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Abstract

Motivatedby recentwork on quantumblack-boxquery
compleity, we consider quantumversions of two well-
studiedmodelsof learning Booleanfunctions: Angluin’s
model of exact learning from membeship queries and
Valiant's Probably ApproximatelyCorrect (PAC) modelof
learning from randomexamples. For ead of thesetwo
learningmodelswe establisha polynomialrelationshipbe-
tweenthe numberof quantumversusclassicalqueriesre-
quired for learning Our results provide an interesting
contrast to knownresultswhich showthat testing black-
box functionsfor various propertiescan require exponen-
tially more classical queriesthan quantumqueries. We
alsoshowthat undera widelyheldcomputationahardness
assumptiorthere is a classof Booleanfunctionswhich is
polynomial-timdearnablein the quantumversion but not
the classical version of ead learning model; thus while
guantumand classicallearning are equally powerfulfrom
an informationtheory perspective they are differentwhen
viewedfroma computationatompleity perspective

1. Intr oduction
1.1 Motivation

In recentyearsmary researcherbave investigatedhe
power of quantumcomputersvhich canquerya black-box
oraclefor anunknowvn function[1, 5, 6, 9, 14, 10, 11, 15
17, 20, 21, 23, 32, 37]. Thebroadgoal of researchn this
areais to understandhe relationshipbetweenthe number
of quantumversusclassicaloracle querieswhich are re-
guiredto answelvariousguestionsaboutthe functioncom-
putedby the oracle. For example,a well-known resultdue
to Deutschand Jozsg[17] shavs that exponentiallyfewer
gueriesarerequiredin the quantunmmodelin orderto deter
minewith certaintywhethera black-boxoraclecomputes

constantBooleanfunction or a functionwhich is balanced
betweeroutputs) and1. Morerecently severalresearchers
have studiedthe numberof quantumoraclequerieswhich
arerequiredo determinavhetherthefunctioncomputedy
ablack-boxoracleis identicallyzero[5, 6, 9, 15, 23, 37].

A natural questionwhich arisesin this framework is
the following: whatis the relationshipbetweenthe num-
ber of quantumversusclassicaloracle querieswhich are
requiredin orderto exactly identify the function computed
by a black-boxoracle? Herethe goalis not to determine
whetherablack-boxfunctionsatisfiessomeparticulamprop-
erty suchasever taking a nonzerovalue,but ratherto pre-
ciselyidentify an unknown black-boxfunctionfrom some
restrictedclassof possiblefunctions. The classicaliversion
of this problemhasbeenwell studiedin the computational
learningtheoryliterature[2, 12, 22, 24, 25 andis known
asthe problemof exactlearningfrom membeshipqueries
Thequestionstatedabove canthusberephrasedsfollows:
what is the relationshipbetweenthe numberof quantum
versusclassicamembershiguerieswhich arerequiredfor
exactlearningWe answetthis questionin this paper

In additionto the model of exact learningfrom mem-
bership queries,we also considera quantumversion of
Valiant'swidely studiedPAC learningmodelwhichwasin-
troducedby Bshoutyand Jackson13]. While a learning
algorithmin the classicalPAC modelhasaccesgo labeled
examplesdranvn from somefixed probability distribution, a
learningalgorithmin the quantumPAC model hasaccess
to somefixed quantumsuperpositiorof labeledexamples.
BshoutyandJacksorgave a polynomial-timealgorithmfor
a particularlearningproblemin the quantumPAC model,
but did not addressthe generalrelationshipbetweenthe
numberof quantumversusclassicakexampleswvhich arere-
quiredfor PAC learning.We answelthis questionaswell.



1.2 Our results

We shaow thatin aninformation-theoretisensegquantum
andclassicalearningareequialentup to polynomialfac-
tors: for boththemodelof exactlearningfrom membership
gueriesand the PAC model, thereis no learningproblem
which canbe solved usingsignificantlyfewer quantumex-
amplesthan classicalexamples. More precisely our first
maintheoremis thefollowing:

Theorem1 LetC be any classof Booleanfunctionsover
{0,1}" andlet D and @) be sudh thatC is exactlearnable
from D classicalmembeship queriesor from ) quantum
membeshipqueries.ThenD = O(nQ?).

Our secondmain theoremis an analogousresult for
guantunmversusclassicalPAC learnability:

Theorem2 Let C be any classof Booleanfunctionsover
{0,1}™ andlet D and @ besud thatC is PAC learnable
from D classicalexamplesor from @ quantumexamples.
ThenD = O(nQ).

Theoremsl and?2 areinformation-theoretigatherthan
computationain nature;they shav that for ary learning
problem,if thereis a quantumlearningalgorithm which
usespolynomiallymary exampleshentheremustalsoex-
ist a classicallearningalgorithmwhich usespolynomially
mary examples. However, Theoremsl and 2 do not im-
ply thatevery polynomialtime quantumearningalgorithm
musthave a polynomialtime classicalanalogue. In fact,
we shav that a separatiorexists betweenefficient quan-
tum learnability and efficient clasicallearnability Under
awidely held computationahardnessssumptiorfor clas-
sical computation(the hardnessof factoring Blum inte-
gers),we obsere thatfor eachof the two learningmodels
consideredn this paperthereis a conceptclasswhich is
polynomial-timelearnablein the quantumversionbut not
in the classicalersionof themodel.

1.3 Previous Work

Our resultsdrav on lower boundtechniquesrom both
guantumcomputationand computationallearning theory
[2, 5,6, 8 12, 24]. A detaileddescriptionof the relation-
shipbetweerourresultsandpreviouswork onquantumver-
susclassicablack-boxquerycompleity is givenin Section
3.4.

In [19] Farhi etal. prove a lower boundon the num-
ber of functionswhich can be distinguishedwith k£ quan-
tum queries.Ronaldde Wolf hasnoted[18] thatthe main
result of [19] yields an alternateproof of one of the two
lower boundswhich we give for exactlearningfrom quan-
tum membershiguerieg Theoreml10).

