . .. .. . .. 54

5 PAC Learning with Perceptron and Winnow 56
5.1 Imtroduction . . . . . . . . ... L 56
5.1.1 The Perceptron and Winnow Algorithms . . . . . ... .. .. 57
5.1.2 PAC Learning with Perceptron and Winnow: Previous Work . 59
5.1.3 PAC Learning with Perceptron and Winnow: Our Results . . 60

5.2 Preliminaries . . . . . . . ... oL 60
5.2.1 PAC Learning Using Online Learning Algorithms . . . . . . . 61
5.2.2 Nested Functions . . . . . .. ... .. ... 0oL 61

5.3 Winnow Cannot PAC Learn Positive Halfspaces . . . . . ... .. .. 63
5.3.1 A General PAC Lower Bound for Winnow . . . . ... .. .. 68

5.4 Perceptron is Slow under Uniform Distributions . . . . ... ... .. 69
5.5 Perceptron is Fast for Nested Functions under Uniform Distributions 70
6 Learing Origin-Centered Halfspaces under the Uniform Distribution 74
6.1 Introduction . . . . . . . . . . . ... 74
6.1.1 Previous Work . . . . .. .. ... Lo 74
6.1.2 A New Algorithm . . . . . . ... ... ... ... 76

6.2 Preliminaries . . . . . . . . . . . ... 76
6.3 The Algorithm . . . . .. .. ... oo 78
6.3.1 Comparison of Average and Perceptron . . . . . . ... . ... 78
6.3.2 Why Average Works . . . . . ... .. ..o 79

6.4 Analyzing the Average Algorithm . . . . . .. ... ... ... ... . 80
6.4.1 A Large Parallel Component . . . . . . . ... ... ... ... 80
6.4.2 A Small Orthogonal Component . . . . . . .. ... ... ... 82

viii



6.4.3 Putting it All Together . . . . . . ... .. ... ... 84

7 PAC Analogues of Perceptron and Winnow via Boosting the Margin 87

7.1 Introduction . . . . . . . . .o 87
7.1.1 The Average Algorithm Revisited . . . . . ... ... ... .. 87
7.1.2 The Average Algorithm Redeemed . . . . ... ... ... .. 89
7.1.3 Boosting-Based Linear Threshold Learning Algorithms . . .. 89
7.14 Related Work . . . . .. .. oo o oo 90

7.2 Preliminaries . . . . . . .. .. 91
7.2.1 Geometric Preliminaries . . . . . ... ... ... ... ... 91
7.2.2 PAC Learning Linear Threshold Functions with Separation . . 92
7.2.3 The Online p-norm Algorithms . . . . .. .. ... ... ... 93
7.2.4  From Online to PAC Learning . . . . . .. .. .. ... .... 95

7.3 A PAC Model p-norm Weak Learning Algorithm . . . . . .. ... .. 96

7.4 From Weak to Strong Learning . . . . . ... .. ... ... ... 98
7.4.1 Boosting to Achieve High Accuracy . . . . ... ... .. ... 98
7.4.2 Boosting Real Valued Hypotheses to Achieve a Large Margin . 101
7.4.3 Large Margins and Generalization Error . . . . . ... .. .. 104
7.4.4 Putting it All Together . . . . . . ... ... L. 106

7.5 Relationship with the Online p-norm Algorithms . . . . . .. ... .. 107
7.5.1 p=2 and the Perceptron Algorithm . .. .. ... ... ... 108
7.5.2 p=o00 and the Jackson-Craven Algorithm . . .. .. ... .. 108

8 Boosting and Hard-Core Set Construction 111

8.1 Imtroduction . . . . . . . . ... Lo 111
8.1.1 Boosting and Hard-Core Sets . . . . . . ... ... ... ... 111
81.2 OurResults . . ... ... . oo 113
8.1.3 Related Work . . . . . . . ... oo 114

8.2 Hard-Core Set Construction Overview . . . . .. ... .. ... ... 114
8.2.1 Existence of Hard-Core Measures . . . . ... ... ... ... 116

8.3 Boosting Overview . . . . . . . .. .. o oo 117
8.3.1 Structure of Boosting Algorithms . . . . . .. .. ... .. .. 118

8.4 Hard-Core Set Construction from Boosting . . . . . ... .. ... .. 119
8.4.1 A Structural Similarity . . . . .. ... ..o 119
8.4.2 A General Hard-Core Set Construction . . . . . . ... . ... 120
8.4.3 New Hard-Core Set Constructions . . . . . . . .. ... . ... 121
8.4.4 From Hard-Core Measures to Hard-Core Sets . . . . . . . .. 124
8.4.5 Improving the Set Size Parameter . . . . . . . .. ... . ... 126
8.4.6 Optimal Hard-Core Set Construction . . . . .. ... .. ... 128
8.4.7 A Boosting Algorithm from THA . . . .. .. .. ... .. .. 128

8.5 Faster Algorithms for Learning DNF . . . . . .. .. ... ... ... 129
8.5.1 The DNF Learning Problem . . . . .. ... ... ... .... 130
8.5.2 The Harmonic Sieve . . . . . .. ... ... ... .. 130
8.5.3 A Faster Version of the Harmonic Sieve . . . . . . . . . .. .. 132

X



8.5.4 Extensions . . . . . . . .. .o 134

9 Smooth Boosting and Learning with Malicious Noise 135
9.1 Introduction . . . . . . . . . . . 136
9.1.1 Motivation for Smooth Boosting . . . . . . .. .. ... .. .. 136
9.1.2 Learning Linear Threshold Functions with Malicious Noise . . 138

9.2 Smooth Boosting with SmoothBoost . . . . . ... ... ... .... 138
9.2.1 Preliminaries . . . . . . .. ... oo 139
9.2.2 The Smoothboost Algorithm . . . . .. .. ... ... .. ... 139
9.2.3 Proof of Correctness of SmoothBoost . . . . . ... ... ... 141
9.2.4 Comparison with Other Boosting Algorithms. . . . . . . . .. 146

9.3 Learning Linear Threshold Functions with Malicious Noise . . . . . . 148
9.3.1 Geometric Preliminaries . . . . . .. ... ... ... .. ... 148
9.3.2 PAC Learning with Malicious Noise . . . . . . .. .. ... .. 148
9.3.3 A Noise Tolerant Weak Learning Algorithm . . ... .. ... 149
9.3.4 Putting it All Together . . . . . . . .. ... ... 151

9.4 DiscuSsion . . . . . . . ..ol e e 153
9.4.1 Comparison with Online Algorithms . . . . . ... ... ... 153
9.4.2 SmoothBoost is Optimally Smooth . . . . .. ... ... ... 154

10 Learning Monotone DNF under Product Distributions 157
10.1 Introduction . . . . . . . . ..o 158
10.1.1 Learning DNF in Restricted Models . . . . . . . . .. ... .. 158
10.1.2 Learning Larger Monotone DNF . . . . . . .. ... ... ... 160

10.2 Preliminaries . . . . . . . . . .. L 161
10.2.1 Distribution-Specific PAC Learning . . . . . . . . .. ... .. 162
10.2.2 The Discrete Fourier Transform . . . . . . .. ... ... ... 162

10.3 Learning under Uniform Distributions. . . . . . . .. .. .. ... .. 163
10.3.1 Identifying Relevant Variables . . . . . .. .. .. ... .. .. 163
10.3.2 The Learning Algorithm . . . . . ... ... ... ... .... 164
10.3.3 Learning Monotone 200V 10gn)_term DNF . . . .. .. ... .. 164
10.3.4 Learning Monotone Circuits . . . . . . . . ... ... .. ... 167

10.4 Product Distributions. . . . . . . .. ... Lo oL 168
10.4.1 Some ¢ Basis Fourier Lemmas . . . . . . . .. .. ... .... 170

10.5 Learning under Product Distributions . . . . . . . .. .. ... .. .. 172
10.5.1 Identifying Relevant Variables . . . . . . . .. ... ... ... 172
10.5.2 The Learning Algorithm . . . . . . . ... ... ... ..... 172
10.5.3 Learning Monotone 200V 1gm)_term DNF . . . .. .. ... .. 173
10.5.4 Learning Monotone Circuits . . . . . . . . .. ... ... ... 174

11 Future Directions 175



List of Figures

4.1

6.1
6.2
6.3

7.1
7.2
7.3
7.4

8.1

9.1
9.2
9.3

A useful example (z, Ag(v"®@);)). . . . oo 42
The Average algorithm. . . . . . .. ... ... 000000 7
An execution of the Average algorithm.. . . . . . ... ... ... .. 79
A performance comparison of Average and Perceptron. . . . . . . .. 86
A worst-case data set for the Average algorithm. . . . . ... . ... 88
The online p-norm algorithm. . . . . .. ... ... ... ... ... 94
The p-norm weak learning algorithm WLA. . . . . . . .. ... ... .. 96
The AdaBoost algorithm. . . . . . .. ... ... ... 000, 99
The THA algorithm. . . . . .. . .. .. o 0oL 115
The SmoothBoost algorithm.. . . ... ............... .. 140
Aplotof NwithT =4. . ... ... ... ... ... .. ....... 143
The p-norm weak learning algorithm WLA. . . . . . . .. ... .. ... 150

xi



List of Tables

8.1 Comparison of known hard-core set constructions

xii



Chapter 1

Introduction

1.1 Motivation

e A voice-activated domestic robot performs a wide range of household chores.
e A real-time system fluently translates between English and Italian.

e A powerful computer interprets radiographic images and makes accurate diag-

noses.

While automated systems such as these would be indisputably useful, the task of
writing explicit computer programs to solve such “messy” real-world problems seems
to be prohibitively difficult. For these and many other useful real-world tasks, any
successful system must be able to handle a vast number of potential inputs (English
sentences, radiographic images, etc.); even if the system’s designer has extensive
knowledge of the specific problem domain of interest, it may be nearly impossible
to explicitly construct a program which exhibits the desired behavior. The field
of machine learning attempts to circumvent this difficulty by building automated
systems which can learn from data, thus obviating the need to program an explicit
algorithm. But what principles should guide the design of learning-based systems?
And what are the inherent capabilities and limitations of computers that learn?

Research in the theory of machine learning attempts to provide a rigorous math-
ematical foundation for answering such questions. The broad aim of most work in
theoretical machine learning is to define and analyze different learning frameworks,

learning problems, and learning algorithms. Towards this end a range of different



approaches have been taken by researchers in fields such as pattern recognition, esti-
mation theory, and theoretical computer science. In this thesis we consider learning
from the perspective of computational learning theory, the branch of theoretical com-
puter science which studies the abilities and limitations of computationally efficient
learning algorithms.

Several compelling arguments support the strong emphasis which computational
learning theory places on algorithmic efficiency issues. Since computationally efficient
learning algorithms are indeed the only algorithms which can be used in practice for
large data sets, it is beyond dispute that algorithmic efficiency is a sine qua non in
real-world large-scale learning situations. In addition to this pragmatic motivation, a
strong case can be made that computational efficiency should be taken into account
in order to achieve an adequately rich and nuanced mathematical theory of learning.
It is well known that in many learning models, if the computational complexity of
learning is ignored then learnability can be completely characterized by simple combi-
natorial parameters such as the Vapnik-Chervonenkis dimension; such a coarse cate-
gorization sheds little light on the actual similarities and differences between learning
problems. Moreover, from this perspective of information-theoretic (as opposed to
computational) learnability, many learning problems can be “solved” by exhaustive
search. Of course such solutions gives little if any insight into the structure of the
learning problem, and are completely impractical to boot. On the other hand, by
taking the computational complexity of learning into account a broad and fascinating
spectrum of different behaviors are found to exist among learning problems. In this
thesis, for example, we consider learning problems which are provably easy (solvable
by polynomial-time algorithms); learning problems which are certifiably hard (at least
as difficult as cryptographic problems widely believed to require exponential time);
and learning problems whose complexity is as yet tantalizingly unresolved.

In computational learning theory the object being learned is typically modeled as
a Boolean function over some domain, and the task of the learning algorithm is to
infer this unknown target function on the basis of labeled examples. The intuition
is that the unknown function represents a concept which the learning algorithm is
trying to master; e.g. in a situation where a robot is learning to do inventory control
in a library, the concept to be learned might be “book written in English.” In this

setting the unknown Boolean function would label each object in the robot’s universe



as either a positive or negative instance of an English-language book, and the robot’s
task would be to infer an accurate classification rule after seeing some sample objects
and their corresponding binary labels. The standard paradigm in learning theory is
that the unknown “target concept” is a priori known to belong to some fixed class
of possible functions, usually referred to as the concept class which is being learned.
In our library application the concept class might consist of concepts such as “book
written in language X,” “book published in country Y,” “book about topic Z” and so
on. In computational learning theory research the most frequently studied concept
classes are syntactic classes of Boolean formulae; two such classes which have been
intensively studied (and are among the main topics of this thesis) are the class of
Disjunctive Normal Form formulae and the class of linear threshold functions.

It is intuitively clear that simple concepts should be easier to learn than complex
ones; for instance, the class of simple library concepts described above should be easier
to learn than a class which includes concepts such as “gripping suspense thriller” and
“poststructuralist critique of dialectical materialism.” A broad goal of computational
learning theory research, and of this thesis, is to discover how the complexity of

learning scales with the complexity of the concepts which are being learned.

1.2 Summary of Thesis Contributions

While the research in this thesis spans several different topics, the common thread
which unites our results is a central emphasis on computationally efficient learning.
We consider the following results, described in more detail in Section 1.3, to be the

primary contributions of the thesis:

o We give the fastest known algorithm for learning an arbitrary Disjunctive Nor-
mal Form (DNF) formula in the Probably Approximately Correct (PAC) model
of learning with respect to an arbitrary probability distribution on examples.
The problem of PAC learning DNF is widely viewed as one of the most impor-

tant problems in computational learning theory.

e We demonstrate that even for very simple learning problems, a strong tradeoff
can exist between the running time and the number of examples required of

any successful learning algorithm. As an aspect of this tradeoff we give the first



example of a simple learning problem for which attribute-efficient learning (a

type of learning from few examples) is computationally hard.

e We construct a new family of efficient noise-tolerant linear threshold learning
algorithms. These algorithms, which are based on hypothesis boosting, closely
match the performance of the Perceptron and Winnow algorithms, two of the

best-known algorithms in machine learning.

o We establish an equivalence between boosting algorithms in learning theory and
hard-core set constructions in complexity theory. This equivalence yields im-
proved complexity theoretic hard-core set constructions as well as more efficient

algorithms in learning theory.

e We give a new boosting algorithm which generates optimally smooth distri-
butions and show that this boosting algorithm can be used to construct PAC

learning algorithms which tolerate high levels of noisy data.
The following results are secondary contributions of the thesis:

e We give an efficient algorithm which learns 2°(V1°8™)_term monotone DNF un-
der the uniform distribution. This is the first polynomial-time algorithm which
learns monotone DNF with more than a polylogarithmic number of terms in

any model of learning from random examples only.

o We give the fastest known version of the celebrated Harmonic Sieve algorithm
for learning DNF formulae under the uniform distribution using membership

queries.

e We give new analyses of the Perceptron and Winnow algorithms in the PAC
learning model, including the first proof that Winnow is not an efficient PAC

learning algorithm for the class of linear threshold functions.

e We give a fast, simple algorithm for learning origin-centered linear threshold
functions under the uniform distribution which is resistant to several types of

noisy data.

With the exception of Chapter 2, which contains preliminary background material,
each chapter is self contained and can be read separately from the rest. Below we

give an outline of the thesis chapters.



1.3 OQOutline of the Thesis
Models and Background

In this chapter we define the PAC learning model and the online mistake bound
model, the two main learning models which we use, and present some mathematical

background material.
Faster Learning of DNF via Polynomial Threshold Functions

The problem of efficiently learning arbitrary DNF formulae is one of the outstanding
open questions in computational learning theory. In this chapter we present the
fastest known algorithm for this well-studied problem.

Our algorithm is based on a new conversion from DNF to polynomaial threshold
functions. A polynomial threshold function of degree d over n variables is the Boolean
function obtained by thresholding a real-valued n-variable polynomial of degree d. In
their 1968 book Perceptrons, Minsky and Papert proved a lower bound of Q(nl/ 3) on
the degree of polynomial threshold functions which represent certain polynomial-size
DNF. We give an upper bound which matches this lower bound to within a logarith-
mic factor by showing that any s-term DNF formula on n variables can be expressed
as a polynomial threshold function of degree O(n'/?log s). This upper bound enables
us to give an algorithm which learns s-term DNF formulae over n variables in time
20(n'/*lognlogs) thyg substantially improving the 200V time bounds of the best pre-
vious algorithms. We also give improved upper bounds on the degree of polynomial
threshold functions for read-once DNF and for read-once constant depth formulae. In
each case our upper bound leads to the fastest known algorithm for the corresponding

learning problem.
Computational Sample Complexity and Attribute Efficient Learning

Two resources required by all learning algorithms are data and computation time. In
this chapter we show that even for simple learning problems a strong inherent tradeoff
can exist between these two resources.

In Section 4.3 we use error-correcting codes and length-preserving one-way per-
mutations to construct a class of very simple Boolean functions (1-decision lists). We

prove that while a computationally unbounded learner can learn any function in this

5



class from O(1) examples, under a general cryptographic hardness assumption any
polynomial-time learner must use almost €2(n) examples.

Using a different cryptographic construction based on pseudorandom generators,
in Section 4.4 we present a more general class of k-decision lists which exhibits a
similar but stronger gap (O(1) versus Q(nF)) in the number of examples required
for computationally unbounded versus polynomial-time learning. We show that this
construction comes within a logarithmic factor of the largest possible gap for classes
of k-decision lists.

Attribute efficient learning is a type of learning from few examples which has
been widely studied. In Section 4.5 we apply our techniques to construct a concept
class of decision lists which can be learned attribute-efficiently and can be learned in
polynomial time but cannot be learned attribute-efficiently in polynomial time. This
is the first demonstration that attribute-efficient learning can be computationally
hard.

PAC Learning with Perceptron and Winnow

Chapter 5 contains detailed analyses of the PAC learning abilities of the Perceptron
and Winnow algorithms. While these algorithms have been studied in the online
mistake-bound model by many researchers, little was previously known about their
performance in the PAC learning model.

In Section 5.3 we give an exponential lower bound on the running time of the
Winnow algorithm when used as a PAC learning algorithm for the class of positive
linear threshold functions over Boolean examples. This answers an open question of
Schmitt and is the first negative result for Winnow in the PAC learning model.

In Section 5.4 we prove a strong negative result for the Perceptron algorithm
by showing that Perceptron cannot efficiently PAC learn linear threshold functions
even under the uniform distribution on Boolean examples. Our proof simplifies and
strengthens an earlier negative result due to Schmitt on the PAC-model performance
of the Perceptron algorithm.

On the positive side, we show in Section 5.5 that Perceptron is a polynomial-
time PAC learning algorithm for the class of nested functions under the uniform
distribution on Boolean examples. This class is known to be hard for Perceptron in

the general PAC model where the distribution can be arbitrary.



Learning Origin-Centered Halfspaces under Uniform Distributions

In this chapter we consider a natural learning problem which has been studied by
several researchers: learning an unknown origin-centered halfspace (linear threshold
function) from random examples drawn uniformly from the origin-centered unit sphere
in R™. We describe a new algorithm based on a geometric averaging technique which
can learn efficiently even in the presence of monotonic noise (a generalization of
the well-studied classification noise model). We show that our new algorithm is
both simpler and faster than previous algorithms which have been proposed for this

problem.
PAC Analogues of Perceptron and Winnow via Boosting the Margin

In this chapter we describe and analyze a new family of boosting-based PAC model
algorithms for learning linear threshold functions. While our new algorithms are con-
ceptually and algorithmically quite different from Perceptron and Winnow, we prove
performance bounds for the new algorithms which are remarkably similar to those of
Perceptron and Winnow, thus suggesting that these well-studied online algorithms in
some sense correspond to instances of boosting.

In Section 7.3 we describe a parameterized version of the geometric averaging
algorithm from Chapter 6 and show that this algorithm produces hypotheses whose
error rate is bounded away from 1/2. In Section 7.4 we use a boosting algorithm
to efficiently convert this geometric weak learning algorithm into a strong learning
algorithm which can generate arbitrarily accurate hypotheses.

By using techniques from the theory of large margin classification to carefully
bound the number of examples required by the new algorithms, we show that the new
algorithms can be viewed as natural PAC analogues of the online p-norm algorithms
which have recently been studied by Grove, Littlestone, and Schuurmans (Grove et
al., 1997) and Gentile and Littlestone (Gentile and Littlestone, 1999). As special
cases of the new algorithms, by taking p = 2 and p = co we obtain natural boosting-
based PAC analogues of Perceptron and Winnow respectively. The p = oo case of our
algorithm can also be viewed as a generalization (with an improved sample complexity
bound) of Jackson and Craven’s PAC-model boosting-based algorithm for learning

“sparse perceptrons.”



Boosting and Hard-Core Set Construction

In this chapter we show that a close connection exists between hard-core set construc-
tion, a type of hardness amplification from computational complexity, and boosting
algorithms in learning theory. We exploit this connection both to improve previous
learning theory results which are based on boosting and to obtain improved hard-core
set constructions in complexity theory.

In Section 8.4 we show that the hard-core set construction of Impagliazzo (Im-
pagliazzo, 1995), which establishes the existence of distributions under which Boolean
functions are highly inapproximable, may be viewed as a boosting algorithm. More
generally, we prove that any boosting algorithm yields a corresponding hard-core set
construction. Using this connection we apply known boosting algorithms to obtain
improved bounds for hard-core set construction which match known lower bounds
from boosting and thus are optimal within this class of techniques.

The boosting algorithm which corresponds to Impagliazzo’s hard-core set con-
struction has the property that it generates only “smooth” distributions which do
not assign too much weight to any single example. In Section 8.5 we show that
smooth boosting algorithms can be used to give a new version of Jackson’s celebrated
Harmonic Sieve algorithm for learning DNF formulae under the uniform distribution
using membership queries. Our new version of the Sieve has a significant asymp-
totic improvement in running time. By combining our techniques with recent im-
provements to other aspects of the Sieve, we obtain an O(ns*/e?)-time algorithm for

learning s-term n-variable DNF under uniform with membership queries.
Smooth Boosting and Learning with Malicious Noise

This chapter considers the problem of learning linear threshold functions in the pres-
ence of malicious noise, a more demanding noise model than either the classification
noise or monotonic noise models which we considered in Chapter 6. By combin-
ing ideas from the previous two chapters, we derive a new family of malicious noise
tolerant algorithms for learning linear threshold functions.

In Section 9.2 we describe a new boosting algorithm which, like Impagliazzo’s
algorithm from Chapter 8, generates only smooth distributions. Our new algorithm

is significantly faster than Impagliazzo’s algorithm and has several other desirable



properties such as the ability to generate large-margin hypotheses and to use real-
valued weak hypotheses.

In Section 9.3 we show that our new boosting algorithm can be used in conjunction
with the parameterized averaging algorithm from Section 7.3 to obtain malicious noise
tolerant versions of the PAC model linear threshold learning algorithms described in
Section 7.4. The bounds on malicious noise tolerance and sample complexity of
these new PAC algorithms closely correspond to known bounds for the online p-norm
algorithms which include the Perceptron and Winnow algorithms as special cases.

Our analysis reveals an interesting connection between the smoothness of boosting
algorithms and the level of malicious noise tolerance which can be achieved in the
PAC model. In Section 9.4 we use this connection to prove that the distributions

generated by our new boosting algorithm are optimally smooth.
Learning Monotone DNF under Product Distributions

Finally, in Chapter 10 we return to the problem of learning DNF. Through a careful
analysis of the Fourier spectrum of monotone DNF, we give a polynomial time uni-
form distribution PAC learning algorithm for the class of monotone 20V og)_term
DNF formulae on n variables. This is an exponential improvement over previous
polynomial-time algorithms in this model, which could learn monotone o(log®n)-
term DNF, and is the first efficient algorithm for monotone (logn)“("Y-term DNF in
any model of learning from random examples only. We show that our result can be
extended to learning various classes of small constant-depth circuits which compute
monotone functions on few variables and to learning DNF (or circuits as described

above) under any constant-bounded product distribution.
Future Directions

We close with a brief discussion of future research directions.



Chapter 2

Models and Background

In each of the learning models which we consider the learning algorithm has some
type of access to the input-output behavior of an unknown Boolean function, and
the learning algorithm’s goal is to construct a representation (exact or approximate)
of this unknown function. The various models which we describe below differ in the

details of how they instantiate this general paradigm.

2.1 Concepts and Representations

Let X be a set which is the domain for the unknown function to be learned; we refer
to X as the instance domain. Typically X will be either the Boolean cube {0,1}" or
n-dimensional Euclidean space R™. A concept is a Boolean function ¢ : X — {—1,1}.
Equivalently we will sometimes view a concept ¢ as a subset of X, namely {z € X :
c(x) = 1}. A concept class is a set C of concepts. In each of the learning scenarios
we consider there is an unknown concept ¢ € C called the target concept which the
algorithm is trying to learn from labeled examples. The intuition is that the class C
is known to the learning algorithm but the identity of ¢ € C is not.

Since there are many different ways to represent any given Boolean function, we
consider representation classes as well as concept classes. As an example to help
clarify the distinction between a concept class and a representation class, we now
define the class of linear threshold functions which plays an important role in this
thesis. For X = {0,1}" or X = " a concept ¢ : X — {—1,1} is a linear threshold
function if there exist w € R", # € R such that ¢(z) = 1 if and only if w -z > 6.

10



We say that the pair (w, ) € R" x R represents the linear threshold function c. Thus
the concept class of linear threshold functions over X is a set of Boolean functions as
described above, and the representation class of linear threshold functions over X is
the set R" x R.

Any learning algorithm which outputs representations belonging to a class 4 must
require at least enough time to write down an appropriate representation in H. For
h € H we define size(h) to be the description length of A under some fixed reasonable
encoding scheme. If A is a representation class which is associated with concept
class C, then for ¢ € C we define size(c) to be the minimum of size(h) across all
representations h € H of the concept c.

The two concept classes which we study most frequently in this thesis are the
class of linear threshold functions described above and the class of disjunctive normal
form formulae or DNF. A DNF formula is a depth 2 unbounded fanin circuit which
computes an OR of ANDS of Boolean literals. We refer to the AND gates of a DNF
as terms. Strictly speaking the class of DNF formulae is a representation class rather
than a concept class; however we will sometimes abuse notation and refer to DNF
as a concept class. Note that since any Boolean function has some representation as
a DNF formula (possibly requiring exponentially many terms) the concept class of
DNF is the class of all Boolean functions. In the context of DNF the value of size(c)
is standardly defined to be the minimum number of terms in any DNF formula which
represents the concept c¢. We will sometimes refer to the class of s-term DNF; this is
the set of all Boolean functions which can be expressed as DNF formulae which have

at most s terms.

2.2 PAC Learning

The Probably Approximately Correct (PAC) learning model was introduced by Valiant
in (Valiant, 1984) and has since been widely studied. In the PAC model the learning
algorithm is given access to an example oracle EX (¢, D) as its source of labeled exam-
ples. Here ¢ € C is the target concept and D is an unknown probability distribution
over the instance domain X. The oracle EX (¢, D) takes no inputs; when invoked it
returns a pair (x,c(z)) where z € X is chosen according to D. The value ¢(z) is

referred to as the label of instance z, and the pair (z, c(x)) as a labeled example. The
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collection of labeled examples which a learning algorithm receives from EX(c, D) is
often referred to as a sample.

For h € H we say that the error rate of h is the probability (taken with respect to
D) that the function represented by h disagrees with ¢, i.e. error(h) = Pryeplh(x) #
c(x)]. Note that the error rate of h is measured with respect to the same distribution
D from which labeled examples are drawn; thus if a portion of the instance space X
receives little or no weight under D, a hypothesis A can err on this portion of X and
still achieve low error overall.

A PAC learning algorithm works by drawing a sample from the example ora-
cle EX (¢, D), performing some computation on this sample, and then outputing a
hypothesis A which belongs to some representation class H. The goal of a learning
algorithm is to output a hypothesis A which, with probability 1 — J, has error(h) < e.
The value ¢ is referred to as the confidence parameter and € as the accuracy parameter.

As motivation for this “probably approximately correct” success criterion, we ob-
serve that there are two sources of difficulty which can confound a PAC learning
algorithm. Since the source EX (¢, D) of labeled examples is probabilistic, it is pos-
sibile that a learner’s sample will be highly unrepresentative of the target concept; if
this event (the probability of which is controlled by the ¢ parameter) should occur
then the resulting hypothesis might well have large error. On the other hand, even if
the learning algorithm draws a “typical” sample it may not be possible to learn the
target concept exactly. Thus we require only that the learning algorithm’s hypothesis
be approximately (as measured by €) correct.

We have the following formal definition of PAC learning which is adapted from
(Kearns and Vazirani, 1994):

Definition 2.1 Let C be a concept class over X and let H be a corresponding repre-
sentation class. An algorithm A is said to be a PAC learning algorithm for C using
H if the following holds: for all 0 < €,0 < 1, for all ¢ € C, for all distributions D
over X, if A is given as input an accuracy parameter € and a confidence parameter &
and A has access to the example oracle EX (¢, D), then with probability at least 1 — §
algorithm A outputs a hypothesis h € H such that Pryepl[h(z) # c(x)] < e.

If A runs in time p(n,size(c), 1/¢,1/6) for some fixed polynomial p, we say that A is
a polynomial time PAC learning algorithm. A concept class C is said to be efficiently

PAC learnable if there exists a polynomial time PAC learning algorithm for C.
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In addition to the time complexity of learning algorithms we will also be concerned
with the number of examples they require. Let ¢(n,s,1/e¢,1/6) denote the maximum
number of calls to EX (¢, D) which A ever makes for any target concept ¢ € C of size s
and any distribution D. The value g(n, s, 1/¢,1/§) is known as the sample complezxity
of A. The sample complexity of a concept class C is the minimum sample complexity

across all learning algorithms for C.

2.3 Variations and Extensions of the PAC Model

Algorithms which satisfy Definition 2.1 are sometimes referred to as strong learning
algorithms since they can achieve an arbitrarily low error rate e with high probability.
A more relaxed notion of learning known as weak learning was introduced by Kearns
and Valiant (Kearns and Valiant, 1994). A weak learning algorithm cannot necessarily
achieve an e-accurate hypothesis for arbitrarily small €, but is able to generate a
hypothesis whose error rate is noticeably less than 1/2. More precisely, A is a weak
learning algorithm if there is some polynomial p(n,size(c)) such that for any ¢ € C and
any distribution D, if A is given § > 0 and access to EX (¢, D), then with probability
at least 1 — 0 algorithm A generates a hypothesis h such that Pryep|h(z) # c(z)] <
1/2 — 1/p(n,size(c)).

It is easy to see that any concept class which is strongly PAC learnable is also
weakly PAC learnable. In a celebrated result Schapire (Schapire, 1990) showed that
the converse holds as well: any concept class which is efficiently weakly PAC learnable
is also efficiently strongly PAC learnable. Schapire’s proof was highly constructive in
that he gave a boosting algorithm which can be used to construct a strong learning
algorithm from any weak learning algorithm using the weak learning algorithm as
a subroutine. Over the past decade boosting has become a major research topic in
computational learning theory. We study and construct weak learning algorithms and
boosting algorithms in Chapters 7, 8 and 9.

In addition to the standard PAC notions of weak and strong learning described
above, we will also consider several well-studied variants of the PAC learning model.
In Chapters 5, 6 and 10 we consider a distribution-specific version of the PAC model
in which the learning algorithm is only required to succeed for some fixed distribution

on X (typically the uniform distribution). In Chapter 8 we study an augmented PAC

13



model in which the learning algorithm can additionally make membership queries
for the value of the target concept ¢ at designated points. In Chapters 7 and 9 we
consider versions of the PAC learning model in which the distribution D depends on
the target concept being learned. We describe each of these variants in more detail
in the corresponding chapters.

In both the standard PAC model and the variants mentioned above, it is assumed
that the example oracle EX (¢, D) always provides data points which are labeled cor-
rectly according to c. Several different models of learning from noisy data have been
proposed in an attempt to relax this assumption. These models include the classifi-
cation noise model in which each call to EX (¢, D) returns a mislabeled example with
some fixed probability; the monotonic noise model in which “borderline” examples
are more likely to be mislabeled; and the malicious noise model in which an om-
niscient adversary can corrupt both the labels of examples and the example points

themselves. We define and study these models in Chapters 3, 6 and 9.

2.4 The Online Learning Model

We will occasionally consider a different learning model known as the online learning
model which was introduced by Angluin (Angluin, 1988) and Littlestone (Littlestone,
1988). In this model learning is viewed as an interactive process between the learning
algorithm and the outside world. Throughout the interaction the learning algorithm
maintains a hypothesis A : X — {—1,1} which can be updated as the learning
algorithm receives more and more information about the target concept. Learning
proceeds in a sequence of stages where each stage is structured as follows: First
the learning algorithm is presented with an unlabeled example x € X. The learning
algorithm uses its current hypothesis to compute h(z) and outputs the value h(z).
Then the learning algorithm is presented with the true value ¢(z) of the target concept
on example z. The learning algorithm may update its current hypothesis on the basis
of this new information before the next stage begins.

A learning algorithm in this model is said to make a mistake whenever its predic-
tion differs from the true value of the label, i.e. h(x) # ¢(x). The performance of a
learning algorithm is measured by the number of mistakes it makes on an example

sequence. A learning algorithm A for a concept class C is said to have mistake bound
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M if for any sequence of examples in X and any target concept ¢ € C, algorithm A
makes at most M mistakes. The mistake bound of a concept class C is the minimum
mistake bound of any online learning algorithm for C.

In order to facilitate comparisons between online and PAC learning algorithms
we will sometimes want to analyze the PAC learning abilities of online learning algo-
rithms. Several generic conversion techniques are known which can be used to convert
any online learning algorithm into a PAC learning algorithm (Angluin, 1988; Haussler,
1988; Kearns et al., 1987b; Littlestone, 1989a). In each of these conversions the sam-
ple complexity of the resulting PAC algorithm depends on the mistake bound of the
online learning algorithm. The conversion procedure due to Littlestone is asymptoti-
cally most efficient in terms of the sample complexity of the resulting PAC algorithm
and works as follows: The procedure first runs the online algorithm on a sequence of
labeled examples obtained from successive calls to the PAC oracle and stores all of
the hypotheses which the online algorithm generates on this example sequence. Then
the procedure draws a fresh batch of labeled examples from the oracle and use these
new examples to estimate the error rate of each of the stored hypotheses. The final
hypothesis output by the procedure is the one with the lowest observed error rate.

Littlestone proves the following theorem:

Theorem 2.2 (Littlestone, 1989a) Let A be an online learning algorithm which
changes its hypothesis only when it makes a mistake and which has a mistake bound
of M for concept class C. Then there is a PAC-model learning algorithm A’ for C as

described above which has sample complexity

o(® s} 1))
2.5 Mathematical Background

We use a range of mathematical tools in this thesis. In Chapter 4 we use tools from
cryptography to prove lower bounds on all polynomial time learning algorithms; in
Chapters 5, 6, 7 and 9 we use geometric arguments to develop and analyze algorithms
for learning linear threshold functions; and in Chapter 10 we use Fourier analysis
over the Boolean cube to construct an algorithm for learning DNF. In each of these

chapters we introduce the required background material as needed.
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One task which we will need to perform on many occasions is to bound the devia-
tion of a sum of random variables from its expected value. The following well known
facts show that for a sum of many independent random variables the probability of a
large deviation is exponentially small. Note that in the first fact below each random
variable takes values in {0,1} and the deviation is measured multiplicatively, while
in the second fact each random variable lies in a fixed interval [a, b] and the deviation

is measured additively.

Fact 2.3 (Chernoff, 1952) Let X1,..., X, be independent 0/1-valued random vari-
ables which satisfy Pr[X; = 1] = p; and 0 < p; < 1 for all i. Let X = ¥!_, X;. For
pw="t_pi and any 0 < v < 1 we have

Pr[X > (1 +v)u] < exp(—uv?/3)

and

Pr[X < (1-v)u] < exp(—pv*/2).

Fact 2.4 (Hoeffding, 1963) Let X,,...,X; be independent random variables such
that a < X; <b foralli. If X = % ! X; then for any v > 0 we have

Pr(X > E[X]+v] < exp (%)

and

Pr(X < E[X] -] < exp <%>

We close this chapter with some notation. For real-valued functions f and ¢ we
write f(p) = O(g(p)) if there is a fixed constant ¢ such that f(p) = O(g(p)log® p).
The notations Q(g(p)) and ©(g(p)) are defined analogously. We write log to denote
logarithm base 2 and In to denote natural logarithm. For x € R" we write z; to denote
the i-th coordinate of z and we write ||z|| to denote the Euclidean norm /37 ; z2.
If x € {0,1}" then z; denotes the i-th bit of z. For z € R the value of sign(z) is 1 if
z>0andis —1if z < 0.

16



Chapter 3

Faster Learning of DNF via
Polynomial Threshold Functions

This chapter establishes a new complexity-theoretic characterization of DNF formulae
as thresholded polynomials and uses this characterization to obtain a fast learning
algorithm. More precisely, our main result is a proof that any s-term DNF over n
variables can be computed by a polynomial threshold function of degree O(nl/ 3log s).
This upper bound matches, up to a logarithmic factor, a longstanding lower bound
for DNF which was given by Minsky and Papert in their 1968 book Perceptrons. As
a direct consequence of this upper bound we obtain a 20(*/*lognlogs)_time algorithm
for learning s-term DNF, which is the fastest known algorithm for this important

problem.

3.1 Introduction

3.1.1 Polynomial Threshold Functions

Let f be a Boolean function f : {0,1}" — {—1,1} and let p be a degree d poly-
nomial in n variables with rational coefficients. If the sign of p(x) equals f(z) for
every € {0,1}", then we say that f is computed by a polynomial threshold func-
tion of degree d. In their well known 1968 book Perceptrons, Minsky and Papert
studied some computational aspects of polynomial threshold functions from an Arti-
ficial Intelligence perspective (Minsky and Papert, 1968). They proved, among other

things, that no polynomial threshold function of degree less than n can compute the
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parity function on n variables, and that there is a read-once DNF formula which can-
not be computed by any polynomial threshold function of degree less than Q(n!/3).
Since then, complexity theorists have used these and related properties of polynomial
threshold functions to prove several important results in both circuit and structural
complexity (Aspnes et al., 1994; Beigel, 1993; Fu, 1992).

In the computational learning theory community, learning a polynomial threshold
function from labeled examples has long been a central problem and continues to
be an active area of research. A special focus of attention has been directed toward
learning polynomial threshold functions of degree 1, which are known as linear thresh-
old functions. The problem of learning a linear threshold function over {0,1}" can
be formulated as a linear programming problem and thus can be solved in poly(n)
time in both the PAC model of learning from random examples and in the model of
exact learning from equivalence queries (Blumer et al., 1989; Maass and Turan, 1994).
Refinements of the basic linear programming approach have led to polynomial-time
algorithms for PAC learning linear threshold functions in the presence of classification
noise (Blum et al., 1997; Cohen, 1997). Much attention has also recently been given to
fast, simple algorithms, most notably the Winnow and Perceptron algorithms, which
learn linear threshold functions under restricted conditions (Bylander, 1998b; Freund
and Schapire, 1998; Kivinen et al., 1997; Littlestone, 1988; Schmitt, 1998; Servedio,
1999b). We give a detailed analysis of these and related algorithms in Chapters 5, 6,
7 and 9.

