
Quantum versusClassicalLearnability

RoccoA. Servedio StevenJ.Gortler
HarvardUniversity

Divisionof EngineeringandAppliedSciences
33OxfordStreet
Cambridge,MA�

rocco,sjg� @cs.harvard.edu

Abstract

Motivatedby recentwork on quantumblack-boxquery
complexity, we consider quantumversions of two well-
studiedmodelsof learning Booleanfunctions: Angluin’s
model of exact learning from membership queries and
Valiant’s ProbablyApproximatelyCorrect (PAC) modelof
learning from randomexamples. For each of thesetwo
learningmodelsweestablisha polynomialrelationshipbe-
tweenthe numberof quantumversusclassicalqueriesre-
quired for learning. Our resultsprovide an interesting
contrast to knownresultswhich showthat testingblack-
box functionsfor variouspropertiescan require exponen-
tially more classical queriesthan quantumqueries. We
alsoshowthatundera widelyheldcomputationalhardness
assumptionthere is a classof Booleanfunctionswhich is
polynomial-timelearnablein the quantumversion but not
the classicalversion of each learning model; thus while
quantumand classicallearningare equallypowerfulfrom
an informationtheoryperspective, they are differentwhen
viewedfroma computationalcomplexity perspective.

1. Intr oduction

1.1. Moti vation

In recentyearsmany researchershave investigatedthe
power of quantumcomputerswhich canquerya black-box
oraclefor anunknown function [1, 5, 6, 9, 14, 10, 11, 15,
17, 20, 21, 23, 32, 37]. Thebroadgoalof researchin this
areais to understandthe relationshipbetweenthe number
of quantumversusclassicaloraclequerieswhich are re-
quiredto answervariousquestionsaboutthefunctioncom-
putedby theoracle.For example,a well-known resultdue
to DeutschandJozsa[17] shows that exponentiallyfewer
queriesarerequiredin thequantummodelin orderto deter-
minewith certaintywhethera black-boxoraclecomputesa

constantBooleanfunctionor a functionwhich is balanced
betweenoutputs� and ��� Morerecently, severalresearchers
have studiedthe numberof quantumoraclequerieswhich
arerequiredto determinewhetherthefunctioncomputedby
ablack-boxoracleis identicallyzero[5, 6, 9, 15, 23, 37].

A natural questionwhich arisesin this framework is
the following: what is the relationshipbetweenthe num-
ber of quantumversusclassicaloraclequerieswhich are
requiredin orderto exactly identify the functioncomputed
by a black-boxoracle? Herethe goal is not to determine
whetherablack-boxfunctionsatisfiessomeparticularprop-
erty suchasever takinga nonzerovalue,but ratherto pre-
cisely identify an unknown black-boxfunction from some
restrictedclassof possiblefunctions.Theclassicalversion
of this problemhasbeenwell studiedin thecomputational
learningtheoryliterature[2, 12, 22, 24, 25] andis known
astheproblemof exact learningfrommembershipqueries.
Thequestionstatedabovecanthusberephrasedasfollows:
what is the relationshipbetweenthe numberof quantum
versusclassicalmembershipquerieswhicharerequiredfor
exactlearning?We answerthisquestionin thispaper.

In addition to the model of exact learningfrom mem-
bershipqueries,we also considera quantumversion of
Valiant’swidely studiedPAC learningmodelwhichwasin-
troducedby BshoutyandJackson[13]. While a learning
algorithmin theclassicalPAC modelhasaccessto labeled
examplesdrawn from somefixedprobabilitydistribution,a
learningalgorithmin the quantumPAC modelhasaccess
to somefixedquantumsuperpositionof labeledexamples.
BshoutyandJacksongavea polynomial-timealgorithmfor
a particularlearningproblemin the quantumPAC model,
but did not addressthe generalrelationshipbetweenthe
numberof quantumversusclassicalexampleswhicharere-
quiredfor PAC learning.We answerthisquestionaswell.



1.2. Our results

Weshow thatin aninformation-theoreticsense,quantum
andclassicallearningareequivalentup to polynomialfac-
tors: for boththemodelof exactlearningfrom membership
queriesand the PAC model, thereis no learningproblem
which canbesolvedusingsignificantlyfewer quantumex-
amplesthan classicalexamples. More precisely, our first
maintheoremis thefollowing:

Theorem1 Let � be any classof Booleanfunctionsover� �	�
����
 and let � and � besuch that � is exact learnable
from � classicalmembership queriesor from � quantum
membershipqueries.Then�����������������

Our secondmain theoremis an analogousresult for
quantumversusclassicalPAC learnability:

Theorem2 Let � be any classof Booleanfunctionsover� �	�
��� 
 and let � and � be such that � is PAC learnable
from � classicalexamplesor from � quantumexamples.
Then��� ���!���"���

Theorems1 and2 areinformation-theoreticratherthan
computationalin nature; they show that for any learning
problem, if there is a quantumlearningalgorithm which
usespolynomiallymany examplesthentheremustalsoex-
ist a classicallearningalgorithmwhich usespolynomially
many examples. However, Theorems1 and2 do not im-
ply thateverypolynomialtimequantumlearningalgorithm
musthave a polynomial time classicalanalogue. In fact,
we show that a separationexists betweenefficient quan-
tum learnability and efficient clasical learnability. Under
a widely heldcomputationalhardnessassumptionfor clas-
sical computation(the hardnessof factoring Blum inte-
gers),we observe that for eachof the two learningmodels
consideredin this paperthereis a conceptclasswhich is
polynomial-timelearnablein the quantumversionbut not
in theclassicalversionof themodel.

1.3. PreviousWork

Our resultsdraw on lower boundtechniquesfrom both
quantumcomputationand computationallearning theory
[2, 5, 6, 8, 12, 24]. A detaileddescriptionof the relation-
shipbetweenourresultsandpreviousworkonquantumver-
susclassicalblack-boxquerycomplexity is givenin Section
3.4.

In [19] Farhi et al. prove a lower boundon the num-
ber of functionswhich canbe distinguishedwith # quan-
tum queries.RonalddeWolf hasnoted[18] that themain
result of [19] yields an alternateproof of one of the two
lower boundswhich we give for exact learningfrom quan-
tummembershipqueries(Theorem10).

1.4. Organization

WedefinetheexactlearningmodelandthePAC learning
modelanddescribethequantumcomputationframework in
Section2. We prove therelationshipbetweenquantumand
classicalexact learningfrom membershipqueries(Theo-
rem1) in Section3, andwe provetherelationshipbetween
quantumand classicalPAC learning(Theorem2) in Sec-
tion 4. Finally, in Section5 weobservethatundera widely
acceptedcomputationalhardnessassumptionfor classical
computation,in eachof thesetwo learningmodelsthereis
a conceptclasswhich is quantumlearnablein polynomial
timebut notclassicallylearnablein polynomialtime.

2. Preliminaries

A concept$ over
� �%�&��� 
 is a Booleanfunctionover the

domain
� �	�
��� 
 � or equivalentlyaconceptcanbeviewedas

a subset
��')(*� �	�&��� 
,+ $�� ' �-�.��� of

� �	�&��� 
 � A concept
class�/��0 
2143&56
 is acollectionof concepts,where56
 �� $ ( � + $ is a conceptover

� �%�&��� 
 �7� For example, 58

mightbethefamilyof all Booleanformulaeover � variables
whichareof sizeatmost �:9�� We saythata pair ; ' �<$�� ' �<= is
a labeledexampleof theconcept$>�

While many different learningmodelshave beenpro-
posed,most modelsfollow the samebasic paradigm: a
learningalgorithmfor aconceptclass� typically hasaccess
to (somekind of) an oraclewhich providesexamplesthat
arelabeledaccordingto afixedbut unknown targetconcept$ ( �?� andthegoalof the learningalgorithmis to infer (in
somesense)the targetconcept$>� Thetwo learningmodels
which wediscussin this paper, themodelof exactlearning
from membershipqueriesand the PAC model, make this
roughnotionprecisein differentways.

2.1. Classical Exact Learning fr om Membership
Queries

The modelof exact learning from membership queries
wasintroducedby Angluin [2] andhassincebeenwidely
studied[2, 12, 22, 24, 25]. In this model the learningal-
gorithm hasaccessto a membership oracle @A�"B where$ ( 5 
 is theunknowntargetconcept.Whengivenaninput
string

'C(D� �	�&��� 
 � in onetimesteptheoracle@A�"B returns
thebit $�� ' �FE suchan invocationis known asa membership
querysincetheoracle’s answertells whetheror not

'G( $
(viewing $ asa subsetof

� �	�&��� 
 ). Thegoalof thelearning
algorithmis to constructa hypothesisH + � �%�&��� 
JI � �%�&���
which is logically equivalentto $>� i.e. H�� ' ���K$�� ' � for all'L(M� �%�&��� 
 � Formally, we say that an algorithm N is an
exact learning algorithm for � usingmembership queries
if for all �MOP�7� for all $ ( 5 
 � if N is given � andac-
cessto @A�"B&� thenwith probabilityat least Q7R�S algorithm



N outputsa Booleancircuit H suchthat HT� ' �U�V$�� ' � for
all
',(W� �%�&��� 
 � Thesamplecomplexity X-�!��� of a learning

algorithm N for � is themaximumnumberof callsto @A� B
which N evermakesfor any $ ( 56
 �
2.2. ClassicalPAC Learning