1.4. Organization

We definetheexactlearningmodelandthe PAC learning
modelanddescribehe quantumcomputatiorframenork in
Section2. We prove therelationshipbetweemuantumand
classicalexact learning from membershipqueries(Theo-
rem1) in Section3, andwe prove therelationshipbetween
guantumand classicalPAC learning(Theorem?2) in Sec-
tion 4. Finally, in Section5 we obsenethatundera widely
accepteccomputationahardnessassumptiorfor classical
computationjn eachof thesetwo learningmodelsthereis
a conceptclasswhich is quantumlearnablein polynomial
time but not classicallylearnabldn polynomialtime.

2. Preliminaries

A conceptc over {0, 1}" is a Booleanfunctionover the
domain{0, 1}", or equivalentlyaconceptanbeviewedas
asubsef{z € {0,1}" : ¢(z) = 1} of {0,1}"™. A concept
classC = U,>1Cy, isacollectionof conceptswhereC,, =
{c € C : cisaconceptover {0,1}"}. For example,C,
mightbethefamily of all Booleanformulaeovern variables
which areof sizeatmostn2. We saythata pair {z, c(z)) is
alabeledexampleof theconcepte.

While mary differentlearning modelshave beenpro-
posed,most modelsfollow the samebasic paradigm: a
learningalgorithmfor aconceptlassC typically hasaccess
to (somekind of) an oraclewhich provides examplesthat
arelabeledaccordingo afixedbut unknavntargetconcept
¢ € C, andthegoal of the learningalgorithmis to infer (in
somesense}hetargetconcepte. Thetwo learningmodels
whichwe discusdn this paperthe modelof exactlearning
from membershipqueriesand the PAC model, make this
roughnotionprecisen differentways.

2.1 Classical Exact Learning from Membership
Queries

The modelof exactlearning from membeship queries
wasintroducedby Angluin [2] andhassincebeenwidely
studied[2, 12, 22, 24, 25]. In this modelthe learningal-
gorithm hasaccesso a membeship oracle M (. where
¢ € C, istheunknavntargetconcept Whengivenaninput
stringz € {0,1}", in onetime steptheoracleM (). returns
the bit ¢(z); suchaninvocationis known asa membeship
guerysincethe oracles answertells whetheror notz € ¢
(viewing c asa subsebf {0, 1}™). Thegoalof thelearning
algorithmis to constructa hypothesis: : {0,1}" — {0,1}
which is logically equialentto ¢, i.e. h(z) = ¢(z) for all
z € {0,1}". Formally, we saythatan algorithm A4 is an
exact learning algorithm for C using membeship queries
if foralln > 1, for all ¢ € C,, if A is givenn andac-
cessto M Q., thenwith probability at least2/3 algorithm



A outputsa Booleancircuit h suchthat h(z) = ¢(z) for
all z € {0,1}". Thesamplecompleity T'(n) of alearning
algorithm A for C is themaximumnumberof callsto M Q.
which A evermakesfor ary ¢ € C,,.

2.2 ClassicalPAC Learning

The PAC (ProbablyApproximately Correct) model of
conceptlearning was introducedby Valiant in [33] and
hassincebeenextensiely studied[4, 27]. In this model
the learning algorithm has accessto an example oracle
EX(c,D) wherec € C), is the unknown target concept
andD is anunknown distribution over {0,1}™. Theoracle
EX (¢, D) takesnoinputs;wheninvoked,in onetime step
it returnsa labeledexample(z, ¢(z)) wherez € {0,1}"
is randomlyselectedaccordingto the distribution D. The
goal of the learningalgorithmis to generatea hypothesis
h: {0,1}" — {0, 1} whichis ane-approximatorfor ¢ un-
derD, i.e. ahypothesig suchthatPr,cp[h(z) # c(z)] <
€. An algorithm A is a PAC learningalgorithmfor C if the
following conditionholds:for alln > 1 and0 < €,6 < 1,
for all ¢ € C,, for all distributionsD over {0,1}", if A
is givenn, ¢,6 andaccesgo EX (c,D), thenwith proba-
bility atleastl — § algorithm A outputsa circuit A which
is ane-approximatorfor ¢ underD. The samplecompleity
T(n,e€,d) of alearningalgorithm A for C is the maximum
numberof callsto EX (¢, D) which A ever makesfor ary
conceptc € C,, andary distributionD over {0,1}".

2.3 Quantum Computation

Detaileddescription®f thequantuncomputatiormodel
canbefoundin [7, 16, 28, 36]; herewe outline only the
basicsusingthe terminologyof quantumnetworksas pre-
sentedin [5]. A quantumnetwork N is a quantumcir-
cuit (over somestandardasisaugmentedvith one oracle
gate)which actson anm-bit quantunregister;the compu-
tationalbasisstatesof this registerarethe2™ binarystrings
of lengthm. A quantumnetwork can be viewed as a se-
guenceof unitarytransformations

U0,0l,Ul,OQ, .. -,UTfl,OT,UT,

whereeachU; is an arbitrary unitary transformatioron m
gubitsand eachO; is a unitary transformatiorwhich cor-
respondgo anoraclecall.> Sucha network is saidto have
guerycompleity 7. At every stagein the executionof the
network, the currentstateof theregistercanberepresented
asasuperpositiory . ¢ 13m a:|2z) wherethea., arecom-
plex numberswhich satisfy (g 13m la.||? = 1. If this
stateis measuredthen with probability ||a.||? the string

1sincethereis only onekind of oraclegate eachQ; is the sametrans-
formation.

z € {0,1}™ is obsenedandthestatecollapsesionn to | z).
After the final transformationUr takes place,a measure-
mentis performedon somesubsebf thebitsin theregister
andthe obsenedvalue (a classicabit string)is the output
of thecomputation.

Severalpointsdesere mentionhere. First, sincethein-
formationwhich our quantumnetwork usesfor its compu-
tation comesfrom the oraclecalls, we may stipulatethat
theinitial stateof the quantumregisteris |0™). Secondas
describedabove eachU; canbe an arbitrarily complicated
unitary transformation(aslong asit doesnot containary
oraclecalls) which may requirea large quantumcircuit to
implement. This is of small concernsincewe are chiefly
interestedn querycompleity andnot circuit size. Third,
asdefinedabore our quantunnetworks canmalke only one
measuremerdt the very endof the computationthisis an
inessentiakestrictionsince ary algorithm which usesin-
termediatemeasurementsanbe modifiedto an algorithm
which makesonly onefinal measurementinally, we have
not specifiedust how the oraclecalls O; work; we address
this pointseparatelyn Sections3.1and4.1for eachtypeof
oracle.