3.1.2 Learning DNF

Another intensively studied problem in computational learning theory, which has met
with less success, is the problem of learning DNF formulae. DNF are attractive from
a learning theory perspective because of their high expressive power (any Boolean
function can be represented as a DNF) and because they seem to be a natural form
of knowledge representation for humans. Valiant first posed the question of whether
DNF are efficiently learnable in his seminal 1984 paper introducing the PAC learning
model (Valiant, 1984); more than fifteen years later this question is widely regarded
as one of the most important open problems in learning theory. While many partial
results have been given for restricted versions of the DNF learning problem (see the

introduction to Chapter 10 for an overview of some of these results), the difficulty
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of the unrestricted DNF learning problem is evidenced by the fact that, prior to the
results of this chapter, only two algorithms were known which improve on the naive
2™ time bound (Bshouty, 1996; Tarui and Tsukiji, 1999).

The first subexponential time algorithm for learning DNF is due to Bshouty, who
gave an algorithm which learns any s-term DNF over n variables in time 90(y/nlog slog®/> n)
At the heart of Bshouty’s algorithm is a structural result which shows that that any
s-term DNF can be expressed as a “decision list” of order O(y/nlognlogs); armed
with this result, Bshouty uses a standard algorithm from (Helmbold et al., 1990) for
learning decision lists to obtain his DNF learning result.

Tarui and Tsukiji gave a completely different proof of a similar time bound for
learning DNF. They adapted the machinery of “approximate inclusion/exclusion” de-
veloped by Linial and Nisan (Linial and Nisan, 1990) to show that for any s-term DNF
f and any distribution D over {0,1}", there is a conjunction C of size O(y/nlogs)
which has | Prep[C(z) = f(z)]— 5| = 270(Vnlognloss) Using this result together with
Freund’s “boost-by-majority” algorithm (Freund, 1995), Tarui and Tsukiji obtained

an algorithm for learning s-term DNF in time 20(Vrlognlogs)

3.1.3 A New Approach: Learning DNF via Polynomial Thresh-
old Functions

We approach the DNF learning problem by representing a DNF formula as a low-
degree polynomial threshold function. As we observe in Section 2, we can use known
polynomial-time algorithms for learning linear threshold functions to learn polynomial

threshold functions of degree d in time n?(®

. Thus, upper bounds on the degree of
polynomial threshold functions which compute DNF translate directly into bounds
on the running time of a DNF learning algorithm.

Viewing DNF formulae as polynomial threshold functions immediately yields a
new interpretation of the DNF learning algorithms of Bshouty and Tarui and Tsuk-
iji. Since any r-decision list is equivalent to a polynomial threshold function of de-
gree r (Ehrenfeucht et al., 1989), in the language of polynomial threshold functions
Bshouty’s structural result implies that any s-term DNF can be expressed as a poly-
nomial threshold function of degree O(y/nlognlogs). In the case of Tarui/Tsukiji, it

can be shown as a corollary of their results that any s-term DNF can be expressed as a
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polynomial threshold function of degree O(y/nlog s). Thus, each of these earlier learn-
ing algorithms implies an O(y/nlogn) upper bound on the degree of a polynomial
threshold function for any polynomial-size DNF. A substantial gap still remained,
though, between these O(/nlogn) upper bounds and the Q(n'/?) lower bound due
to Minsky and Papert.!

3.1.4 Our Results

Our first result is the following theorem:

Theorem 3.1 Any s-term DNF over {0,1}" in which each conjunction is of size at

most t can be expressed as a polynomial threshold function of degree O(v/tlogs).

A useful feature of Theorem 3.1 is that the degree bound depends on v/t which
can be much smaller than y/n. Close inspection of the results due to Tarui/Tsukiji
reveals that a similar theorem can be derived from their analysis. An advantage of
our proof (which is self-contained and does not use approximate inclusion-exclusion
or boosting) is that it highlights this dependence which plays a crucial role in our
later results.

We then use Theorem 3.1 to give several new results about the degree of polyno-
mial threshold functions which compute various classes of Boolean formulas.

By combining Theorem 3.1 with a decomposition technique due to Bshouty (Bshouty,

1996) we obtain our main result:

Theorem 3.2 Any s-term DNF over {0,1}" can be expressed as a polynomial thresh-
old function of degree O(n'/?logs).

Theorem 3.2 essentially closes the gap which was left open by the O(y/nlogn) upper
bounds implicit in (Bshouty, 1996; Tarui and Tsukiji, 1999); it shows that the Minsky-
Papert lower bound is in fact tight, up to a logarithmic factor, for all polynomial-size
DNF'. Theorem 3.3 also yields a 20(n'/*1og”n)_time algorithm for learning polynomial-
size DNF, which improves on the algorithms of Bshouty and Tarui/Tsukiji and is the
fastest known algorithm for the unrestricted DNF learning problem.

We can improve upon the bounds of Theorem 3.2 for read-once DNF:

1Tt is stated in (Beigel et al., 1991) that Minsky and Papert gave an Q(,/n) lower bound for DNF
but this was in error (Beigel, 2000).
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Theorem 3.3 Any read-once DNF over {0,1}" can be expressed as a polynomial
threshold function of degree O(n'/31og®? n).

Finally, since a DNF formula is simply a Boolean circuit of depth 2, it is natural
in this context to also consider Boolean circuits of fixed depth d > 3. We would
ultimately like to prove upper bounds on the degree of polynomial threshold functions
for arbitrary constant depth circuits; however this seems to be quite difficult. As a

first step in this direction, we prove

Theorem 3.4 For d > 3, any read-once Boolean formula of depth d over {A,V,—}

can be computed by a polynomial threshold function of degree O~(n1_3-25—3 ).

Theorem 3.4 implies that the class of read-once constant depth formulas can be

learned in subexponential time.

3.2 Preliminaries

Recall that a disjunctive normal form formula (DNF) is a disjunction 77 V - -- V T
of conjunctions of Boolean literals. An s-term DNF is one which has at most s
conjunctions (also known as terms) and a ¢-DNF is one in which each term is of
size at most t. A DNF (or Boolean formula) is read-once if it contains at most one
occurrence of each variable.

A k-decision list is a list L = (T4, f1),-- -, (Tm, fm) where each T; is a term of size
at most k and each f; is a Boolean function on {0,1}". Given an input z € {0,1}"
the value of L(x) is f;j(x) where 1 < j is such that T;(z) =1 and Tj(z) = 0 for i < j.
If Ty(z) =0forall 1 <i<m then L(z) = 1.

A k-decision tree is a rooted binary tree where each internal node has 2 children
and is labeled with a term of size at most k£ and each leaf is labeled with a Boolean
function. A decision tree represents a Boolean function as follows: if the root is labeled
with a term T then then to compute the value of the tree on an input z € {0,1}" we
go left from the root if T'(x) = 0 and go right if 7'(z) = 1. We continue in this fashion
until reaching a leaf ¢ labeled with some function f; and then output f,(z).

The rank of a decision tree T is defined inductively as follows:

e If T is a single leaf then rank(T) = 0.
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e If T has subtrees Ty and 77 then

max (rank(Ty), rank(1})) if rank(1y) # rank(T})
rank(T) =
rank(Tp) + 1 otherwise.

The following lemma will be useful:

Lemma 3.5 (Blum, 1992) Let T be a 1-decision tree of rank r whose leaves are la-
beled with the functions f1, ..., fr- Then there is an r-decision list (11, f1), ..., (T, fr)

which is equivalent to T.

A polynomial threshold function is defined by a multivariate polynomial p(z1, . .., x,).
The value of the polynomial threshold function on input z € {0,1}" is sign(p(x)), i.e.
lifp(z1,...,2,) > 0and is —1 otherwise. The degree of a polynomial threshold func-
tion is simply the degree of the polynomial p. If each coefficient a, of the polynomial

is an integer, then the weight of the polynomial threshold function is Y |ag|-

3.2.1 Efficient Algorithms for Learning Linear Threshold Func-

tions

Our learning results for DNF hold in two widely studied learning models: the Probably
Approzimately Correct (PAC) model introduced by Valiant (Valiant, 1984) and the
model of ezact learning from equivalence queries introduced by Angluin (Angluin,
1988) and Littlestone (Littlestone, 1988). The PAC learning model was defined in
Section 2.2; we now briefly describe the model of exact learning from equivalence
queries.

In the model of exact learning from equivalence queries, learning proceeds in a
sequence of stages. In each stage the learning algorithm submits an equivalence query
(a Boolean function h) to the teacher. If h is equivalent to the target concept ¢ then
the teacher answers “YES” and learning halts; otherwise the teacher sends back a
point z € {0,1}" such that h(x) # c(x). A learning algorithm A learns concept class
C in time t if for all ¢ € C, algorithm A can exactly identify the target ¢ in at most
t time steps, using at most ¢ equivalence queries, with hypotheses h which each can
be represented with ¢ bits and can be evaluated on any point z € {0,1}" in time t.

The following fact is well known:
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Fact 3.6 (Blumer et al., 1989; Maass and Turan, 1994) In both the PAC model
and the model of exact learning from equivalence queries, there are algorithms which

learn the class of linear threshold functions over {0,1}" in time poly(n).

The algorithms of Fact 3.6 are based on polynomial time linear programming. We

will need the following extension of Fact 3.6:

Fact 3.7 Let C be a class of functions each of which can be expressed as an degree-d
polynomial threshold function over {0,1}". Then in both the PAC learning model and
the model of exact learning from equivalence queries, there is a learning algorithm for
C which runs in time n°@.

Proof: For the model of exact learning from equivalence queries, we run the polyno-
mial time algorithm for learning linear threshold functions over an expanded version
of the input space. Since 2> = z for z € {0,1} we can suppose without loss of gen-
erality that the target polynomial threshold function is a multilinear polynomial of
degree d. Such a polynomial threshold function can be viewed as a linear threshold
function over the space of all multilinear monomials of degree at most d. There are
N=Y}, (7;) < n? such monomials and hence by Fact 3.6 we can learn such a poly-
nomial threshold function in the model of exact learning from equivalence queries
by running a poly(V)-time algorithm for learning linear threshold functions over the
domain {0,1}" where N < nd.

For the PAC learning model, we can use a standard transformation from the
model of exact learning from equivalence queries to the PAC learning model (Angluin,
1988). It is easy to verify that this transformation (in which equivalence queries are
simulated by testing the hypothesis against a set of examples drawn from the PAC
oracle) preserves running time up to polynomial factors. Alternatively, using the fact

(Anthony, 1995) that the Vapnik-Chervonenkis dimension of the class of polynomial

n
d

given along the lines of (Blumer et al., 1989). u

threshold functions of degree d over n variables is Z?:o( ), a direct proof can be

3.2.2 The Minsky-Papert Lower Bound

It is clear that any depth-1 circuit over {A,V,—} can be expressed as a polynomial

threshold function of degree 1. In contrast, Minsky and Papert gave a Q(n'/?) lower
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bound on the degree of any polynomial threshold function which computes a particular

read-once DNF. For completeness we give their simple proof.

Theorem 3.8 (Minsky and Papert, 1968) Let f =T,V ---V T, be an m-term
DNF over {0,1}" where each term T; is a conjunction over 4m? variables, each vari-
able appears in precisely one term, and n = 4m®. Then any polynomial threshold

function which computes f must have degree at least m.

Proof: Let p(z1,...,2,) be a polynomial of degree d such that for all x € {0,1}"
we have p(x) > 0 iff z satisfies f. For i = 1,...,m let S; be the set of 4m? variables
which appears in term T;. It is clear that for any permutations =1, ..., T, over a set
of size 4m?, we have p(Si,...,Sy) > 0 iff p(m1(S1), - - -, Tm(Sm)) > 0. Consequently
the polynomial

g(z1, .., xn) = D p(m(S1), -, T (Sm))

TiyemsTm
is of degree at most d and has ¢(x1, . . ., z,) > 0iff z satisfies f. Since ¢(z) is symmetric
in the elements of each set S;, one can straightforwardly show that there is a polyno-
mial 7(Xg, z;,- -+, g, ¢;) of degree at most d such that r(Xg, z;,..., X5, ;) =
q(z1,...,x,) for all x € {0,1}". It follows from the definition of f that for all
(ai,...,an) € {0,1,...,4m?}™ we have r(ai,...,a,) > 0 iff some a; = 4m>.
Let s(t) be the univariate polynomial r(ay,...,ay,) where a; = 4m? — (¢t — (21 —
1))? for 4 = 1,...,m. Then the degree of s is at most 2d, and moreover we have
5(0), s(2),s(4),...,s(2m) < 0 and s(1),s(3),...,s(2m — 1) > 0. Consequently s has
at least 2m real zeros, so 2d > deg(s) > 2m. [

3.3 An Optimal Bound for Representing DNF by
Polynomial Threshold Functions

In this section we prove our main result: any s-term DNF over {0,1}" can be com-

puted by a polynomial threshold function of degree O(n'/?log s).

3.3.1 Low-Order Polynomial Threshold Functions for DNF

with Small Terms

We start by proving Theorem 3.1:
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Theorem 3.1 Any s-term t-DNF can be expressed as a polynomial threshold function
of degree O(v/tlogs).?
This theorem plays an important role in the proof of the main result. We discuss

some other consequences of Theorem 3.1 in Section 3.4.

Proof of Theorem 3.1: The main tools used in the proof are the Chebyshev polyno-
mials of the first kind. These polynomials play an important role in numerical analysis
and approximation theory; here we will need only a few simple properties. The d-th
Chebyshev polynomial of the first kind, Cy(z), is a univariate degree-d polynomial
which satisfies the following conditions (Cheney, 1966):

Lemma 3.9 The polynomial Cy(x) satisfies

o |Cy(x)| <1 for || <1 with Cy(1) = 1;

o C)(z) > d? for x > 1 with C)(1) = d*.

Let f=TyVTyV---VT, be an s-term t-DNF. The arithmetization of a Boolean
literal ¢ is x; if { = x; and is 1 — x; if £ = T;. Let S; denote the sum of the

arithmetizations of the literals appearing in 7; and let ¢; denote the number of literals

in T;. We define the polynomial

where

=04(o(1+ 1))

Here Cj is the d-th Chebyshev polynomial of the first kind and d = [v/7]. Lemma 3.9
now implies that p(1) > 2 but [p(y)| < 1 for y € [0,1 — {].

Consider the polynomial threshold function “P(z) > s+ 3” where

P(z) = i@- ()82,

Since Cj is a polynomial of degree d = v/t and S; is a polynomial of degree 1, this
polynomial threshold function has degree v/# log 2s. We will show that this polynomial
threshold function computes the DNF f exactly.

2We analyze the size of the coefficients of the polynomial threshold function in Section 3.4.
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Fix any element z € {0, 1}".

e If f(z) = 0 then in each term 7T; at least one arithmetized literal takes value 0
on z. Thus for each i = 1,...,s we have S;/t; < (t;, = 1)/t; < 1 — % and hence
each |Q;(z)| < 1. Consequently P(z) < s.

e If f(x) = 1 then some term 7; must be satisfied by x so S;/t; = 1. Conse-
quently Q;(x) > 2 and hence Q;(z)'°?* contributes at least 2s to P(z). Since
Q;(z)°82s > —1 for all i, we have P(z) > s+ 1. u

3.3.2 From DNF to Decision Trees

Let f be an arbitrary s-term DNF over n variables. As the first step in our construc-
tion of a polynomial threshold function for f, we transform f into a 1-decision tree in
which each leaf is a DNF with small terms; this is a refinement of a transformation
given in (Bshouty, 1996). Our original proof gave a bound on the size of the resulting
decision tree. S. Lokam (Lokam, 2001) has observed that a slightly stronger bound
can be obtained by considering the rank of the decision tree instead. We use Lokam’s

approach in the following lemma:

Lemma 3.10 Let f: {0,1}" — {—1,1} be an s-term DNF. For any value 1 < t < n,

f can be expressed as a 1-decision tree T where
e cach leaf of T contains an s-term t-DNF,

e T has rank at most (2n/t)Ins+ 1.

Proof of Lemma 3.10: Let T1,...,7T, be the terms of f that have size at least t.
Since each term 7; contains at least ¢ literals, there must be some variable z; that
occurs (either negated or unnegated) in at least pt/n of these terms. This variable z;
is placed in the root of the decision tree, and the left and right children of z; will be
decision trees for the restrictions f|;,«o and f|;,«1 respectively. This construction is
recursively carried out for each of the functions f|,,.o and f|;,1, stopping when a
DNF with no terms larger than ¢ is obtained.

It is clear that this recursive procedure generates some 1-decision tree 7'. Since the
function obtained by fixing some subset of variables of an s-term DNF is an s-term
DNF, we have that each leaf of 7" contains an s-term ¢-DNF.
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Let 7(n,p) be the maximum (taken over all DNFs on n variables with p terms
having size at least t) rank of the decision tree generated by the above procedure.
We bound r(n, p) using the following simple observation: if T, is a term of f which
contains an unnegated (negated) variable z; (Z;), then the restriction f|;, o (f|z;1)
causes the term 7T, to vanish. Since the variable x; at the root of T" occurs in at
least pt/n terms of size at least ¢, for at least one of the bit values b € {0,1} the
restriction f|;..p will be a DNF which has at most p(1 — %) terms of size at least
t. Let Ty (T71) denote the subtree of 7" which corresponds to the restriction f|; o
(f|z:1), and suppose without loss of generality that f|;,.o is a s-term DNF which
has at most p(1— 4 terms of size at least ¢. Note that rank(Ty) < r(n—1,p(1— )

and rank(T;) < r(n —1,p). We consider several cases:

o If rank(Ty) < rank(Ty), then rank(T) = rank(T;) and hence r(n,p) < r(n —

1,p).
o If rank(Ty) > rank(Ty), then rank(T) = rank(Ty) and hence r(n,p) < r(n —

o If rank(Ty) = rank(Ty), then rank(T) = rank(Ty) + 1 and hence r(n,p) <
r(n—1,p(1— %))+ 1.

To establish initial conditions for the recurrence relation we consider the case p = 1.
In this case there is one term in f which contains more than ¢ variables; without loss

of generality we suppose that this term is v1vs ... v,. Then the 1-decision list

(617 f|111<—0): R (65: f|w<—0)

is equivalent to a rank-1 decision tree in which each leaf contains an s-term ¢-DNF.
Hence for any n we have r(n,1) = 1.

Solving this easy recurrence relation for r(n, p) shows that r(n,p) < (2n/t) Inp+1.
Since p < s the theorem is proved. [ |

3.3.3 An Optimal Bound for Representing DNF by Polyno-
mial Threshold Functions

Theorem 3.2 Let f be an s-term DNF over n variables. Then f can be expressed as

a polynomial threshold function of degree O(n'/3logs).
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Proof: From Lemma 3.10 and Theorem 3.1, we know that f can be expressed as
a 1-decision tree T of rank (2n/t)Ins + 1 where each leaf contains a polynomial
threshold function of degree O(v/tlogs) (the value of ¢ will be fixed later). From
Lemma 3.5 we know that this decision tree 7" can be expressed as an r-decision list
where r = (2n/t) In s+1 and each output of the decision list is a polynomial threshold
function of degree O(v/tlogs). Call this decision list L.

Let Ci,...,Cg be the conjunctions contained in the successive nodes of L and
let Pi(z),...,Pr(x) be the corresponding polynomials for the associated polyno-
mial threshold functions at the outputs, i.e. the polynomial threshold function
corresponding to the j-th conjunction C; computes the function “P;j(z) > 0.” If
Pj(z) = 0 for some =z € {0,1}" then we can replace P;(x) by P;(z) + /2, where
§ = min{—P;(z) : z € {0,1}" and P;(z) < 0}, without changing the function
computed by the polynomial threshold function. Now by scaling each P; by an ap-
propriate multiplicative factor we can suppose without loss of generality that for each
j=1,..., R we have mingco 1}~ |P;(z)| > 1.

Consider the polynomial

Here C'j is the zero/one valued polynomial which corresponds to the monomial C}
(e.g. if C; is 23745 then Cj(x) is 23(1 — x4)x5). Each value A; is a positive constant

chosen so as to satisfy the following conditions:

AR = 17
AR—I > max |ARéR(x)PR($)‘a

z€{0,1}n

A; > X |4;41C511(2) Pyya (2) + - - + ArCr(x) Pr(z)|.

A1 > max |A2@2($)P2($) “+ -+ ARC'R(.T)PR(SEN

z€{0,1}"

Then the polynomial threshold function “Q(z) > 0” computes exactly the same
function as the decision list L. To see this, fix an input z € {0, 1}". If j is the index of
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the first conjunction C; which is satisfied by z, then C'(z) = Co(z) = --- = C;_1(2) =
0, so the only terms of (3.1) which make a nonzero contribution to Q are 4;C;(z)P;(x)
for i > j. Since C;(z) = 1 and |P;(x)| > 1, the choice of A; ensures that the sign of
Q(z) will be the same as the sign of P;(z).

The degree of the polynomial Q(z) is at most (2n/t)Ins + 1+ O(v/tlogs). If we
take ¢ = n?/3 then this value is O(n'/?log s). |

Applying Fact 3.7 gives our main DNF learning result:

Corollary 3.11 The class of s-term DNF formulae over {0,1}" can be learned (in

both the PAC model and the model of exact learning from equivalence queries) in time
20(711/3 logn log s).

Remark: Several algorithms are known (Blum et al., 1997; Cohen, 1997) for PAC
learning linear threshold functions over {0,1}" in the presence of classification noise
in time poly(n). It follows that our time bounds for learning DNF continue to hold

in the presence of classification noise.

Corollary 3.12 The Q(n'/3) lower bound given by Minsky and Papert for the degree
of a polynomial threshold function required to compute a polynomial size DNF over

{0,1}" is tight up to a logarithmic factor.

3.4 Discussion

Since t < nin Theorem 3.1, Fact 3.7 already implies that there is a linear-programming
based algorithm for PAC learning DNF which takes 20(Vrlognlogs) time steps. Tarui
and Tsukiji gave an identical time bound for a different algorithm based on hypothesis
boosting using conjunctions. In this section we note that the proof of Theorem 3.1
gives an upper bound on the weight of the resulting polynomial threshold function.
This observation can be used to prove correctness of the Tarui/Tsukiji boosting-based
algorithm and to show that simpler algorithms such as Winnow or Perceptron can
be used to learn O(,/n) degree polynomial threshold functions which compute DNF
(instead of boosting algorithms or algorithms for solving linear programs).

The d-th Chebyshev polynomial Cy(x) = X%, a;2* has all integer coefficients with
each |a;| < 2¢ (Cheney, 1966). By inspection of the proof of Theorem 3.1 we obtain
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Corollary 3.13 Any s-term t-DNF' can be expressed as a polynomial threshold func-
tion of degree O(\/tlogs) and weight {O(Vilogs),

Using this corollary we obtain a simple proof of one of the main theorems from
(Tarui and Tsukiji, 1999), described in Section 3.1.2, which asserts that for any DNF
f and any probability distribution D there exists some short conjunction which is
noticeably correlated with f under D. We use a simple lemma due to Goldmann,
Hastad and Razborov ((Goldmann et al., 1992) Lemma 4) which states that if a
function f over {0,1}" can be expressed as a majority of at most W +1-valued
functions (possibly with repetitions) drawn from a set H, then for any distribution D
over {0, 1}" there is some function h € H such that | Pryep[h(z) = f(2)]— 3| > 7. In
our setting we take H to be the set of all conjunctions of length O(v/tlogs) and their
negations. There is a clear correspondence between polynomial threshold functions
with integer coefficients and depth-2 circuits with a MAJORITY gate at the root and
(possibly negated) AND gates at depth 1. Corollary 3.13 gives the required bound

on W, and we obtain

Corollary 3.14 Given any s-term t-DNF [ and any distribution D over {0,1}",

there is a conjunction C of size at most O(\/tlogs) such that | Pryep|C(z) = f(x)] —
%‘ — 2—0(\/Elogtlogs)'

Taking t = n gives Tarui and Tsukiji’s Theorem 1.1, which immediately implies the
existence of a boosting-based algorithm for learning DNF in time 20(*'/%).

Finally, we observe that the weight bound given in Corollary 3.13 implies that we
do not need to solve linear programs (or even use boosting algorithms) in order to learn
polynomial-sized DNF in time 20V If f is a polynomial threshold function of degree
1 and weight W over the domain {0, 1}, then either the Perceptron algorithm or the
Winnow algorithm can be used to learn f in poly(N, W) time steps (see Theorems 5.2
and 5.3 in Chapter 5). As in Fact 3.7, we can view an degree-d polynomial threshold
function over {0,1}" as an degree-1 polynomial threshold function over {0,1}", and

thus we can use either the Perceptron or Winnow algorithm to learn s-term DNF in
time QO(ﬁlognlogs)_
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3.5 Low-Degree Polynomial Threshold Functions
for Read-Once DNF

As seen in Section 3.2.2 the Minsky-Papert ©(n'/?) lower bound on polynomial thresh-
old function degree for polynomial size DNF is proved using a read-once DNF'. Since

any read-once DNF can have at most n terms, Theorem 3.2 implies that any read-

once DNF can be expressed as a polynomial threshold function of degree O(nl/ 3logn).
Here we give a slightly better bound:
Theorem 3.3 Any read-once DNF over wvariables x1,...,x, can be expressed as a

polynomial threshold function of degree O(n/31og?® n).

To prove Theorem 3.3 we use the following sharper version of Lemma 3.10:

Lemma 3.15 Let f: {0,1}" — {—1,1} be a read-once DNF. For any value 1 <t <
n, f can be expressed as a 1-decision tree T where each leaf of T' contains a read-once
t-DNF and T has rank at most n/t.

Proof of Lemma 3.15: Let T1,...,7, be the terms of f that have size at least t.
We use the same decomposition procedure as in Lemma 3.10, and we let 7(n, p) be
the maximum (taken over all read-once DNFs on n variables with p terms having
size at least t) rank of the decision tree generated by the decomposition procedure.
Since each variable occurs in at most one term, the recurrence which we obtain in this
setting is r(n,p) < r(n —1,p — 1) + 1. As before the initial condition is 7(n,1) = 1
for all n, and thus r(n,p) < p. Since f is read-once we have that p < n/t, and the

lemma is proved. (Lemma 3.15) ®

Proof of Theorem 3.3: Let f be a s-term read-once DNF over {0, 1}". Lemma 3.15,
Theorem 3.1 and Lemma 3.5 together imply that f is computed by a (n/t)-decision
list where each output of the decision list is a polynomial threshold function of degree
O(Vtlog s). As in the proof of Theorem 3.2 there is a polynomial threshold function
for f which is of degree n/t + O(v/tlogs). Since f is read-once s can be at most n,
and taking t = n?/3/log®® n proves the theorem. (Theorem 3.3) W

By the arguments given in Section 2, we immediately have

Corollary 3.16 The class of read-once DNF' can be learned (in both the PAC model

and the model of exact learning from equivalence queries) in time 20(n!/?1og%* n)
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Remark: Standard reductions are known in learning theory which reduce the prob-
lem of PAC learning DNF to that of PAC learning read-once DNF (Kearns et al.,
1987a). We note that applying these reductions here does not yield a 20(0"*)_time
algorithm for learning arbitrary polynomial-size DNF. The reductions work by con-
verting a DNF with p(n) total occurrences of variables to a read-once DNF over p(n)
variables, and thus if used in conjunction with our theorem would yield a 20(p(n)'/?)_

time algorithm for learning such a DNF.

3.6 Low-Order Polynomial Threshold Functions for
Read-Once Constant Depth Formulae

A natural generalization of our results for DNF would be to prove upper bounds on
the degree of polynomial threshold functions which compute circuits of size s and
depth d for fixed values of d > 3. Obtaining such upper bounds, however, seems to
be quite difficult. We note that the parity function on n variables is known to require
polynomial threshold functions of degree n (Minsky and Papert, 1968; Aspnes et al.,
1994), and hence any proof of even an n—1 upper bound on the degree of polynomial
threshold functions for constant depth polynomial size circuits would immediately
yield a new proof of the well-known fact that parity is not computable by constant
depth polynomial size circuits (Furst et al., 1984; Hastad, 1986).

As a first step towards proving upper bounds on polynomial threshold function
degree for constant depth circuits, we show how the techniques of this chapter can
be used to obtain a nontrivial upper bound on the degree of polynomial threshold

functions for read-once constant depth formulae.

Theorem 3.4 For d > 2, any read-once Boolean formula of depth d over {A,V,—}

can be computed by a polynomial threshold function of degree O(n173-2é—3 10g3-2;—3 n).

Proof: The proof is by induction on d. The base case d = 2 is supplied by Theorem
3.3. We suppose that the theorem holds for d = 2,...,k — 1 and prove it for d = k.
Let f be a depth-k read-once formula. We say that a term is a gate at the bottom
level of f together with the literals that feed into it. Since f is read-once there can
be at most n/t terms of size greater than ¢t. We apply the decomposition procedure

described in the proof of Lemma 3.10 to transform f into a 1-decision tree whose
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leaves each contain a depth-k read-once formula in which each term is of size at most
t. As in Lemma 3.15 this decision tree is of rank at most n/t.

In each leaf of this tree, we replace each term with a new “dummy” variable
that appears only once. We thus obtain a decision tree of rank n/t whose leaves
each contain a read-once formula of depth £ — 1 over these dummy variables. By
the induction hypothesis, each such formula is equivalent to a polynomial threshold
function of degree O(nl_wﬁ logs-z’v;—‘1 n) which is defined over the dummy variables
described above.

In each such polynomial threshold function, we now replace each dummy variable
with a real-valued polynomial over the original variables which interpolates precisely
the Boolean function computed by the original term. Since each term was of size
at most £, each such polynomial is of degree at most ¢. Consequently the function
computed at each leaf of the decision tree is a polynomial threshold function of degree
O(tnl_wﬁ 10g3-2k+4 n).

As in the proof of Theorem 3.3, our original function f can now be expressed as

a polynomial threshold function of degree

% + O(tnlf&zﬁ 10g3-2’c;—4 n).

Taking t = nEFs / logs-z’i*?’ n proves the theorem. [ |

Corollary 3.17 The class of read-once constant depth formulae can be learned in

subexponential time.
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Chapter 4

Computational Sample Complexity

and Attribute-Efficient Learning

4.1 Introduction

We have seen in Chapter 3 that surprisingly efficient learning algorithms can be
given for the broad and expressive class of DNF formulae. In contrast to this positive
result, we now study the inherent limitations of computationally efficient algorithms
for various learning problems. We show that even for concept classes which contain
only very simple concepts such as decision lists, a strong inherent tradeoff can exist
between the running time and sample complexity of any learning algorithm. As an
example of this tradeoff, we construct a concept class of decision lists which, while
it can be learned attribute efficiently (by a non polynomial time algorithm) and can
be learned in polynomial time (by a non attribute efficient algorithm), cannot be
learned attribute efficiently in polynomial time. This gives the first demonstration of
a learning problem for which attribute efficient learning is computationally hard.
Since unconditional proofs of computational hardness seem to lie well beyond the
current state of the art in theoretical computer science, the hardness results which we
establish must rely on unproven assumptions. Our results in this chapter are based on
general assumptions (the existence of length-preserving one-way permutations) which
are widely held in theoretical cryptography and do not rely solely on the hardness of

specific computational problems such as factoring or discrete logarithms.
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4.1.1 Motivation

In the Probably Approximately Correct (PAC) model of concept learning, the sample
complezity of a concept class C' is the minimum number of labeled examples which any
successful learning algorithm for C' must require. The sample complexity of a concept
class is one of its most important parameters from a learning theory perspective;
for instance it is clear that any concept class which has superpolynomial sample
complexity cannot be learned in polynomial time. In an important result, Ehrenfeucht
et al. gave a general lower bound on sample complexity by proving that any algorithm
which PAC learns a concept class of Vapnik-Chervonenkis dimension d must use
U(d/e) examples in the worst case (Ehrenfeucht et al., 1989). Since Blumer et al.
have shown that O(d/e) examples are information-theoretically sufficient for PAC
learning, the Vapnik-Chervonenkis dimension is known to completely characterize
the sample complexity of any concept class (Blumer et al., 1989).

While this information-theoretic characterization of sample complexity in terms
of VC dimension is both interesting and important, from a computational standpoint
the picture is still far from complete. This is because these results of Ehrenfeucht
et al. and Blumer et al. do not address the question of how many examples a
polynomial time learning algorithm may require for any given concept class. (Of
course, since drawing an example takes at least one time step, a polynomial time
learning algorithm can require at most polynomially many examples.) Since issues of
computational efficiency have occupied a central place in learning theory ever since
Valiant’s seminal paper (Valiant, 1984), it is of considerable interest to gain a better
understanding of the number of examples which polynomial time learning algorithms
require.

The first indication that polynomial time learning may be computationally hard
for certain concept classes was given by Valiant (Valiant, 1984), who observed that the
existence of polynomial time computable pseudorandom functions (Goldreich et al.,
1986) implies that the class of polynomial size Boolean circuits is not PAC learnable.
Kearns and Valiant subsequently proved that under certain cryptographic hardness
assumptions the concept class of polynomial size Boolean formulae cannot be learned
in polynomial time (Kearns and Valiant, 1994). This result was significantly refined
and extended by Kharitonov (Kharitonov, 1995), who gave a cryptographic hardness

result for a more powerful learning model (learning using membership queries), a more
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restricted concept class (the class AC? of constant depth polynomial size circuits),
and a weaker criterion for successful learning (learning to accuracy 1/2 — 1/poly(n)
under the uniform distribution).

Decatur, Goldreich and Ron were the first to study learning problems for which
polynomial time learning is feasible but requires more examples than learning using
a computationally unbounded algorithm (Decatur et al., 1999). They introduced the
notion of the computational sample complezity of a concept class C, which is the min-
imum number of labeled examples which any polynomial time learning algorithm for
C must require. Among other results they established the existence of concept classes
which have arbitrarily large gaps between their sample complexity and computational

sample complexity:

Theorem 4.2 (Decatur et al., 1999) Let p(n) be any polynomial such that p(n) >
n. If any one-way function exists, then there is a concept class C' of polynomial size

circuits such that

e any polynomial time PAC learning algorithm for C' must use Q(p(n)/e) exam-

ples,

e there is a computationally unbounded PAC learning algorithm for C which uses

O(n/e) examples.

The proof of Theorem 4.2 relies essentially on the idea that a pseudorandom
generator can be used to hide information from a computationally bounded learner

but not from a computationally unbounded learner.

4.1.2 Computational Sample Complexity versus Sample Com-
plexity

We strengthen the results of Decatur et al. by establishing stronger gaps between
sample complexity and computational sample complexity and by showing that such
gaps can exist even for classes whose concepts have an extremely simple and natural
representation as decision lists. Our first construction yields a concept class whose
concepts are 1-decision lists and which has the following property: a computationally

unbounded learner can learn the class from O(1/¢) examples, but under a standard
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cryptographic assumption any polynomial time learner requires almost O(n/e) ex-
amples. This construction uses error-correcting codes and requires only very basic
cryptographic ideas (the notion of a one-way function).

Our second construction makes more extensive use of cryptographic machinery
and yields the following result: for any k£ > 1 there is a concept class of k-decision
lists which can be learned by a computationally unbounded algorithm from O(1/e)
examples, but cannot be learned by any polynomial time algorithm from fewer than
Q(n*/e) examples (under a widely held cryptographic assumption). As we show,
this is within a logarithmic factor of the largest possible gap for concept classes of
k-decision lists.

We also consider the implications of our results for the phenomenon of attribute-
efficient learning. Roughly speaking, a concept class C is said to be attribute-
efficiently learnable if there is a learning algorithm for C' which requires only poly(size(c),
logn) examples to learn any concept ¢ € C over n variables (we give a precise def-
inition in Section 4.5). Attribute-efficient learning algorithms are useful when the
target concept depends on few variables but n, the total number of variables, is
large. Results of Haussler (Haussler, 1988) and Littlestone (Littlestone, 1988) yield
attribute-efficient learning algorithms for k-CNF and k-DNF formulae; more recent
results on attribute-efficiency can be found in (Blum et al., 1995; Blum, 1996; Uehara
et al., 1997; Valiant, 1999).

Let Ly be the class of 1-decision lists over {0, 1}" which are of length k. Since the
Vapnik-Chervonenkis dimension of Ly is easily shown to be O(klogn), the results
of Blumer et al. imply that there is a brute-force learning algorithm for L, which
uses O(klogn) examples. This algorithm, while it is attribute-efficient, does not run
in poly(n) time. Blum (Blum, 1996) and Valiant (Valiant, 1999) have each posed
the question of whether there exists a polynomial time attribute-efficient learning
algorithm for Lj. Such an algorithm could potentially be a very useful tool in machine
learning.

We take a step toward answering Blum and Valiant’s question by providing the
first proof that attribute-efficient learning can be computationally hard. We do this
by exhibiting a concept class of decision lists which can be learned in polynomial
time and can be learned by a computationally unbounded attribute-efficient learning

algorithm but cannot (under a plausible cryptographic assumption) be learned in
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polynomial time by any attribute-efficient algorithm.

4.1.3 Our Approach

A common paradigm for concepts and examples is used for all our results. In each
of the concept classes which we consider each concept is associated with a secret key;
it is easy to exactly identify the target concept if this key is known. Also, in each
of our constructions examples come in two types, which we call useful and useless.
Useful examples each contain an encrypted version of the secret key as well as a small
amount of unencrypted information about the target concept. Useless examples all
have label 0 and contain no information about the target concept.

Our constructions are based on the following simple idea: a computationally un-
bounded learning algorithm can decrypt the secret key and hence can learn the target
concept exactly from a single useful example. Consequently, such a learning algorithm
requires few examples. On the other hand, a polynomial time learner cannot decrypt
the secret key; instead, it can only use the small amount of unencrypted information
in each useful example. Hence intuitively a polynomial time learner will need many
useful examples in order to acquire a significant amount of information about the

target concept.

4.2 Preliminaries

Throughout this chapter we will only consider classes of concepts which are defined
over the Boolean cube {0,1}". Recall that in the Boolean PAC learning model the
learner has access to an ezample oracle EX (¢, D,) which on each call takes one time
step and outputs a labeled Boolean example (z,c(z)) where z is drawn from the
distribution D,, over {0, 1}". Given two Boolean functions h, ¢ and a distribution D,
over {0,1}", we say that h is e-accurate under D,, with respect to c if Pryep, [h(x) #
c(x)] < € alternatively, such a function A is said to e-approzimate the concept c under
D,,. An algorithm L is said to be a PAC learning algorithm for concept class C' if the
following condition holds: for all n > 1, for every distribution D,, over {0,1}", for
every ¢ € C and for every 0 < ¢, < 1, if L is given access to EX (¢, D,) then with
probability at least 1 — ¢, algorithm L outputs a hypothesis h which e-approximates

c under D,,.
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The following definitions are from (Decatur et al., 1999): The distribution free
information theoretic sample complexity of a concept class C, denoted Z7 SC(C'; n, ¢),
is the minimum sample size (as a function of n and €) needed for PAC learning the class
C with accuracy € and confidence § = 9/10, where no computational limitations exist
on the learning algorithms which may be used. The distribution free computational
sample complezity of a concept class C, denoted CSC(C'; n, €), is the minimum sample
size (as a function of n and €) needed for PAC learning the class C' with accuracy e
and confidence 0 = 9/10, where the learning algorithm must operate in polynomial

(in n and 1/€) time.

A k-decision list of length ¢ over the Boolean variables xi,...,x, is a Boolean
function L which is represented by a list of ¢ pairs (mq,b;), (mg,bs), ..., (mye, be),
where each m,; is a conjunction of at most £ literals over xi,...,z, and each b; is

either 0 or 1. Given any = € {0,1}", the value of L(z) is b; if 7 is the smallest index
such that m; is satisfied; if no m; is satisfied then L(z) = 0.

We write z oy to denote the concatenation of binary strings x,y and |z| to denote
the length of x. We say that a permutation f : {0,1}* — {0,1}* is length-preserving
if | f(z)| = |z| for all z € {0,1}*.

A length-preserving one-way permutation is a length-preserving permutation f
which has the following properties: there is a deterministic polynomial time algorithm
which computes f, but for sufficiently large n there is no probabilistic polynomial time

algorithm which inverts f on a 1/poly(n) fraction of {0,1}".

4.3 A Construction Using Error-Correcting Codes

In this section we prove the following theorem, which establishes a gap between
computational sample complexity and sample complexity for a class of particularly

simple concepts.