If |¢) = >, az|z) and|y) = >, B.|2) aretwo su-
perposition®of basisstatesthenthe Euclideandistancebe-
tweeen|¢) and[¢) is ||¢) — [1)] = (2, |a — B )1/,
Thetotal variation distancebetweentwo distributionsD;
andD; is definedto be )" |D;(z) — D2(x)|. Thefollow-
ing fact(Lemma3.2.60f [7]), which relatesthe Euclidean
distancebetweertwo superpositionandthetotal variation
distancébetweerthedistributionsinducedby measuringhe
two superpositionsyill beuseful:

Fact3 Let |¢) and |¢)) be two unit-lengthsuperpositions
which representpossiblestatesof a quantunregister If the
Euclideandistancd |¢) — |¢)| is at moste, thenperforming
the sameobservationon |¢) and |¢) inducesdistributions
Dy and Dy, which havetotal variation distanceat mostde.

3.ExactLearning from Quantum Membership
Queries

3.1 Quantum Membership Queries

A quantummembeship oracle QM Q. is the natural
guantumgeneralizatiorof a classicalmembershiporacle
M@.: oninput asuperpositiorof querystrings,the oracle
QM Q. generatethecorrespondinguperpositiomf exam-
ple labels. More formally, a Q M Q). gatemapsthe basis
state|z, b) (wherez € {0,1}" andb € {0, 1}) to the state
|z, bbe(z)). If A is aquantumnetwork whichhasQ M Q..
gatesasits oraclegatestheneachO; is theunitarytransfor
mationwhichmaps|z, b, y) (wherez € {0,1}",b € {0,1}



andy € {0,1}™ " 1) to |z, b&c(z), y).> OurQMQ, or-
acleis identical to the well-studiednotion of a quantum
black-boxoraclefor ¢ [5, 6, 7, 9, 10, 11, 15, 17, 23, 37].

A quantumexact learning algorithm for C is a fam-
ily of quantumnetworks N1, N, ..., whereeachnetwork
N, hasa fixed architectureindependentf the choice of
¢ € C,, with the following property: for all n > 1,
for all ¢ € C,, if NV,'s oraclegatesare instantiatedas
QMQ. gates,thenwith probability at least2/3 the net-
work A, outputsa representationf a (classical)Boolean
circuith : {0,1}™ — {0,1} suchthath(z) = () for all
z € {0,1}". Thequantumsamplecompleity of aquantum
exactlearningalgorithmfor C is T'(n), whereT'(n) is the
guerycomplexity of V,,.

3.2 Lower Boundson Classicaland Quantum Exact
Learning

Two differentlower boundsare known for the number
of classicamembershigueriesvhicharerequiredto exact
learnary conceptlass.In this sectionwe prove two analo-
gouslower boundson the numberof quantummembership
gueriesrequiredto exactlearnary conceptlass.Through-
outthis sectionfor easeof notationwe omit the subscript
andwrite C for C,,.

A Lower Bound Basedon Similarity of Concepts.Con-
sidera setof conceptavhich areall “similar” in the sense
that for every input almostall conceptsin the setagree.
Known resultsin learningtheory statethatsucha concept
classmustrequirea large numberof membershimueries
for exactlearning.Moreformally, let C’ C C beary subset
of C. Fora € {0,1}" andb € {0,1} let C7, ,, denotethe
setof thoseconceptsn C' which assignlabel b to exam-
plea, ie. Cf,, = {c € C" : ¢(a) = b}. Letn(, ) =

|Clu 5 |/1C"| bethefractionof suchconceptsn C”, andlet

A = min{V(Cal,o)W(CaIJ)}? thusy<" is the minimum frac-

tion of conceptsn C' which canbeeliminatedby querying
MQ. onthestringa. Lety”" = max{y{" : a € {0,1}"}.

Finally, let 4 be the minimumof v¢" acrossall ¢! C C

suchthat|C’| > 2. Thus

_ ) . C e
= min ma. min —_— .

~C x }
c'co,|c|>2 ae{0,1}" befo,1}  |C']

Intuitively, theinnermin correspondso thefactthattheor-
acle may provide a worst-casaesponsdo ary query;the
max correspondso thefactthatthelearningalgorithmgets
to choosethe “best” querypoint a; andthe outermin cor-
respondgo thefactthatthelearnemmustsucceecdho matter

2NotethateachO; only affectsthefirst n + 1 bits of abasisstate.This
is without loss of generalitysincethe transformationd’; can“permute
bits” of thenetwork.

whatsubseC’ of C thetargetconcepis dravn from. Thus
4¢ is smalllif thereis alargesetC’ of conceptsvhich are
all verysimilarin thatany queryeliminatesonly afew con-
ceptsfrom C". If this is the casethen mary membership
queriesshouldbe requiredto learn C’; formally, we have
thefollowing lemmawhich is a variantof Fact2 from [12]
(theproofis givenin AppendixA):

Lemma4 Any (classical)exact learning algorithm for C
musthavesamplecompleity Q(%).

We now develop sometools which will enableus to
prove a quantumversionof Lemmad4. LetC' C C,|C'| >
2 besuchthaty®" = 4¢ andlete;, ..., ccr bealisting
of theconceptsn C’. Let thetypical concepftfor C' bethe
functioné : {0,1}" — {0,1} definedasfollows: for all
a € {0,1}", &(a) is the bit b suchthat |C7, ;| > [C]/2
(ties are broken arbitrarily; note that a tie occursonly if
4¢ = 1/2). Thetypical concepté neednot belongto C’
or evento C. The differencematrix D is the |C'| x 2"
zero/onematrix whererows areindexedby conceptsn C’,
columnsare indexed by stringsin {0,1}", andD, , = 1
iff ¢;(x) # ¢(x). By our choiceof C' andthe definition of
4¢, eachcolumnof D hasatmost|C’| - 4¢ onessothe L,
matrixnormof D is || D||; < |C'] - 4€.