Theorem 4.3 Let 0 < 7 < 1 be any constant. If length-preserving one-way permu-

tations exist, then there is a concept class C, which has

ITSC(Crin,e) = O(1/e)
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and

Q(n*"7/e) = CSC(Cr;n,€) = O(n/e)

where each concept in C; is a 1-decision list over {0,1}™.

4.3.1 Error-Correcting Codes

We need some basic terminology from the theory of error-correcting codes; here we
follow the terminology of (Sipser and Spielman, 1996; Spielman, 1996). We say that
a binary code of block length ¢ and rate r; is a code in which codewords are /¢ bits
long, where r; - £ positions are “message bits” that can be filled with any combination
of 0’s and 1’s and the remaining (1 — )¢ positions have their contents determined by
the message bits. Let Ay : {0,1}7¢* — {0,1}* be a binary code of block length ¢ and
rate ry; for z € {0, 1}7¢¢, the j-th bit of the ¢-bit string Ay(z) is denoted by A,(z);.

We say that the code A, has minimum relative distance 6, if any pair of distinct
codewords {A,(z), As(y)} has Hamming distance at least d; - £. For oy < 84/2, we say
that an algorithm D is an ay-decoding algorithm for A, if, when D is given a string
z € {0,1}* which has Hamming distance at most ay - £ from some codeword A,(x),
the algorithm D outputs z.

The following important theorem is well known in coding theory; strong versions

can be found in, e.g., (Sipser and Spielman, 1996; Spielman, 1996).

Theorem 4.4 There exists a polynomial time-constructible family {A;}32, of binary
error-correcting codes, where each Ay is a function from {0,1}7¢¢ to {0,1}¢, with the

following properties:
o limy o7y > 0, limy_, (5@ > 0 and limy_, o, ap > 0,

e For each ¢, there is an ay-decoding algorithm for A, which runs in time poly(f).

Recall that in the PAC framework, a learning algorithm succeeds if it can construct
a hypothesis which agrees with the target concept on all but a small fraction of points.
In the construction which we use to prove Theorem 4.3, such a hypothesis will yield
a string z which is close to a codeword A,(z). By the polynomial time decoding
algorithm of Theorem 4.4, the ability to find an accurate hypothesis in polynomial

time would thus imply the ability to find = in polynomial time. However, we will
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show that this is impossible (under a cryptographic assumption) if few examples have

been seen.

4.3.2 The Concept Class C;

Before giving a formal description of the concept class C, we mention that in this
concept class the secret key for each concept is composed of many small subkeys, each
of which is encrypted separately. The reason is that each useful example will contain
a small amount of unencrypted information about exactly one of the subkeys. Hence,
unless many useful examples have been seen, there will exist subkeys about which no
unencrypted information has been revealed.

Before we can describe the concept class C; we must first specify some parameters.
Let {A,}2, be a fixed family of error-correcting codes with the properties stated in
Theorem 4.4 (so the rate is r,, the minimum relative distance is d,, and there is a
poly(¢)-time ay-decoding algorithm for A,). Given a positive integer m, let ¢ = kaT,
let ¢ be the smallest integer such that r, - £ > m, and let n = mgq + ¢f. The following

facts can be easily verified:

Fact 4.5 oy = O(1), r, = O(1) (follows from Theorem 4.4).

Fact 4.6 ¢ = O(m) (follows from definition of £ and Fact 4.5).

Fact 4.7 n = ©(mgq) (follows from definition of n and Fact 4.6).

Fact 4.8 m =0O(n"), ¢ = 0O(n'™") (follows from definition of q¢ and Fact 4.7).

Let f be a fixed length-preserving one-way permutation. The set ({0,1}™)? will
be our set of secret keys; each secret key v = (v!,...,v9) € ({0,1}™)? is composed of
q subkeys each of which is m bits long. The class C; has a concept ¢, for each secret
key v.

We now describe a concept ¢, over {0,1}". If ¢, is the target concept, then an
example z € {0,1}" is said to be useful if ¥y - - Ty = f(v')0- -0 f(v9) and is useless
otherwise. Given an example z € {0,1}", let i(z) € {1,...,q},j(z) € {1,...,¢}
be such that 44 (i(z)-1)e+j(z) 18 the first bit of Z,q41 -« - Tigyqe Whose value is 1. If
Tmgi1 =+ * = Tmg+qe = 0 then we say that i(z) = j(z) = 0. Figure 4.1 illustrates the

structure of a useful example. The concept ¢, is defined as follows:
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(a) (b)

Figure 4.1: A useful example (z, A,(v®) ().

Part (a) depicts the mg-bit prefix of z; since z is useful this must be f(v')o---o f(v).
Part (b) depicts the g/-bit suffix 441 ... 2,, where the bit @44 —1)s4c is in Tow 7
and column ¢ for 1 <r < ¢, 1 < ¢ < /. As shown in (b), the values of i(z) and j(z)
are determined by the location of the first 1 in the ¢f-bit suffix of z.

e ¢,(z) =0 if z is useless,

o ¢,(z) = Ag(v'®) (), the j(x)-th bit of A,(v'@), if z is useful and i(z), j(z) > 1.
If z is useful and i(z) = j(x) = 0 then ¢,(x) = 0.

4.3.3 Proof of Theorem 4.3

First we establish that ¢, is a 1-decision list. For each 1 < k < mg, let ¢, denote
the literal Ty, if the k-th bit of f(v')o---o f(v?) is 1, and let £, denote z; otherwise.

Then the following is seen to be a 1-decision list which computes ¢, :

(£17 O)a ey (gmqa 0): (xmq—}—l; AE(UI)I): (xmq+2a Ag(’l)l)g), ey

(Trmgt(i—1ye+is Ae(0")3)s - - o (Tmgqes Ae(v9)e).-

This is because the first mq pairs ensure that all useless examples will be labeled 0,
and the ordering of the last ¢/ pairs ensures that the label of each useful example will

be as described in Section 4.3.2.
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To prove the information-theoretic sample complexity upper bound, we must show
that under any distribution at most O(1/¢) examples are required. Since each positive
example contains f(v')o...o f(v9), a computationally unbounded learner can learn
the target concept exactly from a single positive example by inverting the one-way
permutation f to find each v® and then computing each A,(v'). Such a learner can
thus make, say, 20/¢ calls to the oracle EX(c,D,) and output the identically zero
hypothesis if all examples are negative, otherwise output the correct hypothesis as
described above. A simple calculation shows that this algorithm finds an e-accurate
hypothesis with high probability, and hence ZT SC(C;;n,€) = O(1/e).

It remains to bound the computational sample complexity of C;; we begin with
the simpler upper bound. We say that a 1-decision list over {0, 1}" is well-structured
if its length is exactly n and it has the following structure: for 1 < ¢ < mgq the t-th
pair of the decision list has x; or T; as its conjunction and has 0 as its output bit, and
for mg+1 <t < mgq+ gf the t-th term of the decision list has z; as its conjunction.
Given a sample S of examples which are labeled according to the concept ¢,, it is
easy for a polynomial time algorithm to find a well-structured 1-decision list which
is consistent with S. Any positive example of S identifies the first mgq literals of the
well-structured 1-decision list, and each useful example provides the output bit for
one of the last ¢/ pairs (note that it is possible to identify useful examples as long as S
contains at least one positive example). Since there are 2" well-structured 1-decision
lists, Occam’s Razor (Blumer et al., 1987) immediately implies that O(n/e) examples
suffice for this polynomial time learning algorithm.

Now we show the lower bound on CSC(C;;n, €). The idea of the proof is as follows:
we will exhibit a particular distribution on {0, 1}" and show that any polynomial time
learning algorithm for C, which learns to accuracy e using gay/18¢ examples drawn
from this distribution can be used to invert the one-way permutation f in polynomial
time with nonnegligible success probability. This contradiction implies that every
polynomial time learning algorithm must use more than gay,/18¢ examples. Since
Facts 4.5 and 4.8 together imply that goy/18¢ = ©(n'~"/¢), this will prove that
CSC(Crin,e) = Q(n'""/e) as desired.

Let D,, be the distribution on {0,1}" which assigns weight 3¢/(a - ¢f) to each of
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the g¢ useful examples
{F(0) o f(07) 0 0107 A1} L.

and assigns the remaining 1 — 3¢/ay, weight to the single useless example 0". Recall
from Section 4.3.1 that ay is the frequency of errors up to which the error-correcting
codes of 4.4 can be successfully decoded using a poly(¢)-time algorithm. Note that
under this distribution, each bit of each A,(v") is equally likely to occur as the label
of a useful example.

Let S be a sample of qay/18¢ examples which are drawn from EX (¢, D,,). Since
the expected number of useful examples in S is ¢/6, a simple application of Chernoff
bounds shows that with overwhelmingly high probability the sample S will contain
at least one useful example. Since each useful example contains f(v')o--- f(v?) as its
mgq-bit prefix, it follows that with overwhelmingly high probability a polynomial time
learning algorithm which has access to S can identify the strings f(v!),..., f(v9).

Now suppose that a polynomial time learning algorithm could achieve an e-
accurate hypothesis from the sample S. Since the learning algorithm knows f(v!),.. .,
f(v?), the algorithm can apply its e-accurate hypothesis to each of the ¢¢ useful ex-
amples described above. The algorithm can thus construct B!, ..., BY in polynomial
time, where each B® is an /-bit string which is the learning algorithm’s “guess” at
the string A,(v"). Since by assumption the hypothesis is e-accurate under D,,, at most
an «y/3 fraction of the ¢f total bits in the strings B',..., B¢ can be incorrect. By
Markov’s inequality, at least 2/3 of the B’s must each have at most ay - £ incor-
rect bits; consequently, by using the polynomial time decoding algorithm for A,, the
learning algorithm can find at least 2/3 of the subkeys {v!,...,v?} in polynomial
time. However, since as noted earlier the expected number of useful examples in S
is ¢/6, by a straightforward application of Chernoff bounds it is extremely unlikely
that S contained more than ¢/3 useful examples. As a result, we have that with
very high probability the polynomial time learner has received no information at all
(other than f(v?)) for at least 2/3 of the subkeys. It follows that the poly(n)-time
learner was able to invert f on at least 1/3 of the f(v%)’s “from scratch.” Since
each subkey v* is m = ©(n") bits long, though, our poly(n)-time learner is also
a poly(m)-time algorithm; but this contradicts the fact that f is one-way. Hence
CSC(Cr;n,€) > qay/18¢ = Q(n'~" /e). (Theorem 4.3) B
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4.4 A Stronger Gap

Now we make more extensive use of cryptographic machinery to prove the following:

Theorem 4.9 Let k > 1 be any integer. If length-preserving one-way permutations

exist, then there is a concept class Cy which has
ITSC(Cy;n,e) = 0(1/e)

and

CSC(Cy;n,e) = O(n"/e)
where each concept in Cy, is a k-decision list over {0,1}".

This strengthens the result of Decatur et. al. on distribution-free computational
versus information-theoretic sample complexity in two ways: we improve the upper
bound on information-theoretic sample complexity from O(n/e) to O(1/¢), and we
prove this stronger gap for a class consisting of much simpler concepts (k-decision

lists rather than polynomial size circuits).

4.4.1 Cryptographic Preliminaries

The cryptographic definitions we present in this section are slightly more general
than the standard definitions which can be found in, e.g., (Goldwasser and Bellare,
1996); we will need this extra generality in Section 4.5. Throughout this section
the function ¢(-) denotes an arbitrary nondecreasing integer-valued function which
satisfies ¢(n) > n. The standard cryptographic definitions are obtained if ¢(n) is taken
to be a polynomial in n (the reader is encouraged to verify this for herself). Intuitively,
the faster g(n) grows, the less plausible are the resulting cryptographic assumptions.
In Section 4.5 we will take ¢(n) to be a function which grows very slightly faster than
any polynomial in n; this is a stronger-than-standard cryptographic assumption, but
as we discuss in Section 4.5 we believe that it is still quite a reasonable assumption.

The notation “z € D,” means that z is selected from the set {0,1}" according to

distribution D,,. We write U,, to denote the uniform distribution over {0, 1}".

Definition 4.10 A length-preserving permutation f is said to be q(n)-one-way if the

following conditions hold:
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e there is a deterministic algorithm which runs in time poly(|z|) and computes

(@),

e for all probabilistic poly(q(n))-time algorithms A, for all polynomials Q, for all

sufficiently large n, we have

PrIACG@) = 4] < e

Definition 4.11 Let f be a length-preserving permutation. A polynomial time com-
putable predicate B : {0,1}* — {0,1} is said to be a g(n)-hard-core predicate of f if
the following condition holds: for all probabilistic poly(q(n))-time decision algorithms
A, for all polynomials QQ, for all sufficiently large n, we have

1

Py 4G (@) = Bl) < 5+ grrs.

Suppose that ¢ is a length-preserving poly(n)-one-way permutation. Let x = poy
where |p| = |y| = n, and let f be the function defined as f(z) = po g(y). It is easy
to check that f is also a length-preserving poly(n)-one-way permutation. Goldreich
and Levin (Goldreich and Levin, 1989) have shown that B(z) = Y7 ; p;y; (mod 2)
is a poly(n)-hard-core predicate for f (see Appendix C.2 of (Goldreich, 1998) for a
very readable proof of this result). An entirely straightforward modification of their
proof shows that if g is a length-preserving ¢(n)-one-way permutation, then f is a

length-preserving ¢(n)-one-way permutation and B(z) is a ¢(n)-hard-core predicate
for f.

Definition 4.12 A family of probability distributions {Xyn)} on {0,1}4™ s said
to be q(n)-pseudorandom if {Xym} is poly(q(n))-time indistinguishable from {Uyny}-
That is, for all probabilistic poly(q(n))-time decision algorithms A, for all polynomials
Q, for all sufficiently large n, we have

ZEE{:‘(")[A(z) =1] - zelbjlf(n) [A(z) =1]| < Q)

Definition 4.13 A poly(q(n))-time deterministic algorithm G : {0,1}* — {0, 1}9(
is said to be a q(n)-pseudorandom generator if {Gyn)} is a q(n)-pseudorandom family

of distributions, where Gy is the distribution on {0, 1Y) obtained as follows: to
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select z € Gy, pick x € U, and set z = G(x). We write G(z); to denote the i-th bit
of G(2).

Now we can state the following useful theorem:

Theorem 4.14 Let f be a length-preserving g(n)-one-way permutation and let B be
a q(n)-hard-core predicate of f. Let G : {0,1}" — {0,1}9™) be defined as follows:

G(z) = B(z) o B(f(x)) o B(f(f(2))) o -~ 0 B(f1™ ().

Then G is a q(n)-pseudorandom generator. Moreover, the distributions

{G(2) o f1(2)}eus,

and

{w © fq(n) (Z)}weuq(n),zeun

are poly(q(n))-time indistinguishable.

In the case where ¢(n) is a polynomial this theorem is a standard result; see
e.g., Proposition 3.17 of (Goldreich, 1995). This construction of a pseudorandom
generator, along with the definition of a pseudorandom generator, is originally from
(Blum and Micali, 1984). The proof of the more general theorem stated above (where
g(n) need not be a polynomial) is a straighforward modification of the proof of the
standard result, entirely analogous to the modification of the Goldreich-Levin theorem

mentioned above.

Observation 4.15 We note that by Theorem 4.14, even if a poly(q(n))-time algo-
rithm is given f9(2) along with some bits of G(z), the algorithm still cannot predict
the unseen bits of G(z) with accuracy significantly better than 1/2. This is because
the ability to do such prediction would violate the poly(q(n))-time indistinguishability
which is asserted in Theorem 4.14, since clearly no poly(q(n))-time algorithm (in fact,
no algorithm at all) can successfully predict the unseen bits of a uniformly selected

random string.
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4.4.2 The Concept Class Cj

Let f be a length-preserving one-way permutation. The set {0,1}™ will be our set of
secret keys. As discussed in Section 4.4.1 we can suppose without loss of generality
that f has a hard-core predicate. Let G be the (Z)-pseudorandom generator associ-
ated with f whose existence is asserted by Theorem 4.14, so G maps inputs of length
m to outputs of length <’,’:) Let n = 2m. For 1 <3 < (7;), let 7; denote the i-th
k-element subset of the set {m +1,...,2m} under some fixed and easily computable
ordering (e.g., lexicographic), and let z; be the conjunction [];c7, ;. Given any input
xz € {0,1}", let i(x) be the smallest index in {1,..., (Z‘)} such that z; is satisfied
by x. If no z is satisfied by x for 1 <i(z) < (’Z) then let i(z) = 0.

The class Cy has a concept ¢, for each secret key v € {0,1}™. If ¢, is the target
concept, then an example z is useful if z{---x,, = f(rfg) (v) and is useless otherwise.
As in Section 4.4.1, f(q:)(v) denotes the result of applying f exactly (7;) times to v.

The concept ¢, is defined as follows:
e c,(z) =0 if z is useless,

e ¢,(7) = G(v)(y), the i(x)-th bit of G(v), if  is useful and i(x) > 1. If z is useful
and i(z) = 0 then ¢,(z) = 0.

4.4.3 Proof of Theorem 4.9

First we show that ¢, is a k-decision list. For each 1 < j < m, let /; denote the
literal z; if the j-th bit of f (%) (v) is 1, and let ¢; denote x; otherwise. The following
k-decision list of length m + (’,?) computes ¢, :

(ﬁl,O), caay (fm,O), (Zl,G(U)l), ceey (Z(m), G(/U)(rg))

k

To bound Z7T SC(Cy;n,€), note that upon receiving a single positive example an
unbounded learner can invert f (%) (v) to find v (this is possible since f is a permu-
tation) and thus learn the target concept ¢, exactly. As in the proof of Theorem 4.3,
it follows that ZT SC(Cy;n,€) = O(1/e).

An analogous argument to the computational sample complexity upper bound

proof of Theorem 4.3 establishes that CSC(Cy; n,e€) = O((’Z) J€) = O(nF/e).
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For the computational lower bound, consider the distribution D, over {0,1}"
which assigns weight 1—6e to the single useless example 0" and assigns weight 6¢/ (7,?)

to each of the (T]?) useful examples

O oy

(here we are viewing each 7; as an m-bit string in the obvious way). Let S be a
sample of (’,’;) /24¢€ examples which are drawn from EX (¢, D,,). By Theorem 4.14, we

have that the string-valued random variables

m

(G(z) o D) (2)}ocus

and

wo fE)(2) bueu et
{ f ()}w (71?), m

are polynomial time indistinguishable. Consequently, even though a polynomial time
learner which has drawn the sample S may discover f (%) (v) from any positive ex-
ample, by Observation 4.15 such a learner cannot predict the bits of G(v) which it
has not seen with accuracy significantly better than 1/2. Since the expected number
of useful examples in S is (TZ) /4, a straightforward application of Chernoff bounds
shows that with very high probability S will contain fewer than (7,?) /2 useful exam-
ples, and thus with very high probability the polynomial time learner will have seen
at most half of the (7;) bits of G(v). Since useful examples which correspond to the
unseen bits of G(v) have weight at least 3¢ under the distribution D, the polyno-
mial time learner’s overall error rate will exceed € with very high probability. Hence
(ZL) /24¢ examples do not suffice for polynomial time learnability, and we have that

CSC(Ck;n,e) > (7;)/246 = O(nk/e). (Theorem 4.9) B

4.4.4 An Optimal Gap

It is interesting to contrast the bounds given in Theorem 4.9 with other known bounds.
The upper bound on information-theoretic sample complexity which is given in The-
orem 4.9 is the best possible for nontrivial concept classes. Rivest’s polynomial time
algorithm for learning k-decision lists (Rivest, 1987) requires O("TIc min{log n,log £})

examples; thus our lower bound on computational sample complexity could be im-
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proved by at most a logarithmic factor for concept classes of k-decision lists. Ehren-
feucht et. al. (Ehrenfeucht et al., 1989) have shown that the Vapnik-Chervonenkis
dimension of the class of k-decision lists on n variables is ©(n¥), and hence Q(n*/¢)
examples are required for information-theoretic reasons for learning k-decision lists.
Our Theorem 4.9 shows that (n* /¢) examples can be required for learning subclasses
of k-decision lists for computational reasons, even in the absence of any information-

theoretic barriers to learning from far fewer examples.

4.5 Hardness of Attribute-Efficient Learning

We now turn our attention to attribute-efficient learning algorithms. These algo-
rithms require very few examples relative to the total number of input variables (i.e.,
attributes), and hence have exceptionally good performance over high-dimensional
input spaces which contain many irrelevant attributes. This property has led re-
searchers to apply attribute-efficient learning algorithms to real-world problems such
as calendar scheduling (Blum, 1997), text categorization (Dagan et al., 1997), gene
structure prediction (Deaton and Servedio, 2001), and context-sensitive spelling cor-
rection (Golding and Roth, 1999).

Attribute-efficiency has chiefly been studied in the online mistake bound model of
concept learning. In this model learning proceeds in a series of trials, where in each
trial the learner is given an unlabeled Boolean example z € {0,1}" and must predict
the value c(z). After each prediction the learner is told the true value of ¢(z) and
can update its hypothesis. The mistake bound of a learning algorithm on a target
concept ¢ is measured by the worst-case number of mistakes that the algorithm makes
over all sequences of examples, and the mistake bound of a learning algorithm for a
concept class C is the worst-case mistake bound across all concepts ¢ € C. A learning
algorithm L for a concept class C over {0, 1}" is said to run in polynomial time if the
mistake bound of L on C'is poly(n) and the time required by L to make its prediction
and update its hypothesis on each example is poly(n).

A Boolean function ¢ over z1, ..., x, is said to depend on a variable x; if there are
two strings y, z € {0, 1}" which have y; = z; for all j # 4, y; # 2z;, and c(y) # c(z).
Let C be a class of Boolean functions on xi,...,z, each of which depends on at

most 7 variables and each of which has a description of length at most s under some
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reasonable encoding scheme. Following (Blum et al., 1995), we say that a learning
algorithm L for C in the mistake-bound model is attribute-efficient if the mistake
bound of L on any concept ¢ € C is poly(r,s,logn). Thus an attribute efficient
learning algorithm can learn simple concepts defined over few relevant variables with
a mistake bound which can be considerably smaller than the total number of variables,
even when the identity of the relevant variables is unknown.

In this section we provide strong evidence that there are concept classes learnable
in polynomial time for which attribute-efficient learning is information-theoretically

possible but computationally hard. We do this by proving the following theorem:

Theorem 4.16 For any integer ¢ > 2, let log(c,n) denote

Cc

——
loglog - - -logn.

Let q(c,n) = n'8em)_ If there is some integer ¢ > 2 such that length-preserving
q(c, n)-one-way permutations exist, then there exists a concept class C of O(log(c,n))-

decision lists which has the following properties in the mistake-bound model:
o A computationally unbounded learner can learn C with at most 1 mistake,
o C can be learned in polynomial time,

e (' cannot be learned in polynomial time by an attribute-efficient learning algo-

rithm.

While the existence of length-preserving ¢(c, n)-one-way permutations is not a
standard cryptographic assumption, we believe that it is still a very reasonable as-
sumption. As evidence for this belief, in Section 4.5.2 we sketch an argument which
shows that if there does not exist a collection of ¢(c, n)-one-way permutations (where
each permutation in the collection is defined over a finite domain)?, then there must
exist algorithms for factoring Blum integers which are far more powerful than any

currently known algorithms for this well-studied problem.

I This is a slightly different notion of a one-way function than the notion which we have been
using thus far. See Section 2.4.2 of (Goldreich, 1995) for a discussion of the relationship between
these two notions.
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4.5.1 Proof of Theorem 4.16

First we define the concept class C. This construction is similar to the construction
of Section 4.4.2 but with some different parameters.

Let f be a length-preserving ¢(c,n)-one-way permutation; as before, the set
{0,1}™ will be our set of secret keys. Let G be the ¢(c, n)-pseudorandom generator
whose existence is guaranteed by Theorem 4.14. Let n be such that m = n!/1es(en)
and let k(n) denote the least integer such that (m ) > ¢(c,m). We will use the

k(n)
following claim:

Claim 4.17 For q, m, and k as defined above, we have:
1. g(c,m)=n!"0,
2. k(n) = O(log(c,n)).

Proof: Recall that log(2,n) = loglogn and log(c,n) = log(c —1,logn) for ¢ > 2. We
first note that

log(c,m) = log(c,n!/ &)

= log(c — 1, log(n*/1slen)))
n

(c,
(
= log(c— 1,logn/log(c,n))
= log(c — 2,log(logn/log(c,n)))
(

= log(c — 2,loglogn —log(c+ 1,n))

It follows that

C](C, m) = mlOg(C’m)
= (n!/tostem) iRl Hlos o Tiosle L)
n

1—o(1)

which proves the first part of the claim.
For the second part of the claim, recall that k(n) is the least integer such that
(k(n)) > ¢(c, m). We prove that k(n) < 2log(c, n) by showing that (210g(c n)) > q(c,m).
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To see this, note that by the standard inequality @) > (z/y)Y, we have

m nt/log(e,n) 1/ log(en) \ 21og(en) n?
= > -+ 7 = — n?*o(l) .
2log(c,n) 2log(c,n)) — \2log(c,n) (21og(c, n))2loelen)

Since g(c,m) = n'=°(") the claim is proved. [

For i = 1,...,q(c,m) let T; denote the i-th k(n)-element subset of the set {m +
1,...,2m} and let z; be the conjunction [[;er, z;. Given any input z € {0,1}", let
i(z) be the the smallest index in {1,...,q(c,m)} such that z) is satisfied by z. If
no z; is satisfied by z then i(x) = 0.

For each secret key v € {0,1}™, there exists a corresponding concept ¢, € C. If
¢, is the target concept, then an example x is useful if 1 - -z, = f9™(v) and is

useless otherwise. The concept ¢, is defined as follows:
e c,(z) =0 if z is useless,

e ¢,(7) = G(v)q), the i(x)-th bit of G(v), if = is useful and i(x) > 1. If z is useful
and i(z) = 0 then ¢,(z) = 0.

Now we prove that C has the properties listed in Theorem 4.16. The first property
is easy: a computationally unbounded learner can achieve a mistake bound of 1 by
predicting 0 until it makes a mistake. From this positive example the unbounded
learner can compute v (by inverting f%*™ (v)) and hence can exactly identify the
target concept.

For the second property, note that the concept ¢, can be represented as a O (log(c, n))-
decision list of length at most m+¢(c, m). As in the computational sample complexity
upper bound of Theorem 4.3, a polynomial time algorithm can learn the first m pairs
of the target decision list from a single positive example, and will make at most one
mistake for each of the last ¢(c, m) pairs of the decision list. Since g(c,m) = n'=°(),
such an algorithm will make poly(n) mistakes, and it follows that C' can be learned
in polynomial time.

Now suppose that there is a polynomial time attribute-efficient learning algorithm
for the concept class C. Since each concept ¢, has an m-bit description (the string v),
we have that s = O(m). Each function ¢, depends only on the variables 1, ..., Zopm,

so r is also O(m). Hence any attribute-efficient learning algorithm for C' must have

mistake bound poly(m, logn) = poly(m).
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Consider the g(c, m)-long sequence S of useful examples { f4(&™) (v)oT;o0n~2m}4E™),
From Theorem 4.14, we have that no poly(g(c, m))-time learning algorithm can pre-
dict an unseen bit of G(v) with accuracy significantly better than 1/2. Since ¢(c,m) =

1=o(1) "we have that poly(gq(c, m)) = poly(n). Consequently, any poly(n)-time learn-

n
ing algorithm will have probability 1/2 of making a mistake on each example in
the sequence S; it follows that with very high probability, any poly(n)-time algo-
rithm will make O(q(c, m)) mistakes on S. But this means that no polynomial time
attribute-efficient learning algorithm can exist for the concept class C, since poly(m)

= o(q(c,m)). (Theorem 4.16) m

4.5.2 Plausibility of the Cryptographic Assumption

Let J,, be the set of all n-bit primes which are congruent to 3 mod 4. An n-bit Blum
integer is an integer of the form N = p,; - p, where p; # p, and py, p; € J,,/2. Given an
n-bit Blum integer NV, let ()5 denote the set of quadratic residues modulo NV, and let
fn : Qn — Qu be the function fy(z) = 2? mod N. Blum and Williams have noted
that fy is a permutation on @)y (see Lemma 2.3.29 of (Goldwasser and Bellare, 1996)
for a proof).

As discussed in Section 2.4.3 of (Goldreich, 1995), it is widely believed that the

collection
{f~}Biwm = {f~ : N is a Blum integer}

has the following properties:

1. Given n, it is computationally easy to uniformly select a random n-bit Blum
integer N (with negligible error probability) by taking N = p; - po, where py, po
are uniformly selected n/2-bit primes with p; < p, and p; = ps = 3 mod 4 (this
assumes that the set .J, /o of such primes is non-negligibly dense in the set of

n/2-bit integers).

2. Given an n-bit Blum integer NV, it is easy to uniformly select a quadratic residue

r mod N (this can be done by squaring a randomly chosen element of Z3,).

3. For every sufficiently large n, for every probabilistic poly(n)-time algorithm A’
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for every polynomial ), given N and r selected as described above, we have

Pr[A (fn(r),N) =7] < o)

Asin (Goldreich, 1995), we say that { fx } ium is a collection of one-way permutations.

Now consider the following variant of Property 3:

3'. For every sufficiently large n, for every probabilistic poly(g(n))-time algorithm

A, for every polynomial @, given N and r selected as described above, we have

! _
Pr[A'(fn(r),N)=r] < Q)

If { fn } Bium satisfies Properties 1, 2 and 3’ then we say that { fx } Brum is a collection
of g(n)-one-way permutations.

Rabin’s results in (Rabin, 1979) yield the following: Suppose that A’ is a proba-
bilistic poly(g(n))-time algorithm which, when given as input the pair (fx(r), N) with
N and r selected as described above, outputs r with probability at least 1/poly(g(n)).
Then there is a poly(g(n))-time algorithm A which, when given a uniformly selected
n-bit Blum integer N, factors N with success probability at least 1/poly(g(n)).

Thus, if { fx } Bium is not a collection of ¢(c, n)-one-way permutations, then there is
a ¢(c,n)-time algorithm which factors randomly selected Blum integers with success
probability at least 1/poly(g(c,n)). This would be quite a surprising result, since
the fastest known algorithms for factoring n-bit Blum integers require time 29(”1/3),
which is a much faster-growing function than ¢(c, n) for all ¢ > 2 (recall that ¢(2,n) =

nloglogn’ Q(?), n) — nlogloglogn’ etc.).
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Chapter 5

PAC Learning with Perceptron

and Winnow

In the last chapter we used tools from cryptography to obtain lower bounds on com-
putational sample complexity which hold for any learning algorithm. We now change
our focus and take a close look at the abilities and limitations of two particular al-
gorithms for one of the most fundamental problems in machine learning: learning
an unknown linear threshold function from labeled examples. The first algorithm we
consider, the Perceptron algorithm, is perhaps the most widely known algorithm in
machine learning. The second algorithm we consider is Littlestone’s Winnow algo-
rithm, a variant of the Perceptron algorithm which has received intensive study over
the past dozen or so years. We give both positive and negative results for these two

algorithms in the PAC learning model.

5.1 Introduction

The classical Perceptron algorithm (Block, 1962; Novikoff, 1962; Rosenblatt, 1962)
and Littlestone’s Winnow algorithm (Littlestone, 1988; Littlestone, 1989b) are two
algorithms for learning linear threshold functions which have been studied extensively
in the online mistake bound model in recent years; see e.g. (Auer and Warmuth, 1995;
Bylander, 1998a; Freund and Schapire, 1998; Kivinen et al., 1997; Littlestone, 1991;
Maass and Warmuth, 1998; Valiant, 1999). Despite this widespread interest in the

Perceptron and Winnow algorithms, relatively little is known about their performance
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in Valiant’s PAC learning model. In this chapter we establish positive and negative
results on the PAC learning abilities of Winnow and Perceptron, thus helping to
clarify their status in the PAC model.

5.1.1 The Perceptron and Winnow Algorithms

Both Perceptron and Winnow are online mistake bound learning algorithms; we refer

the reader to Section 2.4 for a description of this model.

The Perceptron Algorithm

Throughout its execution the Perceptron algorithm maintains a weight vector w € R"
and a threshold # € R as its current hypothesis. Initially the Perceptron algorithm
starts with w = (0,...,0) and § = 0. Upon receiving an example z, the algorithm
predicts according to the linear threshold function w - x > 6. If the prediction is

incorrect the hypothesis is updated according to the following rule:

e If the prediction is 1 and the label is —1 (false positive prediction), set w < w—zx
and 0 =60+ 1.

e If the prediction is —1 and the label is 1 (false negative prediction), set w <«
w+xand § =60 —1.

No change is made if the hypothesis was correct on z. It is clear that if each
example z belongs to {0, 1}" then each w; and # will always be integers; this fact will
prove useful later.

The well-known Perceptron Convergence Theorem gives an upper bound on the

number of mistakes which the Perceptron algorithm can make.

Theorem 5.2 (Block, 1962; Novikoff, 1962; Rosenblatt, 1962) Let (z!,y1), ...,
(x™ ym) be a sequence of labeled examples with ||2'|| < R and y; € {—1,1} for all
i. Let u be a vector and 0,& be such that y;(u - x* — 0) > & for all i, where & > 0.
Then the total number of mistakes made by the Perceptron algorithm on this example

sequences s at most
(R + 1) (Jlull” + 6)
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The Winnow Algorithm

The Winnow algorithm is essentially a modified Perceptron algorithm in which up-
dates are performed multiplicatively rather than additively on each coordinate of the
hypothesis vector. As described in (Littlestone, 1991) the Winnow algorithm takes
as input an initial vector w! € R”, a promotion factor o € R, and a threshold 6 € R.
The algorithm requires that the vector w! be positive (i.e. each coordinate w; is pos-
itive), that @ > 1, and that # > 0. Like the Perceptron algorithm, Winnow predicts
in each stage according to the threshold function w -z > 6. If the prediction is correct

then no update is performed, otherwise the weights are updated as follows:

e On a false positive prediction, for all ¢ set w; +— a™%w;;

e On a false negative prediction, for all ¢ set w; < o™ w;.

It should be noted that in this form Winnow is only capable of expressing positive
threshold functions as its hypotheses. As described in (Littlestone, 1988; Littlestone,
1989b) this limitation can be easily overcome by using various simple transformations
on the input examples.

Littlestone has proved the following result, analogous to the Perceptron conver-

gence theorem, bounding the number of mistakes which Winnow makes:

Theorem 5.3 (Littlestone, 1991) Let (z', 1), ..., (™, ym) be a sequence of labeled
ezamples with z* € [0,1]" and y; € {—1,1} for alli. Let u be a vector and § > 0 be such
that whenever y; = 1 we have u - x > 1 and whenever y; = —1 we haveu -z <1 — 4.

If Winnow is run on this example sequence with initial parameters w', o, 0 where

L
1-5°

sequence 1S al most

l<a< then the total number of mistakes made by Winnow on this example

o 7’—}—(04—}-1) Z’.‘:luilnﬁ

1—a(l-9)na

Ifa=1+ % and wl = (1,...,1) then the number of mistakes made by Winnow is at

most
8n

520 + max{0, }5—;1 ZZ::I u; In(u;0)}.
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5.1.2 PAC Learning with Perceptron and Winnow: Previous
Work

Here we briefly summarize relevant previous research on PAC learning using Winnow
and Perceptron. Recall that in the PAC learning model there is a fixed unknown
distribution D from which labeled examples are drawn, and the goal of the learner is
to find a hypothesis which closely approximates the target function under distribution
D.

As described in Chapter 2, generic techniques exist to convert any online mistake
bound learning algorithm to a PAC algorithm. It is easy to see that the conversion
procedure due to Littlestone which is described in Chapter 2 (Theorem 2.2) yields a
PAC learning algorithm whose running time is polynomially related to the running
time of the original online algorithm. Theorems 2.2, 5.2 and 5.3 thus imply that
Perceptron and Winnow yield efficient PAC learning algorithms for certain restricted
linear threshold learning problems. For example, these theorems can be straightfor-

wardly combined to prove

Corollary 5.4 Let Cy be the class of linear threshold functions w-x > 6 over {0,1}"
such that each w; is an integer and Y7, |w;| < W. Then either Perceptron or Winnow

can be used to obtain a PAC learning algorithm for Cy which runs in time poly(n, W).

This corollary implies polynomial-time PAC learnability using Perceptron or Win-
now when W = poly(n). It is well known, though, that there exist linear threshold
functions over {0,1}" which require coefficients of size 2™ (we give an example of
such a linear threshold function in Section 5.3). For functions such as these the time
bound of Corollary 5.4 is exponentially large and hence not very informative. Can
stronger bounds be established on the PAC learning abilities of Perceptron and Win-
now? What bounds can be obtained for learning under specific natural distributions
such as the uniform distribution?

These questions have been considered by several researchers. Baum has shown
that if D is restricted to be the uniform distribution on the n-dimensional unit sphere
S™1in R", then Perceptron is an efficient PAC learning algorithm for the unrestricted
class of linear threshold functions (Baum, 1990). Schmitt has shown that Perceptron
is not an efficient PAC learning algorithm for the class of linear threshold functions

over {0, 1}" (Schmitt, 1998). His proof works by exhibiting a nested Boolean function
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(defined in Section 5.2.2) and a distribution which is concentrated on “hard” examples
for that function.

Prior to the results of this chapter, neither positive nor negative results analogous
to the above PAC model results for Perceptron had been obtained for the Winnow
algorithm. As Schmitt noted, it was not known “whether Littlestone’s rules can PAC

identify in polynomial time” (Schmitt, 1998).

5.1.3 PAC Learning with Perceptron and Winnow: Our Re-

sults

We first give a negative answer to Schmitt’s question about Winnow by proving that
the Winnow algorithm is not a polynomial time PAC learning algorithm for the class
of positive linear threshold functions. To the best of our knowledge this is the first
negative result for Winnow in the PAC model.

We then strengthen Schmitt’s negative result for Perceptron by giving a simple
proof that the Perceptron is not an efficient PAC algorithm for the class of linear
threshold functions even under the uniform distribution on {0,1}". This negative
result provides an interesting contrast to Baum’s positive result for Perceptron under
the uniform distribution on the unit sphere.

Finally, we show that under the uniform distribution on Boolean examples, the
Perceptron algorithm is an efficient PAC algorithm for the class of nested Boolean
functions. This suggests that Schmitt’s negative result for Perceptron on nested

functions depends on choosing an adversarial distribution.

5.2 Preliminaries

Recall that a concept class C' on an example space X is a collection of Boolean
functions on X. In this chapter X will be the Boolean cube {0, 1}". A Boolean function
f: X — {—1,1} is a linear threshold function if there is a weight vector w € R"
and a threshold 6 € R such that f(z) =1 iff w-z > 6. Such a pair (w, 0) is said to
represent f. See (Dertouzos, 1965; Muroga, 1971) for extensive treatments of linear
threshold functions over {0, 1}". We say that w-x > 6 is a positive threshold function

if each w; is positive.
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5.2.1 PAC Learning Using Online Learning Algorithms

In the PAC learning model the learning algorithm has access to an example oracle
EX (e, D) which, in one time step, provides a labeled example (z,c(z)) where z is
drawn from the distribution D on the example space X. The function ¢ € C is called
the target concept, and the goal of the learning algorithm is to construct a hypothesis
h which, with high probability, has low error with respect to c. We thus have the

following natural definition of PAC learning using an online learning algorithm:

Definition 5.5 We say that an online learning algorithm (such as Winnow or Per-
ceptron) is an efficient PAC learning algorithm for concept class C' over X if there
is a polynomial p(-,-,-) such that the following conditions hold for any n > 1, any
distribution D over X, any c € C, and any 0 < e€,6 < 1:

e Given any example v € X, algorithm A always evaluates its hypothesis on x

and (once provided with c(x)) updates its hypothesis in poly(n) time;

o if algorithm A is run on a sequence of examples generated by successive calls
to EX(c,D), then with probability at least 1 — 6 algorithm A will generate a
hypothesis b such that Pryep[h(z) # c(x)] < € after at most p(n, L, 3) calls to
EX(c, D).

An online algorithm A is an efficient PAC learning algorithm under distribution D if

it satisfies the above definition for a fixed distribution D.

5.2.2 Nested Functions

Several of our results involve the class of nested functions. This class was introduced
by Anthony, Brightwell and Shawe-Taylor in (Anthony et al., 1995).

Definition 5.6 The class of nested functions over x4, ..., x,, denoted NF,,, is defined

as follows:
1. for n =1, the functions x1 and T, are nested.
2. form > 1, f(x1,...,2,) is nested if f = g *l,, where g is a nested function on

Ty, Tp_1, * 1S either V or A, and l,, s either x, or T,.
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It is easy to verify that the class of nested functions is equivalent to the class of 1-
decision lists of length n in which the variables appear in the reverse order z,, ..., ;.
The following lemma establishes a canonical representation of nested functions as

linear threshold functions:

Lemma 5.7 Any f € NF,, can be represented by a linear threshold function
W1Ty + -+ WnTy > On,

with 0, = k + % for some integer k, w; = £2'=1, and Powi<o Wi < Op < ps0 Wi

Proof: The proof is by induction on n. For n = 1 the appropriate threshold function

is 7y > 5 or —z; > —1. For n > 1, f must be of the form g x [,, where g is a

nested function on z1,...,x,_1. By the induction hypothesis, ¢ can be expressed as
a threshold function wix; +-- -+ w, 12, 1 > 0,1, with wy, ..., w, 1,6, 1 satisfying

the conditions of the lemma. There are four possibilities:
1. f=gAx,: then fis
WiT1+ .t Wy 1Tyt + 2" Ty > Oy =6, + 27

2. f=gAT,: then fis

WIT) + oo+ W1 Tt — 2" Ty > Oy = Oy
3. f=gVx,: then f is

WIT) + oot W1 Tyt + 2"y > 0 = Oy s
4. f =gV T,: then f is

wixLF oWy 1Ty — 2" Y, >0, =0, — 2" L

In each case it can be easily verified that the stated threshold function is equivalent

to f and that wy, ..., w,, 0, satisfy the conditions of the lemma. [ |
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5.3 Winnow Cannot PAC Learn Positive Halfspaces

Although the Winnow algorithm has been studied extensively in the online mistake
bound learning model, little is known about its performance in other learning models.
In this section we prove the following theorem which shows that Winnow is not an

efficient PAC learning algorithm for the class of positive threshold functions over
{0,1}".

Theorem 5.8 Given any positive start vector w!

, any promotion factor o > 1 and
any threshold 0 > 0, there is a positive threshold function c, a distribution D on
{0,1}", and a value € > 0 for which Winnow(w!, a,, 0) will not generate a hypothesis
h such that Pryep[h(z) # c(z)] < € in poly(n, 1) steps.

As a consequence of the proof of this theorem, we will obtain an explicit fam-
ily of “hard” threshold functions and corresponding example sequences which cause
Winnow to make exponentially many mistakes. Maass and Turan (Maass and Turan,
1994) have used a counting argument to show that given any triple (w’, c, §), there ex-
ists a target threshold function and example sequence which cause Winnow(w’, a, 0)
to make exponentially many mistakes, but no explicit construction was known.

The proof of Theorem 5.8 is based on several lemmas. In the first lemma, we show
that a nested Boolean function with alternating connectives requires exponentially

large coefficients. Similar results can be found in (Muroga, 1971; Parberry, 1994).

Lemma 5.9 Let n be odd and let u-x > 6 be a positive threshold function on {0,1}"

which represents the nested function
fo=(-c(@1VZ)AZ3)Vay)...)VZy1)AZp.

For 3 <1 < n we have u; > F; 3uz, where F; is the i-th Fibonacci number: Fy =
F1 = F2 = 1,F3 = 2,F4 = 3, etc..

Proof: The proof is by induction on k, where n = 2k + 1. For clarity we use two
base cases. The case k = 1 is trivial. If £ = 2, then since f5(0,0,0,1,1) = 1 and
f5(0,0,1,0,1) = 0, we find that us > ug. Similarly, since f5(0,0,1,1,0) = 0, we find
that us > us.

63



We now suppose that the lemma is true for the values k =1,2,...,7 — 1 and let
n = 2j + 1. By assumption, (uy,...,u,) and @ are such that u -z > 6 represents f,.
If we fix x,, =1 and z,,_1 = 0, then it follows that u;z1 4+ -+ Uy 2T, o > 0 —u, is a
threshold function which represents f, o, so by the induction hypothesis the lemma
holds for ugs, ..., u, 2, and we need only show that it holds for u, ; and u,,.

Since f,(1,1,...,1,0,0,1) = 0, we have that u; +us + -+ + uy_3 + u, < 6. On
the other hand, since f,(0,0,...,0,1,1) = 1, we have that u,_1 + u, > 6. From these

two inequalities it follows that

Up_1 > U1+ Us + -+« F Up_3.
Since u is positive, this inequality implies that

Up—1 > Uz + Ug + -+ + Up_3.
Using the induction hypothesis we obtain the inequality

Up—1> 1+ Fi+---+ Fy6)us = F_qus.
Similarly, since f,(1,1,...,1,0) = 0, we have that u; +ug + -+ u,_1 <6, so
Up > U+ U+ + Up—9 > U3+ Ug + +++ + Up_2.
By the induction hypothesis, we find that
Up > (1+ Fy 4+ -+ Fh_5)uz = Fr_3us,

and the lemma is proved. [ |

Since F,, = Q(¢"), where ¢ = 1+2‘/5 , we have shown that f, must have coefficients
whose ratio is exponentially large.

We require a definition from (Anthony et al., 1995) before stating the next lemma.

Definition 5.10 Let ¢ be a linear threshold function over {0,1}". We say that c
is consistent with a set S = {(z%,b1), (2?,by), ..., (™, by)} of labeled examples if
c(z¥) = b; for all i. The set S is said to specify c if ¢ is the only linear threshold
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function over {0, 1}" which is consistent with S; we say that such a set is a specifying
set for c. The specification number of ¢, denoted o,(c), is the smallest size of any

specifying set for c.
The following results are proved in (Anthony et al., 1995):
Lemma 5.11

1. Every linear threshold function ¢ over {0,1}" has a unique specifying set of size

on(c).
2. Ifce NF, then o,(c) =n+ 1.

3. Let ¢t (x1,...,2q_1) denote c(x1,...,Tn_1,1) and let ¢ (x1,...,2,_1) denote

c(x1y...,2n-1,0). Then
Un(c) S O'nfl(CT) + o'nfl(ch)-

4. If ¢ is a linear threshold function over {0,1}"™ which depends only on coordinates

1,2,...,k, then the specification number of c is
on(c) =

We use Lemma 5.11 to show that the function g,, defined below has a small specifying

set.

Lemma 5.12 Let n be even and let g, be the Boolean threshold function represented

by

1
T+ 239 +day 4+ 2" 2ay  + (2" P+ Doy >4+ 16+ 420 4270 5
Then on(gn) < 5n — 8.

Proof: The function g, | is represented by

1
T+ 20y ATy 2y 2 A4 164+ 27T
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It is straightforward to verify that this is precisely the nested function
(...(:c1Vx2) /\333) V£E4)...)/\.Tn_1

on n — 1 variables. By Part 2 of Lemma 5.11, we have that o,,_1(g, {) = n.

The function g, 1 is represented by
n—2 n—4 1
Again, one can easily verify that this is precisely the nested function
(. .. ($3 V $4) A LL‘5) V .736) .. ) A l‘n_g) V xn_g) V Tp—1

on the n — 3 variables x3,...,x,_1; in this nested function the Boolean connectives
alternate between V and A until the very end, where two consecutive V’s occur. Since
gn T does not depend on the two variables 1, x5, parts 4 and 2 of Lemma 5.11 imply
that o, 1(g, 1) = 40, 3(g. 1) = 4(n — 2). It follows from part 3 of Lemma 5.11 that
on(gn) < b5n — 8. n

One more lemma is required. We prove that the coefficients of z,,_; and z,, in any

representation of g, must be almost, but not exactly, equal.

Lemma 5.13 Let n be even and let g, be defined as in Lemma 5.12. Let v -x > 6

represent g,. Then v, | < v, < v, 1 + vs.

Proof: Let e; denote the Boolean vector whose j-th coordinate is 1 and all of whose
other coordinates are 0. Let a = es +e5+e7+---+ e,—1. Since g,(a) = 0, it follows
that v3 +v5 + -+ 4+ v,_1 < 6. On the other hand, let b =e3s +e5+---+ €,_3 + €,.
Since g,(b) = 1, it follows that v3 + vs + - - - + v, 3 + v, > 6. Combining these two
inequalities we find that v, > v,_1.

To see that v, cannot be much greater than v,,_1, let c=e; +e5+e;+e9+---+
en_3 + e,. Since g,(c) = 0, we have vy +vs + -« -+ vp_3 + v, < 6. On the other hand,
let d =e; +e3+ -+ ey_1. Since g,(d) = 1, we have that v; +vs + -+ v,_1 > 6.
Combining these two inequalities, we find that v, < v,_1 + vs, and the lemma is

proved. [ |
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Proof of Theorem 5.8: We first prove the theorem for the restricted case in which
we assume that w! = (1,...,1). After proving this case we will show how this as-
sumption can be eliminated.

Fix a > 1 and € > 0. Let S denote the specifying set for the threshold function
gn; we know from Lemma 5.12 that S| < 5n—8. Let D be the distribution on {0,1}"

which is uniform on S and gives zero weight to vectors outside of S. We will show that

1

with g, as the target concept, D as the distribution over examples, and € =

as
the error parameter, Winnow((1,...,1), a, #) cannot achieve a hypothesis h(z) which
satisfies Prp[h(z) # c(2)] < € in poly(n, 1) = poly(n) steps. To see this, note first
that by our choice of € and D, any threshold function w - z > 6 which is e-accurate
with respect to g, must be consistent with S. (This technique was first used in (Pitt
and Valiant, 1988).) Since S is a specifying set for g,,, though, if w-x > 6 is consistent
with S then it must in fact agree exactly with g,. We will show that there is no value
of a which would enable Winnow to generate a vector w such that w-x > € represents
gn(z) in poly(n) steps.

Let (w, #) be such that Winnow generates w and w -z > 6 represents g,(x). Since

gn | is precisely the nested function f,_; of Lemma 5.9 and w is positive, by Lemma

5.9 we have that w,_; > F,_,ws. Combining this with Lemma 5.13, we obtain

Wy, 1 1
1< <1+ =1+ .
Wp—1 Fo 4 Q(¢")
Since we assumed that w’ = (1,...,1), and every example for Winnow lies in {0, 1}",

1
Qo)
But then (n¢™) update steps are required to achieve w,_; > F,,_4ws3; consequently,

it follows that s = o’ for some positive integer j, and hence that o = 1 +

no hypothesis consistent with g, can be achieved in poly(n) steps.
Now we consider the case of an arbitrary positive start vector w!; so fix some
positive w!, o > 1, and § > 0. We assume without loss of generality that w! < wi <
... < wl, since if this is not already the case renaming variables will make it so. Since
all examples for Winnow are in {0,1}", at every point in the execution of Winnow
the ratio of weights w; and w; must be w’j - ¢ for some integer c. If there is no integer

w]
1, such that

I

w .
1< —=—-a" <1+ :
n—1 F%*4
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then Winnow can never achieve a hypothesis which represents the threshold function
gn(z), and thus can never achieve e-accuracy; so we assume that such an i; exists.

Similarly, if there is no integer iy such that

I
w,,_ .

1< "0 <1+
wn

)
Fn—4

then there is a threshold function which Winnow can never express (g, with variables
permuted), so such an i, must exist as well. Taking the product of these inequalities
we find that

1 <ahtti < (1 + )2.
n—4

2
Since i; + i, must be a positive integer, this implies that a < (1 + %_4) . Now

consider a threshold function which requires that w; > F,, 4w, (again, g, with a

2
permutation on the variables is such a function). Since w! < w! and o < (1 + F174) ;
it follows that Q(n¢") update steps will be required, so no consistent hypothesis can

be achieved in polynomial time. (Theorem 5.8) W

As an easy consequence of this proof, we note that the example sequence which

simply cycles through S will force Winnow to make exponentially many mistakes on

In-

5.3.1 A General PAC Lower Bound for Winnow

The construction of Theorem 5.8 can be used to show that Corollary 5.4 is tight for
Winnow up to polynomial factors. For even values k& < n let g* be the function g
over variables xy, ..., z; which we view as belonging to a larger variable set z, ..., x,.
Consider again the construction of Theorem 5.8, but using g¥ in place of g, and taking
every example z which has nonzero weight under D to have 5,1 = --- =1z, = 0. The
construction goes through as before, and we find that Winnow requires Q(k¢*) steps
to PAC learn g¥. It is easily seen that the following lemma implies that there exist w, 6

such that w -z > 6 represents g¥ and each w; is an integer with Y7 |w;| = ©(¢*) :

Lemma 5.14 Let g, be as defined in Lemma 5.12. Then there exist w,0 such that

w - x > 0 represents g, and each w; is an integer with Y7 |w;| = O(4").
Proof: Let w, # be defined as follows:

68



e w; =1/4 and wy = 1/4;

e for 3 <¢ < n—1w; =F;_; where F} is the j-th Fibonacci number as defined

in Lemma 5.9;
e w,=F, o+1/4and 0 = F,_; — 3/4.

Let h, be the linear threshold function h, : {0,1}" — {—1,1} which is represented
by the above w,f. It is straightforward to verify that h, | computes precisely the
function

((371\/£172)/\.’E3) V.T4)...)/\.’L'n_1.

It is also straightforward to verify that h, T computes precisely the function
(. .. (.Ig V £C4) A SE5) V $6) .. ) A $n_3) V fEn_g) \% Tp—1-

By Lemma 5.12 this implies that h, and g, are identical on all of {0,1}". By mul-
tiplying each w; and € by 4 we obtain a linear threshold function with all integer

coefficients which satisfies 7', |w;| = ©(¢"). u
We thus have the following result which is complementary to Corollary 5.4.

Corollary 5.15 The Winnow algorithm, used as a PAC learning algorithm for the
class Cy, must run for Q(W logW) time steps.

5.4 Perceptron is Slow under Uniform Distribu-

tions

In the construction just presented the “hard” distribution for Winnow depends on the
target linear threshold function. In this section we show that a single natural distri-
bution (the uniform distribution over {0,1}") can thwart the Perceptron algorithm.
A very simple argument suffices to establish this result. We require the following

definition:

Definition 5.16 The weight complexity of a linear threshold function f over {0,1}"
15 the smallest natural number t such that f can be represented as w-x > 0 with each

w; and 6 an integer and maz{|w:|, ..., |w,|, 0|} < t.
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Theorem 5.17 The Perceptron algorithm is not an efficient PAC learning algorithm

for the class of linear threshold functions under the uniform distribution on {0, 1}".

Proof: We take ¢ =
the target concept since misclassification of a single example would imply an error

rate under the uniform distribution of at least 5= > e. Hastad (Hastad, 1994) has

2%+1’ so any e-accurate hypothesis must agree exactly with

constructed a Boolean threshold function which has weight complexity 24™18™)  If we
take this as our target concept, then it follows that at least 2%"1°6™) ypdate steps must
be performed by the Perceptron algorithm in order to achieve exact identification since
Perceptron hypothesis weights are always integral and each weight is increased by at
most 1 during each Perceptron update step. But the amount of computation time
which a PAC learning algorithm is allowed is only poly(n, 1) = poly(n, 2") = 2°™) . m

€

5.5 Perceptron is Fast for Nested Functions under

Uniform Distributions

In this section we establish a sufficient condition for a class of threshold functions to
be efficiently learnable by Perceptron under the uniform distribution on {0,1}". We
prove that nested functions satisfy this condition and thus obtain the main result of
this section. This complements Schmitt’s result that the Perceptron algorithm cannot

efficiently PAC learn nested functions under arbitrary distributions.

Definition 5.18 Let G, be a collection of hyperplanes in R". A family G = Up>1G,
of hyperplanes is said to be gradual if there is some constant ¢ > 0 such that the
following condition holds: for every T > 0, every n > 1 and every hyperplane in G,
at most ct2™ Boolean examples x € {0,1}" lie within Euclidean distance T of the
hyperplane. A class of linear threshold functions F over {0,1}" is said to be gradual
iof there is a mapping ¢ : F' — G, where G is a gradual family of hyperplanes, such
that for all f € F, if o(f) is the hyperplane w-x = 0, then (w, 8) represents the linear
threshold function f.

Lemma 5.19 Nested functions can be represented by gradual linear threshold func-

tions over {0,1}".
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Proof: We use the representation established in Lemma 5.7. Let f € NF,, and let
w-x > 0 be a linear threshold function which represents f with w; = £2'~! and
0 = k + % for some integer k. For z € {0,1}", if w -z = ¢ then ¢ must be an integer,
but since every integer has a unique binary representation, at most one x € {0,1}"
can satisfy w - x = t for any given value of ¢. Consequently, no example z € {0,1}"

can have |w-z — 6| < 3, and
Hzx € {0,1}" : jw-2z— 0] <m}| <2m+1

for m > Z. Since the distance from a point 2’ to the hyperplane w -z = 6 is |jw|| * -

lw - 2’ — 6], the lemma follows by noting that we have ||| = (*5+)/?=0(2"). =

This lemma ensures that relatively few points can lie close to to the separating
hyperplane for a nested function; consequently, as we run Perceptron, most of the
updates will cause the algorithm to make significant progress, and it will achieve

e-accuracy in polynomial time. The following theorem formalizes this intuition:

Theorem 5.20 If C is a gradual class of linear threshold functions over {0,1}" then

the Perceptron is a PAC learning algorithm for C under the uniform distribution on

(0,1},

Proof: The proof is similar to the proof of Theorem 1 in (Baum, 1990). Let w-z > 6
be a linear threshold function which represents c. We assume without loss of generality
that w, # have been normalized, i.e. ||w|| = 1, so |w-xz—#| is the distance from z to the
hyperplane. By Definition 5.18, there is some constant k such that for all 7 > 0, the
probability that a random example drawn uniformly from {0, 1}" is within distance
7 of the hyperplane w - x = 6 is at most 7/2k. Letting 7 = ke, we have that with
probability at most €/2 a random example drawn from {0, 1}" is within distance ke
of the hyperplane. Let B € {0,1}" be the set of examples x which lie within distance
ke of the hyperplane, so Prjx € B] < ¢/2.

Let (wy, 6;) represent the Perceptron algorithm’s hypothesis after ¢ updates have
been made. If (wy,6;) is not yet e-accurate, then with probability at most 1/2 the
next example which causes an update will be in B. Consider the following potential
function:

Ni() = |low — wy|* + (ab — 6,)*.
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Recalling the Perceptron update rule, we see that N 1(a) — Ny() is

AN(a) = Niy— N,
= |law — w1 | + (@ — 0141)% — |law — wy]|* — (af — 6;)?
= Fow-z + 200 & 2w F 20, + ||z]|* + 1
< 20A+2(wpx—6;) +n+1

Here A = F(w - x — ) and the top (bottom) sign in each + and 7 is in effect if the
(t41)-st update is due to a false positive (false negative) example. The last inequality
above holds because ||z|| < /n for all x € {0,1}". Since x was misclassified, we know
that +(wyz —6;) < 0, and hence AN (a) < 2aA+n+1. It is easy to see that if x € B
then A <0 and if x ¢ B then A < —ke. As a result, AN(a) <n—+1 for x € B, and
AN(a) < n+1— 2kea for z ¢ B.

Suppose that during the course of its execution the Perceptron algorithm has
made r updates on examples in B and s updates on examples outside B. Since (w, )
have been normalized we may assume that || < \/n, and hence Ny(a) < o?(n + 1).

Since Ny(«) must always be nonnegative, it follows that

0<7r(n+1)+s(n+1-2kea)+a?(n+1).

12(n+1)
5ke

If we set a = , then simplifying the above inequality we obtain

19 144(n + 1)

0<r——
ST T ke
from which it follows that if m; = 14245(&;12)2 updates have been made, at least 7/12 of

the updates must have been on examples in B.

Let m = max{144InZ,m;} and consider running the Perceptron algorithm for
2m/e examples. Let hiy, hs,... denote the hypotheses which are generated by the
Perceptron algorithm during the course of its execution on these 2m/e examples. We

have that

Pr[each h; has error >¢] = Pr[(each h; has error > ¢€) &

(fewer than m updates take place)] +
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Pr[(each h; has error > ¢€) &
at least m updates take place)]
< Pr[(fewer than m updates take place) |

(

(

(each h; has error > €)] +
Pr[(at least m updates take place) |
(

each h; has error > ¢)].

To bound the first of these conditional probabilities, we note that conditioned on the
event that each h; has error at least €, the expected number of updates is at least
2m. A straighforward Chernoff bound shows that this first conditional probability is
at most §/2. To bound the second conditional probability, we note that

Pr[(at least m updates take place) | (each h; has error > ¢)]
< Pr[(at least 7/12 of the m updates are on examples in B) |

(each h; has error > €)].

However, as noted earlier if each h; has error at least ¢, then for each update the
probability that the update is in B is at most 1/2. Another application of Chernoff
bounds shows that the above probability is at most §/2, and hence the theorem is
proved. [ |

As an immediate corollary of Theorem 5.20, we have that the Perceptron is a PAC

learning algorithm for the class of nested functions under the uniform distribution on

(0,1},
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Chapter 6

Learing Origin-Centered
Halfspaces under the Uniform

Distribution

In the last chapter we were chiefly concerned with the broad distinction between poly-
nomial and superpolynomial running time for the Perceptron and Winnow algorithms
in various PAC model learning scenarios. Now we narrow our focus yet again and give
a detailed running time analysis of a new algorithm for a restricted halfspace learning
problem. The problem we consider is learning an unknown linear threshold function
with threshold # = 0 (also known as an origin-centered halfspace) under the uniform
distribution on the unit sphere in R"; to compensate for the rather specific nature
of this problem we require our learning algorithm to succeed in a fairly demanding
noise model. We show that our new algorithm is significantly faster than several
previous algorithms which have been considered for this problem. Our approach to
this problem, which is extremely simple, introduces a geometric averaging technique

which we generalize and extend significantly in the next chapter.

6.1 Introduction

6.1.1 Previous Work

The problem of learning an unknown origin-centered halfspace in R" given access to

examples drawn uniformly from the unit sphere has been the subject of considerable
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research (Baum, 1990; Baum and Lyuu, 1991; Gardner and Derrida, 1989; Kearns,
1998; Long, 1994; Long, 1995; Opper and Haussler, 1991; Seung et al., 1992). While
this problem may appear to be significantly easier than the general problem of learn-
ing an arbitrary halfspace under an arbitrary distribution, Long has shown that any
algorithm for this problem must use at least (%) examples to learn to accuracy e
(Long, 1995). Since the general halfspace learning problem can be efficiently solved to
accuracy € using O(%) examples (Blumer et al., 1989), the two problems are not sig-
nificantly different in terms of sample complexity. Long has also shown (Long, 1994)
that by applying Vaidya’s polynomial time linear programming algorithm (Vaidya,
1989) using O(n*3%) time matrix multiplication as a subroutine (Coppersmith and
Winograd, 1987) it is possible to learn to accuracy € in O(@ +n338) time steps using
O(%) examples.! Baum has shown that the Perceptron algorithm learns to accuracy
€ using ON(%) examples and running in time O(’:—j) (Baum, 1990). These results of
Long and Baum hold in a noise-free setting in which it is assumed that the learning
algorithm never receives an example which has been labeled incorrectly.

Angluin and Laird introduced the classification noise model in which the label
of each example given to the learner is randomly and independently flipped with
probability 7 (Angluin and Laird, 1988). Kearns gave a simple statistical query
based algorithm for learning origin-centered halfspaces under the uniform distribu-
tion in the presence of classification noise (Kearns, 1998). His algorithm requires
O(ﬁ) examples and runs in time O(ﬁ) Blum et al. (Blum et al., 1997)
and Cohen (Cohen, 1997) have given polynomial-time algorithms for learning an arbi-
trary halfspace in the presence of classification noise under an arbitrary distribution.
Their algorithms have time complexity at least O(ﬁ), though, and hence are
not particularly efficient for the uniform distribution problem.

An even more challenging noise model was proposed by Bylander, who introduced
the notion of monotonic noise for halfspaces (Bylander, 1998a). In this model the
probability that an example is labelled incorrectly decreases with the distance of
the example from the separating hyperplane; this captures the intuition that exam-

ples closer to the decision boundary are harder to label correctly. Bylander gave a

Tn all of the results which we discuss here, as well as in our own results, we adopt the convention
that performing a single arithmetic operation such as multiplication or comparison on a pair of real
numbers takes one time step.
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variant of the Perceptron algorithm which, for certain distributions, learns an un-
known halfspace even in the presence of monotonic noise. Under the uniform distri-

. . . - . . Y 3 . .
bution his monotonic noise algorithm requires 0(64(1717217)4) examples and runs in time
5

O (awiz)-

6.1.2 A New Algorithm

We give a new algorithm which learns origin-centered halfspaces under the uniform
distribution on the unit sphere. In the presence of monotonic or classification noise
our algorithm requires O(m) examples and runs in time O(ﬁ) Our algo-
rithm thus improves on the time and sample complexity of previous algorithms in the
classification noise and monotonic noise models, improves on the time complexity of
the Perceptron algorithm in the noise-free setting, and is incomparable to (but much
simpler than) Long’s algorithm in the noise free setting.

The new algorithm is extremely simple: it averages a set of labeled examples to
obtain a hypothesis vector. The algorithm thus learns using the same hypothesis class

(linear threshold functions) as the earlier algorithms mentioned above.

6.2 Preliminaries

Here we provide some useful definitions and probability facts. We denote the n-

dimensional unit sphere by
Sl={zeR": |z =1}

(note that S"! lies in R™ and not in K" 1). An origin-centered halfspace over S™
is a function from S™! to {—1,1} which is defined by a nonzero vector u € R"; the
value of u(z) is lifu-z >0andis —1ifu-z <O0.

In Bylander’s demanding monotonic noise model, examples closer to the decision
boundary are more likely to be mislabeled. In this model the learning algorithm
cannot access the noise-free oracle FX but instead must use the monotonic noise
oracle EX],; where 0 < n < 1/2 is a fixed noise rate. Given a halfspace defined
by a unit vector v € S™ !, the monotonic noise oracle EX},y(u,D) is defined as

follows: the oracle first draws an example = according to D and then flips a biased
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Input: example oracle M X
integer t > 0

Output: vector v

1. for:=1totdo
2. Draw (z*,b;) from MX
3. returnv=1X!_, bz’

Figure 6.1: The Average algorithm.

coin with Prfheads| = 7j(|u - z|). The oracle outputs (x, —u(z)) if the coin comes up
heads and outputs {z,u(x)) if it comes up tails. The function 7 : [0, 1] — [0, 1] can be
any nonincreasing function such that the overall probability that the oracle returns
a mislabelled example is 7. Note that the classification noise model is obtained when
7(-) is restricted to be the constant function 7, and the original noise-free model is
obtained when 7 = 0. As in the standard PAC model the learner’s goal is to output
a hypothesis h which with probability at least 1 — § has Pryeplh(z) # u(z)] < ¢, but
now the learner is given access to EX},y(u, D), €,6, and 7, and the learner is allowed
11 1

) .
<55, and T The dependence on T3, s necessary because

there is less and less information in the labeling of each example as n approaches 1/2.

time polynomial in n,

Now we give some useful probability facts. We let U,_; denote the uniform distri-
bution on S™~ 1. If u € S"~! represents the target halfspace and v € S™"~! represents
a hypothesis halfspace, then Prye, _,[v(x) # u(z)], the error of v with respect to u
under U,,_1, is the fraction of S ! which lies in the symmetric difference of the two
halfspaces. This is easily seen to be 6(u,v)/m, where 6(u,v) = arccos(u - v) is the
angle between u and v.

Let A,_; denote the surface area of the unit sphere S™~!. It is known (see, e.g.,
(Baum, 1990)) that A,_; = 27™/2/T'(n/2), where T is the classical gamma func-
tion. Using basic properties of the gamma function (Artin, 1964) one can show that
An_9/A,_ 1 = 0O(n'/?). For n > 3, if u € S is fixed, then as noted in (Baum, 1990)

we have

Pr [o<u-z<f]= An- -/ﬁ(\/l—z?)n_sdz.

TEUH_1 A -1
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6.3 The Algorithm

Throughout the rest of this chapter u denotes the unit vector in 1" which represents
the target halfspace and M X denotes the monotonic example oracle EX], v (u, Up_1).
The learning algorithm we consider, called Average, is given in Figure 6.1. It is clear

that Average(M X, t) uses t examples and runs in time ©(nt).

6.3.1 Comparison of Average and Perceptron

It is interesting to note that the Average algorithm is very similar to the Perceptron
algorithm. The only difference betwen the two algorithms, in fact, is that Perceptron
is conservative, i.e., it only updates its current hypothesis v on an example if v
predicts incorrectly on that example. The Average algorithm, on the other hand,
can be viewed as performing an update on every example. Baum has shown that
in the absence of noise the Perceptron algorithm achieves an e-accurate hypothesis
with high probability after O(n/€?) updates (Baum, 1990). Once the Perceptron
hypothesis has achieved ©(e€) accuracy, though, an expected ©(1/¢) examples are
required to generate a single example which will cause an update, and hence O(n/e3)
examples are required overall. We prove in Section 6.4 that in the absence of noise
the Average algorithm requires O(n/e?) updates. However, since Average performs
an update on every example, it needs only O(n/e?) examples in total. This difference
between the two algorithms appears to be a real one and not just an artifact of the
analysis. Figure 6.3(a) graphs the error rates of the two algorithms as a function of
the number of examples used. It is clear from this graph that Perceptron requires far
more examples than Average to achieve a given error rate.

Another difference between the two algorithms is their ability to tolerate noise. We
prove in Section 6.4 that Average can achieve an arbitrarily accurate hypothesis even
in the presence of monotonic noise. No such guarantees are known for Perceptron,
and it seems likely that none can be given: Figure 6.3(b) graphs the error rates
of the two algorithms when run using examples with a classification noise rate of
1n = 0.10. One possible explanation for Perceptron’s inability to achieve a low error
rate is the following: Initially Perceptron’s error rate decreases (see Figure 6.3(b)).
Once the error rate dips below a certain level, though, the algorithm performs most

of its updates on mislabeled examples. Performing these “bad” updates then causes
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bl.’L‘ bt.’B

Figure 6.2: An execution of the Average algorithm.

In the noise-free case each point b;z’ lies above the target hyperplane defined by the
¢

vector u. Here v is the vector average of biz!, ..., bat.
the hypothesis to become less accurate, though, so the error rate increases again.
In contrast, since Average updates on every example (and most examples are not

mislabeled since 1 < 1/2), its error rate continues to decrease.

6.3.2 Why Average Works

The idea underlying the Average algorithm is very simple. If there were no noise
in the labeling of the examples, then for each labeled example (z,b) it would be the
case that u - (bz) > 0. Furthermore, since the distribution of z is uniform on the unit
sphere, the distribution of bz would be symmetrical around the vector u, and hence
the expected value of bx would be a vector which points precisely in the direction of
u (see Figure 6.2). In fact, even in the presence of monotonic noise at a noise rate of
n < 1/2, it is still the case that E[bz] is a vector which points precisely in the direction
of u (recall that for an example z, the probability that z is corrupted by monotonic
noise depends only on |u - z|). Thus, if we can approximate E[bz] we can find an
accurate hypothesis; the Average algorithm simply uses sampling to approximate the
expected value of bzx.

The analysis of the algorithm consists of proving that for a suitable value of ¢,
the angle between u and v (and hence the error of the hypothesis v) does not deviate
very much from zero. We do this in two phases: in Section 6.4.1 we show that with

high probability the vector v will have a large component lying in the direction of
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u, and in Section 6.4.2 we prove that with high probability v will have only a small
component which is orthogonal to u. Finally, in Section 6.4.3, we combine these results

to complete the proof.

6.4 Analyzing the Average Algorithm

6.4.1 A Large Parallel Component

Our first lemma is a lower bound on the expectation of u - (bx). We use this bound

later to prove the main result of this subsection.

Lemma 6.2 Let (x,b) be obtained by querying M X. Then we have that

1—-2n
Proof: Let 7 be the monotonic noise function. We first show that Flu - (bx)] =

Q(L2) if ) is the constant function 7. If this is the case then for each 2 € S™™! we

have that Pr[b = u(z)] =1 —n and Pr[b # u(z)] = 7, so

j:_i ./01(1 —2n)z (\/@)ni3 dz

. Q((l — on)nt/? /0 S (vi—=2)"" dz)

n—1/2
= Q ((1 - 2n)n1/2/ z dz)
0
1—-2n
Q( nl/? ) '
The second equality holds because the integrand is never negative, and the third

equality holds since (v/1 — 22)"3 = ©(1) for 0 < z < n~'/2,

We now show that E[u - (bx)] is minimized when 7j(-) is the constant function 7.

Elu- (bz)] = 2

Since

Elu- (bx)]=2-
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it suffices to prove that
1 n— 1 n—
/ n(z)z - (\/1 — 22) *dz < / nz - (\/1 — 22) *dz (6.1)
0 0

for any function 7 which satisfies the conditions of monotonic noise. Since the overall

probability that b # u(x) is 1, we have

A, 1 n—
An—i -/0 (\/1 — z2) 3dz

A ./01 A(2) (\/ﬁ)n*3 dz.

n—1

n = 2n-

I
b
o

This implies that for all 0 < g <1,

[ a@=m (A=)t = [t (T=2)"" .

Now let us choose § such that 7(z) > nfor 0 < z < fand 7(z) < npfor f <z < 1.
Such a # must exist because 7 is a nonincreasing function and the overall probability

of misclassification is 7. We then have

[z 6@ - (VI=2) e < [5G -m (VI=2)" "
= [ 8- m-i(e) (V=) s
< [z i) (Vi) e

This implies inequality (6.1), so we have shown that Efu - (bz)] = Q(+L7¢) for any

monotonic noise function 7. [ |

Now we prove the main result of this section, which establishes that the output
of Average(M X, t) will with high probability have a substantial component in the

direction of u.

Lemma 6.3 Let v = Average(M X, t). Then there is some value t = @(ﬁ) such

that
1-2
U'U=Q<7n)

nl/2
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with probability at least 1 — §/2.

Proof: Since u - v is % times a sum of ¢ independent random variables, each of which

lies in [—1, 1], we can use Hoeffding’s tail bound to obtain

—t(Elu- v])2> .

1
Pr u-vgiE[u-v]]SQ-exp( 3

By linearity of expectation and Lemma 6.2 we have that

E[u-v]zﬂ(%).

Hence in order to bound the above probability by /2, it suffices to take

=00 ap) =0 (amp)

6.4.2 A Small Orthogonal Component

Now we must show that with high probability the component of v which is orthogonal
to u is not very large. The following lemma shows that with high probability a
random flight in R™ which proceeds for ¢ steps will end up at most a distance of
(approximately) t'/2 away from its starting point. We will use this lemma to prove

our desired upper bound.

Lemma 6.4 Let z',..., 2" be independently drawn from U,_,. Then with probability

at least 1 — §/2 we have
¢

>

i=1

= O(t'?).

Proof: Consider a fixed coordinate j € {1,...,n}. Since °j_, z’ is a sum of inde-
pendent random variables each of which lies in the range [—1, 1], we could simply
apply Hoeflding’s tail bound to obtain a bound on the probability that Zle :v; de-
viates significantly from its expected value of zero. This straightforward approach,
however, yields a weaker final bound than one which we can obtain with a little ad-

ditional work by using conditional probabilities and expectations. By conditioning
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on the magnitude of each xj-, we can replace [—1, 1] with a much smaller interval and
thereby obtain a tighter bound.
For any fixed coordinate j € {1,...,n} and any o > 0, we have that

_ An_g 1 R n—3
w65571[|xj|2a] B 2.An_1 ./a ( L=z ) dz

< 2. a2 (viz )t

- Anfl

Consequently for o = w(log"/?(tn/8)/n'/?), we have
Pr[|z;| > a] < 0
= 4tn’

Let C denote the event that |z!| < a for 1 <4 <t (so Pr[C] > 1 — §/4n by the union

bound). Since by symmetry we have E[Y!_, !

i=1 75 | C] = 0, we can apply Hoeffding’s

tail bound to obtain the following: for any v > 0,

—t?
P > cl<2. )
T l v | ] < 2-exp ( 507 )

Taking o = ©(n~"/?) and v = O((nt)~'/?), this probability can be bounded by &/4n.
Since Pr[C] > 1 — §/4n, this implies that with probability at least 1 — §/2n we have

(&) =06

Using the union bound over zi, ..., z,, we find that with probability at least 1 — §/2

1. .
— Z_
t;%

we have
t 2 t 2
(at) o (3at) =0t
i=1 '
which proves the lemma. [ |

Now we use Lemma 6.4 to give an upper bound on the magnitude of the component

of v which is orthogonal to u.

Lemma 6.5 Let v = Average(M X,t) and let v' be the component of v which is
orthogonal to u (i.e. v' = v — (u-v)u). Then with probability at least 1 — §/2 we have
that

18]I = O(2).
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Proof: Without loss of generality we can suppose that the target vector w is (1,0, .. .,0),
so our goal is to bound

(v + -+ v5).

Recall that tv = Y¢_, b;z®. Since each z° is drawn from U,,_;, the distribution of each
% is symmetric around 0. For any i € {1,...,t} and j € {2,...,n} the distribution
of b; is independent of the distribution of acj-, so we have that the distribution of b,x;
is identical to that of xj-, and hence the distribution of ¥_¢_, bzx; is identical to that

of ¥¢_, % for j = 2,...,n. Since

t 2
tzvf- = (Z bzx;)
i=1

for j =2,...,n, the distribution of t*(v3 + - - - + v2) is identical to that of

(£) o (52)

Lemma 6.4 implies that
t 2 t 2
<Zx’2> 4+ (Z%) =0(t)
i=1 i=1

with probability at least 1 — 6/2, so the lemma is proved. [ |

6.4.3 Putting it All Together

We have almost reached our goal. By Lemma 6.3, if we take ¢ sufficiently large, then

with probability at least 1 — /2 we have

1—-2
u-v:Q(J).

nl/2

On the other hand, Lemma 6.5 tells us that

[t']| = O('/?)
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with probability at least 1 — /2. Consequently, with probability 1 — § we have

! N 1/2
YR
U-v t1/2(1 — 2n)

Note that |[v'||/(u - v) is the tangent of 6(u,v), the angle between v and v. Also, as

mentioned in Section 6.2, the error of v under U, 1, which we denote by error(v), is

6(u,v)/m. Consequently, with probability 1 —  we have

_ ! <||U'||)
error(v) = —-arctan
7r u-v
_
-~ (u-v)-m

_ 5 nl/2
= Y\ora—ay)
(the inequality holds because arctan(z) < x for z > 0). By choosing ¢t = é(m)

we can satisfy all of the required conditions and obtain error(v) < e. Thus, we have

proved the following theorem:

Theorem 6.6 For some value of t = (:)(W), the algorithm Average(MX,t)
is a PAC learning algorithm for the class of origin-centered halfspaces under U, 4
which uses (:)(W) examples and runs in é(ﬁ) time steps in the presence

of monotonic noise.
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Figure 6.3: A performance comparison of Average and Perceptron.

Part (a) shows the error rates of Average and Perceptron on noise-free examples
drawn from U,_; with n = 100. Part (b) shows the error rates of Average and
Perceptron on examples drawn from U,_; with n = 100 and a classification noise
rate of n = 0.10. Each plot represents an average of 100 independent runs of each
algorithm.