Our quantum lower bound proof uses ideas which
were first introduced by Bennettet al. [6]. Let
N be a fixed quantum network architectureand let
Uo,01,...,Ur_1,07,Ur bethe correspondingequence
of transformationsFor 1 < ¢t < T let|¢§) bethestateof the
quantunregisterafterthetransformationsip throughU; _,
have beenperformed(we referto this stageof the compu-
tationastime t) if the oraclegateis QM Q.. As in [6], for
z € {0,1}" letg,(|¢$)), thequerymagnitudeof string z at
time ¢ with respecto ¢, be the sumof the squaredmagni-
tudesin |¢$) of thebasisstateswhich arequeryingQ M Q.
onstringz attimet; soif |¢f) = > ce{o1}m a|z), then

()= D

we{0,1}m—n

”O‘zwn2-

The quantity ¢, (|¢5)) canbe viewed asthe amountof
amplitudewhich the network A\ investsin the querystring
z 10 QM Q. attimet. Intuitively, thefinal outcomeof A’s
computationcannotdependvery much on the oracles re-
sponsego querieswhich have little amplitudeinvestedin
them.Bennettet al. formalizedthis intuition in the follow-
ing theorem([6], Theorem3.3):

Theorem5 Let |¢$) be definedas above Let I C
{0,...,T — 1} x {0,1}" bea setof time-stringpairs suc
that 3, yer 42(165)) < <. Now supposethe answerto
ead queryinstance(t,z) € F is modifiedto somearbi-
trary fixed bit a; , (theseanswes neednot be consistent



with any oracle). Let |¢¢) bethe stateof the quantunreg-
isterattimet if the oracleresponseare modifiedas stated
above Then|¢5) — [¢5)] < e.

The following lemma,which is an extensionof Corol-
lary 3.4from [6], shavsthatno quantumearningalgorithm
which makesfew QMQ queriescaneffectively distinguish
mary conceptsn C' from thetypical concept.

Lemma6 Fix anyguantumnetworkarchitectue A/ which
hasquerycompleity T'. For all ¢ > 0 thereisasetS C C’
of cardinality at mostT2|C'|¢ /e suc that for all ¢ €
C'\ S, wehave||¢7) — |¢5)| <e.

Proof: Since||¢¢)| = 1forallt = 0,1,...,7 — 1, we
have S0 =, c 0.1y @:(196)) = T Letq(gf)) € R
be the 2"-dimensionalvector which has entriesindexed
by stringsz € {0,1}" andwhich hasg,(|¢¢)) asits z-
th entry  Note that the L; norm ||g(|¢¢))]]; is 1 for all
t=0,...,T — 1. Forary ¢; € C'letq.,(|¢)) be de-
finedas} . ..o 26 ¢ (|9§))- Thequantityq., (|¢;)) can
be viewed asthetotal querymagnitudewith respecto ¢ at
timet of thosestringswhichdistinguishe; from é. Notethat
Dq(|¢%)) € Rl is an|C’|-dimensionalvectorwhosei-
th elements precisely}_, .., z)e(x) 2 (195)) = ¢e: (167))-
since[[ D]l < || - 4 andlq(|¢)ll. = L, by the ba-
sic propertyof matrix normswe have that||Dq(|¢:))|l1 <
IC']-4°, 8. Xy cor e, (165)) < 7] 4€- Hence

T-1

DY gl

t=0 c;€C’

) < T|C'|-4°.

It weletS = {e; € C' : Y00 qc,(195)) > 7, by
Markov’s inequalitywe have |S| < T?|C'|4¢ /€. Finally,
if ¢ ¢ Stheny [ qe(|¢f)) < % Theorenb thenimplies
that[|$F) — |¢%)] < e. |

Now we canprove our quantunversionof Lemma4.

Theorem7 Any quantumexact learning algorithm for C

1/2
musthavesamplecompleity ((710) ) .

Proof: Supposehat V' is a quantumexactlearningalgo-

1/2
rithm for C which malesatmostT = 2 - (71@) quan-
tummembershigueriesIf wetakee = 3l2, thenLemmab
impliesthatthereis asetS c C’ of cardinalityatmost'i—'|
suchthatfor all c € C"\ S wehave ||¢5) —[¢5)] < 55 Let
¢1, c2 beary two conceptsn C' \ S. By Fact3, the prob-
ability that V' outputsa circuit equivalentto ¢; candiffer
by at most% if A’s oraclegatesare Q M Q; asopposedo
QMQ.,, andlikewisefor QM Q: versusQM Q... It fol-

lows thatthe probabilitythat A" outputsa circuit equivalent

toc; candiffer by atmost} if A’soraclegatesareQM Q..
asopposedo QM @Q.,, but this contradictghe assumption
that\ is a quantumexactlearningalgorithmfor C. ]

Known upperboundsonthequerycompleity of search-
ing a quantumdatabas¢9, 23] caneasilybe usedto shav
thatTheorem? is tight up to constanfactors.

A Lower Bound Basedon ConceptClassSize. A second
reasonwhy a conceptclasscanrequiremary membership
guerieds its size.Angluin [2] hasgiventhefollowing sim-
ple bound,incomparablédo the boundof Lemma4, on the
numberof classicalmembershimueriesrequiredfor exact
learning(the proofis givenin AppendixA):

Lemma8 Any classical exact learning algorithm for C
musthavesamplecompleity Q(log |C)).

In this sectionwe prove a variantof this lemmafor the
guantunmodel. Our proof usesideasfrom [5] sowe intro-
ducesomeof their notation.Let N = 2™. For eachconcept
ceC, letXe = (X§,...,X%_,) € {0,1} beavector
which representg asan N-tuple,i.e. X§ = c(x') where
zt € {0,1}™ is the binary representationf i. ¢ Fromthis
perspectie we may identify C' with a subsetof {0,1}%,
andwe may view a QM (). gateasa black-boxoraclefor
X¢ whichmapsbasisstate|z?, b, y) to |z¢, b X§, y).

Usingideasfrom [20, 21], Bealsetal. have provedthe
following usefullemmawhichrelateghequerycompleity
of aquanturmetwork to the degreeof a certainpolynomial
([5], Lemma4.2):

Lemma9 Let A/ be a quantumnetwork that males T'
queriesto a bladk-box X, andlet B C {0,1}™ be a set
of basisstates. Thenthere existsa real-valuedmultilinear
polynomial Pg(X) of degreeat most2T" which equalsthe
probabilitythat observinghefinal stateof the networkwith
black-box X yieldsa statefrom B.

We useLemmag to prove thefollowing quantumlower
boundbasedon conceptclasssize. (Ronaldde Wolf has
obsenred that this lower boundcan also be obtainedfrom
theresultsof [19].)

Theorem 10 Anyexactquantumlearningalgorithmfor C
musthavesamplecompleity 2 (@) .

Proof: Let N be a quantumnetwork which learnsC' and
hasquery compleity 7. For all ¢ € C we have the fol-
lowing: if N's oraclegatesare QM Q. gates,thenwith
probability at least2/3 the outputof A is a representation

of a Booleancircuit h which computes. Letcy, ..., ¢
be all of the conceptsin C, andlet X!,..., XI¢! bethe
correspondingrectorsin {0,1}V. Foralli = 1,...,|C|

let B; C {0,1}™ be the collection of thosebasisstates



which are suchthatif the final obsenation performedby
N vyields a statefrom B;, thenthe outputof A is arepre-
sentationof a Booleancircuit which computesc;. Clearly
for i # j the setsB; and B; are disjoint. By Lemma
9, for eachi = 1,...,|C] thereis areal-valuedmultilin-
ear polynomial P; of degreeat most 27 suchthat for all
j =1,...,|C|, thevalueof P;(X7) is preciselythe prob-
ability thatthe final obsenationon N yields a representa-
tion of acircuitwhich computeg:;, providedthatthe oracle
gatesareQ M Q.; gates.ThepolynomialsP; thushave the
following properties:

1. P(X%) >2/3foralli=1,...,|C|;

2. Foraryj =1,...,|C|,wehave )", P;,(X7) <1/3
(sincethetotal probabilityacrossall possibleobsena-
tionsis 1).

Let No = 337, (}). Forany X = (Xo,...,Xn 1) €
{0,1}" let X € {0,1}™° be the column vector which
hasa coordinatefor eachmonicmultilinearmonomialover
Xo, ..., Xn_1 of dggreeatmost2T'. Thus,for example,if
N =4and2T = 2wehave X = (Xo, X1, X2, X3) and

Xt = (1,Xo, X1, X2, X3, XoX1, X0 X2,
X0X3, X1 X2, X1 X3, X2 X3).

If V is acolumnvectorin ®°, thenV*X correspondso
the degree2T polynomialwhosecoeficientsaregiven by
the entriesof V. Fori = 1,...,|C| letV; € RN bethe
columnvectorwhich correspondso the coeficientsof the
polynomial P;. Let M bethe|C| x Ny matrix whosei-th
row is V;; notethat multiplication by M definesa linear
transformatiorfrom ™o to RI¢!. SinceV! X7 is precisely
P;(X7), theproductM X7 is acolumnvectorin /€I which
hasP;(X7) asits i-th coordinate.

Now let L bethe|C| x |C| matrixwhosej-th columnis
thevectorM X7 . A squarematrix A is saidto bediagonally
dominantif |a;| > ., |a;;| for all i. Propertie1) and
(2) aboreimply thatthetransposef L is diagonallydomi-
nant. It is well known thatary diagonallydominantmatrix
mustbe of full rank(aproofis givenin AppendixC). Since
L is full rankandeachcolumnof L is in theimageof M, it
follows thattheimageunderM of ® is all of ®¢/, and
henceN, > |C|. Finally, sinceN, = 27, (¥) < N?7,

%
wehave T > % = L& \yhich provesthetheorem.
|

2n

The lower boundof Theorem10 is nearlytight as wit-
nessedy thefollowing example:let C' bethe collectionof
all 2™ parityfunctionsover {0, 1}, soeachfunctionin C'is
definedby astringa € {0,1}" andc,(z) = a-z. Thequan-

tum algorithmwhich solvesthewell-known Deutsch-Jozsa

problem[17] canbeusedo exactlyidentify a andthuslearn
thetargetconceptwith probability 1 from asinglequery It

follows thatthe factorof n in thedenominatoof Theorem
10 cannotbereplacedy ary functiong(n) = o(n).

3.3 Quantum and Classical Exact Learning are
Equivalent

We have seentwo differentreasonsvhy exactlearninga
conceptlasscanrequirealarge numberof classicaimem-
bershipqueries: the classmay containmary similar con-
cepts(i.e. 4¢ is small),or the classmay containvery mary
conceptgi.e. log |C| islarge). Thefollowing lemmawhich
is avariantof Theorem3.1from [24], shavsthattheseare
theonly reasonsvhy mary membershigueriesnaybere-
quired(theproofis givenin AppendixA).

Lemmall Thee is an exact learning algorithm for C'
which hassamplecompleity O((log |C|) /7°).

CombiningTheorem?7, Theorem10 andLemmall we
obtainthefollowing relationshipbetweerthe quantumand
classicakamplecompleity of exactlearning:

Theorem1 LetC beanyconceptlassover {0,1}™ andlet
D and @ be sud that C is exact learnablefrom D clas-
sical membeship queriesor from ¢ quantummembeship
queries.ThenD = O(nQ?).

We notethata@ M @ . oraclecanclearlybeusedo simulate
anMQ. oracle,;so@ < D aswell.