86



Chapter 7

PAC Analogues of Perceptron and

Winnow via Boosting the Margin

In Chapter 6 we saw that a simple geometric averaging technique can be used to
obtain a surprisingly effective algorithm for learning origin-centered halfspaces under
the uniform distribution. We now extend this averaging approach to obtain a new
family of algorithms for learning linear threshold functions under much more general
conditions. The new algorithms work by combining a generalized version of the
Average algorithm with a powerful and well-studied learning theory technique known
as boosting. We prove performance guarantees for our new algorithms which are
remarkably similar to known bounds for online linear threshold learning algorithms
including Perceptron and Winnow. This similarity strongly suggests that these well-

studied online algorithms in some sense correspond to instances of boosting.

7.1 Introduction

7.1.1 The Average Algorithm Revisited

Recall that the Average algorithm described in Chapter 6 works in a very simple way.
The first step of the algorithm is to draw a set of labeled examples and normalize each
negative example by reflecting it through the origin. The algorithm then computes
the geometric average of the positive examples and uses that average vector as the
hypothesis linear threshold function. We saw that this simple algorithm is successful

when the target concept is an origin-centered halfspace and the examples used for
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/ 'Z‘l

! v = (53 _277—)

Figure 7.1: A worst-case data set for the Average algorithm.

The target concept is defined by the halfspace x; > 0. The distribution D places
weight % — 7 on the positive example (J,7) and places weight % + v on the positive
example (6, —7) where 7 is a positive value satisfying v > §2/(272). The average
vector under this distribution is v = (§, —2vy7) which has error % — v under D.

learning are drawn uniformly from the origin-centered unit sphere in ". The proof
of correctness in Chapter 6 depends crucially on the symmetry of the uniform dis-
tribution which ensures that the average vector will tend to point in the exact same
direction as the normal vector to the separating hyperplane.

A natural question is the following: what can be said about the performance of the
Average algorithm if it is run under a nonuniform distribution? A moment’s thought
shows that the average vector under a nonuniform distribution need not point in the
same direction as the vector corresponding to the target halfspace; moreover, even a
slight deviation from this target vector can cause the resulting hypothesis to have a
high error rate. Figure 7.1 gives an example of a distribution over 2 for which the
average vector points in nearly the same direction as the target vector, but the error

rate of the average vector hypothesis is almost 50%.
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7.1.2 The Average Algorithm Redeemed

The example of Figure 7.1 suggests that the Average algorithm can perform quite
poorly for nonuniform distributions. However, we will see that in fact the Average al-
gorithm can be used as the key component in an algorithm for learning linear threshold
functions under nonuniform distributions. The example given in Figure 7.1 actually
represents a worst-case scenario for the Average algorithm: as we show in Section
7.3, under suitable conditions the Average algorithm has the crucial property that
the error rate of its hypothesis will be less than 1/2 for any probability distribution.

Algorithms which have this guarantee of outperforming a “random guess” are
known as weak learning algorithms. Such algorithms were first discussed by Kearns
and Valiant (Kearns and Valiant, 1994) and have since been studied intensively in
learning theory. We show in Section 7.4 that by applying methods from boosting, it
is possible to convert the Average algorithm into an effective, efficient algorithm for

learning linear threshold functions to arbitrary accuracy.

7.1.3 Boosting-Based Linear Threshold Learning Algorithms

While this approach of boosting the Average algorithm is conceptually and algo-
rithmically very different from the Perceptron algorithm, we establish performance
bounds for the new algorithm which are remarkably similar to the bounds given by
the Perceptron Convergence Theorem. We thus refer to our new boosting-based algo-
rithm as a PAC analogue of Perceptron. Furthermore, we show that a simple variant
of the Average algorithm can also be used as the weak learning component of a
boosting-based algorithm for linear threshold functions, and we prove that the per-
formance of this new algorithm is remarkably similar to that of Littlestone’s Winnow
algorithm. These similarities suggest a close relationship between boosting techniques
and the online Perceptron and Winnow algorithms.

We give a unified analysis of our Perceptron and Winnow analogues which includes
many other algorithms as well. Grove, Littlestone and Schuurmans (Grove et al.,
1997) have shown that Perceptron and (a version of) Winnow can be viewed as the
p = 2 and p — oo cases of a general online p-norm linear threshold learning algorithm,
where p > 2 is any real number. We present PAC-model boosting-based analogues of

these online p-norm algorithms for any value 2 < p < co. The PAC-model Perceptron
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and Winnow analogues mentioned above are respectively the p = 2 and p = oo cases
of this general algorithm.

The p = oo case of our algorithm can also be viewed as a generalization of Jack-
son and Craven’s PAC-model algorithm for learning “sparse perceptrons” (Jackson
and Craven, 1996). Their algorithm boosts using weak hypotheses which are single
Boolean literals; this is similar to what the p = oo case of our algorithm does. Our
analysis of the p = 0o case generalizes their algorithm to deal with real-valued rather
than Boolean input variables, thus achieving a goal stated by Jackson and Craven,
and also yields a substantially stronger sample complexity bound than was established

by Jackson and Craven.

7.1.4 Related Work

Several authors have previously studied linear threshold learning algorithms which
work by combining weak predictors. Freund and Schapire have studied an algorithm
which predicts using a weighted vote of the hypotheses which the Perceptron algo-
rithm generates during its training phase (Freund and Schapire, 1998). The weight
of each hypothesis in this vote is proportional to its survival time, i.e. the num-
ber of examples which elapse before it classifies an example incorrectly and causes
the Perceptron algorithm to generate a new hypothesis. Freund and Schapire prove
generalization error bounds on the resulting classifier which are similar to Vapnik’s
generalization error bounds for the “maximal margin” hyperplane (Vapnik, 1998).
The Freund-Schapire algorithm differs from our approach in several ways: for one
thing, their algorithm is unlike ours in that it does not use boosting to combine the
weak predictors. Additionally, whereas our algorithm’s final hypothesis is a single lin-
ear threshold function, their algorithm’s final hypothesis is a depth-2 threshold circuit
(a weighted vote over Perceptron hypotheses which are themselves linear threshold
functions).

Ji and Ma have suggested that a random-search-and-test approach can be used to
find weak classifier linear threshold functions for certain restricted halfspace learning
problems (Ji and Ma, 1997). They propose combining these weak classifier linear
threshold functions with a simple majority vote; thus, their approach also results in
a final hypothesis which is a depth 2 threshold circuit.

Our approach is closest to that of Jackson and Craven, who use boosting to
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combine single literals into a strong hypothesis linear threshold function. As we show
in Section 7.5, the p = oo case of our algorithm strengthens and generalizes their
results.

The close similarity in performance bounds between our boosting-based algorithms
and the online p-norm algorithms suggests a relationship between boosting and online
learning. Freund and Schapire (Freund and Schapire, 1996) and Schapire (Schapire,

1999a) have investigated this relationship in the context of game theory.

7.2 Preliminaries

7.2.1 Geometric Preliminaries

For a point z = (z1,...,2,) € " and p > 1 we write ||z||, to denote the p-norm of

n 1/P
lall, = (2 \xm) .
=1

x;|. For p,q > 1 the ¢g-norm is dual to the

x, namely

The oo-norm of z is ||z]|ec = max;—1,. ,
p-norm if % + % = 1; hence the 1-norm and the oco-norm are dual to each other and
the 2-norm is dual to itself. We use p and ¢ to denote dual norms. The following
facts are well known (e.g. (Taylor and Mann, 1972) pp. 203-204):

Holder Inequality: |u-v| < ||ul|,||v]|, for all u,v € R" and 1 < p < 0.
Minkowski Inequality: |u 4+ v||, < |[u|l, + ||v||, for all u,v € R” and 1 < p < o0.

Throughout this chapter the example space X is a subset of R". In this chapter
we consider only origin-centered linear threshold functions, i.e. f(z) = sign(u - z)
for some u € R". While the standard definition of a linear threshold function allows
a nonzero threshold (i.e. f(z) = sign(u -z — #) where 6 can be any real number),
it is easy to see that any linear threshold function of this more general form over
n variables is equivalent to a linear threshold function with threshold 0 over n + 1

variables, so our new definition incurs no real loss of generality.
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7.2.2 PAC Learning Linear Threshold Functions with Sepa-

ration

The mistake bounds for both the Perceptron and Winnow algorithms depend on
a “separation parameter” which gives a lower bound on the distance between any
example and the hyperplane which defines the target halfspace. Similarly, our new
algorithms also require that the examples used for learning must not lie too close to
the separating hyperplane. Thus we will consider a slightly restricted version of the
PAC learning model in which the domain of possible examples depends on the target
concept being learned.

For p > 2 and X C R™ we write || X||, to denote sup,.x ||z||,. For a target vector
u € R™ we use the symbol 4, x to denote the quantity

b inf (u- ) sign(u - ),

which is a measure of the separation between examples in X and the hyperplane
whose normal vector is u. We assume that || X||, < oo, i.e. the set X is bounded, and
that d, x > 0, i.e. there is some nonzero lower bound on the separation between the
hyperplane defined by u and the examples in X.

Let EX(u,D) denote an example oracle which, when queried, provides a labeled
example (x, sign(u - x)) where z is drawn according to the distribution D over X. We
say that an algorithm A is a strong learning algorithm for u on X if it satisfies the
following condition: there is a function m(e, d, u, X') such that for any distribution D
over X, forall0 < ¢,0 < 1, algorithm A makes at most m(e, d, u, X) calls to EX (u, D),
and with probability at least 1 — ¢ algorithm A outputs a hypothesis h: X — {-1,1}
such that Pryeplh(z) # sign(u - z)] < e. We say that such a hypothesis h is an
e-accurate hypothesis for u under D and that the function m(e, d, u, X) is the sample
complexity of algorithm A.

As our main result in this chapter we will describe a strong learning algorithm
and carefully analyze its sample complexity. To do this we must consider algorithms
which do not satisfy the strong learning property but are still capable of generating

hypotheses that have some slight advantage over random guessing; such algorithms
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are known as weak learning algorithms. Let
S = (x',sign(u-x)),..., (z™, sign(u - z™))

be a finite sequence of labeled examples from X and let D be a distribution over S.
For 0 < v < 1/2, we say that h : X — [—1,1] is a (1/2 — v)-approzimator for u under
D if

1 & ; ; . ; 1

5 Z._ZID(JEZ) - |h(z") — sign(u-z*)| < 5~ (7.1)
We say that an algorithm A is a (1/2 — v)-weak learning algorithm for u under D
if the following condition holds: for any finite set S as described above and any
distribution D on S, if A is given D and S as input then A outputs a hypothesis
h : X — [—1,1] which is a (1/2 — 7)-approximator for u under D. Thus for our
purposes a weak learning algorithm is one which can always find a hypothesis that

outperforms random guessing on a fixed sample.

7.2.3 The Online p-norm Algorithms

In the online learning model, learning takes place over a sequence of trials. Through-
out the learning process the learner maintains a hypothesis A which maps X to
{—1,1}. Each trial proceeds as follows: upon receiving an example x € X the learn-
ing algorithm outputs its prediction § = h(z) of the associated label y. The learning
algorithm is then given the true label y € {—1,1} and the algorithm can update its
hypothesis h based on this new information before the next trial begins. The perfor-
mance of an online learning algorithm on an example sequence is measured by the
number of prediction mistakes which the algorithm makes.

Grove, Littlestone and Schuurmans (Grove et al., 1997) and Gentile and Little-
stone (Gentile and Littlestone, 1999) have studied a family of online algorithms for
learning linear threshold functions (see Figure 1). We refer to this algorithm, which
is parameterized by a real value p > 2, as the online p-norm algorithm. Like the well-
known Perceptron algorithm, the online p-norm algorithm updates its hypothesis by
making an additive change to a weight vector z. However, as shown in steps 4-5 of

Figure 1, the p-norm algorithm does not use the z vector directly for prediction but
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Input: real number p > 2
initial weight vector 20 = (29,...,20) € R
real number a > 0

Output: hypothesis h(x)

1. sett=0

2. while examples are available do

3 get unlabeled example

4. for all i =1,...,n set w! = sign(z!)|z¢[P!

5. predict §; = sign(w’ - x")

6 get label y, € {—1,+1}

7 for alli=1,...,nset 2/™" = 2! + a(y; — ;)
8 sett=t+1

9. enddo

Figure 7.2: The online p-norm algorithm.

rather predicts using a vector w which is a transformed version of the z vector, namely
w; = sign(z;)|z;|P~! for all 4 = 1,...,n. Note that when p = 2 we have z = w and
hence the online 2-norm algorithm is identical to the Perceptron algorithm. Grove
et al. show that as p — oo the online p-norm algorithm approaches a version of the
Winnow algorithm. More precisely, the following theorem gives mistake bounds for

the online p-norm algorithms:

Theorem 7.2 (Grove et al., 1997) Let S = (z*,y1),..., (™, ym) be a sequence of
labeled examples where © € X and y = sign(u - z) for every example (x,y) € S.

(a) For any 2 < p < oo and any a > 0, if the online p-norm algorithm is invoked
with input parameters (p,2° = (0,...,0),a), then the mistake bound on the

example sequence S is at most

(p = DlullZI1XI7
62 '
u, X

8u,x112°II5

= Du-OXE then the

(b) For any 2 < p < oo, if 2° satisfies u-2° > 0 and a =
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mastake bound on S is at most

(p — DJullZ1 X3 1_< u- 2° )2
55,){ ||U||q||zo||p

(c) Let 2° = (1,...,1) and suppose that u; >0 fori=1,...,n. If p — oo and a is

as described in part (b), then the mistake bound given in (b) converges to

2Tl X115

1 00 U;
logn + ) .
25 ( 2 ol 8 T

When p = 2 part (a) of this theorem corresponds exactly to the Perceptron Con-
vergence Theorem (Theorem 5.2 of Chapter 5). Furthermore, part (c) corresponds
closely to the mistake bound proved by Littlestone for the Winnow algorithm (The-
orem 5.3 of Chapter 5).

7.2.4 From Online to PAC Learning

As described in Chapter 2, several generic procedures are known for automatically
converting online learning algorithms into PAC-model algorithms. We recall Theorem

2.2, due to Littlestone, which gives a strong bound on one such conversion:

Theorem 2.2 Let A be an online learning algorithm which changes its hypothesis only
when it makes a mistake and which has a mistake bound of M for concept class C.

Then there is a PAC-model learning algorithm A" for C' which has sample complexity
1 1
0 (— (log— +M>) :
€ )

By applying Theorem 2.2 to Theorem 7.2 one can obtain sample complexity
bounds on a generic PAC-model conversion of the online p-norm algorithm. We now
describe a completely different PAC-model learning algorithm which has remarkably

similar sample complexity bounds.
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Input: real number p > 2
sequence S = (x1,y1),..., (2™, yn) of labeled examples with z* € R",
Yi € {_17 1}
distribution D over S

Output: real valued hypothesis h(zx)

1. set z =Y, D(x)y;a’
for all i = 1,...,n set w; = sign(z)|z [~
. —_ w-T
3. return hypothesis h(z) = Tl X1l

Figure 7.3: The p-norm weak learning algorithm WLA.

7.3 A PAC Model p-norm Weak Learning Algo-

rithm

Our p-norm weak learning algorithm is motivated by the following simple idea: Sup-
pose that S = (z',y1),..., (2™, y) is a collection of labeled examples where y; =
sign(u - x°) for each 4 = 1,...,m. Now imagine replacing each negative example
(z',—1) in S by the equivalent positive example (—z’,1) to obtain a new collection
S’ of normalized examples. Let z € R"™ be the average location of an example in
S', i.e. zis the “center of mass” of the point cloud S’. Since each example in S’ is
positive, each example in S’ must lie on the same side of the hyperplane v -z = 0
as the vector u, so clearly z must also lie on this side of the hyperplane. One might
even hope that z, or some related vector, points in approximately the same direction
as the vector u.

Our p-norm weak learning algorithm, which we call WLA, is presented in Figure
7.2. The vector z is the “center of mass” of the normalized points with respect to the
probability distribution D which is part of the input to WLA (so running WLA repeatedly
on the same data set S but with different distributions D can yield different values for
z). Like the online p-norm algorithm, the WLA algorithm transforms the vector z to a
vector w using the mapping w; = sign(z;)|z;[P~!. The real-valued WLA hypothesis is a
scaled version of the linear functional defined by the vector w. The following theorem

establishes that this simple algorithm is in fact a weak learner:
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Theorem 7.3 WLA is a (1/2 — v)-weak learning algorithm for u under D for v =

0y, x
2| X1lpllullq "
Proof: Let S = (z', 1), ..., (z™, y,,) be a sequence of labeled examples where z € X
and y = sign(u-x) for every pair (z,y) € S, and let D be a distribution over S. We will
show that the hypothesis A which WLA(p, S, D) returns is a (1/2 — 7)-approximator
for u under D.

To see that h maps X into [—1, 1], note that for any € X Holder’s inequality
implies

h(z)] = w - z| < [wllqll=llp < [wllal Xl _
lwllgl| Xy = llwllg[| Xy — llwllgl| Xl

Now we show that inequality (7.1) from Section 7.2.2 holds. Since h(z?) € [—1,1]
and y; € {—1,1} we have that

|h(z7) — ;] = 1 — y;h(2?),

and thus

L (SRRt al)

[lwll
Thus it suffices to show that

"L D@y ) | dux

lwllg ~ ullg
We first note that

ZD(xj)yj(w-xj) = w- Z'D(xj)ijj
j=1 j=1

= w-z

= > Izl

7j=1
= |l=IIp
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and hence the left-hand side of the desired inequality equals |||} /||lwl|,. We also have

ol = (i(mvl)")w

=1

n 1/q
- (g
=1

= [l2lI5,

where in the second equality we used the fact that (p — 1)g = p. Consequently the

left-hand side can be further simplified to ||z|[2/||lw]l, = ||z|57#/? = ||z|,, and thus
our goal is to show that ||z||, > &, x/||ullg- Since 6, x < u- (y;z?) for j =1,...,m,
we have

Bux < f:lmmﬂ')u-(ij = u- (_f:lmxj)ijj)

< lullgllzllp,

where the last line follows from the Holder inequality, and the theorem is proved. W

Thus, the simple WLA algorithm can serve as a weak learning algorithm for the
halfspace learning problem. In the next section we use techniques from boosting
and large margin classification to obtain a strong learning algorithm which has small

sample complexity.

7.4 From Weak to Strong Learning

7.4.1 Boosting to Achieve High Accuracy

In (Kearns and Valiant, 1994) the following question was posed: is every concept
class which is efficiently weakly learnable also efficiently strongly learnable? In an
important result this question was answered in the affirmative by Schapire (Schapire,
1990), who gave a boosting algorithm which can be used to efficiently transform any
weak learning algorithm into a strong learning algorithm. In several subsequent
papers various improved boosting algorithms were developed (Freund, 1990; Freund,

1992; Freund, 1995; Freund and Schapire, 1997); we use the AdaBoost algorithm from

98



Input: real numbers 0 < v, u < %
sequence S = (x!,y1),..., (2™, yn) of labeled examples
weak learning algorithm WL: S — [—1, 1]
Output: hypothesis h(x)
1. setT = # log% |
2. foralli=1,...,mset D'(z') = L+
3. fort=1,...,T do
4. let h; be the output of WL(D?, S)
5. set € = 2 Y, D'(z%) |y (2") — i
6 set ¢ = 1 In((1 — &) /&)
7 for alli=1,...,m set
DHL(g) = D'(z") exp(—yichi(a"))
Zy
where 7, = 3™, D!(z) exp(—y;chy(2?)) is a normalizing factor which
ensures that D! is a distribution
9. enddo

10. output as final hypothesis h(z) = sign(f(x)) where

_ ZtT:1 ahy(z)
f(z) = Ty

Figure 7.4: The AdaBoost algorithm.
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(Freund and Schapire, 1997) which is shown in Figure 3.

Our notation for the algorithm is similar to that of (Schapire et al., 1998; Schapire
and Singer, 1998). The input to AdaBoost is a sequence S = (z',v1),..., (x™, y,) of
m labeled examples, a weak learning algorithm WL, and two parameters 0 < v, u <
1/2. Given a distribution D* over a data set S, algorithm WL outputs a hypothesis h;
which maps S to [—1,1]. AdaBoost works in a sequence of stages, where in stage t it
generates a distribution D! and runs WL to obtain a hypothesis h;. The final AdaBoost
hypothesis is a linear threshold function over the hypotheses A1, ..., hr.

Freund and Schapire have shown that if the algorithm WL is a (1/2 — 7)-weak
learning algorithm, i.e. each call of WL in AdaBoost generates a hypothesis h; such
that €; (as defined in line 5) is at most 1/2 — «y, then the fraction of examples in S
which are misclassified by the final hypothesis h is at most p. Given this result, one
straightforward way to obtain a strong learning algorithm for our halfspace learning
problem is to draw a sufficiently large (as specified below) sample S from the example
oracle EX (u,D) and run AdaBoost on S using WLA as the weak learning algorithm,
as given in Theorem 7.3, and p < 1/|S|. This choice of u ensures that AdaBoost’s final
hypothesis makes no errors on S; moreover, since each hypothesis generated by WLA is
of the form h;(z) = v' -z for some v* € R", AdaBoost’s final hypothesis will be of the
form h(z) = sign(v-z) for some v € R". Using the fact that the Vapnik-Chervonenkis
dimension of the class of zero-threshold linear threshold functions over R™ is n, the
well-known theorem of Blumer, Ehrenfeucht, Haussler and Warmuth (Blumer et al.,
1989) implies that with probability at least 1—4 the final hypothesis A is an e-accurate
hypothesis for u under D provided that |S| > c(e7'(nlog(e™!) + log(6~"))) for some
constant ¢ > 0.

This analysis, though attractively simple, yields a rather crude bound on sample
complexity which does not depend on the particulars of the learning problem (i.e. u
and X). In the rest of this section we use recent results on AdaBoost’s ability to gen-
erate a large-margin classifier and the generalization ability of large-margin classifiers

to give a much tighter bound on sample complexity for this learning algorithm.
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7.4.2 Boosting Real Valued Hypotheses to Achieve a Large
Margin

Suppose that h : X — {—1,1} is a classifier of the form h(z) = sign(f(x)) where
f maps X into [—1,1]. We say that the margin of h on a labeled example (z,y) is
yf(z); note that this quantity is nonnegative if and only if h correctly predicts the
label y associated with z. The magnitude of the margin can be viewed as a measure
of the confidence with which the classifier makes its prediction on z.

The following theorem, which is an extension of Theorem 5 from (Schapire et
al., 1998), shows that AdaBoost can be used in conjunction with a real-valued weak

learner to obtain large-margin hypotheses.

Theorem 7.4 Suppose that AdaBoost is run on an ezample sequence S = (x',y1),. ..,
(™ ym) using a weak learning algorithm WL: S — [—1,1]. Then for any value > 0

we have

) . i T
|{z€{1,2,...,TTan}.ny($)§9}| SQT};{\/{#—G@_Q)H—G_

Proof: The proof combines ideas from (Schapire et al., 1998), where it is shown
that AdaBoost with binary valued hypotheses generates a large margin classifier, and
(Schapire and Singer, 1998), where an analysis is given for AdaBoost’s classification
error with real valued hypotheses. As in Theorem 5 of (Schapire et al., 1998), if
v f(x%) < 6 then

T T
yi Y aphy(z') <0 oy
=1 =1

which implies that

T T
exp (—yz- Z ahy (') + 02 ozt) > 1.
=1

t=1

Following (Schapire et al., 1998), we thus have

tie{t2,....m}:uf@) <O} _ il.[exp<—yiiatht($i)+9iat>]

m i=1

exp (0 Zthl at) m

_ e (- z oune)

m im
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. (z) (f12) .

where the second equality follows from the definition of D! and the final equality is
because DT*! is a distribution and hence sums to 1. Our goal is thus to bound the
right side of (7.2).

If we let

m

re =y D@ )yl (")

i=1
then using the fact that
[h(2?) = ;| =1 = y;h(a?)

we find that ¢, = 15, Substituting into the definition of ¢; we obtain

]_ <1+Tt)
o = —In .
2 ]_—'/'t

Following (Schapire and Singer, 1998) for simplicity of notation we now fix ¢ and
let u; = y;hy(2%), Z = Z;,, D = D', € = ¢, 7 = 14, and @ = . A simple convexity

argument shows that
1+u 1—u

—Q «

7 © 7 ¢

e—au S

for any o € R and any u € [—1, 1]. Since u; always lies in the interval [—1, 1], we can

apply this inequality to obtain

7 = D(z")e ™

s

~
Il
—

i 1+ i —a 1-— i
D(x“)( e +T“e). (7.3)

s

<

=1

As in Section 3.5 of (Schapire and Singer, 1998), substituting « into inequality (7.3)
yields

= 2y/e(l —¢). (7.4)
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Substituting inequality (7.4) into inequality (7.2) and using the definition of oy yields
the desired bound of the theorem. [ |

The results of Section 7.3 imply that if WLA is used as the weak learning algorithm
in AdaBoost, then the value ¢, will always be at most 1/2 — 7, and the upper bound
of Theorem 7.4 becomes ((1 — 27)'=%(1 + 27)'*)7/2. The following technical lemma

is useful:
Lemma 7.5 (1 —42)%(1 4+ 42)* <1 —42? for 0 <z < 1/4.

Proof: Using a simple convexity argument it can be verified that o” < 1—(1—a)r for
any « > 0 and any 0 < r < 1. This inequality implies that (1 —4z)!~% < 1 — 4z + 422
and (1 + 4z)* < 1+ 422, so consequently

(1 —42)"7"(1 + 42)"™* < (1 — 4o + 42°) (1 + 42)(1 + 427),

which is at most 1 — 422 for 0 < z < 1/4. [ |

If we set # = /2 and apply Lemma 7.5 with z = 6, the upper bound of Theorem

7.4 becomes (1 — +?)7/2 and we obtain the following:

Corollary 7.6 If AdaBoost is run on a sequence S of labeled examples drawn from
EX (u,D) using WLA as the weak learner, v as defined in Theorem 7.8 and u < 1/|S|4,
then the hypothesis h which AdaBoost generates will have margin at least y/2 on every

example in S.

Proof: The bound on u causes T to be greater than 7% log ‘1?', and consequently the

upper bound of Theorem 7.4 is less than 1/[S]. u

Corollary 7.6 shows that a judicious choice of parameters for AdaBoost enables
our boosting-based algorithm to both run efficiently and generate a final hypothesis
which has a margin of at least /2 on every example in the training set. In the
next subsection we use Corollary 7.6 and techniques from the theory of large margin
classification to establish a bound on the generalization error of this hypothesis in

terms of the sample size m.
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7.4.3 Large Margins and Generalization Error

Let F be a collection of real-valued functions on a set X. A finite set {z!,..., 2%} C X
is said to be &-shattered by F if there are real numbers rq,...,r; such that for all
b= (by,...,bg) € {—1,1}%, there is a function f, € F such that for alli =1,...,k

i >ri+& i b=
fol@) { <r—€ if b=-—
For & > 0, the fat-shattering dimension of F at scale &, denoted fatz(§), is the size
of the largest set which is £-shattered by F, if this is finite, and infinity otherwise.

The fat-shattering dimension is useful for us because of the following theorem from
(Bartlett and Shawe-Taylor, 1999):

Theorem 7.7 Let F be a collection of real-valued functions on X and let D be a
distribution over X x {—1,1}. Let S = (z',y1),..., (2™, ym) be a sequence of labeled
examples drawn from D. With probability at least 1 — § over the choice of S, if a
classifier h(z) = sign(f(z)) with f € F has margin at least £ > 0 on every example
in S, then

2 8em 8m
< —(dlog——1 2 log —
(1) # 1] < — (d1og =" log(32m) +Tog =)

Pr
(z,y)eD
where d = fatz(£/16).

As noted in Section 7.4.1, the final hypothesis A which AdaBoost outputs will be of

the form h(z) = sign(f(z)) with f(z) = v-z for some v € R". Furthermore, since each

invocation of WLA generates a hypothesis of the form hy(z) = v' -z with ||vt||q 1

[1XTlp
Minkowski’s inequality implies that the vector v must satisfy [|v]|, < X XII We thus
consider the class of functions
1
F=ye=v-allg < g el < 12X - (7.5)
[1X11,’

If we can bound fatz(§), then given any sample size m, Theorem 7.7 immediately
yields a corresponding bound on Pryep[h(z) # sign(u - x)] for our halfspace learning
problem. The following theorem, which is an extension of Theorem 1.6 from (Bartlett

and Shawe-Taylor, 1999), gives the desired bound on fatz(¢).

Theorem 7.8 Let X be a bounded region in R"™ and let F be the class of functions

on X defined in (7.5) above. Then fat,(§) < 21%%4".
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Theorem 7.8 follows immediately upon combining the inequalities proved in the fol-

lowing two lemmas.

Lemma 7.9 If the set {x',... 2%} is &-shattered by F then every b= (b, ..., bq) €

{—1,1}4 satisfies
d

=1

> &d|| X

p
Proof: Suppose that {z!,..., 1%} is {-shattered by F as witnessed by the real num-
bers ry,...,7q. Then for every b = (by,...,bs) € {—1,1}%, there is a vector v, € R"
with ||vs|l, < m such that b;(vy - 2' —r;) > € for i = 1,...,d. Summing these d
inequalities and rearranging, we obtain

d d
=1 =1

There are two cases to consider. Case 1 is if Ele bir; > 0; if this is true, we have

1 a . d .
pli=1 P i=1 »
d .
> (Z bﬂ’)
=1
> &d.

Here the first inequality is by the definition of F, the second inequality is Holder’s, and
the third is from inequality (7.6). This yields the desired inequality || >%, b;z?||, >

&df| X |-

In the second case, Ele b;r; < 0. If this is the case then let ¢ = (¢1,...,cq) =
(=b1,...,—bg). We then have >%, ¢;r; > 0, so Case 1 implies that || S%, c;z?||, >
€d||X||,, and the lemma follows since

d . d . d .
Zcix’ = H—Zbixz = Zbix’
i=1 » i=1 p =t »
|

Lemma 7.10 For any set {z',..., 2%} with each ||x%||, < || X|lp, if p > 2 then there
is some b= (by,...,bg) € {—1,1}? such that HZ?ZI bz ) < V2dlogdn - || X||,-
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Proof: The proof uses the probabilistic method. We consider the random vari-
able z = Y% bz’ where (by,...,b;) is uniformly distributed over {—1,1}¢. For
any coordinate j € {1,...,n} we have z; = ¥¢, bzxz and hence E[z;] = 0. Let
Y = |zj|* + - - + |24]?; Hoeffding’s bound on sums of independent random variables

implies that for any ¢t > 0 we have

—12
Pr[|z;| > t] < 2exp (2—1/]) :

As a consequence, taking t = 1/2Y; log4n we have that Pr[|z;| > t] < 1/2n. Using the
union bound across j = 1,2,...,n, we have that with probability at least 1/2 every
coordinate z; of z satisfies |z;| < {/2Y;log4n, and hence

n 1/p
[2ll, = (Z \Zj\p)
Jj=1

< (Z (JW)”) "’

Jj=1
2/p 1/2
" p/2
= y/2log4n - (Z [|x;\2+---+|x;?|2] ) (7.7)
j=1

Since p > 2, we have p/2 > 1 and hence Minkowski’s inequality implies that

n 2/p n 2/p n 2/p
( [|$J1_|2 4t |$3i|2]”/2) < [Z |:c]1.|21’/2 +-+ 1Y |x3?|2p/2]
j=1 j=1 j=1
= |l2" 5+ + ll=Ilp
< dIx2 (7.5)
The lemma follows by combining inequalities (7.7) and (7.8). [

7.4.4 Putting it All Together

Combining Theorem 7.3, Corollary 7.6, and Theorems 7.7 and 7.8, it follows that if

our algorithm uses a sample of size |S| = m, then with probability at least 1 — ¢ the

106



hypothesis A which is generated will satisfy

. 1 (lullZI X3 2 m

Thus we have established the following (where the O-notation hides log factors):

Theorem 7.11 The algorithm obtained by applying AdaBoost to WLA using the pa-

rameter settings described in Corollary 7.6 is a strong learning algorithm for u on X
1 ||u||3||X||,%>

€ 52

with sample complezity m(e,d,u, X) = O (

7.5 Relationship with the Online p-norm Algorithms

The sample complexity of our boosting-based p-norm PAC learning algorithm is re-
markably similar to that of the PAC-transformed online p-norm algorithms of Section
7.2.2. Up to log factors both sets of bounds depend linearly on ¢ ! and quadratically
on ||u||||X||p/0ux. Comparing the bounds in more detail, we see that while our
bounds contain some logarithmic factors which are not present in the bounds of the
PAC-transformed online p-norm algorithms, the online variant described in part (a)
of Theorem 7.2 has an extra factor of p — 1 in its bound which is not present in the
sample complexity of our algorithm. Variant (a) offers the advantage, though, that
the user does not need to know the values of any quantities such as || X||, or ||u||, in
advance in order to run the algorithm. Turning to part (b) of Theorem 7.2, we see
that if the parameter a is set appropriately in the online algorithm then the online

bound differs from our PAC algorithm bound only by an extra factor of

(p—1) (1 - (W)j

(again ignoring log factors). Part (c) of Theorem 7.2 shows that as p — oo this factor
becomes quite small even when 2° is chosen to be (1,...,1). It should be noted,
though, that the bound in part (c¢) can be applied only if each coordinate of the
target vector u is positive, while our algorithm has no such restriction on wu.

We also note that when p = Q(logn) Gentile and Littlestone have given alternative

expressions for the online p-norm bounds in terms of || X || and ||u|;. For these values
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of p, using an entirely similar analysis the bounds of our algorithm can be analogously

rephrased in terms of || X||w and ||u||; as well.

7.5.1 p =2 and the Perceptron Algorithm

Since the p = 2 case of the online p-norm algorithm is precisely the Perceptron
algorithm, the p = 2 case of our algorithm can be viewed as a natural PAC-model
analogue of the online Perceptron algorithm. We note that when p = 2 the upper
bound given in Lemma 7.10 can be strengthened to v/d - || X||, (see Lemma 1.3 of
(Bartlett and Shawe-Taylor, 1999) or Theorem 4.1 of (Alon et al., 1992) for a proof).

This means that the fat-shattering dimension upper bound of Theorem 7.8 can be

this bound will still contain various log factors because of the log terms in Theorem

7.7.

improved to s, which removes a log factor from the bound of Theorem 7.11; however

7.5.2 p=o0 and the Jackson-Craven Algorithm

At the other extreme, we can also define a natural p = oo version of our algorithm.
Consider the vectors z and w which are computed by the weak learning algorithm
WLA. If we let r be the number of coordinates z; of z such that |z;| = ||z||c0, then for

any ¢ we have

. w; . sign (2;) |2~

lim ( ——] = lim

p=o0 \ [Jwllg poo \ (X7 |z 1a)l/a
sign(z;)/r if |z] = [|2]|

0 otherwise.

Hence it is natural to consider a p = oo version of WLA, which we denote WLA', in which
the vector w is defined by taking w; = sign(z;) if |2;| = ||2||oc and w; = 0 otherwise.
All of our analysis continues to hold for the WLA’ algorithm (with minor modifications

as sketched below) and we obtain a p = oo strong learning algorithm:

Claim 7.12 Theorem 7.11 holds for p = oo with WLA" in place of WLA.
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Proof: The proof of Theorem 7.3 (with WLA’ in place of WLA) is unchanged up through

the point where we must show that

P, Dyl a) | dux
fele = Tl

The left-hand side of this inequality can be rewritten as

Wz Y=l 5181 (20) %
[[wll 21z =ll2]loo L
2 zif=llzlloo 1]l o0
2 zil=lzlloo 1
= |12lloos

and hence it suffices to prove that ||z||cc > 6, x/||u|[;. This is established at the end
of the proof of Theorem 7.3, so Theorem 7.3 holds with p = co and WLA" substituted
for WLA.

The rest of the analysis goes through unchanged except for inequalities (7.7) and

(7.8) of Lemma 7.10. Since || X||ooc = SUpgex Maxj_i, n|z;/, we have that ¥; <

.....

d|| X ||, for all j, and hence in place of inequalities (7.7) and (7.8) we have

lelle = max|z

< \/2Y; log4
< maxy/2¥;logdn
< y/2dlog4n - || X|| e

which proves lemma 7.10. [ |

There is a close relationship between this p = oo algorithm and the work of Jackson
and Craven on learning sparse perceptrons (Jackson and Craven, 1996). Note that
if r = 1, i.e. only one coordinate of z has |2;| = ||2||c0, then the WLA" hypothesis is

_ ¢
@) = =7
most strongly correlated under distribution D with the value of sign(u - ). This is

where £ is the signed variable from {z1,...,z,, —21,...,—2,} which is

very similar to the weak learning algorithm used by Jackson and Craven, which takes
the single best-correlated literal as its hypothesis (breaking ties arbitrarily).
The proof that this “best-single-literal” algorithm used in (Jackson and Craven,

1996) is a weak learning algorithm is due to Goldmann, Hastad and Razborov (Gold-
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mann et al., 1992). However, their proof assumes that the example space X is {0,1}"
and that the target vector u has all integer coefficients; thus, as noted by Jackson and
Craven, their algorithm for learning sparse perceptrons only applies to learning prob-
lems which are defined over Boolean input domains. In contrast, our p = oo algorithm
can be applied on continuous input domains — the only restrictions required by our
algorithm are that the example space X and the target vector u satisfy || X || < 00
and 6, x > 0.

We also observe that Theorem 7.11 establishes a tighter sample complexity bound
for our p = oo strong learning algorithm than was given by Jackson and Craven. To
see this, let X = {0,1}" and suppose that the target vector u € R" has all integer
coefficients so the Jackson-Craven algorithm can be applied. For this learning problem
we have 0, x = (1) and || X || = 1; letting s = ||u||1, Theorem 7.11 implies that our
p = oo strong learning algorithm has sample complexity roughly s?/e (ignoring log
factors). This is a substantial improvement over the roughly s*/e sample complexity
bound given by Jackson and Craven. More generally, the sample complexity bound
given by Jackson and Craven for learning “s-sparse k-perceptrons” is roughly ks*/e;
the analysis of this chapter can easily be extended to establish a sample complexity

bound of roughly ks?/e for learning s-sparse k-perceptrons.
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Chapter 8

Boosting and Hard-Core Set

Construction

In the last chapter we saw how AdaBoost can be applied to obtain PAC learning al-
gorithms which are remarkably similar to Perceptron and Winnow. We now explore
a different application of boosting, this time in the area of computational complex-
ity theory. We show that a close connection exists between boosting and hard-core
set construction, a type of hardness amplification from complexity theory. By em-
ploying boosting techniques from learning theory, we use this connection to give an
improved bound for hard-core set construction which matches known lower bounds
from boosting and thus is optimal within this class of techniques. We also show how
to apply ideas from hard-core set construction to give a new version of Jackson’s cel-
ebrated boosting-based Harmonic Sieve algorithm for learning DNF formulae under
the uniform distribution using membership queries. Our new version of the Sieve
has a significant asymptotic improvement in running time. Critical to our arguments
is a careful analysis of the distributions which are employed in both boosting and

hard-core set constructions.

8.1 Introduction

8.1.1 Boosting and Hard-Core Sets

We refer to a hardness amplification as a result of the following form: given a Boolean

function f that is mildly inapproximable by circuits of some bounded size g, construct
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‘ Reference: ‘ Set size parameter: ‘ Circuit size parameter: ‘

Impagliazzo (Impagliazzo, 1995) € O(v*€*) - g
Nisan (Impagliazzo, 1995) € O(v*(log(1/ve))™") - g
Our Results €/2 O(y*(log(1/€)) ") - g

Table 8.1: Comparison of known hard-core set constructions.

from f a new function f’ that is highly inapproximable by all circuits of size closely
related to g. Here “mildly inapproximable” means roughly that no circuit can agree
with f on a fraction of inputs very close to 1, while “highly inapproximable” means
that no circuit can agree with f on a fraction of inputs significantly greater than
1/2. Hardness amplification results are a crucial component of recent attempts to
derandomize BPP (Babai et al., 1993; Impagliazzo and Widgerson, 1997; Nisan and
Wigderson, 1994). Perhaps the most famous hardness amplification result is Yao’s
XOR-lemma (Goldreich et al., 1995), which states that if a Boolean function f is
mildly inapproximable by circuits of size g then the XOR of several independent
copies of f is highly inapproximable for circuits of size closely related to g.