3.4. Discussion

Theoreml provides an interestingcontrastto several
known resultsfor black-boxquantumcomputation.Let F’
denotethe setof all 22" functionsfrom {0, 1}" to {0, 1}.
Bealsetal. [5] have shovn thatif f : F — {0,1} isary
total function (i.e. f(c) is definedfor every possiblecon-
ceptc over{0, 1}™), thenthequerycompleity of ary quan-
tum network which computesf is polynomially relatedto
the numberof classicablack-boxqueriesrequiredto com-
pute f. Their resultis interestingbecauset is well known
[7, 11, 17, 32] thatfor certainconceptclasses” C F' and
partial functionsf : C — {0, 1}, the quantumblack-box
guery compleity of f canbe exponentiallysmallerthan
theclassicablack-boxquerycomplexity.

Our Theorem1 provides a sort of dual to the results
of Bealset al.: their bound on query compleity holds
only for the fixed conceptclass F' but for ary function
f + F — {0,1}, while our bound holds for ary con-
ceptclassC C F but only for the fixed problemof exact
learning. In generalthe problemof computinga function
f: C — {0,1} fromblack-boxqueriecanbeviewedasan
easieversionof thecorrespondingxactlearningproblem:
insteadof having to figure out only onebit of information



abouttheunknownn concept (thevalueof f), for thelearn-
ing problemthealgorithmmustidentify ¢ exactly. Theorem
1 shaws thatfor this moredemandingproblem,unlike the
resultsin [7, 11, 17, 32] thereis no way of restrictingthe
conceptlassC sothatlearningbecomesubstantiallyeas-
ier in thequantumsettingthanin the classicaketting.

4. PAC Learning from a Quantum Example
Oracle

4.1 The Quantum Example Oracle

Bshouty and Jackson[13] have introduceda natural
guantumgeneralizationof the standardPAC-model ex-
ample oracle. While a standardPAC example oracle
EX (¢, D) generategachexample(z, ¢(z)) with probabil-
ity D(z), whereD is a distribution over {0,1}", a quan-
tum PAC exampleoracle QEX (¢, D) generatesa super
position of all labeledexamples,where eachlabeledex-
ample (z,c(z)) appearsn the superpositiorwith ampli-
tude proportionalto the squareroot of D(z). More for-
mally,aQ EX (¢, D) gatemapstheinitial basisstate|0™, 0)
tothestate) ", . 1o,13» V' D(2)|z,c(z)). (We leave the ac-
tion of a Q EX (¢, D) gateundefinedon otherbasisstates,
andstipulatethatany quantumnetwork which includesT
QEX (¢, D) gatesmusthave all T' gatesat the “bottom of
the circuit,” i.e. no gatemay occuron ary wire between
theinputsandany QEX (¢, D) gate.) A quantumnetwork
with T Q EX (¢, D) gatesis saidto bea QEX network with
querycompleity 7.

A quantumPAC learning algorithm for C is a family
{NMmnyes) 1 n>1,0 < €0 < 1} of QEX networks with
the following property: for alln > 1 and0 < ¢, < 1,
for all ¢ € C,, for all distributions D over {0,1}", if
the network N(n,w;) hasall its oracle gatesinstantiated
asQEX (c,D) gates,thenwith probability at leastl — ¢
the network N(n,e’(;) outputsa representationf a circuit b
whichis ane-approximatoto ¢ underD. Thequantunsam-
ple compleity T'(n, €, §) of agquantumPAC algorithmis the
querycomplexity of N, ¢ s)-

4.2. Lower Boundson Classicaland Quantum PAC
Learning

Throughouthis sectionfor easeof notationwe omit the
subscriptn and write C' for C,,. We view eachconcept
¢ € C asasubsetf {0,1}™ For S C {0,1}", we write
IIo(S) todenote{c N S : ¢ € C}, so[lI(S)| is thenum-
berof different“dichotomies”which the conceptsn C' in-
duceon the pointsin S. A subsetS C {0,1}" is saidto
be shatteed by C if |TIo(S)| = 2%/, i.e. if C induces
every possibledichotomyon the pointsin S. The Vapnik-

Chervonenkiglimensiorof C, VC-DIM (C), is the size of
thelargestsubsetS C {0,1}™ whichis shatteredy C.
Well-known resultsin computationallearning theory
shav that the Vapnik-Chereonenkisdimensionof a con-
ceptclassC characterizethe numberof callsto EX (¢, D)
whichareinformation-theoreticallpecessargndsuficient
to PAC learnC. For thelowerbound thefollowing theorem
is aslightsimplificationof aresultdueto Blumeretal. ([8],
Theorem?.1.ii.b); a proof sketchis givenin AppendixA.

Theorem12 Let C be any conceptclassand d = VC-
DIM(C). Thenany (classical)PAC learning algorithm for
C musthavesamplecomplexity Q(d).

We now statea quantumanalogueof the classicalower
bound given by Theorem12; the proof usesideasfrom
errorcorrectingcodesandis givenin AppendixB.

Theorem13 Let C be any conceptclassand d = VC-
DIM(C). ThenanyquantumPAC learningalgorithmfor C
musthavequantumsamplecompleity Q(%).

Sincethe classof parity functionsover {0, 1}" hasVC-
dimensionn, asin Theorem10 the n in the denominator
of Theoreml3 cannotbereplacedby ary functiong(n) =

o(n).

4.3 Quantum and Classical PAC Learning are
Equivalent

A well-known theoremdueto Blumeret al. (Theorem
3.2.1.ii.aof [8]) shawvsthatVC-DIM (C) alsoupperbounds
thenumberof EX (¢, D) callsrequiredfor (classical)PAC
learning:

Theorem14 Let C be any conceptclassand d = VC-
DIM(C). Thee is a classicalPAC learning algorithm for
C which hassamplecompleity O(L log + + 4log 1).

The proof of Theoreml4 is quite complex sowe do not
attemptto sketchit. As in Section3.3, this upperbound
along with our lower bound from Theorem13 together
yield:

Theorem 2 Let C be any conceptclassover {0,1}" and
let D and @@ be sud that C is PAC learnable from D
classical examplesor from @ quantumexamples. Then
D =0(nQ).

We notethata Q EX (¢, D) oraclecanbe usedto simulate
the correspondingt X (¢, D) oracle by immediately per
forming anobsenationon the Q EX gates outputs (such
anobsenationyieldseachexample(z, c¢(x)) with probabil-
ity D(z)), andthus@ < D.

3As notedin Section2.3, intermediateobserationsduring a compu-
tation canalways be simulatedby a single obsenation at the end of the
computation.



5 Quantum versusClassicalEfficient Learn-
ability

We have shawn that from an information-theoretiper
spectve, up to polynomialfactorsquantumlearningis no
more powerful than classicallearning. However, we now
obsene thatthe apparantomputationabdvantageof the
guantunmodelyield efficientquantuniearningalgorithms
which seemto have no efficient classicakounterparts.

A Bluminteger is aninteger N = pq wherep # ¢ are
£-bit primeseachcongruento 3 modulo4. It is widely be-
lievedthatthereis no polynomial-timeclassicalalgorithm
which cansuccessfullfactorarandomlyselectedlum in-
tegerwith nonngligible succesgrobability.

KearnsandValiant[26] have constructec conceptlass
C whosePAC learnabilityis closelyrelatedto the problem
of factoringBlum integers. In their constructioreachcon-
cepte € C is uniquelydefinedby someBlum integer N.
Furthermore¢ hasthe propertythatif ¢(z) = 1 thenthe
prefix of z is the binary representationf N. Kearnsand
Valiantprovethatif thereis apolynomialtime PAC learning
algorithmfor C, thenthereis a polynomialtime algorithm
whichfactorsBlum integers.Thus,assuminghatfactoring
Blum integersis a computationallyhardproblemfor classi-
cal computationthe Kearns-\liantconceptclassC is not
efficiently PAC learnable.

On the otherhand,in a celebratedesultShor[31] has
exhibiteda poly(n) sizequantumnetwork which canfactor
ary n-bit integerwith high succesgrobability Sinceeach
positive exampleof a conceptc € C revealsthe Blum inte-
ger N which definese, usingShors algorithmit is easyto
obtainan efficient quantumPAC learningalgorithmfor the
Kearns-\aliantconceptlass.We thushave

Obselrvation 15 If thereis nopolynomial-timeclassicalal-

gorithmfor factoring Blumintegers, thenthereis a concept
classC which is efficiently quantumPAC learnablebut not
efficientlyclassicallyPAC learnable

The hardnesgesultsof Kearnsand Valiant were later
extendedby Angluin andKharitonor [3]. Using a public-
key encryption systemwhich is secureagainstchosen-
cyphertet attack (basedon the assumptiorthat factoring
Blum integersis computationallyhardfor polynomial-time
algorithms),they constructedh conceptclassC which can-
not be learnedby ary polynomial-timelearningalgorithm
which makes membershipgueries. As with the Kearns-
Valiantconceptlassthough,usingShors quantunfactor
ing algorithmit is possibleto construcanefficientquantum
exactlearningalgorithmfor thisconceptlass.Thus,for the
exactlearningmodelaswell, we have:

Obselvation 16 If thereis nopolynomial-timeclassicalal-
gorithm for factoring Blum integers, thenthere is a con-
ceptclassC which is efficiently quantumexact learnable

from membeship queriesbut not efficiently classicallyex-
actlearnablefrommembeshipqueries.

Senedio [30] hasrecentlyestablished strongersepa-
ration betweenthe quantumand classicalmodelsof exact
learningfrom membershigjueriesthanis implied by Ob-
senation 16. Using a new constructionof pseudorandom
functionsin conjunctionwith Simon's quantumoracleal-
gorithm[32], it is shavn in [30] thatif arny one-way func-
tion exists thenthereis a conceptclassC which is effi-
ciently quantumexact learnablefrom membershimueries
but not efficiently classicallyexactlearnabldrom member
shipqueries.

6 Conclusionand Future Dir ections

While we have shavn that quantumandclassicalearn-
ing are(up to polynomialfactors)information-theoretically
equialent,mary interestingquestiongemainaboutthere-
lationship betweenefficient quantumand classicallearn-
ability. It would beinterestingo developefficientquantum
learningalgorithmsfor naturalconceptclassessuchasthe
polynomial-timequantumalgorithmof Bshoutyand Jack-
son[13] for learningDNF formulaefrom uniform quantum
examples.
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A Boundson ClassicalSampleComplexity

Proof of Lemma 4: LetC' C C, |C’'| > 2 be suchthat
~¢" = 4% Considerthe following adwersarialstratayy for
answeringyueries:giventhequerystringa, answethebit b
which maximizeSy(C;',b). This stratgyy ensureghateachre-

sponseliminatesatmostayS’ < ¢ = 4 fractionof the
conceptsn C'. After 27% — 1 membershigueries fewer
thanhalf of the conceptdn C’ have beeneliminated,so at
leasttwo conceptshave not yet beeneliminated. Conse-
guently it is impossiblefor A to outputa hypothesisvhich
is equivalentto the correctconceptwith probabilitygreater
than1/2. (Lemmad)

Proof of Lemma 8: Considerthe following adwersarial
stratgy for answeringqueries: if ¢’ C C is the setof
conceptswvhich have not yet beeneliminatedby previous
responseto queriesthengiventhe querystringa, answer
the bit b suchthat 78’,1,) > % Underthis strateyy, after
log |C| — 1 membershigjueriesat leasttwo possibletarget
conceptsill remain. (Lemma8)

Proof of Lemma 11: Considetthefollowing learningalgo-
rithm A: at eachstagein its execution,if C" is the setof
conceptsn C which have notyetbeeneliminatedby previ-
ousresponseto queriesalgorithm A’s next querystringis
thestringa € {0,1}" which maximizesy¢". By following
this stratgyy, eachqueryresponseeceved from the oracle
musteliminatesatleasta~y© fractionof thesetC’, sowith
eachquerythe sizeof the setof possibletargetconceptss
multiplied by a factorwhichis atmostl — v < 1 —4°.
ConsequentlyafterO((log |C|)/4¢) queriespnly asingle
concepwill nothave beeneliminatedihis concepimustbe
thetargetconceptso A canoutputa hypothesish whichis
equialentto c. (Lemmall)m