Superficially, boosting and hardness amplification seem to have opposite goals.
Recall that a boosting algorithm takes as input a weak learning algorithm which can
generate hypotheses which have accuracy only slightly better than 1/2, and outputs
a final hypothesis which is a highly accurate predictor for the target function. Thus
boosting constructs a hypothesis which closely approximates a function f while hard-
ness amplification results prove that certain functions are hard to approximate. The
proof techniques employed in both areas, however, have a similar structure. All known
hardness amplification results go by contradiction: assuming there exists a circuit C'
capable of mildly approximating f’, one proves the existence of a slightly larger circuit
which closely approximates f. From this perspective, a hardness amplification proof
resembles a type of boosting procedure: circuits which mildly approximate a function
f' (these correspond to the hypotheses output by the weak learner) are combined to
form a new circuit computing f on a large fraction of inputs.

In an important paper, Impagliazzo (Impagliazzo, 1995) reduces the problem of
amplifying the hardness of a function f to the problem of constructing a distribution
D such that f is highly inapproximable by small circuits for inputs chosen according

to D. He then constructs such a distribution and uses it to prove an XOR lemma.
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Impagliazzo also shows that the existence of such a distribution implies the existence
of a “hard-core set” as defined in Section 8.2; we thus refer to Impagliazzo’s method of
constructing such a distribution as a hard-core set construction. Schapire (Schapire,
1990) was the first to point out that the existence of a boosting algorithm implies the

existence of such a distribution.

8.1.2 Our Results

We give an explicit correspondence between the distributions that arise in Impagli-
azzo’s hard-core set construction and the distributions constructed by boosting al-
gorithms. This observation allows us to prove that the hard-core set construction
of Impagliazzo s a boosting algorithm when the initial distribution is uniform. As
we will show, there are two important parameters which boosting and hard-core set
constructions share: the number of “stages” required and the “smoothness” of the
distributions which are constructed. Interestingly, the procedures which have been
used for hard-core set construction have better smoothness and can be used to im-
prove algorithms in computational learning theory, while boosting algorithms require
fewer stages and can be used to improve hard-core set construction.

We first show how to use known boosting algorithms to obtain new hard-core set
constructions. Impagliazzo proves the following theorem: given a function f such
that no circuit of size less than g correctly computes f on more than (1 —€)2" inputs,
then for any v < 1/2 there exists a set S of size €2™ such that no circuit of size
O(72€?)g can correctly compute f on more than a (1/2 + ) fraction of the inputs in
S. By letting known boosting algorithms dictate the construction of the distributions
in Impagliazzo’s proof, we improve on previous results with respect to the circuit
size parameter with only a small constant factor loss in the set size parameter. As
explained in Section 8.4.6, we believe our parameters to be optimal up to constant
factors with respect to this class of techniques. Table 1 summarizes our hard-core set
construction results.

We then show how to use Impagliazzo’s hard-core set construction to obtain a
more efficient version of Jackson’s breakthrough Harmonic Sieve algorithm (Jackson,
1997) for learning DNF formulae under the uniform distribution using membership
queries. Jackson’s original algorithm learns using the hypothesis class of threshold-

of-parity functions and runs in time essentially O(ns®/€'?), where n is the number
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of variables in the DNF formula, s is the number of terms, and € is the accuracy
parameter. Our variant uses the same hypothesis class and runs in time O(ns®/e?).
We can further improve the running time to O(ns®/e®) at the cost of learning using
a more complex class of hypotheses.

In recent work Bshouty, Jackson and Tamon (Bshouty et al., 1999) have improved
the running time of the Harmonic Sieve to O(ns*/e*), where r is the number of distinct
variables which appear in the minimal DNF representation of the target formula.
Our results improve the running time of their new algorithm to O(ns*/€®) time steps,
which is the fastest known algorithm for PAC learning DNF with membership queries
under the uniform distribution.

Our main technical contribution is a careful analysis of the distributions con-
structed during the boosting process. We show that boosting procedures which con-
struct distributions with high minimum entropy are desirable for good hard-core set

constructions.

8.1.3 Related Work

Boneh and Lipton (Boneh and Lipton, 1993) have applied Yao’s XOR-lemma to prove
the equivalence of weak and strong learnability for certain types of concept classes
under the uniform distribution. Their result applies to concept classes closed under

a polynomial number of XOR operations.

8.2 Hard-Core Set Construction Overview

Our first definition, taken from (Impagliazzo, 1995), formalizes the notion of a func-
tion which is hard to approximate. Readers who are familiar with the notation of
(Impagliazzo, 1995) will notice that we are using different variables; the reasons for

this will become clear in Section 8.4.

Definition 8.2 Let f be a Boolean function on {0,1}" and D a distribution on
{0,1}". Let0 < e < 1/2 and let n < g < 2"/n. We say that f is e-hard for size g under
D if for any Boolean circuit C with at most g gates, we have Prp[f(x) = C(x)] < 1—e.

In other words, any circuit of size at most g must disagree with f with probability

at least € for x drawn according to D. We write U to denote the uniform distribution
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Input: real numbers 0 <e<1,0<vy<1/2
Boolean function f
Output: circuit h such that Pry[h(z) = f(z)] > 1—¢
1. seti<+0
2. set My(z) =1
3. until u(M;) < e do
4. let C; be a circuit of size at most ¢’ with Prp,, [C(z) = f(z)] > 1/2+~
5. set Re,(z) =1if f(x) = Ci(z), Re,(x) = —1 otherwise
6. set Ni(z) = X<j<; R, ()
1 if Nj(z) <0
7. set M;,1(z) =< 1—eyN;(x) if 0 < N;(x) < 1/ey
0 if N;(z) > 1/ey
8. set 1+ 1+1
9. return h= MAJ(Cy,C1,...,Ci 1)

Figure 8.1: The IHA algorithm.
over {0, 1}".

Definition 8.3 A measure on {0,1}" is a function M : {0,1}" — [0, 1]. The absolute
size of a measure M is denoted by |M| and equals ¥, M(x); the relative size of M is
denoted (M) and equals |M|/2".

Definition 8.4 For any real valued function &, Ly (§) denotes max, |£(x)|.

The quantity log(Le (D) !) is often referred to as the minimum entropy of D.
There is a natural correspondence between measures and distributions: the dis-
tribution Dy, induced by a measure M is defined by Dy (z) = M(z)/|M|. Con-
versely, if D is a distribution then the measure Mp induced by D is defined by
Mp(z) = D(x)/Loo(D). Thus Mp is the largest measure which is a constant-multiple
rescaling of D (note that D itself is a measure, though typically one which has much
smaller size than Mp). It is clear that |Mp| = 1/Lo(D) and pu(Mp) = 1/ Ly (2"D).
Thus, large measures correspond to distributions which do not assign large weight to
any point (i.e., have high minimum entropy).

The next definition is also from (Impagliazzo, 1995):
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Definition 8.5 We say that f is y-hard-core on M for size g if Prp,,[f(z) = C(x)] <
1/2 4+ 7 for every circuit C of size at most g. For S C {0,1}" we say that f is -
hard-core on S for size g if f is y-hard-core on Mg for size g, where Mg(x) is the

characteristic function of S.

8.2.1 Existence of Hard-Core Measures

The following theorem due to Impagliazzo is the starting point of all our results:

Theorem 8.6 (Impagliazzo, 1995) Let f be e-hard for circuits of size g under
U and let 0 < v < 1/2. Then there is a measure M with u(M) > € such that f is
y-hard-core on M for size g’ = O(e2~?)g.

Proof Sketch: Assume by way of contradiction that for every measure M with
w(M) > € there is a circuit Cjy of size at most ¢’ such that Prp, [f(x) = Cy(2)] >
1/2+ . Now consider the algorithm IHA which is given in Figure 8.2. This algorithm
iteratively modifies M until its relative size is less than e. After each modification we
obtain a circuit Cys as above. Once the relative size of M becomes less than € we com-
bine the circuits obtained during the process to contradict the original assumption.

The following easily verifiable claims are useful for understanding how IHA works:

e N;(z) is the margin by which the majority vote of Cy, ..., C; correctly predicts
the value of f(z).

e The measure M, assigns weight 0 to points where the margin of correctness is
large, weight 1 to points where the margin is negative, and intermediate weight

to points where the margin is positive but small.

Impagliazzo proves that after at most 49 = O(1/(€2v?)) cycles through the loop,
w1(M;) must be less than e. Once this happens and we exit the loop, it is easy to see
that h = MAJ(Cy,...,C; 1) agrees with f on all inputs except those which have
Ni(z) < 0 and hence M;(x) = 1. Since p(M;) < e, this implies that Pry[f(z) =
h(z)] > 1 — u(M;) > 1 — €. But h is a majority circuit over at most iy circuits each
of size at most ¢’, and majority over iy inputs can be computed by a circuit of size
O(ip). It follows that h has at most ¢'ip + O(ip) < ¢ gates, which contradicts the

original assumption that f is e-hard for circuits of size g under Y. [ |
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Using a non-constructive proof technique, Nisan has established a similar result
which is reported in (Impagliazzo, 1995). In Nisan’s theorem the circuit size pa-
rameter is slightly worse as a function of v but substantially better as a function of

€:

Theorem 8.7 (Impagliazzo, 1995) Let f be e-hard for circuits of size g under U
and let 0 < v < 1/2. Then there is a measure M with u(M) > € such that f is
y-hard-core on M for size ¢ = O(v*(log(2/ve))™1)g.

In Section 8.4.2 we will establish results of this type which have a better circuit
size parameter than either Theorem 8.6 or Theorem 8.7.

We note that Theorems 8.6 and 8.7 assert the existence of a large measure, not a
large set as was promised in Section 1. Using a probabilistic argument which we give
in Section 8.4.4 Impagliazzo has shown that the existence of a large measure M on
which f is hard-core implies the existence of a large set S on which f is also hard-core

(with slightly different parameters).

8.3 Boosting Overview

In this section we review the notions of weak and strong learning in the PAC learning
model and give a general framework for boosting algorithms which convert weak
learners into strong ones.

Recall that a a concept class over {0,1}" is a collection C' = U,>1C,, of Boolean
functions where each f € C, is a Boolean function on {0,1}". If f and h are two
Boolean functions on {0,1}"” and D is a distribution on {0, 1}", we say that A is an
e-approzimator for f under D if Prp[f(z) = h(x)] > 1 — €. The learning algorithm
has access to an example oracle EX(f, D) which, when queried, provides a labeled
example (z, f(z)) where z is drawn from {0, 1}" according to the distribution D and
f € C,, is the unknown target concept which the algorithm is trying to learn. We

have the following formal definition:

Definition 8.8 An algorithm A is a strong PAC learning algorithm for a concept
class C' if the following condition holds: for any n > 1, any f € C,, any distribution
D on {0,1}", and any 0 < €, < 1, if A is given access to n,e,0 and EX(f, D), then
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A runs in time polynomial in n, €, 61, and size(f), and with probability at least

1 — 9 algorithm A outputs an e-approximator for f under D.

Here size(f) measures the complexity of the function f under some fixed reasonable
encoding scheme. For the concept class DNF which we will consider in Section 8.5,
size(f) is the minimum number of terms in any disjunctive normal form representa-
tion of f.

If the algorithm A is only guaranteed to find a (1/2 — y)-approximator for some
v > 0, then we say that A is a (1/2 — )-approzimate learning algorithm. If v =
Q(1/p(n, size(f))) for some polynomial p then we say that A is a weak learning al-
gorithm. We will abuse notation and say that A is a (1/2 — -y)-approximate learning
algorithm for f if A is a (1/2 — ~)-approximate learning algorithm for the concept
class C which consists of the single function f.

Schapire (Schapire, 1990) and subsequently Freund (Freund, 1990; Freund, 1992)
have given explicit boosting algorithms which efficiently transform weak learning al-
gorithms into strong ones. We now formally define boosting algorithms (a related
definition can be found in (Freund, 1995)):

Definition 8.9 An algorithm B is said to be a boosting algorithm if it satisfies the
following condition: for any Boolean function f and any distribution D, if B is given
0<e60<1,0<v<1/2 an ezample oracle EX(f,D), and a (1/2 — v)-approzimate
learning algorithm WL for f which runs in time T, then algorithm B runs in time
polynomial in T,y 1, €L, and 67, and with probability at least 1 — & algorithm B

outputs an e-approximator for f under D.

8.3.1 Structure of Boosting Algorithms

All known boosting algorithms rely crucially on the fact that the weak learning algo-
rithm WL can find a (1/2 — «)-approximator for f under D' for any distribution D’,
as long as WL is given access to the example oracle EX(f, D). We give the following

high-level definition:

Definition 8.10 A canonical boosting algorithm is a boosting algorithm which has

the following iterative structure:
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o At stage 0 the algorithm starts with Dy = D and uses WL to generate a (1/2—7)-

approximator hg for f under Dy.

e At stage i the boosting algorithm does two things: (1) defines a distribution
D; which favors points where the previous hypotheses hy, ..., h;_1 do poorly at
predicting the value of f, and (2) simulates the example oracle EX(f,D;) and
lets WL access this simulated example oracle to produce a hypothesis h; which is

a (1/2 — y)-approzimator for f under D;.

o After doing this repeatedly for several stages, the boosting algorithm combines
the hypotheses hy, ..., h;_1 in some way to obtain a final hypothesis h which is

an e-approximator for f under D.

8.4 Hard-Core Set Construction from Boosting

8.4.1 A Structural Similarity

From the descriptions of the hard-core set construction of Section 8.2 and the canon-
ical boosting algorithm of Section 8.3, one can see a close structural resemblance
between the THA algorithm and the canonical boosting algorithm outlined above. To
be more specific, just as IHA assumes that at each stage there is a circuit C; for which
Prp,, [f(z) # Ci(z)] < 1/2 — v, the canonical boosting algorithm assumes that WL
can generate at each stage a hypothesis h; for which Prp,[f(z) # hi(z)] < 1/2 — 7.
The induced distributions D, of IHA correspond precisely to the distributions D; of
the canonical boosting algorithm (note that IHA starts off with the measure My = 1
which corresponds to the uniform distribution & = Dy). Finally, just as the canonical
boosting algorithm combines the hypotheses hqg,..., h;_1 in some fashion to obtain
a final hypothesis A which has Pry[f(z) = h(z)] > 1 — ¢, the IHA algorithm com-
bines the circuits Cy,...,C; 1 by taking majority to obtain a circuit A such that
Pry[f(z) = h(z)] > 1 —€

We conclude that IHA is an algorithm which succeeds in boosting provided that
the starting distribution is the uniform distribution U. Since boosting algorithms
from computational learning theory will work for any starting distribution, a prior:
it seems as if it should be possible to use any boosting algorithm in place of THA and

obtain a hard-core set construction. In the next section we prove a theorem which
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formalizes this idea and emphasizes the parameters which are important to obtain a

good hard-core set construction.

8.4.2 A General Hard-Core Set Construction

Definition 8.11 Let D be a distribution over {0,1}". For d > 1 we say that D is
d-smooth if Ly (2"D) < d.

As an immediate consequence of Definitions 8.3 and 8.11, we have
Observation 8.12 If distribution D is d-smooth then u(Mp) > 1/d.

Definition 8.13 Let B be a canonical boosting algorithm which takes as input €, d,,

an example oracle EX(f, D), and a (1/2 — 7)-approzimate learning algorithm WL for
I

1. We say that B is a k(e,y)-stage boosting algorithm if the following holds: For all
example oracles EX(f, D) and (1/2—7y)-approzimate learners WL for f, algorithm
B simulates at most k = k(e,~y) distributions Dy, D1, ..., Dx_1 for WL and uses
WL to generate at most k hypotheses hg, ..., hg_1.

2. We say that B is a d(e,7y)-smooth boosting algorithm if the following holds:
For all functions f and (1/2 — ~y)-approximate learners WL, when B is given
EX(f,U) and WL, with nonzero probability both of the following events occur:
(1) the simulated distributions Dy, ..., Dy_1 are each d(e,~)-smooth, and (ii)
the hypothesis h which B outputs satisfies Pry[f(z) = h(z)] > 1 —e.

The property of the distributions D; described in part 2 of the above definition is
similar to Levin’s notion of “dominated” distributions (Levin, 1986).
Now we can state the following theorem which generalizes Impagliazzo’s hard-core

set construction.

Theorem 8.14 Let B be a k(e, v)-stage, d(e,y)-smooth boosting algorithm which out-
puts as its final hypothesis a circuit of size v over inputs hgy,...,hx_1. Let f be
e-hard for circuits of size g under U and let 0 < v < 1/2. Then there is a mea-
sure M on {0,1}" with u(M) > 1/d(e,~) such that f is y-hard-core on M for size
g =(g—r)/k(e,7).
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Proof: The proof is analogous to the proof of Theorem 8.6. Assume by way of
contradiction that for every measure M with u(M) > 1/d(e,y) there is a circuit Cy,
of size at most ¢’ such that Prp,,[f(z) = Cu(x)] > 1/2 + . By Observation 8.12,
this implies that for every d(e,y)-smooth distribution D there is a circuit Cp of size
at most ¢’ such that Prp[f(z) = Cp(z)] > 1/2+ 7.

Now run the boosting algorithm B on inputs €,d,vy, and EX(f,U). Since B is
d(e,y)-smooth, with nonzero probability we have that (i) every distribution D; which
B simulates will be d(e,y)-smooth, and (ii) the final hypothesis which B outputs is
an e-approximator to f under the original distribution U. By (i), there must exist a
circuit C; of at most ¢’ gates which is a (1/2 —)-approximator for f under D;. Give B
this circuit when it calls WL on distribution D;. Now by (ii), the final hypothesis which
B outputs must be an e-approximator to f under the original distribution ¢/. But since
B is k(e,7y)-stage, this final hypothesis is a circuit of size at most r + ¢'k(¢,7y) < g,
which contradicts the original assumption that f is e-hard for circuits of size g under
Uu. u

8.4.3 New Hard-Core Set Constructions

Here we apply Theorem 8.14 to obtain new hard-core set constructions from known
boosting algorithms. We proceed in stages. First, we show how two different boosting
algorithms yield different hard-core set constructions. Next, we combine these boost-
ing algorithms to achieve a new hard-core set construction which improves on results
of Impagliazzo and Nisan in the circuit size parameter but has a set size parameter
worse than their results by a logarithmic factor. In Section 8.4.5 we improve the set
size parameter to within a constant factor of the Impagliazzo/Nisan results.

We first consider Freund’s boost-by-majority algorithm from (Freund, 1990) which,
following (Jackson, 1995), we refer to as F1. Algorithm F1 is a k = O(y2log(1/¢))-
stage boosting algorithm which combines its £ hypotheses using the majority function.

Jackson’s analysis ((Jackson, 1995), pp. 57-59) yields the following fact about F1:

Fact 8.15 If F1 is given inputs €,6,v, EX(f,D) and a (1/2 — 7)-approzimate weak
learner WL for f, then with high probability each distribution D' which F1 simulates
for WL satisfies

Loo(D') = O(1/€%) - Lo (D).
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This immediately implies that F1 is O(1/€®)-smooth.! We thus obtain the follow-

ing hard-core set construction:

Theorem 8.16 Let f be e-hard for circuits of size g under U and let 0 < v < 1/2.
Then there is a measure M on {0,1}" with p(M) = Q(e®) such that f is y-hard-core
on M for size g' = O(7*(log(1/€)) 1g).

Next, we consider Freund’s later Bp;); algorithm from (Freund, 1995) (the name
comes from the fact that the algorithm “filters” examples from the original distri-
bution to simulate new distributions). Like F1, algorithm By is a k-stage boosting
algorithm for k = O(y 2(log1/€)). Bpy); combines its (1/2 — +)-approximators to ob-
tain an e-approximator for f by using a majority function on k£ inputs which may
have some random inputs. A straightforward argument shows that some circuit of
size O(k) is a e-approximator for f. To analyze the smoothness of Bpj)(, we use the

following fact which follows from Lemma 3.4 and Lemma 3.9 of (Freund, 1995):

Fact 8.17 IfBpyy is given inputs €,8,7v, EX(f,D) and a (1/2—y)-approzimate weak
learner WL for f, then with high probability each distribution D' which By simulates
for WL satisfies

Loo(D') = O(log(1/€)/(€7)) - Loo(D)-
Since Fact 8.17 implies that By is O(log(1/€)/(e))-smooth, we obtain

Theorem 8.18 Let f be e-hard for circuits of size g under U and let 0 < v < 1/2.
Then there is a measure M on {0,1}" with u(M) = Q(ey(log(1/€))™!) such that f is
y-hard-core on M for size ¢' = O(v*(log(1/€)) 'g).

Finally we establish a stronger hard-core set construction by combining the pre-
vious two approaches. In (Freund, 1992) Freund describes a two-level boosting algo-
rithm which works as follows: algorithm F1 is used to boost from accuracy (1/2 — )
to accuracy 1/4, and algorithm Bp;); boosts from accuracy 1/4 to accuracy e by taking

F1 as its weak learner. We call this combined algorithm Boomp -

In (Freund, 1990) Freund states without proof that the F1 algorithm can be shown to be O(1/¢€2)-
smooth. Jackson proves that F1 is O(1/€®)-smooth and states that variants of F1 can be shown to
be O(1/€?**)-smooth for arbitrarily small values p > 0.
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Lemma 8.19 The boosting algorithm B ;yy,p is an O(y?1log(1/€))-stage boosting al-

gorithm.

Proof: The top level of B 1), which uses algorithm Bpj), takes O(log(1/¢)) stages
since the weak learner which it uses is F1 which provides (1/2—~')-accurate hypotheses
with ' = 1/4. The bottom level, which uses algorithm F1, takes O(y~?) stages since
it boosts a (1/2—+)-approximate learner to accuracy 1/4. Consequently the combined

algorithm By, uses the claimed number of stages. [ ]

Lemma 8.20 By, s an O(log(1/€)/e)-smooth boosting algorithm.

Proof: Since Bp;}; is boosting from accuracy 1/4 to accuracy e using F1 as its weak

learner, Fact 8.17 implies that each distribution D’ which By, passes to F1 satisfies
Loo(D') = O(log(1/€)/€) - Loo(D).

Since F1 is boosting from accuracy (1/2 — ) to accuracy 1/4, Fact 8.15 implies that
if D" is the distribution which F1 passes to WL, then

Loo(D") =0(1) - Lo (D).
Combining these two equations, we find that
Lo (D") = O(log(1/€)/¢€) - Loo(D).

Finally, we note that the final hypothesis which By, outputs is a depth 2
majority circuit over the weak hypotheses h;, since both F1 and Bpj); combine their
hypotheses using the majority function. A straighforward bound on the size of this

majority circuit yields the following hard-core set construction:

Theorem 8.21 Let f be e-hard for circuits of size g under U and let 0 < v < 1/2.
Then there is a measure M on {0,1}" with u(M) = Q(e(log(1/€))~!) such that f is
y-hard-core on M for size ' = O(v*(log(1/€)) 'g).
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8.4.4 From Hard-Core Measures to Hard-Core Sets

While we have been referring to our results thus far as hard-core set constructions,
in fact Theorems 8.16, 8.18 and 8.21 establish the existence of hard-core measures
rather than hard-core sets. We now show how hard-core measure constructions such
as Theorems 8.16, 8.18 and 8.21 imply corresponding hard-core set constructions.
This conversion from hard-core measures to hard-core sets is based on an argument
from (Impagliazzo, 1995).

We will use the following crude lemma:
Lemma 8.22 The number of Boolean circuits of size g is at most ((n + 5)g?)?.

Proof: To specify a circuit it suffices to specify, for each of g gates, the two inputs
and the label of the gate. For a given gate there are at most g2 choices for the inputs
and at most n + 5 choices (zy,...,z,,—,V,A\,TRUE, FALSFE) for the label. [ |

The following easy fact follows from the definition of |M]|.

Fact 8.23 Let C be a circuit and view C and [ as taking values in {—1,1}. Then
Prp,, [C(z) = f(z)] = 5+ p if and only if Yyeqoyn M(2)C(2) f(x) = 2p|M].

Now we state and prove our conversion from hard-core measures to hard-core sets.

Constant factors have not been optimized in the following lemma.

Lemma 8.24 Let f be a Boolean function on {0,1}" and M a measure such that (i)
w(M) > 7 and (ii) f is y-hard-core on M for size g where g < %-2"7272. Then there
exists a set S with |S| > 32" such that f is 4y-hard-core on S for size g.

Proof: Let C' be any circuit of size at most g. Consider the following randomized
construction of a set S C {0,1}" : for each x € {0,1}" put z in S with probability
M (x). Let Mg be the characteristic function of S. For each x € {0,1}" the expected

value of Mg(z) is M (x), and thus by linearity of expectation we have
E| Y Ms@)C@)f(z)| = > M()C(z)f(z) <2vM]|
ze{0,1}" z€{0,1}"

where the inequality follows from Fact 8.23 and f being v-hard-core on M for size g.

For each value of = the quantity Ms(x)C(z)f(x) is a random variable in the interval
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[—1, 1]. Hoeffding’s tail bound now implies that

4
< exp(—2-2"y*7?)

Pl ¥ Ms(x)0<x)f<x)z4w(M)] < exp(—2-2”(2w(M))2)

where the second inequality is because u(M) > 7. By Lemma 8.22 and the bound on
g we have that the number of circuits of size at most g is at most ((n + 5)¢%)9 <
= exp(2- 2"y*7?). Thus the probability that there exists a C' with |C| < g such that
Yacioyn Ms(x)C(x) f(x) > 4y|M| is less than ;5.

Meanwhile, we also have that E[|S|] = |M| and |S| is a sum of 2" independent
random variables each with range {0, 1}. Thus Hoeffding’s bound implies that

Pr exp(=2 - 2"(u(M)/2)*)

< exp(—2"7%/2).

S| (M)
27<T] =

Ifr< 27% then the bound on ¢ in the statement of the lemma is less than i and the

_1_

lemma is trivially true. Thus we assume that 7 > -7

implies that Pr[|S| > |2M] > .

These two probability bounds together imply that there exists some S with |S| >

which by the above inequality

‘QM > 72" such that for every circuit C' with at most g gates

Y Ms(@)C(x)f(x) < 49| M| < 89]S| = 87| Ms].

ze{0,1}"

By Fact 8.23 we have that Pr,es[C(z) = f(z)] < 3 + 47 for every such circuit C, and
thus f is 4y-hard-core on S. [ |

Combining this lemma with Theorem 8.21 we obtain the following hard-core set

construction:

Theorem 8.25 Let f be e-hard for circuits of size g under U where g = O (% . los/e)
and let 0 < v < 1/2. Then there is a set S C {0,1}" with |S| = Q(e(log1/e)~")2"

such that f is 4y-hard-core on S for size g = O(v*(log(1/€))'g)-

125



8.4.5 Improving the Set Size Parameter

In this section we show how the set size parameter of Theorem 8.25 can be improved
from Q(e(log1/€)™1) to Q(e). The basic idea is quite simple and was suggested by Avi
Wigderson (Wigderson, 1999). If the hard-core set S is much smaller than €2" then
we can take away the points in this hard-core set and f must still be almost e-hard
for circuits of size g under the uniform distribution on the remaining points. We can
then reapply Theorem 8.25 on the remaining points using “almost €¢” in place of € to
obtain a new hard-core set. This procedure can be repeated until the total size of all
the hard-core sets is Q(e2").

To make this argument precise we will need to consider measures which are defined
over proper subsets of {0,1}". If X C {0,1}" and M : X — [0,1] is a measure we
write | M| x to denote Y}, x M (z) and ux (M) to denote % We write Ux to denote
the uniform distribution on X.

The following generalization of Theorem 8.25 is easily seen to follow from the

arguments of Section 8.4.3.

Theorem 8.26 Fiz X C {0,1}" such that |X| > 2"/2. Let f be e-hard for circuits
of size g under Ux where g = O (% . logei/e) and let 0 < v < 1/2. Then there is a
set S C X with |S| = Q(e(log(1/€))™ )| X| such that f is y-hard-core on S for size

9" = O(y*(log(1/€))'g).

Proof: The only place where the domain {0,1}" is used in the proof of Theorem
8.25 is in the value 2" which occurs in the Hoeffding tail bounds of Lemma 8.24. It is
straightforward to verify that there is enough slack in these bounds for them to still
go through with X in place of {0,1}" as long as |X| > 2"/2. u

We need the following easy lemma:

Lemma 8.27 If X C {0,1}" satisfies | X| > (1 —5)2" and f is e-hard for circuits of

size g under U then f is $-hard for circuits of size g under Ux.

Proof: For any circuit C with |C| < g we have that [{z : C(z) = f(z)}| < (1 —¢)2.
Thus Pry, [C(z) = f(2)] < 755 <1- 5. |

Now we prove our strongest hard-core set construction.
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Theorem 8.28 Let f be e-hard for circuits of size g under U where g = O (% . log€21/e)
and let 0 < v < 1/2. Then there is a set S C {0,1}" with |S| > 52" such that f is

y-hard-core on S for size g' = O(y*(log(1/€))'g).

Proof: Theorem 8.25 implies that there is a set Sy with |Sy| = Q(e(log 1/€) )2 such
that f is y-hard-core on Sy for size ¢’ = O(y*(log1/€)~'g). If [Sp| > £2" we are done,
so we assume that [Sp| < § and let X; = {0,1}"\ S;. Lemma 8.27 implies that f is
5-hard for circuits of size g under Ux,. Theorem 8.26 now implies the existence of a
set S; C X, with |S;| = Q(e(log 1/¢)71)|X1| such that f is y-hard-core on S; for size
g = O(v*(log(1/€))"'g). Now let Xy = X; \ S;. Continue in this fashion, obtaining
S; from X; as above, until }° [S;| > §2".
To see that this works, notice that until )" |S;| > §2" each set X; satisfies | X;| >
(1 — §)2". Thus by Lemma 8.27 at each stage we have that f is $-hard for size g
under Ux,, so we can apply Theorem 8.26 each time with hardness parameter €/2.
Furthermore, we have that each |S;| = Q(e(log(1/€))™")|X;| where |X;| > (1 — £)2",
so we must achieve - [S;| > $2" after at most O(log1/e) stages.
Now let S = U;S;. Since the S; are disjoint we have |S| > 52". Moreover, since f
is y-hard-core on each |S;| for size ¢', for any circuit C of size at most g’ we have
0 = f@)] = X ({5 price) = ) < 5+
Us |S| us; 2

i

Thus f is y-hard-core on S for size ¢’ and the theorem is proved. [ |

The reader may have noticed that the two arguments used to go from a hard-
core measure to a hard-core set and to increase the size of the hard-core set do not
depend in any essential way on the fact that the initial hard-core measure was of
size u(M) = Q(e(log1/e)™'). We could also have obtained the same final result — a
hard-core set construction with €/2 as the set size parameter and O(y*(log1/¢)™!)
as the circuit size parameter — by using the boosting algorithm F1 which implies the
existence of a measure of size Q(e®) (Theorem 8.16). We introduced and analyzed the
BComb algorithm in part because this boosting algorithm will play an important role

in the learning theory results of Section 8.5.
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8.4.6 Optimal Hard-Core Set Construction

Freund has shown that any algorithm which boosts a (1/2 — «y)-approximate weak
learner to accuracy 1 — ¢ must combine at least Q(y~2log(1/¢)) weak hypotheses
in the worst case (Freund, 1995). Thus, for any hard-core set construction falling
within this framework our circuit size parameter is optimal up to constant factors.
Furthermore, it is easy to see that any general hard-core set construction such as
those we have given must have a set size parameter of at most O(e), since the original
e-hard function f might be very easy to compute (e.g. constant) on a 1—0O(e) fraction
of inputs. Thus we believe that the hard-core set construction given by Theorem 8.28
is optimal up to constant factors with respect to both the circuit size and set size

parameters.

8.4.7 A Boosting Algorithm from THA

We have not yet described just how boosting algorithms manage to simulate the
different distributions D; for the example oracles EX(f,D;) which are required by
the weak learning algorithm at each boosting stage. There are two different types of
boosting algorithms, known as boosting-by-filtering and boosting-by-sampling, which
handle this issue in different ways. In boosting-by-filtering the distribution D; is
simulated from D by filtering examples received from EX(f, D). If the filtering process
accepts example z with probability a(z) and rejects = (i.e. discards z and makes
another call to EX(f, D)) with probability 1 — a(x), then it is easy to see that this

filtering process defines a new distribution D’ where

(z)D(x)

D) = S aypwy

(8.1)
The boosting algorithms F1, Bgy; and By, 1, all are examples of boosting-by-filtering
algorithms.

In boosting-by-sampling, on the other hand, a set S of examples is drawn from
EX(f,D) once and for all at the beginning of the boosting process and the initial
distribution Dy is taken to be the uniform distribution over S. Subsequent distribu-
tions D; are nonzero only on the points of S, and the final hypothesis h generated

by boosting has high accuracy with respect to the uniform distribution over S. Well-
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known results on generalization error (Blumer et al., 1989) imply that if A belongs to
a concept class with bounded Vapnik-Chervonenkis dimension, then for sufficiently
large S any hypothesis h which is correct on all of S will with high probability have
low error under D. The AdaBoost algorithm of (Freund and Schapire, 1997) is an
example of a boosting-by-sampling algorithm.

Impagliazzo’s proof shows that it is possible to use IHA directly as a O(1/€?)-
stage, 1/e-smooth boosting-by-sampling algorithm. In Chapter 9 we will give an
improved boosting-by-sampling algorithm which is also 1/e-smooth but uses only
O(1/ev?) stages. In the next section we discuss using IHA as a boosting-by-filtering

algorithm in the case where the initial distribution D is uniform over {0, 1}".

8.5 Faster Algorithms for Learning DNF

We have seen that boosting algorithms can be used to improve on previous complexity-
theoretic hard-core set constructions. Now we go in the opposite direction and use
ideas from hard-core set construction to establish new results in learning theory. We
show that the uniform distribution boosting algorithm which is implicit in IHA can be
used to improve the running time of Jackson’s Harmonic Sieve algorithm for learning
DNF under the uniform distribution using membership queries. This algorithm is
widely viewed as one of the most important results in computational learning theory.
We also show how a different modification inspired by our analysis in Section 8.4.3
can improve the running time even further at the cost of learning using more complex
hypotheses.

Bshouty, Jackson and Tamon (Bshouty et al., 1999) have recently given a variant
of the Harmonic Sieve which runs substantially faster than the original algorithm.
Their improvement is obtained by speeding up a weak learning algorithm which is
a component of the Harmonic Sieve, and is orthogonal to our improvements of the
boosting component of the Sieve. As described below, by combining our techniques
with their improvements we obtain the fastest known algorithm for learning DNF

under the uniform distribution with membership queries.
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8.5.1 The DNF Learning Problem

Recall that a disjunctive normal form (DNF) expression is a disjunction of terms
where each term is a conjunction of Boolean literals. Since every Boolean function
can be expressed as a DNF, the concept class DNF is the class of all Boolean functions
over {0,1}". The DNF-size of a function f is the minimum number of terms in any
DNF expression for f. Thus an efficient learning algorithm for the concept class DNF
must be able to learn any Boolean function in time polynomial in the number of terms
in its smallest DNF representation.

In his seminal paper Valiant posed the question of whether there is an efficient PAC
learning algorithm for DNF (Valiant, 1984). We saw in Chapter 3 that there is a PAC
learning algorithm which learns to accuracy e and runs in time 90(n!/?lognlogs) /€ for
target concepts of DNF-size s, but it is not yet known whether there is an algorithm
which runs in time poly(n, s, 1/¢). If the learning scenario is suitably modified, though,
then efficient learning of DNF becomes possible. In a breakthrough result several
years ago Jackson gave the Harmonic Sieve algorithm which uses membership queries
to learn DNF to accuracy € under the uniform distribution in roughly ns®/e'? time
steps (Jackson, 1997). A membership query is an oracle query in which the learner
specifies a point z and the membership oracle MEM(f) returns the value f(z).

Although the Harmonic Sieve runs in polynomial time, it is not considered to
be computationally practical due to the high degree of the polynomial time bound.
We show how to substantially improve the algorithm’s time dependence on the error

parameter €, thus making progress towards a more efficient implementation.

8.5.2 The Harmonic Sieve

The main result of (Jackson, 1997) is the following theorem:

Theorem 8.29 (Jackson, 1997) Let f be a Boolean function on {0,1}" of DNF-
size s and let 0 < €,0 < 1. For any constant p > 0, given access to a membership
oracle MEM (f) the Harmonic Sieve algorithm runs in time O(ns®/e>*?) and with

probability 1 — & outputs a hypothesis h such that Prylh(x) # f(z)] <e.

At the heart of Jackson’s Harmonic Sieve algorithm is a procedure WDNF which was

first studied in (Blum et al., 1994). The WDNF algorithm takes as input an example
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oracle EX(f, D), a membership oracle MEM(f), a distribution oracle DIST(D) and a
value 6 > 0. A distribution oracle DIST(D) is an oracle which, when queried with a
point z in the domain of D, returns the value of D(x). With probability at least 1 — ¢
the WDNF algorithm outputs a parity function which is a (1/2 —Q(1/s))-approximator
for f under D, where s is the DNF-size of f.

The Harmonic Sieve algorithm works by running Freund’s boosting algorithm F1
with WDNF as the weak learning algorithm. At the i-th stage of boosting the F1
boosting algorithm simulates some distribution D; and uses the simulated example
oracle EX(f, D;) for WDNF. Jackson shows that the F1 boosting algorithm constructs
each distribution D; in such a way that after a “one-time” initial cost of O( L (2"D;)®)
time steps (to estimate the scaling factor in the denominator of Equation 8.1) for each
D;, it is possible to simulate a constant-factor approximation DIST'(D;) of DIST(D;)
in O(n) time steps per call.? The following lemma is a direct consequence of Jackson’s

Lemma 9 and the analysis used in its proof:

Lemma 8.30 (Jackson, 1997) Let f be any Boolean function of DNF-size s over
{0,1}" and let D be any distribution over {0,1}". If WDNF is run using EX(f, D),
MEM(f) and DIST'(D) as its oracles, where each call to EX(f,D) takes t time
steps, each call to MEM(f) takes 1 time step, and the time requirements of DIST'(D)
are as described above, then WDNF runs in time O(s*(Lso(2"D))%t 4+ ns®(Lo (27D))6)
time steps and with probability at least 1 — § outputs a parity function which is a
(1/2 — Q(1/s))-approzimator to f under D.

Jackson proves that each call to EX(f, D;) made by WDNF can be simulated in time
O(nLoo(2"D;)3) with high probability. Consequently the time bound of Lemma 8.30
is dominated by the ns%(L(2"D))% term, and thus the time required for the i-th
execution of WDNF on distribution D; is bounded by O(ns®(Ls(2"D))®). As noted in
Section 8.4.3, for any p > 0 algorithm F1 can be shown to be an O(y %log(1/¢))-
stage, O(1/e**?)-smooth boosting algorithm, so L., (2"D;) = O(1/€***) for every
distribution D; which WDNF uses. Since 7 = €2(1/s) for the WDNF algorithm, all in
all the Harmonic Sieve algorithm runs in time O(ns®/e'?*?) for any p > 0. The

hypotheses output by the Harmonic Sieve are majority-of-parity circuits since each

>To be more precise, the oracle DIST'(D;) is such that ;DIST(D;)(z) < DIST/(D;)(z) <
3 DIST(D;) (x).
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weak hypothesis is a parity circuit and F1’s hypothesis is a majority circuit over weak

hypotheses.

8.5.3 A Faster Version of the Harmonic Sieve

As described above, the Harmonic Sieve algorithm works by boosting under the uni-
form distribution and its running time strongly depends on the smoothness of the
boosting algorithm. The following observation follows directly from the discussion of
THA in Section 8.2:

Observation 8.31 For each measure M; constructed in the erecution of IHA the

distribution Dy, is 1/e-smooth.

This is substantially better than the distributions constructed by F1 which are
guaranteed only to be (1/¢7?)-smooth. Thus, it appears that we can use the better
boundedness of the THA algorithm to obtain a faster version of the Harmonic Sieve,
and indeed this turns out to be the case; however some details need to be addressed
as described below.

One detail is that since the running time of WDNF depends on the quantity L, (2"D;),
we need a version of THA which works efficiently over the entire domain {0,1}". An-
other way of saying this is that we need a boost-by-filtering version of THA. Doing an
exact computation of ;(Af;) in line 3 of THA would take exponential time for the do-
main {0,1}", so our boost-by-sampling version of IHA instead estimates the value of
w1(M;) by using a sample average. More precisely, the algorithm draws a collection of
uniformly distributed z’s from {0, 1}" and uses the observed average value of M;(z) on
this sample as its estimate for p(M;). It is easy to see that u(M;) is the expected value
of M;(x) for uniformly chosen z; standard bounds on sampling (e.g. Corollary 2.2 of
(Jackson, 1995)) show that with very high probability an estimate p'(M;) satisfying
1u(M;) < p'(M;) < 2pu(M;) can be found using O(1/u(M;)?) samples. Thus in the
boost-by-sampling version of THA the test in line 3 can be approximately performed
in O(1/€?) time steps, and the resulting algorithm will be 2/e-smooth with high prob-
ability. We note that the O(1/u(M;)?) time steps required to perform this estimation
for each measure M; corresponds exactly to the “one-time cost” of O(L(2"D;)®) for
estimating the denominator of Equation 8.1 which was required for each distribution
D; simulated by F1.
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Another detail which must be taken into account is the slowdown incurred in the
process of filtering examples from EX(f,U) to simulate draws from EX(f,D;). It is
not difficult to see that if a measure M; satisfies p(M;) > €/2, then on average at most
2/e draws from EX (f,U) are required to simulate a draw from EX(f, Dy,), and with
very high probability no more than O(1/€) draws are required. Thus this slowdown,
which is precisely the factor ¢ in Lemma 8.30, is at most O(1/e).

Thus IHA can be translated into a O(1/v%€?)-stage, O(1/€)-smooth boost-by-
filtering algorithm under the uniform distribution. This boosting algorithm can be
used instead of F1 in the top layer of the Harmonic Sieve; we call this modified al-
gorithm HS'. Moreover, as discussed above Lemma 8.30 implies that each execution
of WDNF in HS'will take at most O(ns®/e®) time steps. Thus, although HS' requires a
factor of Q(l /€?) more boosting stages than the original Sieve, this disadvantage is

more than offset by the improved runtime of WDNF. We obtain the following:

Theorem 8.32 There is a membership-query algorithm HS' for learning DNF under
the uniform distribution which runs in time O(ns®/€®). The algorithm outputs as its

final hypothesis a majority-of-parity circuit.

We can achieve an even faster variant of the Harmonic Sieve, at the price of

using more complex hypotheses, by using the B., b boosting algorithm instead

com
of the boost-by-filtering IHA algorithm. As noted in Section 8.4.2, Brgyp i an
O(y %log(1/¢))-stage, O(log(1/€)/€)-smooth boost-by-filtering algorithm. The smooth-
ness of Bogmtp, implies that the “one-time cost” of computing the scaling factor for
each distribution D; is now O(Lu (2"D;)?) = O(1/€2). Furthermore, the time overhead
factor for simulating each call to EX (f, D;) is now t = O(Lu(2"D;)) = O(1/e). From
Lemma 8.30 we find that if Bogpyp, is used as the boosting algorithm in the Sieve,
then the running time of each boosting stage will be at most O(ns®/e%). Since we

boost for at most O(s*log(1/¢€)) stages under B we have the following theorem:

comb>

Theorem 8.33 There is a membership-query algorithm for learning s-term DNF
formulae under the uniform distribution on {0,1}" which runs in time O(ns®/€®).

The algorithm outputs as its final hypothesis a majority-of-magjority-of-parity circuit.

The additional circuit complexity comes from the fact that the hypothesis output by

BComb 1S @ depth 2 majority circuit over its inputs.
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8.5.4 Extensions

Throughout this section we have only discussed using the Harmonic Sieve to learn
DNF formulae under the uniform distribution. Jackson generalizes the algorithm to
several other concept classes including TOP (polynomial-size depth-2 circuits where
the top gate computes majority and the bottom gates compute parities) and unions
of axis-parallel rectangles over {0, 1,...,b}" for constant b. In each case our approach
can be used to improve the running time of Jackson’s algorithms.

In recent work Bshouty, Jackson and Tamon (Bshouty et al., 1999) have given a
new version of the Harmonic Sieve for learning DNF under the uniform distribution.
The new algorithm differs from the original Harmonic Sieve in that it uses a faster

version of the WDNF algorithm. Implicit in their analysis is the following lemma:

Lemma 8.34 (Bshouty et al., 1999) Let f be any Boolean function of DNF-size
s over {0,1}" and let D be any distribution over {0,1}". There is an algorithm WDNF’
which takes as input an example oracle EX(f, D), a membership oracle MEM(f), a
distribution oracle DIST'(D), and a value § > 0. In the context of the Harmonic
Sieve, each invocation of WDNF' with the i-th distribution D; generated by the boosting
algorithm takes O(ns?(Loo(27D;))?) time steps and and with probability at least 1 — &
outputs a parity function which is a (1/2 — Q(1/s))-approzimator to f under D;.

The Harmonic Sieve variant described in (Bshouty et al., 1999) runs the original
O(1/€***)-smooth F1 boosting algorithm for O(s?) stages, using the new WDNF’ algo-
rithm as the weak learner, to obtain an overall running time of essentially O(ns*/€*).
By instead using the O(log(1/¢)/~?)-stage, O(log(1/¢€)/¢)-smooth boosting algorithm
B.omb @S in Section 8.5.3, we obtain the following result, which is the fastest known

algorithm for learning DNF under the uniform distribution using membership queries:

Theorem 8.35 There is a membership-query algorithm for learning s-term DNF
formulae over {0,1}" under the uniform distribution which runs in time O(ns*/e?).

The algorithm outputs as its final hypothesis a majority-of-majority-of-parity circuit.
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Chapter 9

Smooth Boosting and Learning

with Malicious Noise

In this chapter we combine ideas from Chapters 7 and 8 to obtain noise-tolerant
boosting-based algorithms for PAC learning linear threshold functions.

Motivated by our investigation of boosting algorithms in Chapter 8, we first de-
scribe a new boosting algorithm called SmoothBoost. Like Impagliazzo’s algorithm for
hard-core set construction, Smoothboost generates only smooth distributions which
do not assign too much weight to any single example; however SmoothBoost is sig-
nificantly faster and more flexible than the boosting algorithm which is implicit in
Impagliazzo’s algorithm.

We then use SmoothBoost to construct malicious noise tolerant versions of the
PAC model p-norm linear threshold learning algorithms described in Chapter 7. In
a noise-free setting the sample complexity bounds of the new algorithms match the
bounds of the algorithms given in Chapter 7. However, the new algorithms can
tolerate relatively high levels of malicious noise, a property which the algorithms of
Chapter 7 do not appear to share. We show that the noise tolerance and sample
complexity of these new PAC algorithms closely correspond to known bounds for
the online p-norm algorithms of Grove, Littlestone and Schuurmans (Grove et al.,
1997) and Gentile and Littlestone (Gentile and Littlestone, 1999). As special cases
of our new algorithms we obtain linear threshold learning algorithms which match
the sample complexity and malicious noise tolerance of the online Perceptron and

Winnow algorithms.
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9.1 Introduction

Any realistic model of learning from examples must address the issue of noisy data.
In 1985 Valiant extended the original PAC learning model to allow for the possibility
of malicious noise. This is a worst-case model of errors in which some fraction of the
labeled examples given to a learning algorithm may be corrupted by an adversary
who can modify both example points and labels in an arbitrary fashion (a detailed
description of the model is given in Section 9.3). The frequency of such corrupted
examples is known as the malicious noise rate.

Learning in the presence of malicious noise is known to be quite difficult. Kearns

and Li (Kearns and Li, 1993) have shown that for many concept classes it is information-

_€

14+€”
In fact, for many interesting concept classes (such as the class of linear threshold

theoretically impossible to learn to accuracy e if the malicious noise rate exceeds

functions), the best efficient algorithms known can only tolerate malicious noise rates
which are significantly lower than this general upper bound. Despite these difficul-
ties, the practical importance of being able to cope with noisy data has led many
researchers to study PAC learning in the presence of malicious noise; see e.g. (Aslam
and Decatur, 1998; Auer, 1997; Auer and Cesa-Bianchi, 1998; Cesa-Bianchi et al.,
1999; Decatur, 1993; Mansour and Parnas, 1998).

In this chapter we describe a new smooth boosting algorithm and use this smooth
boosting algorithm to construct a family of PAC algorithms for learning linear thresh-

old functions in the presence of malicious noise.

9.1.1 Motivation for Smooth Boosting

Our basic approach is quite simple, as illustrated by the following example. Consider
a learning scenario in which we have a weak learning algorithm L which takes as
input a finite sample S of m labeled examples. Algorithm L is known to have some
tolerance to malicious noise; specifically, L is guaranteed to generate a hypothesis
with nonnegligible advantage provided that the frequency of noisy examples in its
sample is at most 10%. We would like to learn to high accuracy in the presence of
malicious noise at a rate of 1%.

The obvious approach in this setting is to use a boosting algorithm, which will

generate some sequence of distributions Dy, Ds, ... over S. This approach can fail,
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though, if the boosting algorithm generates distributions which are very skewed from
the uniform distribution on S; if distribution D; assigns probabilities as large as fn—o
to individual points in S, for instance, then the frequency of noisy examples for L in
stage i could be as high as 20%. What we need instead is a smooth boosting algorithm
which only constructs distributions D; over S which never assign weight greater than
% to any single example. By using such a smooth booster we are assured that the
weak learner will function successfully at each stage, so the overall boosting process
will work correctly.

While the setting described above is artificial, we note here that indirect empirical
evidence has been given supporting the smooth boosting approach for noisy settings.
It is well known (Dietterich, 2000; Schapire, 1999b) that commonly used boosting
algorithms such as AdaBoost can perform poorly on noisy data. Dietterich has sug-
gested that this poor performance is due to AdaBoost’s tendency to generate very
skewed distributions which put a great deal of weight on a few noisy examples. This
overweighting of noisy examples cannot occur under a smooth boosting regimen.

In Section 9.2 we give a simple new boosting algorithm, SmoothBoost, which is
guaranteed to generate only smooth distributions as described above. In fact, we
show in Section 9.4.2 that the distributions generated by SmoothBoost are optimally
smooth.

SmoothBoost is not the first boosting algorithm which attempts to avoid the
skewed distributions of AdaBoost. In addition to the boosting algorithm implicit in
Impagliazzo’s hard-core set construction algorithm (Impagliazzo, 1995), a boosting
algorithm with a smoothness guarantee similar to that of SmoothBoost has been given
by Domingo and Watanabe (Domingo and Watanabe, 2000). We saw in Chapter 8
that Freund’s By 1, boosting algorithm (Freund, 1992) generates relatively smooth
distributions, and more recently Freund (Freund, 1999) has also described a new
boosting algorithm which uses a more moderate weighting scheme than AdaBoost.
In Section 9.2.3 we show that in addition to generating smooth distributions, our
SmoothBoost algorithm has several other desirable properties, such as constructing
a large margin final hypothesis and using real-valued weak hypotheses, which are
essential for the noisy linear threshold learning application of Section 9.3. We discuss
the relationship between SmoothBoost and the algorithms of Domingo and Watanabe,

Freund, and Impagliazzo in Section 9.2.4.
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9.1.2 Learning Linear Threshold Functions with Malicious

Noise

We use the SmoothBoost algorithm in Section 9.3 to construct a family of PAC-model
malicious noise tolerant algorithms for learning linear threshold functions. Our new
family of algorithms is quite similar to the family constructed in Chapter 7, except
that now we use SmoothBoost instead of AdaBoost as the boosting component. We
showed in Chapter 7 that for linearly separable (noise-free) data, the AdaBoost-based
algorithms have sample complexity bounds which are essentially identical to those
of the online p-norm linear threshold learning algorithms of Grove, Littlestone and
Schuurmans (Grove et al., 1997). As described in Chapter 7, these online algorithms
include as special cases (p = 2 and p = oo) the well-known online Perceptron and
Winnow algorithms.

Gentile and Littlestone (Gentile and Littlestone, 1999) have given mistake bounds
for the online p-norm algorithms when run on examples which are not linearly separa-
ble, thus generalizing previous bounds on noise tolerance for Perceptron (Freund and
Schapire, 1998) and Winnow (Littlestone, 1991). A drawback of our AdaBoost-based
PAC-model p-norm algorithms of Chapter 7 is that they do not appear to succeed in
the presence of malicious noise for the reasons described above. We show in Section
9.4 that for all values 2 < p < 0o, our new PAC algorithms which use SmoothBoost
match both the sample complexity and the malicious noise tolerance of the online
p-norm algorithms. Our construction thus provides malicious noise tolerant PAC

analogues of Perceptron and Winnow (and many other algorithms as well).

9.2 Smooth Boosting with SmoothBoost

In this section we describe and analyze the SmoothBoost algorithm. We show that

SmoothBoost has several useful properties:

e it only constructs smooth distributions which do not put too much weight on

any single example;
e it can be used to generate a large margin final hypothesis;

e it can be used with a weak learning algorithm which outputs real-valued hy-
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potheses;

e it constructs its final hypothesis by thresholding a weighted sum of weak hy-
potheses.

All of these properties are essential for the noisy linear threshold learning problem

we consider in Section 9.3.

9.2.1 Preliminaries

First we recall some useful notation from Chapters 7 and 8. A measure on a finite set
is a function M : S — [0, 1]. We write |M| to denote Y ,.g M (z) and p(M) to denote
|M|/|S|. Given a measure M, there is a natural induced distribution D, defined by
Du(z) = M(x)/|M]|. This definition yields

. 11
Observation 9.2 L. (Dy) < 0 = aanE-

Let D be a distribution over a set S = (z!',41),..., (2™, yn) of labeled examples

and let h be a real-valued function which maps {z',..., 2™} into [—1,1]. If
1 & ) - 1
5 2 DU)IAE) -yl < 5 =
i=1

then we say that the advantage of h under D is 7. As in Chapter 7 we say that an
algorithm which takes S and D as input and outputs an h which has advantage at
least v > 0 is a weak learning algorithm.

Finally, let g(z) = sign(f(z)) where f : X — [—1,1] is a real-valued function. As
in Section 7.4.2 we say that the margin of g on a labeled example (z,y) € X x{-1,1}
is y f(x); intuitively this is the amount by which g predicts y correctly. Note that the

margin of g on (z,y) is nonnegative if and only if g predicts y correctly.

9.2.2 The Smoothboost Algorithm

The Smoothboost algorithm is given in Figure 9.2.1 The parameter « is the desired
error rate of the final hypothesis, the parameter v is the guaranteed advantage of
the hypotheses returned by the weak learner, and € is the desired margin of the

final hypothesis. Smoothboost runs the weak learning algorithm several times on
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Input:

realnumbers(]</-€<1,0§9§7<%
sample S = (z',41), ..., (™, y) where each y; € {—1,1}
weak learner WL which takes input (S, D;) and outputs

he s {zt, ..., 2™} — [-1,1]

Output: hypothesis h(z) = sign(f(x))

NS Ote W

10.
11.

forall j =1,...,mset M;(j) =1

forall j =1,...,m set Ny(j) =0

set t =1

until y(M) < k do
forall j =1,...,m set Dy(j) = My(j)/| My
run WL(S, Dy) to get hy such that 5 37 Dy(j) hy(2?) — 5 < 5
forall j =1,...,m set Ny(j) = N;_1(j) + yjh(z?) — 6

. : 1 if Ny(j) <0

forall j =1,...,m set My, (j) = { (1 — N0 i N:((]?))z 0
sett=1+1

set T'=¢t—1

return h = sign(f(z)) where f(z) = £ 3, hi(z)

-7

Figure 9.1: The SmoothBoost algorithm.
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a sequence of carefully constructed distributions and outputs a thresholded sum of
the hypotheses thus generated. The quantity N;(j) in line 7 may be viewed as the
cumulative amount by which the hypotheses hq, ..., h; exceed the desired margin 6
on the labeled example (z7,y;). The measure M, assigns exponentially less weight
to examples where NV, is large, thus forcing the weak learner to focus in stage t 41 on
examples where previous hypotheses have done poorly. Note that since any measure
maps into [0, 1] there is a strict bound on the amount of weight which can be assigned

to any example.

9.2.3 Proof of Correctness of SmoothBoost

Several useful properties of the Smoothboost algorithm are easy to verify. The algo-
rithm is called Smoothboost because each distribution it constructs is guaranteed to

be “smooth” in the sense that no single point receives too much weight:
Claim 9.3 FEach distribution Dy defined in step 5 of Smoothboost has Lo (D;) < ﬁ

Proof: Follows directly from Observation 9.2 and the condition in line 4. [ |

Another useful property is that the final hypothesis h has margin at least 6 on all

but a k fraction of the points in S :

Theorem 9.4 If Smoothboost terminates then f satisfies [ERR7F{COR) NP

m

Proof: Since Nr(j) = T(y;f(a?) —0), if y;f(27) < 6 then Ny(j) < 0 and hence
Mri1(j) = 1. Consequently we have

{7 : yf(2?) < 6} < Xj=1 My 1(5)
m o m

= u(Mry1) <&

by the condition in line 4. [ |

Note that since # > 0 Theorem 9.4 implies that the final Smoothboost hypothesis
is correct on all but a x fraction of S.

Finally we must show that the algorithm terminates in a reasonable amount of
time. The following theorem bounds the number of times that SmoothBoost will

execute its main loop:
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Theorem 9.5 If each hypothesis hy returned by WL in line 6 has advantage at least v
under Dy (i.e. satisfies the condition of line 6) and 0 is set to F’ then SmoothBoost
terminates with T < m.

As will be evident from the proof, slightly different bounds on 7" can be established
by choosing different values of 6 in the range [0,7]. We take # = - in the theorem
above both to obtain a margin # = (v) and to obtain a clean bound in the theorem.

Theorem 9.5 follows from the bounds established in the following two lemmas:

Lemma 9.6 370, 300, My(5)yhu(27) > 29 iy [ M.

Lemma 9.7 If 6 = then > 1Zt 1 My (5)yiha(27) < \/7 +72t 1 [ M.

Combining these bounds we obtain

>y M| > yemT
o LT

where the last inequality is because |My| = u(My)m > km fort =1,...,T.

Proof of Lemma 9.6: Since hy(z7) € [—1,1] and y; € {—1,1}, we have y;h;(2?) =
1 — |hi(2?) — y;|, and thus

HMS

(7)yhe(2?) = Z )1 = |hy(2?) — y;]) > 27.

This implies that

m T T
ZZMt yih( l"] Z|Mt|zpt )yihu( xj Z 27| My.

j=1t=1

Proof of Lemma 9.7: By the definition of N;(j) we have

S5 M(Gyh(a) = 5SS M) (NG) = Nia5) +0)

j=1t=1 j=1t=1

= 9Z|Mt\+ZZMt = Nea(5)- - (91)
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N(t)

€1 €9
T

0 1 2 3 4 t

€3 €4 €5
T

Figure 9.2: A plot of N with 7" = 4.

Note that N is piecewise linear with joins at integer values of t. A possible pairing of
segments matches [ey, e3] With [es, es] and [es, e4] with [eq, e5], leaving [e, e1], [e1, €3]
and |[eg, e7] unpaired. In this example N is increasing on each unpaired segment.

It thus suffices to show that if § = ﬁ, then for each 7 = 1,...,m we have

T T

S MG(N) = Nes()) < i+ (7= 0) 3 M) 92)
since summing this inequality over j = 1,...,m and substituting into (9.1) proves
the lemma. Fix any j € {1,...,m}; for ease of notation we write V; and M, in place
of Ny(j) and M,(j) for the rest of the proof.

If Ny = N;_; for some integer ¢ then the term M;(N; — N;_1) contributes 0 to
the sum in (9.2), so without loss of generality we assume that N; # N;_; for all
integers ¢t. We extend the sequence (Ny, N1, ..., Nr) to a continuous piecewise linear
function N on [0,7] in the obvious way, i.e. for ¢ an integer and e € [0,1] we let

A

N(t + 6) = Nt + 6(Nt+1 - Nt) Let
E={ec0,T]: N(e) = N, for some integer t = 0,1,...,T}.

The set E' is finite so we have 0 = ¢y < e;--- < e, =T with £ = {eg,...,e,} (see
Figure 9.2). Since for each integer ¢ > 1 the interval (¢ — 1,¢] must contain some e;,

we can reexpress the sum Zthl My(N; — Ny 1) as

éM el (N(es) — N(eior)) . (9.3)
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We say that two segments [e,_1,€q] and [ey_1, €] match if N(e,—1) = N(ey) and

N(ep-1) = N (eq). For example, in Figure 9.2 the segment [eg, e3] matches [e5, 5] but
does not match [eg, e7]. We pair up matching segments until no more pairs can be
formed. Note that if any unpaired segments remain, it must be the case that either
N is increasing on each unpaired segment (if Ny > 0) or N is decreasing on each
unpaired segment (if Ny < 0). Now we separate the sum (9.3) into two pieces, i.e.

Sics Mie; (N(e;) — N(ej—1)) = P + U, where P is the sum over all paired segments
and U is the sum over all unpaired segments. We will show that P < (y—60) >, M,

2 .
and U < Vi thus proving the lemma.
First we bound P. Let [e,—1,€e,] and [ep—1,€p] be a pair of matching segments
where N is increasing on [e,_1,e,] and decreasing on [e,_y, es]. The contribution of

these two segments to P is

= (M, = Mpe,1) (N(ea) = N(ear)) - (9.4)

Since each segment [e, 1, €,] is contained in [t — 1,¢] for some integer ¢, we have that

[ea] —1 < €4 1 < €q < [eg]. The linearity of N on [[e,] — 1, [e,]] implies that
N[ea]fl < N(ea_l) < N(ea) < N[ea] < N[ea]fl +1-46 (95)

where the last inequality is because y;h;(z?) < 1 in line 7 of Smoothboost . Similarly,

we have that [ey] — 1 < ep—1 < e, < [ep], and hence

N[eb]fl > N(G(,,l) > N(eb) > N[eb] > N[eb]fl —1-6. (96)

Since N(e,) = N(ey_1) inequalities (9.5) and (9.6) imply that Nres-1 > Niey1—1 — 2.
The definition of M now implies that M., > (1—v)Mr,7. Since N(e,)—N(eq 1) > 0,

we thus have that (9.4) is at most

’YM[ea] (N(ea) - N(ea—l)) <1 - H)Mfea] (€a — €a—1) (9.7)
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where the inequality follows from (9.5) and the linearity of N on [e,_1,e,]. Since

A A A~

N(es) — N(ea—1) = N(ep—1) — N(ep), we similarly have that (9.4) is at most

TMie (Nesr) = N(e) < —— Mo, (Nesr) — N(en))

< 1— 7(1 + 0) Mpe,1 (€51 — €). (9.8)
Using the fact that § = ;- and some algebra, inequalities (9.7) and (9.8) imply that
(9.4) is at most

(1 +7)

P (Mie,1(ea — €a1) + Mre, (1 — €0)) - (9.9)

If we sum (9.9) over all pairs of matching segments the resulting quantity is an upper
bound on P. In this sum, for each value of t = 1,... T, the coefficient of M; will be
at most %;TJ:’) = 7 — 6. (This bound on the coefficient of M; holds because for each
t, the total length of all paired segments in [t — 1,¢] is at most 1). Consequently we
have P < (v —0) XI_, M; as desired.

Now we show that U, the sum over unpaired segments, is at most W%T'r If N is
decreasing on each unpaired segment then clearly U < 0, so we suppose that N is in-
creasing on each unpaired segment. Let [ec,—1,€c,]; - - -, [€cy—1, €c,] be all the unpaired

segments. As in Figure 9.2 it must be the case that the intervals [V (e._1), N (e.,))

are all disjoint and their union is [0, N7). By the definition of M, we have
& (N )2 (K \
U= (1—7) M= (Nee) = N(ee-1)) -

=1

As in the bound for P, we have
Npe,1-1 < N(eg-1) < N(ee) < Nye,) < Njey o1 +1 -6 < N, 121 + 1

and hence

U < Y (@a- )NV lee)—1)/2 (N(ec ) — N(eclq))
= (1—-9) 12 ;a — )N (Nee,) — Nee-1))
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Since N is increasing, for each ¢ we have

I\A/(eci)

(1 - 7)N<eci)/2 (N(ea) - N(eci—l)) < / (1 - V)Z/2d'z'

z:N(eci_1)

Since the disjoint intervals [N(e.,_1), N(e,)) cover [0, N) we thus have

N-
U< (=97 =)

2=0
< @=L =)
-2 2
= < —— for0<y<1/2

V1I=7In(l—7) W=7

(Lemma 9.7) B

9.2.4 Comparison with Other Boosting Algorithms

The Smoothboost algorithm was inspired by an algorithm given by Impagliazzo in the
context of hard-core set constructions in complexity theory (Impagliazzo, 1995). We
observed in Chapter 8 that Impagliazzo’s algorithm can be reinterpreted as a boosting-
by-sampling algorithm which generates distributions D; which, like the distributions
generated by SmoothBoost, satisfy Lo (D;) < —. However, our Smoothboost algorithm
differs from Impagliazzo’s algorithm in several important ways. The algorithm in (Im-
pagliazzo, 1995) uses additive rather than multiplicative updates for M;(j), and the
bound on T which is given for the algorithm in (Impagliazzo, 1995) is O(n;j) which
is worse than our bound by a factor of % Another important difference is that the
algorithm in (Impagliazzo, 1995) has no margin parameter § and does not appear to
output a large margin final hypothesis. Finally, the analysis in (Impagliazzo, 1995)
only covers the case where the weak hypotheses are binary-valued rather than real-
valued.

Freund and Schapire’s well-known boosting algorithm AdaBoost is somewhat
faster than SmoothBoost, requiring only 7' = O(logg#) stages (Freund and Schapire,
1997). Like SmoothBoost, AdaBoost can be used with real-valued weak hypotheses
and can be used to output a large margin final hypothesis (Schapire et al., 1998).
However, AdaBoost is not guaranteed to generate only smooth distributions, and

thus does not appear to be useful in a malicious noise context.
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The results of Chapter 8 imply that Freund’s Bry,1, algorithm will generate
distributions which satisfy L. (D;) < O(w - 1), which is a weaker smoothness
guarantee than SmoothBoost by a logarithmic factor. Another drawback of Brygmtp
for the linear threshold learning application which we will study is the structure
of the final hypothesis which it generates. As we saw in Chapter 8, if the weak
learning algorithm returns hypotheses A1, ..., hr then the final hypothesis generated
by Bogmp Will be a depth two majority circuit with the hypotheses h; at the inputs.
In contrast, the SmoothBoost final hypothesis is simply a thresholded weighted sum
of the hypotheses h;, i.e. it is a depth one majority circuit. This simple structure of
the final SmoothBoost hypothesis will play a crucial role in the generalization error
bound of the next section.

Freund has recently studied a sophisticated boosting algorithm called BrownBoost
(Freund, 1999) which uses a gentler weighting scheme than AdaBoost. Freund sug-
gests that BrownBoost should be well suited for dealing with noisy data; however
it is not clear from the analysis in (Freund, 1999) whether BrownBoost-generated
distributions satisfy a smoothness property such as the Ly (D;) < # property of
SmoothBoost, or whether BrownBoost can be used to generate a large margin final
hypothesis. We note that the BrownBoost algorithm is much more complicated to
run than SmoothBoost, as it involves solving a differential equation at each stage of
boosting.

Smoothboost is perhaps most similar to the modified AdaBoost algorithm called
MadaBoost which was recently given by Domingo and Watanabe (Domingo and
Watanabe, 2000). Like SmoothBoost, MadaBoost uses multiplicative updates on
weights and never allows weights to exceed 1 in value. Domingo and Watanabe
proved that MadaBoost takes at most T < %2 stages, which is quite similar to
our bound in Theorem 9.5. (If we set # = 0 in SmoothBoost, a slight modifica-
tion of the proof of Theorem 9.5 gives a bound of roughly ﬁ, which improves
the Madaboost bound by a constant factor.) However, the analysis for MadaBoost
given in (Domingo and Watanabe, 2000) only covers the case of binary-valued weak
hypotheses, and does not establish that MadaBoost generates a large margin final
hypothesis. We also note that our proof technique of simultaneously upper and lower
bounding 37", 37 My(j)y;he(a?) is different from the approach used in (Domingo
and Watanabe, 2000).
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9.3 Learning Linear Threshold Functions with Ma-

licious Noise

In this section we show how the SmoothBoost algorithm can be used in conjunc-
tion with a simple noise tolerant weak learning algorithm to obtain a PAC learning

algorithm for learning linear threshold functions with malicious noise.

9.3.1 Geometric Preliminaries

We briefly review the geometric preliminaries from Section 7.2. For z € R" and p > 1,
|||, denotes the p-norm of z, namely ||z||, = (57, |z;[?)/?. The oo-norm of z is
|z]|c = max;—i,. . |zi|. We write B,(R) to denote the p-norm ball of radius R, i.e.
By(R) = {z € % : |o]|, < R}.

For p,q > 1 the ¢g-norm is dual to the p-norm if % + % = 1; for us p and ¢ will

always denote dual norms. The following facts are useful:
Holder Inequality: |u-v| < ||u||,||v||q for all u,v € R™ and 1 < p < 0.
Minkowski Inequality: ||u + v||, < ||ull, + ||v]|, for all u,v € R™ and 1 < p < oo.

Recall that a linear threshold function is a function f : R* — {—1,1} such that

f(z) = sign(u - ) for some u € R".

9.3.2 PAC Learning with Malicious Noise

Let EX] 4. (u, D) be a malicious example oracle with noise rate n that behaves as
follows when invoked: with probability 1 — n the oracle returns a clean example (z,
sign(u - z)) where z is drawn from the probability distribution D over B,(R). With
probability n, though, EX7}, 4, (u, D) returns a dirty example (z,y) € B,(R) x{—1,1}
about which nothing can be assumed. Such a malicious example (z, y) may be chosen
by a computationally unbounded adversary which has complete knowledge of u, D,
and the state of the learning algorithm when the oracle is invoked.

The goal of a learning algorithm in this model is to construct an approximation
to the target concept sign(u - ). More formally, we say that a Boolean function
h:R" — {—1,1} is an e-approzimator for u under D if Pryep[h(z) # sign(u-x)] < e.

The learning algorithm is given an accuracy parameter € and a confidence parameter ¢,
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has access to EX];4;(u, D), and must output a hypothesis A which, with probability
at least 1 —4, is an e-approximator for v under D. The sample complexity of a learning
algorithm in this model is the number of times it queries the malicious example oracle.

(A slightly stronger model of PAC learning with malicious noise has also been
proposed (Aslam and Decatur, 1998; Cesa-Bianchi et al., 1999). In this model first a
clean sample of the desired size is drawn from a noise-free oracle; then each point in the
sample is independently selected with probability n; then an adversary replaces each
selected point with a dirty example of its choice; and finally the corrupted sample is
provided to the learning algorithm. This model is stronger than the original malicious
noise model since each dirty example is chosen by the adversary with full knowledge of
the entire sample rather than knowledge only of the earlier examples that the learner
has drawn thus far in the sample sequence. All of our results also hold in this stronger
model.)

A final note: like the Perceptron algorithm, the learning algorithms which we
consider will require that the quantity «-z be bounded away from zero (at least most
of the time). We thus say that a distribution D is £-good for u if |u - z| > £ for all z
which have nonzero weight under D, and we restrict our attention to learning under
&-good distributions. Of course, dirty examples drawn from EX},,; (u, D) need not

satisfy |u-z| > €.

9.3.3 A Noise Tolerant Weak Learning Algorithm

For ease of reference we repeat the p-norm weak learning algorithm WLA from Section
7.3 in Figure 9.3. Recall that WLA takes as input a data set S and a distribution D over
S. The algorithm computes the vector z which is the average location of the (label-
normalized) points in S under D, transforms z to obtain a vector w, and predicts
using the linear functional defined by w.

We showed in Chapter 7 that the WLA algorithm is a weak learning algorithm
for linear threshold functions in a noise-free setting. The following theorem shows
that if a small fraction of the examples in S are affected by malicious noise, WLA
will still generates a hypothesis with nonnegligible advantage provided that the input

distribution D is sufficiently smooth.

Theorem 9.8 Fiz 2 < p < oo and let S = (z',y1),...,{(x™, ym) be a set of labeled
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Input: real number p > 2
sample S = (z!,91),..., (2™, yn) of labeled examples with z* € R",

Yi € {—1, 1}
distribution D over S

Output: real valued hypothesis h(zx)

1. set z =37, D(j)y;a’
2. for all:=1,...,n set w; = sign(z;)|z[P~*

3. return hypothesis h(z) = v -z where v = Twl R

Figure 9.3: The p-norm weak learning algorithm WLA.

examples with each z7 € B,(R). Let D be a distribution over S such that Lo(D) < —=.
Suppose that € > 0 and u € R™ are such that £ < R||ul|; and at most n'm examples
in S do not satisfy y;(u - %) > &, where i’ < ﬁ. Then WLA(p, S, D) returns a

hypothesis h : B,(R) — [—1, 1] which has advantage at least m’fm under D.

Proof: By Hélder’s inequality, for any z € B,(R) we have

w-al _ Jullsl,
M= Tulk = Tl
and thus A indeed maps B,(R) into [—1, 1].
Now we show that h has the desired advantage. Since hy(z?) € [-1,1] and y; €
{—1,1}, we have |h(2?) — y;| =1 — y;h(27), so

<1

— I

1 1
QZD D! =y, == ZD (1 —yh(z ))25—

j=1

(g

J
To prove the theorem it thus suffices to show that i lzig‘)ljj(wx) > 2||£||q The
numerator of the left side is w - (Z;”ZlD(j)ijj) =w-z =3 |z" = || Using
the fact that (p — 1)g = p, the denominator is
n q 1/q n 1/q
—1
ot = (3 (7)) = (S lal) =t
i=1 i=1
We can therefore rewrite the left side as [|z||2/||z|[2/? = ||z|,, and thus our goal is

to show that ||z||, > By Hélder’s inequality it suffices to show that z - u > £,

2IIUII
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which we now prove.

Let S1 = {(z7,y;) € S : y;(u-27) > &} and let S, = S\ Si. The definition of Sy
immediately yields Y ;cs, D(j)y;(u-27) > D(S1)€. Moreover, since each ||z7]|, < R, by
Holder’s inequality we have y;(u-27) > —||27||,- ||u||q > —R||ul|, for each (27, y;) € S,.
Since each example in Sy has weight at most % under D, we have D(S;) < Z”;, and

hence

=Y D@)yju-27) = Y DGyj(u-z7)+ > D(j)y;(u-2)
7j=1

jEST JES2

> (1= 1) ¢ ALl
K K
38 _¢_¢
sl 4 4 2’

where the inequality (1 — %') > 2 follows from the bound on 7' and the fact that
¢ < Rl[ull,- u

9.3.4 Putting it All Together

In this section we show how SmoothBoost can be used with WLA to obtain an algorithm
for learning linear threshold functions in the presence of malicious noise.

The algorithm for learning sign(u - z) with respect to a £-good distribution D over
B,(R) is as follows:

e Draw asample S = (z',y1), ..., (2™, yn) of m labeled examples from EX7], ,; (u, D).
e Run Smoothboost on S with parameters k = {, v = m, 0= ﬁ using WLA

as the weak learning algorithm.

We now determine constraints on the sample size m and the malicious noise rate n
under which this is a successful and efficient learning algorithm.

We first note that since D is £-good for u, we have that £ < R||ul|,. Furthermore,
since k = 7, Claim 9.3 implies that each distribution D; which is given to WLA by
SmoothBoost has Ly (D;) < %. Let Sc C S be the clean examples and Sp = S\ S¢
the dirty examples in S. If n < 96R”“”‘1

and m > log 2 5, then a simple Chernoff

29
32R|Jullq

bound implies that with probability at least 1 — 5 we have |Sp| < TRﬁWm' Thus,
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we can apply Theorem 9.8 with 7' = 161§ﬁu”q; so each weak hypothesis h;(z) = v - z

generated by WLA has advantage m under D,. Consequently, by Theorems 9.4 and

9.5, Smoothboost efficiently outputs a final hypothesis h(z) = signf(z) which has

margin less than 6 on at most an { fraction of S. Since |S¢| is easily seen to be at
least %, we have that the margin of / is less than § on at most an § fraction of S¢. Asin
Chapter 7, this means that we can apply methods from the theory of data-dependent
structural risk minimization (Bartlett and Shawe-Taylor, 1999; Shawe-Taylor et al.,
1998) to bound the error of A under D.

Recall that the final Smoothboost hypothesis is h(z) = sign(f(z)) where f(z) =
v-x is a convex combination of hypotheses h;(z) = v*- z. Since each vector v* satisfies
|v*|ly < %, by Minkowski’s inequality we have that ||v]|, < & as well. We proved the
following theorem in Chapter 7 (Theorem 7.8):

Theorem 9.9 Fiz any value 2 < p < oo and let F be the class of functions {x —
v-z : |jvlly £ 5,2 € By(R)}. Then fatr(n) < %324—”, where fatz(p) is the fat-
shattering dimension of F at scale y as defined in, e.g., (Bartlett et al., 1996; Bartlett
and Shawe-Taylor, 1999; Shawe-Taylor et al., 1998).

The following theorem is from (Bartlett and Shawe-Taylor, 1999):

Theorem 9.10 (Bartlett and Shawe-Taylor, 1999) Let F be a collection of real-
valued functions over some domain X, let D be a distribution over X x {—1,1}, let
S =zt y1), ..., (@™ ym) be a sequence of labeled examples drawn from D, and let
h(z) = sign(f(x)) for some f € F. If h has margin less than 6 on at most k examples
in S, then with probability at least 1 — § we have that Pry yeplh(x) # y] is at most

k + \/%(dln(34e/m) log(578m) + In(4/9)), (9.10)

m

where d = fatz(0/16).

We have that h has margin less than 6 on at most an 7 fraction of the clean examples
Sc, so we may take k/m to be § in the above theorem. Now if we apply Theorem 9.9
and solve for m the inequality obtained by setting (1) to be at most €, we obtain our

main result:
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Theorem 9.11 Fiz 2 < p < oo and let D be a distribution over B,(R) which is
~ 2

&-good for u. The algorithm described above uses m = O ((%) ) examples and

outputs an e-approximator for u under D with probability 1 — § in the presence of

malicious noise at a rate n = ) (6' —Rllillq) .