Proof Sketch for Theorem 12: TheideabehindTheorem
12 is to considerthe distribution D which is uniform over
someshatteredset S of sized andassignszeroweightto
pointsoutsideof S. Any learningalgorithmwhich makes
only d/2 callsto EX (¢, D) will have noinformationabout
the valueof ¢ on atleastd/2 pointsin S; moreoet, since
thesetsS is shatteredby C, ary labelingis possiblefor these
unseemoints. Sincetheerrorof ary hypothesish underD
is thefractionof pointsin S whereh andthetargetconcept
disagreeasimpleanalysisshavsthatnolearningalgorithm
which performonly d/2 callsto EX (¢, D) canhave high
probability (e.g. 1 — § = 2/3) of generatinga low-error
hypothesige.g.e = 1/10). (Theoreml2)

B Proof of Theorem 13

Let S = {z!,...,z%} beasetwhichis shatterecby C
andlet D be the distribution which is uniform on S and
assignzeroweightto pointsoutsideS. If h : {0,1}" —
{0,1} isaBooleanfunctionon {0, 1}, we saythattherel-
ative distanceof A and ¢ on S is the fraction of pointsin
S onwhich h andc¢ disagree We will prove the following
resultwhichis strongethanTheoreml3: Let N beaquan-
tum network with Q M @ gatessuchthatfor all ¢ € C, if
N’soraclegatesareQ M (). gatesthenwith probability at
least2/3 theoutputof A is ahypothesis suchthattherel-
ativedistanceof h andc on S is atmost1/10. We will shav
thatsucha network A" musthave querycompleity atleast
%. Sinceary QEX network with querycompleity T' can
be simulatedby a QMQ network with querycompleity T,
takinge = 1/10 andé = 1/3 will prove Theoreml3.

Theargumentis a modificationof the proof of Theorem
10 usingideasfrom error correctingcodes. Let N be a
guantumnetwork with querycompleity T which satisfies
thefollowing condition: for all ¢ € C, if A”’s oraclegates
are@Q M Q. gatesthenwith probabilityatleast2/3 theout-
put of NV is a representationf a Booleancircuit k such
thatthe relative distanceof A andc¢ on S is at most1/10.
By the well-known Gilbert-Varshamwe boundfrom coding
theory(see,e.g., Theoremb5.1.7 of [34]), thereexistsa set
s',...,s™ of d-bit stringssuchthatfor all i # j thestrings
st ands’ differ in atleastd/4 bit positionswhere

A> 2! > 2 QI1—H(1/4) ~, 9d/6
ST T ()
(HereH(p) = —plogp — (1 — p)log(1 — p) is thebinary
entrofy function.) Foreachi = 1,..., A let¢; € C be
a conceptsuchthat the d-bit string ¢;(z!) - - - ¢;(z?) is st
(suchaconcepte; mustexist sincethesetS is shatteredy
C).

Fori =1,...,Alet B; C {0,1}™ bethecollectionof
thosebasisstatesvhicharesuchthatif thefinal obsenation
performedoy N yieldsastatefrom B;, thentheoutputof A/
is a hypothesish suchthath andc; have relative distance
atmost1/10 on S. Sinceeachpair of concepts;, ¢; has
relative distanceat least1/4 on S, the setsB; andB; are
disjointfor all i # 3.

As in Section3.2 let N = 2" andlet X/ =
(X3,...,X%_,) € {0,1}™ whereX7 is the N-tuplerep-
resentatiorof the conceptc;. By Lemmay, for eachi =
1,..., A thereis areal-valuedmultilinearpolynomial P; of
degreeat most27 suchthatfor all j = 1,..., A, thevalue
of P;(X7) is preciselythe probability that the final obser
vationon A yieldsa statefrom B; providedthatthe oracle
gatesare QM Q).; gates.Since,by assumptionif ¢; is the
target conceptthenwith probability at least2/3 A gener
atesa hypothesisvhich hasrelative distanceat most1/10




from ¢; on S, the polynomialsP; have the following prop-
erties:

1. Pi(X% >2/3foralli=1,...,A4;

2. Foraryj = 1,...,Awehaethaty:, Pi(X7) <
1/3 (sincethe B;’saredisjointandthetotal probability
acrosall obsenationsis 1).

Let Ny and X be definedasin the proof of Theorem
10. Fori = 1,..., A letV; € ®"° bethe columnvector
which correspondso the coeficientsof the polynomial P;,
soViX = P;(X). Let M bethe A x N, matrix whosei-
th row is the vectorV;t, somultiplicationby M is alinear
transformatiorfrom ®™No to 4. The productM X7 is a
columnvectorin R4 whichhasP; (X) asitsi-th coordinate.

Now let L bethe A x A matrixwhosej-th columnis the
vectorM X7. As in TheoremlOwe have thatthetranspose
of L is diagonallydominant,so L is of full rankandhence

Ny > A. SinceA > 2¢/6 wethushavethatT > 21%5,\, =

%, andthetheoremis proved. (Theorem13)Hl

C A diagonally dominant matrix has full
rank

This factfollows from the following theorem(see,e.g.,
Theorem6.1.170f [29]).

Theorem 17 (Gershgorin's Circle Theorem) Let A be a
real or comple-valuedn x n matrix. LetS; be the disk
in the comple planewhosecenteris a;; andwhoseradius
isT; = >4 |ai;|- Theneveryeigervalueof A liesin the
unionof thedisksSy, ..., Sy,.

Theproofis well known: if A is aneigervalueof A which
hascorrespondingigervectorz = (z1,. .., %, ), thensince
Az = Az we have

()\ - a“)a:, = Zaijxj fori = 1, ceeyn.
J#i

Withoutlossof generalitywe mayassumehat||z||- = 1,
so|z| = 1 for somek and|z;| < 1for j # k. Thus

A —ark] = |(A = are)ze] <D langllzs| < lak;]
ik ik
andhencel isin thedisk Sj.

For a diagonallydominantmatrix the radiusr; of each
disk S; is lessthanits distancefrom the origin, which is
|ai;|- Henced cannotbeaneigervalueof adiagonallydom-
inantmatrix, sothematrix musthave full rank.