9.4 Discussion

9.4.1 Comparison with Online Algorithms

The bounds on sample complexity and malicious noise tolerance of our SmoothBoost-
based algorithms given by Theorem 9.11 are remarkably similar to the bounds which
can be obtained through a natural PAC conversion of the online p-norm algorithms
introduced by Grove, Littlestone and Schuurmans and studied by Gentile and Little-
stone. As stated in Theorem 7.2 of Chapter 7, Grove, Littlestone and Schuurmans
proved that the online p-norm algorithm makes at most O ((%)2) mistakes on
linearly separable data. Subsequently Gentile and Littlestone extended the analysis
from (Grove et al., 1997) and considered a setting in which the examples are not
linearly separable. Their analysis (Theorem 6) implies that if an example sequence
containing K malicious errors is provided to the online p-norm algorithm, then the

algorithm will make at most

R||u||q>2 R|jull,
0(< o) g Bl )

mistakes. To obtain PAC-model bounds on the online p-norm algorithms in the

presence of malicious noise, we use the following theorem due to Auer and Cesa-
Bianchi (Auer and Cesa-Bianchi, 1998) (Theorem 6.2):

Theorem 9.12 Fizx a hypothesis class H of Vapnik-Chervonenkis dimension d. Let A
be an online learning algorithm with the following properties: (1) A only uses hypothe-
ses which belong to H, (2) if A is given a noise-free example sequence then A makes
at most mqy mistakes, and (3) if A is given an example sequence with K malicious
errors then A makes at most mg + BK mistakes. Then there is a PAC algorithm A’
which learns to accuracy € and confidence J, uses O(]f—; + 70 + %) examples, and can

tolerate a malicious noise rate n = 5.
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Applying this theorem, we find that these PAC conversions of the online p-norm
algorithms have sample complexity and malicious noise tolerance bounds which are
essentially identical to the bounds given for our SmoothBoost-based algorithm. We
note that these algorithms have the best bounds on malicious noise tolerance of any

known computationally efficient algorithms for learning linear threshold functions.

9.4.2 SmoothBoost is Optimally Smooth

We observed in Section 8.4.6 that any hard-core set construction theorem must have
a set size parameter which is at most O(e). Using the connection between hard-core
set, constructions and boosting algorithms described in Chapter 8, it follows that no
algorithm which boosts to accuracy e over a universe of m points can satisfy a stronger
“smoothness guarantee” on its distributions than the bound of Ly (D;) = O(Z-)
which is achieved by Impagliazzo’s algorithm. Since SmoothBoost also satisfies this
bound, it too generates distributions which are optimally smooth up to a constant
factor. We now give an alternative proof of SmoothBoost’s optimality which highlights
an interesting connection between the limits of boosting algorithms and known limits
on noise-tolerant learning.

It is evident from the proof of Theorem 9.11 that the smoothness of the distribu-
tions generated by SmoothBoost relates directly to the level of malicious noise which
our linear threshold learning algorithm can tolerate. On the other hand, as men-
tioned in Section 9.1, Kearns and Li have shown that for a broad range of concept
classes no algorithm can learn to accuracy € in the presence of malicious noise at a
rate ) > 1. Using the Kearns-Li upper bound on malicious noise tolerance, we can
prove that SmoothBoost is optimal up to constant factors in terms of the smoothness
of the distributions which it generates.

Recall that if SmoothBoost is run on a set of m examples with accuracy parameter
Kk, then each distribution D; which SmoothBoost constructs will satisfy L., (D;) < ﬁ
The proof is by contradiction; so suppose that there exists a boosting algorithm
called SuperSmoothBoost which is similar to SmoothBoost but which has an even
stronger smoothness guarantee on its distributions. More precisely we suppose that
SuperSmoothBoost takes as input parameters x,v and a labeled sample S of size
m, has access to a weak learning algorithm WL, generates a sequence D;,Ds, ... of

distributions over S, and outputs a Boolean-valued final hypothesis h. As in Section
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9.2.3, we suppose that if the weak learning algorithm WL always returns a hypothesis
h: which has advantage v under D;, then SuperSmoothboost will eventually halt
and the final hypothesis h will agree with at least a 1 — k fraction of the labeled
examples in S. Finally, we suppose that each distribution D, is guaranteed to satisfy
Loo(Dy) <

Consider the following severely restricted linear threshold learning problem: the

— 64nm

domain is {—1,1}? C R?, so any distribution D can assign weight only to these four
points. Moreover, we only allow two possibilities for the target concept sign(u - x):
the vector u is either (1,0) or (0,1). The four points in {—1,1}? are classified in all
four possible ways by these two concepts, and hence the concept class consisting of
these two concepts is a distinct concept class as defined by Kearns and Li (Kearns
and Li, 1993). It is clear that every example belongs to By (1) (i.e. R = 1), that
|lul|; = 1, and that any distribution D over {—1,1}? is 1-good for u (i.e. £ =1).

Consider the following algorithm for this restricted learning problem:

e Draw asample S = (x',41), ..., (™, ym) of m labeled examples from EX7, ,; (u, D);

€ n— _¢&

e Run SuperSmoothBoost on S with parameters k = 7, v = Wl = i using WLA

with p = 0o as the weak learning algorithm.

Suppose that the malicious noise rate 7 is 2¢. As in Section 9.3.4, a Chernoff bound
shows that for m = O(% log %), with probability at least 1 — % we have that the sam-
ple S contains at most 4em dirty examples. By the SuperSmoothBoost smoothness

property and our choice of k, we have that L., (D;) < . Theorem 9.8 now implies
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that each WLA hypothesis h; has advantage at least 4RIIUH = 3 Wlth respect to D;.
As in Section 9.3.4, we have that with probability at least 1 — 3 the final hypothesis
h output by SuperSmoothBoost disagrees with at most an fractlon of the clean
examples S¢.

Since the domain is finite (in fact of size four) we can bound generalization error
directly. A simple Chernoff bound argument shows that if m is sufficiently large,
then with probability at least 1 — § the hypothesis A will be an e-approximator for
sign(u - ) under D. However, Kearns and Li have shown (Theorem 1 of (Kearns
and Li, 1993)) that no learning algorithm for a distinct concept class can learn to
accuracy € with probability 1 — ¢ in the presence of malicious noise at rate n > 7+.
This contradiction proves that the SuperSmoothBoost algorithm cannot exist, and
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hence the distributions generated by SmoothBoost are optimal up to constant factors.
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Chapter 10

Learning Monotone DNF under

Product Distributions

In this final chapter we again consider the DNF learning problem, but this time
from a new perspective. While Chapter 3 gave a superpolynomial time algorithm for
learning an arbitrary DNF under an arbitrary distribution, we now focus on restricted
versions of the DNF learning problem which can be solved in polynomial time.

The main result of this chapter is an algorithm that PAC learns the class of mono-
tone 20(\/@)—term DNF in polynomial time under the uniform distribution, using
random examples only. This is an exponential improvement over the best previous
polynomial-time algorithms in this well-studied model, which can learn monotone
o(log? n)-term DNF, and is the first efficient algorithm for monotone (logn)“(!-term
DNF in any model of learning from random examples. (Recall from Chapter 8 that
Jackson’s Harmonic Sieve algorithm for learning DNF under the uniform distribution
makes essential use of membership queries and thus does not fit into the paradigm of
learning from random examples only.) We also show how to extend our algorithm so
that it learns in polynomial time under any constant-bounded product distribution,
and show that the algorithm can be used to learn various classes of constant-depth

monotone circuits with few relevant variables.
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10.1 Introduction

10.1.1 Learning DNF in Restricted Models

In his seminal 1984 paper (Valiant, 1984) Valiant introduced the distribution-free
model of Probably Approximately Correct (PAC) learning from random examples
and posed the following question: can polynomial size DNF be learned in polyno-
mial time using random examples drawn from an arbitrary distribution? Over the
subsequent years, the apparant difficulty of designing polynomial time algorithms for
this general problem led many researchers to study restricted versions of the DNF
learning problem which admit polynomial time algorithms. As described below, the

restrictions which have been considered include

e allowing the learner to make membership queries for the value of the target

function at points selected by the learner;

e requiring that the learner succeed only under restricted distributions on exam-

ples, such as the uniform distribution, rather than all distributions;

e requiring that the learner succeed only for restricted subclasses of DNF formulae

such as monotone DNF with a bounded number of terms.

A SAT-k DNF is a DNF in which each truth assignment satisfies at most k£ terms.
Khardon (Khardon, 1994) gave a polynomial time membership query algorithm for
learning polynomial-size SAT-1 DNF under the uniform distribution; this result was
later strengthened by Blum et al. (Blum et al., 1994) to SAT-k DNF for any con-
stant k. Bellare gave a polynomial time membership query algorithm for learning
O(logn)-term DNF under the uniform distribution (Bellare, 1992). This result was
strengthened by Blum and Rudich gave a polynomial time membership query al-
gorithm (Blum and Rudich, 1995) who gave a polynomial time algorithm for exact
learning O(logn)-term DNF using membership and equivalence queries; several other
polynomial-time algorithms for O(logn)-term DNF have since been given in this
model (Beimel et al., 1996; Bshouty, 1995; Bshouty, 1997; Kushilevitz, 1997). Us-
ing techniques from Fourier analysis Mansour gave an n?(°8196™)_time membership
query algorithm which learns polynomial-size DNF under the uniform distribution

(Mansour, 1995). As described in Chapter 8, in a celebrated result Jackson gave
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the Harmonic Sieve algorithm which runs in polynomial time and uses membership
queries to learn polynomial size DNF in polynomial time under the uniform distribu-
tion (Jackson, 1997). In fact, Jackson proves that the Sieve can be modified to run
in polynomial time under any constant-bounded product distribution.

In the standard PAC model without membership queries positive results are known
for various subclasses of DNF under restricted distributions. A read-k DNF is one in
which each variable appears at most k£ times. Kearns et al. showed that read-once
DNF are PAC learnable under the uniform distribution in polynomial time (Kearns
et al., 1994). Hancock extended this result to read-k DNF for any constant £ (Han-
cock, 1992). Verbeurgt gave an algorithm for learning arbitrary polynomial-size DNF
under the uniform distribution in time n®1°%¢™ (Verbeurgt, 1990). In an important
result Linial et al. gave an algorithm for learning any AC? circuit (constant depth,
polynomial size, unbounded fanin AND/OR gates) under the uniform distribution in
npolv(ogn) time (Linial et al., 1993).

A monotone DNF is a DNF with no negated variables. It is well known that in
the distribution-independent setting, learning monotone DNF is equivalent to learn-
ing general DNF (Kearns et al., 1987b). However this equivalence does not hold for
learning under restricted distributions such as the uniform distribution, and many
researchers have studied the problem of learning monotone DNF under restricted
distributions. Hancock and Mansour gave a polynomial time algorithm for learning
monotone read-k DNF under constant-bounded product distributions (Hancock and
Mansour, 1991). Verbeurgt gave a polynomial time uniform distribution algorithm for
learning poly-disjoint one-read-once monotone DNF and read-once factorable mono-
tone DNF (Verbeurgt, 1998). Kucera et al. gave a polynomial-time algorithm which
learns monotone k-term DNF under the uniform distribution using hypotheses which
are monotone k-term DNF (Kucera et al., 1994). This was improved by Sakai and
Maruoka who gave a polynomial-time algorithm for learning monotone O(logn)-term
DNF under the uniform distribution using hypotheses which are monotone O(logn)-
term DNF (Sakai and Maruoka, 2000). In (Bshouty, 1995) Bshouty gave a polynomial-
time uniform-distribution algorithm for learning a class which includes monotone
O(logn)-term DNF. Later Bshouty and Tamon gave a polynomial-time algorithm
for learning a class which includes monotone O(log® n/(loglogn)?)-term DNF under

constant-bounded product distributions (Bshouty and Tamon, 1996).
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10.1.2 Learning Larger Monotone DNF

We give an algorithm for learning monotone DNF under the uniform distribution. If
the desired accuracy level e is constant as a function of n (the number of variables),
then the algorithm learns 20(/1087)_term monotone DNF over n variables in poly(n)
time. (We note that the algorithm of (Bshouty and Tamon, 1996) for learning mono-
tone DNF with O((logn)?/(loglogn)?) terms also requires that € be constant in order
to achieve poly(n) runtime.) This is the first polynomial time algorithm which uses
only random examples and successfully learns monotone DNF with more than a poly-
logarithmic number of terms. We also show that essentially the same algorithm learns
various classes of small constant-depth circuits which compute monotone functions on
few variables. These results extend to learning under any constant-bounded product
distribution.

Our algorithm combines ideas from Linial et al.’s influential paper (Linial et al.,
1993) on learning AC? functions using the Fourier transform and Bshouty and Ta-
mon’s paper (Bshouty and Tamon, 1996) on learning monotone functions using the
Fourier transform. By analyzing the Fourier transform of AC? functions, Linial et
al. showed that almost all of the Fourier “power spectrum” of any AC® function
is contained in “low” Fourier coefficients, i.e. coefficients which correspond to small
subsets of variables. (We give a detailed overview of Fourier analysis on the Boolean
cube in Section 10.2.2.) Their learning algorithm estimates each low Fourier coeffi-
cient by sampling and constructs an approximation to f using these estimated Fourier
coefficients. If ¢ is the size bound for low Fourier coefficients, then since there are
(2) Fourier coefficients corresponding to subsets of ¢ variables the algorithm requires
roughly n¢ time steps. Linial et al. showed that for AC? circuits c is essentially
poly(logn); this result was later sharpened for DNF formulae by Mansour (Mansour,
1995).

Our algorithm extends this approach in the following way: Let C C AC? be a
class of Boolean functions which we would like to learn. Suppose that C' has the

following properties:

1. For every f € C there is a set Sy of “important” variables such that almost all
of the power spectrum of f is contained in Fourier coefficients corresponding to

subsets of S;.
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2. There is an efficient algorithm which identifies the set Sy from random examples.

(Such an algorithm, which we give in Section 10.3.1, is implicit in (Bshouty and
Tamon, 1996) and requires only that f be monotone.) We can learn an unknown
function f from such a class C by first identifying the set Sy, then estimating the low
Fourier coefficients which correspond to small subsets of Sy and using these estimates
to construct an approximation to f. To see why this works, note that since f is in
AC° almost all of the power spectrum of f is in the low Fourier coefficients; moreover,
property (1) implies that almost all of the power spectrum of f is in the Fourier
coefficients which correspond to subsets of Sy. Consequently it must be the case that
almost all of the power spectrum of f is in low Fourier coefficients which correspond to
subsets of Sy. Thus in our setting we need only estimate the ('Sc f |) Fourier coefficients
which correspond to “small” subsets of variables in Sy. If |Sf| < n then this is much

more efficient than estimating all (’CL) low Fourier coefficients.

10.2 Preliminaries

We write [n] to denote the set {1,...,n} and use capital letters A, B, C for subsets
of [n]. We write |A| to denote the number of elements in A. The lowercase letter
always denotes an n-bit string x =z, ...z, € {0,1}".

We view Boolean circuits as being composed of AND/OR/NOT gates where
AND and OR gates have unbounded fanin and negations occur only on inputs. We
view Boolean functions on n variables as real valued functions which map {0,1}" to
{—1,1}. A Boolean function f: {0,1}" — {—1,1} is monotone if changing the value
of an input bit from 0 to 1 never causes the value of f to change from 1 to —1.

If D is a distribution and f is a Boolean function on {0,1}", then as in (Bshouty
and Tamon, 1996; Hancock and Mansour, 1991; Kahn et al., 1988) we say that the
influence of x; on [ with respect to D is the probability that f(z) differs from f(y),
where y is x with the i-th bit flipped and x is drawn from D. For ease of notation
let f;o denote the function obtained from f by fixing z; to 0 and let f;; be defined

similarly. We thus have

Ip(f) = f;r[fi,o(x) # fia(z)] = %EDHfi,l — fioll-
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For monotone f this can be further simplified to
1 1
Ipi(f) = 5 Eolfin = fiol = 5 (Eplfia] = Enlfiol) - (10.1)

10.2.1 Distribution-Specific PAC Learning

The learning model we consider in this chapter is a distribution-specific version of
the PAC learning model which has been studied by many researchers, e.g. (Blum
et al., 1994; Bellare, 1992; Bshouty et al., 1999; Bshouty and Tamon, 1996; Furst
et al., 1991; Hancock and Mansour, 1991; Jackson, 1997; Khardon, 1994; Kucera et
al., 1994; Linial et al., 1993; Mansour, 1995; Verbeurgt, 1990; Verbeurgt, 1998). Let
C be a class of Boolean concepts over {0,1}", let D be a probability distribution
over {0,1}", and let f € C be an unknown target function. A learning algorithm A
for C' takes as input an accuracy parameter 0 < ¢ < 1 and a confidence parameter
0 < 0 < 1. During its execution the algorithm has access to an example oracle
EX(f,D) which, when queried, generates a random labeled example (z, f(z)) where
x is drawn according to D. The learning algorithm outputs a hypothesis A which is a
Boolean function over {0, 1}"; the error of this hypothesis is defined to be error(h) =
Prp[h(z) # f(x)].- We say that A learns C under D if for every f € C and 0 <
€,0 < 1, with probability at least 1 — ¢ algorithm A outputs a hypothesis h which has
error(h) <.

10.2.2 The Discrete Fourier Transform

Let U denote the uniform distribution over {0, 1}". The set of all real valued functions
on {0, 1}" may be viewed as a 2"-dimensional vector space with inner product defined
by

(fgg=27" 3 f(@)9(z) = Eulfg]

z€{0,1}"

and norm defined by ||f| = \/m Given any subset A C [n], the Fourier basis
function x4 : {0,1}" — {—1,1} is defined by ya(z) = (=1)4"X| where X is the
subset of [n] defined by ¢ € X iff z; = 1. It is well known that the 2™ basis func-
tions x4 form an orthonormal basis for the vector space of real valued functions on

{0,1}"; we refer to this basis as the x basis. In particular, any function f can be
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uniquely expressed as f(z) = Y4 f(A)xa(z), where the values f(A) are known as
the Fourier coefficients of f with respect to the x basis. Since the functions x4 form
an orthonormal basis, the value of f (A) is (f, xa); also, by linearity we have that
f(@) + g(x) = Ta(f(A) + §(A))xa(z). Another easy consequence of orthonormality

is Parseval’s identity

Eff= /1P = X f(4

AC[n]
If f is a Boolean function then this value is exactly 1. Finally, for any Boolean

function f and real-valued function g we have the following easily verified inequality
(Bshouty and Tamon, 1996; Linial et al., 1993):

Prlf # sign(o)] < Eul(f - o)) (102)

where sign(g) takes value 1 if g > 0 and takes value —1 if g < 0.

10.3 Learning under Uniform Distributions

10.3.1 Identifying Relevant Variables

The following lemma, which is implicit in (Bshouty and Tamon, 1996), gives an
efficient algorithm for identifying the important variables of a monotone Boolean

function. We refer to this algorithm as FindVariables.

Lemma 10.2 Let f : {0,1}" — {—1,1} be a monotone Boolean function. There is
an algorithm which has access to EX(f,U), runs in poly(n,1/e,log1/6) time steps
for all €,6 > 0, and with probability at least 1 — 6 outputs a set Sy C [n] such that

i € Sy implies Y F(A)? > ¢€/2 and i ¢ Sy implies f(A)? <e

An€A Au€A

Proof: Kahn et al. ((Kahn et al., 1988) Section 3) have shown that

Lug(f)= > f(ay”. (10.3)

A€eA

To prove the lemma it thus suffices to show that I/ ;(f) can be estimated to within

accuracy €/4 with high probability. By Equation (10.1) from Section 10.2 this can be
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done by estimating Ey[f;1] and Ey[fio]- Using Chernoff bounds it is easily verified
that with probability at least 1 — §/2n a sample of size poly(n,1/¢,log1/§) drawn
from EX(f,U) will contain poly(n,1/¢,log1/0) examples with x; = b for each value
of b = 0,1. A second application of Chernoff bounds shows that with probability
at least 1 — §/2n a sample of poly(n,1/¢,log1/d) labeled examples drawn uniformly

from {z : z; = b} yields an e/4-accurate estimate of Ey[fis]- u

10.3.2 The Learning Algorithm

Our learning algorithm, which we call LearnMonotone, is given below:
e Use FindVariables to identify a set Sy of important variables.

e Draw m labeled examples (z', f(z!)), ..., (z™, f(z™)) from EX(f,U). For every
A C Sy with [A] <csetay = =37, f(z*)xa(z'). For every A such that |[A| > ¢
or AZ Sy set ay =0.

e Output the hypothesis sign(g(z)), where g(z) = >4 aaxa(z).

The algorithm thus estimates f (A) for A C Sy, |A| < ¢ by sampling and constructs a
hypothesis using these approximate Fourier coefficients. The values of m and ¢ and

the parameter settings for FindVariables are specified below.

10.3.3 Learning Monotone 2°V1e")_term DNF

Let f : {0,1}" — {—1,1} be a monotone s-term DNF. The proof that algorithm
LearnMonotone learns f uses one DNF which we call f; to show that FindVariables
identifies a small set of variables S; and uses another DNF which we call f; to show
that f can be approximated by approximating Fourier coefficients which correspond
to small subsets of S;.

Let f; be the DNF which is obtained from f by removing every term which

32sn

contains more than log =*** variables. Since there are at most s such terms each of

which is satisfied by a random example with probability less than €/32sn, we have
Pry[f(z) # fi(x)] < 5, (this type of argument was first used in (Verbeurgt, 1990)).
Let R C [n] be the set of variables which f; depends on; it is clear that |R| < slog 32",
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Moreover since Iy, ;(f1) = 0 for i ¢ R, equation (10.3) from Section 10.3.1 implies that
fi(A)=0for AZ R,

Since f and f; are Boolean functions, f — f; is either 0 or 2, so Ey[(f — f1)?] =
4Pry[f # fi] < ¢/8n. By Parseval’s identity we have

Eu[(f - f1)2] = Z(f(A) - fl(A))2

= XA - AP+ TG - Ay
= U - AP+ 3 (7)”
< e/_8n

Thus 3 405 f(A)2 < 5., and consequently we have

i ¢ Rimplies Y f(4)? < 8i (10.4)

A€ A n

We set the parameters of FindVariables so that with high probability

i€S; implies Y f(A)% > ¢/8n (10.5)
AneA

i¢S; implies > f(A)? < e/4n. (10.6)
Ai€eA

Inequalities (10.4) and (10.5) imply that S; C R, so S| < slog 2™ Furthermore,
since A ¢ Sy implies i € A for some ¢ ¢ Sy, inequality (10.6) implies

ST F(A)? < e/4 (10.7)

AZSs
The following lemma is due to Mansour:

Lemma 10.3 (Mansour, 1995) Let f be a DNF with terms of size at most d. Then
for alle >0

S fA?<e

|A|>20d log(2/¢€)
One approach at this point is to use Mansour’s lemma to approximate f by approxi-

mating the Fourier coefficients of all subsets of S; which are smaller than 20d log(2/e),

32sn

where d = log =" is the maximum size of any term in f;. However, this approach
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does not give a good overall running time because d is too large. Instead we consider
another DNF with smaller terms than f; which also closely approximates f. By using
this stronger bound on term size in Mansour’s lemma we get a better final result.

More precisely, let f, be the DNF obtained from f by removing every term which
contains at least log 22 variables. Let ¢ = 20log £222 log 8. Mansour’s lemma implies
that

3 F(A)? < /8. (10.8)

|[A|>¢

Moreover, we have Pry[f # f2] < €/32 and hence
APr[f # fol = Eul(f F2)’] = 2(F(A) = fo(A)* < ¢/8. (10.9)
A

Let a4 and g(z) be as defined in LearnMonotone. Using inequality (10.2) from Section
10.2.2, we have

Prfsign(g) # f] < Eul(g— £)’] = Y (ou — f(A)? =X +Y + Z,

A

where

X= Y (u-fW)? Y=Y (a-fA)? Z= Y (aa-fA)"

‘A|SC7AZSf |A|>c ‘A|S07Agsf

To bound X, we observe that s = 0 for A Z Sy, so by (10.7) we have

X= ¥ JA’< Y 4P <e

|A|<c,AZS§ AZSy

To bound Y, we note that ay = 0 for |[A| > ¢ and hence Y =37 45 f(A)2. Since
F(A < 2(/(A) — fa(4))? + 2a(A)2, we have

Y < Z f: +2Zf2

Al>e. |A[>e
< 22 (4))” +¢/4
< 6/2
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by inequalities (10.8) and (10.9) respectively.

It remains to bound Z = 3 4<cacs,(@a — f(A))%. As in (Linial et al., 1993)
this sum can be made less than €/4 by taking m sufficiently large so that with high
probability each estimate a4 differs from the true value f(A) by at most \/W
A straightforward use of Chernoff bounds shows that m = poly(|Sy|¢, 1/¢,log(1/9))
suffices to ensure that Z < €/4.

Thus, we have X +Y + Z < €. Recalling our bounds on |S¢| and ¢, we have proved:

Theorem 10.4 Under the uniform distribution on {0,1}", for any values €,6 > 0,

algorithm LearnMonotone learns s-term monotone DNF in time polynomial in n,
(slog %)logﬁlog% and log(1/9).

Taking s = 2°(V16™) we obtain the following corollary:

Corollary 10.5 For any constant € algorithm LearnMonotone learns 2°0V1%8™ _term

monotone DNF in poly(n,log(1/6)) time under the uniform distribution.

As noted earlier, Bshouty and Tamon’s algorithm for learning monotone DNF
with O((logn)?/(loglogn)?) terms also requires that € be constant in order to achieve

poly(n) runtime.

10.3.4 Learning Monotone Circuits

Let C be the class of depth d, size M circuits which compute monotone functions
on r out of n variables. An analysis similar to that of the last section (but simpler
since we do not need to introduce auxiliary functions f; and f;) shows that algorithm
LearnMonotone can be used to learn C. If f is the target function and g is the
hypothesis generated by LearnMonotone, then as in the last section we have that
Pr[sign(g) # f] < X +Y + Z with

A

X= Y fA, Y= fA)?% Z= Y (aa— fA)~
|A|<c,AZ Sy |A|>¢ |A|<c,ACS;

By using FindVariables to identify the “important” relevant variables Sy (of
which there are now at most r) we can ensure that 3 4 ¢, f(A)? < ¢/4 and thus
bound X. To bound Y, instead of using Mansour’s lemma we we use the main lemma
of (Linial et al., 1993) which bounds the total weight of high-order Fourier coefficients

for constant-depth circuits:
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Lemma 10.6 (Linial et al.) Let f be a Boolean function computed by a circuit of

depth d and size M and let ¢ be any integer. Then

3 f(A)? < 2pm2 e,

[Al>c
Finally, as in Section 10.3.3 the bound on Z is obtained by taking a sufficiently large
sample to estimate each Fourier coefficient f(A) with A C S r,|A] < ¢ with error
at most y/€/4]Sy|c. Taking m = poly(r¢,1/e,log(1/6)) and ¢ = O((log(M/e))?) in

LearnMonotone we obtain:

Theorem 10.7 Fizd > 1 and let Cqn, be the class of depth d, size M circuits which
compute monotone functions with r relevant variables out of n. Under the uniform

distribution, for any €,0 > 0, algorithm LearnMonotone learns class Cynr, in time
polynomial in n, r18M/9)* gnd log(1/6).

One interesting corollary is the following:

Corollary 10.8 Fiz d > 1 and let Cy be the class of depth d, size 20((log )"/ () gy

1/(d+1 .
") relevant variables out of

cuits which compute monotone functions with 20((en)
n. Then for any constant € algorithm LearnMonotone learns class Cy in poly(n,log(1/6))

time.

While this class Cjy is rather limited from the perspective of Boolean circuit com-
plexity, from a learning theory perspective it is fairly rich. We note that Cy strictly
includes the class of depth d, size 201" “*D) cireyits on 20(em D) Gariables
which contain only unbounded fanin AND and OR gates. This follows from results of
Okol’nishnikova (Okol’nishnikova, 1982) and Ajtai and Gurevich (Ajtai and Gurevich,
1987) (see also (Boppana and Sipser, 1990) Section 3.6) which show that there are
monotone functions which can be computed by AC? circuits but are not computable

by AC? circuits which have no negations.

10.4 Product Distributions

A product distribution over {0,1}" is characterized by parameters p, ..., p, where

w; = Pr[xz; = 1]. Such a distribution D assigns values independently to each variable,
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so for a € {0,1}™ we have D(a) = (Hai:1 ,ui) (Haizo(l - ,uz)) . The uniform distribu-
tion is a product distribution with each pu; = 1/2. The standard deviation of z; under
a product distribution is o; = \/m A product distribution D is constant-
bounded if there is some constant ¢ € (0,1) independent of n such that p; € [c,1 — (]
foralli =1,...,n. Welet 3 denote max;—y__n(1/p;,1/(1 — p;)). Throughout the rest
of this paper D denotes a product distribution.

Given a product distribution D we define a new inner product over the vector

space of real valued functions on {0,1}" as

(f.9)p=">_ D(2)f(z)9(z) = Ep[fy]

z€{0,1}»

and a corresponding norm || f||p = +/{f, f)p. We refer to this norm as the D-norm. For
i=1,...,nlet z; = (z; — ;) /o;. Given A C [n], let ¢4 be defined as ¢4(z) = [Tica 2i-
As noted by Bahadur (Bahadur, 1961) and Furst et al. (Furst et al., 1991), the 2"
functions ¢4 form an orthonormal basis for the vector space of real valued functions
on {0, 1}" with respect to the D-norm, i.e. (¢4, dp)pis 1 if A = B and is 0 otherwise.

We refer to this basis as the ¢ basis. The following fact is useful:

Fact 10.9 (Bahadur; Furst et. al) The ¢ basis is the basis which would be o0b-
tained by Gram-Schmidt orthonormalization (with respect to the D-norm) of the x

basis performed in order of increasing |Al.

By the orthonormality of the ¢ basis, any real function on {0,1}" can be uniquely
expressed as f(z) = Y4 f(A)da(z) where f(A) = (f, d4)p is the Fourier coefficient
of A with respect to the ¢ basis. Note that we write f(A) for the ¢ basis Fourier
coefficient and f(A) for the y basis Fourier coefficient. Also by orthonormality we

have Parseval’s identity

Ep[f?] = Iflp= > F(A)?
ACln]

which is 1 for Boolean f. Finally, for Boolean f and real-valued g we have ((Furst et
al., 1991) Lemma 10)

Pr(f # sign(g)] < Bol(f - 9)7] (10.10)
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Furst et al. (Furst et al., 1991) analyzed the ¢ basis Fourier spectrum of AC?
functions and gave product distribution analogues of Linial et al.’s results on learning
AC" circuits under the uniform distribution. In Section 10.4.1 we sharpen and extend
some results from (Furst et al., 1991), and in Section 10.5 we use these sharpened re-
sults together with techniques from (Furst et al., 1991) to obtain product distribution

analogues of our algorithms from Section 3.

10.4.1 Some ¢ Basis Fourier Lemmas

A random restriction p,p is a mapping from {z;,...,z,} to {0,1,%} where z; is
mapped to * with probability p, to 1 with probability (1 — p)u;, and to 0 with prob-
ability (1 — p)(1 — ;). If f is a Boolean function then f[p represents the function
f(ppp(z)) whose variables are those x; which are mapped to * and whose other z;
are instantiated as 0 or 1 according to pp p.

The following is a variant of Hastad’s well known switching lemma (Hastad, 1986):

Lemma 10.10 Let D be a product distribution with parameters pu; and 3 as defined
above, let f be a CNF formula where each clause has at most d literals, and let p,p

be a random restriction. Then with probability at least 1 — (43pd),

1. the function f[p can be expressed as a DNF formula where each term has at

most t literals;
2. the terms of such a DNF all accept disjoint sets of inputs.

Proof sketch: The proof is a minor modification of arguments given in Section 4 of
(Beame, 1994). u

The following corollary is a product distribution analogue of ((Linial et al., 1993)
Corollary 1):

Corollary 10.11 Let D be a product distribution with parameters p; and (3, let f be
a CNF formula where each clause has at most d literals, and let p,p be a random
restriction. Then with probability at least 1 — (48pd)" we have that J/Fﬁo(A) =0 for all
|A| > t.

Proof: It is shown in (Linial et al., 1993) that if f[p satisfies properties (1) and

—

(2) of Lemma 10.10 then f[p(A) = 0 for all |A| > ¢. Hence such a f[p is in the
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space spanned by {xa : |A| < t}. By Fact 10.9 and the nature of Gram-Schmidt
orthonormalization, this is the same space which is spanned by {¢ : |A| < t}, and

the corollary follows. []

Corollary 10.11 is a sharpened version of a similar lemma, implicit in (Furst et
al., 1991), which states that under the same conditions with probability at least

1—(58pd/2)" we have f[p(A) =0 for all |A| > ¢?. Armed with the sharper Corollary
10.11, by retracing arguments from (Furst et al., 1991) it is straightforward to prove

Lemma 10.12 For any Boolean function f, for any integer £,

3" F(A)? <2 Prf[p(A) # 0 for some |A| > £p/2).
jA[>¢ PP
Boolean duality implies that the conclusion of Corollary 10.11 also holds if f is
a DNF with each term of length at most d. Taking p = 1/843d and t = logf in this
DNF version of Corollary 10.11 and ¢ = 168d logf in Lemma 10.12, we obtain the

following analogue of Mansour’s lemma (Lemma 10.3) for the ¢ basis:

Lemma 10.13 Let f be a DNF with terms of size at most d. Then for all ¢ > 0

> fAP<en
|A|>168dlog(4/¢€)
Again using arguments from (Furst et al., 1991), Corollary 10.11 can also be used

to prove the following version of the main lemma from (Furst et al., 1991):

Lemma 10.14 Let f be a Boolean function computed by a circuit of depth d and size
M and let c be any integer. Then

3 f(A)? < 2Mm27e B8,

|A|>c
The version of this lemma given in (Furst et al., 1991) has 1/(d + 2) instead of 1/d in
the exponent of c¢. This new tighter bound will enable us to give stronger guarantees
on our learning algorithm’s performance under product distributions than we could

have obtained by simply using the lemma from (Furst et al., 1991).
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10.5 Learning under Product Distributions

10.5.1 Identifying Relevant Variables

We have the following analogue to Lemma 10.2 for product distributions:

Lemma 10.15 Let f:{0,1}" — {—1,1} be a monotone Boolean function. There is
an algorithm which has access to EX (f, D), runs in poly(n, 3,1/€,log1/§) time steps
for all €,6 > 0, and with probability at least 1 — 6 outputs a set Sy C [n] such that

i € Sy implies ) f(A)2>¢/2 and i ¢ Sy implies ) f(A)? <e.
AsicA Asi€A

Proof: We use the following fact:

Fact 10.16 ((Bshouty and Tamon, 1996) Lemma 4.1) For any Boolean func-
tion f and any product distribution D,

407Ipi(f) = > F(A).
AsicA
Using Chernoff bounds one can easily show that with poly(n, 3,1/¢,log1/d) examples
it is possible to estimate each value y; (and thus o;) with high accuracy. Asin Lemma
10.2, using Chernoff bounds it is possible to estimate Ip;(f) with high accuracy again
using poly(n, 8,1/¢,1og1/§) examples. Combining these estimates for o; and Ip;(f)
proves the lemma. We call this algorithm FindVariables2. [ |

10.5.2 The Learning Algorithm

We would like to modify LearnMonotone so that it uses the ¢ basis rather than the
X basis. However, as in (Furst et al., 1991) the algorithm does not know the exact
values of y; so it cannot use exactly the ¢ basis; instead it approximates each u; by
a sample value p; and uses the resulting basis, which we call the ¢’ basis. In more

detail, the algorithm is as follows:

e Use FindVariables2 to identify a set Sy of important variables.
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e Draw m labeled examples (2!, f(z1)), ..., (z™, f(z™)) from EX (f, D). Compute
= %E;’lef for 1 < i < n. Define 2z} = (x; — pl)/+/1i(1 — pf) and ¢y =

[ica Zz{'

e For every A C Sy with |A| < ¢ set oy = =37, fa?)@y(27). If [oy] > 1 set
oy = sign(c/y). For every A such that |A| > cor A Z S set oy = 0.

e Output the hypothesis sign(g(z)), where g(z) = > 4 /4y xa(z).

We call this algorithm LearnMonotone2. As in (Furst et al., 1991) we note that

setting o/, to +1 if |o/4y] > 1 can only bring the estimated value closer to the true
value of f(A).

10.5.3 Learning Monotone 2°Vl¢")_term DNF

For the most part only minor changes to the analysis of Section 10.3.3 are required.
As before we suppose that the target concept is an s-term DNF. Since a term of
size greater than d is satisfied by a random example from D with probability less
than (%)d, we now take log% 32 — ©(flog ) as the term size bound for f.
Proceeding as in Section 10.3.3 we obtain S| = O(Bslog °*). We similarly set a term
size bound of ©(Blog ?) for f,. We use the ¢ basis Parseval identity and inequality
(10.10) in place of the x basis identity and inequality (10.2) respectively. Lemma
10.13 provides the required analogue of Mansour’s lemma for product distributions;
using the new term size bound on f, we obtain ¢ = ©(3?log 2 log %)

The one new ingredient in the analysis of LearnMonotone2 comes in bounding the
quantity Z = 35 4j<cacs; (@4 — f(A))2. In addition to the sampling error which would
be present even if u were exactly u;, we must also deal with error due to the fact
that o4 is an estimate of the ¢’ basis coefficient rather than of the ¢ basis coefficient
f(A). An analysis entirely similar to that of Section 5.2 of (Furst et al., 1991) shows
that taking m = poly(c, |Sf|, 5 1/€,10g(1/6)) suffices to bound Z < /4. We thus

have

Theorem 10.17 Under any product distribution D on {0,1}", for any €,6 > 0,
algorithm LearnMonotone2 learns s-term monotone DNF in time polynomial in n,
(Bslog %)52 log 2log ¢ gnd log(1/9).

Since a constant-bounded product distribution D has § = ©(1), we obtain
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Corollary 10.18 For any constant € and any constant-bounded product distribution
D, algorithm LearnMonotone?2 learns 2°V1°6™ _term monotone DNF in poly(n,log(1/6))

time.

10.5.4 Learning Monotone Circuits

Using Lemma 10.14 and an analysis similar to the above, we obtain the following

results.

Theorem 10.19 Fiz d > 1 and let C be the class of depth d, size M circuits which
compute monotone functions on r out of n variables. Under any product distribution

D, for any €,6 > 0, algorithm LearnMonotone?2 learns class C in time polynomial in
n, 181080 gnd log(1/6).

Corollary 10.20 Fiz d > 1 and let C be the class of depth d, size 20 ((logn)/(4+1))
circuits which compute monotone functions on 2°0((°8 YD) yariables. Then for any
constant € and any constant-bounded product distribution D, algorithm LearnMonotone?2

learns class C in poly(n,log(1/6)) time.
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Chapter 11
Future Directions

While our results shed new light on several important aspects of computationally

efficient learning, many interesting questions remain to be answered.

DNF Learning: The 20'%) time complexity of our DNF learning algorithm from
Chapter 3 is a significant improvement over previous results, but this running time
is still far from polynomial. Can polynomial time algorithms be obtained for the
general problem of PAC learning DNF from random examples under an arbitrary
distribution? Similarly, while our algorithm in Chapter 10 for learning monotone
DNF under the uniform distribution runs in polynomial time for DNF with 90(y/10gn)
terms, it remains an open question to design a polynomial time algorithm for learning

arbitrary polynomial size monotone DNF under the uniform distribution.

Computational Sample Complexity: A goal for future research is to replace the
nonstandard cryptographic hardness assumption of Section 4.5, which we used to
prove that attribute efficient learning can be computationally hard, with a standard
assumption. It would also be interesting to extend our cryptographic hardness result
for attribute efficient learning to a more natural concept class such as the class of

1-decision lists of length k.

Boosting: The new SmoothBoost algorithm introduced in Chapter 9 is guaranteed
to generate optimally smooth distributions, but it requires 1/ey? stages of boosting.
As described in Chapters 8 and 9, other boosting algorithms such as Freund’s boost-
by-majority algorithm and Freund and Schapire’s AdaBoost are known to run in an

optimal log(1/€) /72 stages, but these algorithms do not appear to generate optimally
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smooth distributions. Is there a single boosting algorithm which is both optimally

smooth and optimally fast?

Linear Threshold Learning: Our algorithms in Chapter 9 match the malicious
noise tolerance of the best previous algorithms, but the level of malicious noise which
they can handle is still significantly smaller than the information-theoretic upper
bound. Can efficient linear threshold learning algorithms be designed which have

improved tolerance to malicious noise?
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