The PAC (ProbablyApproximatelyCorrect)model of
conceptlearning was introducedby Valiant in [33] and
hassincebeenextensively studied[4, 27]. In this model
the learning algorithm has accessto an exampleoracleY�Z �!$��\[J� where $ ( 5 
 is the unknown target concept
and [ is anunknown distribution over

� �	�&��� 
 � TheoracleY�Z �!$��\[J� takesno inputs;wheninvoked,in onetime step
it returnsa labeledexample ; ' �<$�� ' �]= where

'^(M� �	�
��� 

is randomlyselectedaccordingto the distribution [_� The
goal of the learningalgorithmis to generatea hypothesisH + � �	�
��� 
_I � �	�
��� which is an ` -approximatorfor $ un-
der [_� i.e. ahypothesisH suchthat acbed�f�gih HT� ' �ij�k$�� ' �mlTn`
� An algorithm N is a PAC learningalgorithmfor � if the
following conditionholds: for all �oOL� and �Upk`��eqrpL�7�
for all $ ( 56
 � for all distributions [ over

� �	�
��� 
 � if N
is given �?�<`��<q andaccessto

Y�Z �!$��\[J�F� thenwith proba-
bility at least �is)q algorithm N outputsa circuit H which
is an ` -approximatorfor $ under[_� ThesamplecomplexityX-���?�e`
�eq�� of a learningalgorithm N for � is themaximum
numberof calls to

Y�Z �!$��\[J� which N ever makesfor any
concept$ ( 5 
 andany distribution [ over

� �%�&��� 
 �
2.3. Quantum Computation

Detaileddescriptionsof thequantumcomputationmodel
canbe found in [7, 16, 28, 36]; herewe outline only the
basicsusingthe terminologyof quantumnetworksaspre-
sentedin [5]. A quantumnetwork t is a quantumcir-
cuit (over somestandardbasisaugmentedwith oneoracle
gate)which actson an u -bit quantumregister;thecompu-
tationalbasisstatesof thisregisterarethe Q�v binarystrings
of length uD� A quantumnetwork can be viewed as a se-
quenceof unitarytransformationsw?x �y� 3 � w 3 �e� 9 �
�&�
�F� wcz:{ 3 �e� z � w?z �
whereeach

w?|
is anarbitraryunitary transformationon u

qubitsandeach � | is a unitary transformationwhich cor-
respondsto anoraclecall.1 Sucha network is saidto have
querycomplexity X}� At every stagein theexecutionof the
network, thecurrentstateof theregistercanberepresented
asa superposition~ � f�� x&� 3e�<��� �2� � = wherethe � � arecom-
plex numberswhich satisfy ~k� f�� x
� 3<�<�D�F� � � 9����7� If this
stateis measured,then with probability �F� � � 9 the string

1Sincethereis only onekind of oraclegate,each��� is thesametrans-
formation.

� (D� �	�
����v is observedandthestatecollapsesdown to � � = .
After the final transformation

wcz
takesplace,a measure-

mentis performedonsomesubsetof thebits in theregister
andtheobservedvalue(a classicalbit string) is theoutput
of thecomputation.

Severalpointsdeserve mentionhere.First, sincethein-
formationwhich our quantumnetwork usesfor its compu-
tation comesfrom the oraclecalls, we may stipulatethat
the initial stateof thequantumregisteris � ��vi=F� Second,as
describedabove each

w |
canbean arbitrarily complicated

unitary transformation(as long as it doesnot containany
oraclecalls)which may requirea largequantumcircuit to
implement. This is of small concernsincewe arechiefly
interestedin querycomplexity andnot circuit size. Third,
asdefinedaboveour quantumnetworkscanmake only one
measurementat thevery endof thecomputation;this is an
inessentialrestrictionsinceany algorithm which usesin-
termediatemeasurementscanbe modifiedto an algorithm
whichmakesonly onefinal measurement.Finally, wehave
not specifiedjust how theoraclecalls � | work; we address
thispointseparatelyin Sections3.1and4.1for eachtypeof
oracle.

If � � =�� ~ � � ��� � = and � � =�� ~ �:� ��� � = are two su-
perpositionsof basisstates,thentheEuclideandistancebe-
tweeen � � = and � � = is ��� � =6s � � = � ��� ~ � � � � so� � � 9�� 3<� 97�The total variation distancebetweentwo distributions [ 3
and [ 9 is definedto be ~ d � [ 3 � ' ��s,[ 9 � ' � � � Thefollow-
ing fact (Lemma3.2.6of [7]), which relatestheEuclidean
distancebetweentwo superpositionsandthetotal variation
distancebetweenthedistributionsinducedbymeasuringthe
two superpositions,will beuseful:

Fact 3 Let � � = and � � = be two unit-lengthsuperpositions
which representpossiblestatesof a quantumregister. If the
Euclideandistance��� � =�s � � = � is at most̀�� thenperforming
thesameobservationon � � = and � � = inducesdistributions[-� and [�� which havetotal variationdistanceat most��`��
3.ExactLearning fr om Quantum Membership

Queries

3.1. Quantum Membership Queries

A quantummembership oracle �"@A�"B is the natural
quantumgeneralizationof a classicalmembershiporacle@A� B : on input a superpositionof querystrings,theoracle�"@A� B generatesthecorrespondingsuperpositionof exam-
ple labels. More formally, a �"@A� B gatemapsthe basis
state � ' �e�F= (where

'o(o� �	�&��� 
 and � (�� �	�
��� ) to thestate� ' �e�&��$�� ' �<=&� If t is a quantumnetwork which has �"@A� B
gatesasits oraclegates,theneach� | is theunitarytransfor-
mationwhichmaps� ' �e���<�	= (where

'C( � �	�
��� 
 ��� (D� �%�&���



and � ()� �	�
����v { 
 { 3 ) to � ' �y�&�i$�� ' ���<�	= .2 Our �"@A�"B or-
acle is identical to the well-studiednotion of a quantum
black-boxoraclefor $ [5, 6, 7, 9, 10, 11, 15, 17, 23, 37].

A quantumexact learning algorithm for � is a fam-
ily of quantumnetworks t 3 �¡t 9 �&�
�&�
� whereeachnetworkt 
 hasa fixed architectureindependentof the choiceof$ ( 56
 � with the following property: for all �¢O£�7�
for all $ ( 56
 � if t 
 ’s oraclegatesare instantiatedas�"@A�"B gates,then with probability at least Q7R�S the net-
work t 
 outputsa representationof a (classical)Boolean
circuit H + � �%�&��� 
/I � �%�&��� suchthat HT� ' ���^$�� ' � for all'C(�� �	�
��� 
 � Thequantumsamplecomplexity of aquantum
exact learningalgorithmfor � is X-�����F� where X¤����� is the
querycomplexity of t 
 .
3.2.Lower BoundsonClassicalandQuantum Exact

Learning

Two different lower boundsareknown for the number
of classicalmembershipquerieswhicharerequiredto exact
learnany conceptclass.In thissectionweprovetwo analo-
gouslower boundson thenumberof quantummembership
queriesrequiredto exactlearnany conceptclass.Through-
out thissectionfor easeof notationweomit thesubscript�
andwrite 5 for 58
 �
A Lower Bound Basedon Similarity of Concepts.Con-
sidera setof conceptswhich areall “similar” in thesense
that for every input almostall conceptsin the set agree.
Known resultsin learningtheorystatethatsucha concept
classmust requirea large numberof membershipqueries
for exactlearning.Moreformally, let 5¦¥�§G5 beany subset
of 5 � For ¨ ()� �%�&��� 
 and � ()� �%�&��� let 5 ¥©«ª � ¬m­ denotethe
setof thoseconceptsin 5 ¥ which assignlabel � to exam-
ple ¨®� i.e. 5 ¥©¯ª � ¬m­ � � $ ( 5 ¥ + $��¡¨��_�°���7� Let ±4²�³©�ª � ¬´­ �� 5 ¥©�ª � ¬´­ � R � 5 ¥ � bethefractionof suchconceptsin 5 ¥ � andlet± ²T³ª �Kµ�¶�· � ± ²�³©�ª � xy­ �]± ²T³©¯ª � 3 ­ �7E thus ± ²�³ª is theminimumfrac-
tion of conceptsin 5¦¥ whichcanbeeliminatedby querying@A�"B on thestring ¨®� Let ±�²T³T�kµ¹¸>º � ±4²�³ª + ¨ (,� �%�&��� 
 ���
Finally, let »±�² be theminimumof ±�²T³ acrossall 5 ¥ §M5
suchthat � 5 ¥ � O)Q	� Thus

»± ² � µ�¶�·² ³�¼ ² �¾½ ² ³ ½ 1 9 µ¹¸�ºª f�� x
� 3<�<¿ µ�¶�·¬ f�� x&� 3e� � 5 ¥ ©Àª
� ¬´­ �� 5 ¥ � �

Intuitively, theinner µ�¶À· correspondsto thefactthattheor-
aclemay provide a worst-caseresponseto any query; theµ�¸�º correspondsto thefactthatthelearningalgorithmgets
to choosethe“best” querypoint ¨ÁE andtheouter µ�¶�· cor-
respondsto thefactthatthelearnermustsucceednomatter

2Notethateach�T� only affectsthefirst Â?Ã¤Ä bitsof abasisstate.This
is without loss of generalitysincethe transformationsÅ�Æ can“permute
bits” of thenetwork.

whatsubset5 ¥ of 5 thetargetconceptis drawn from. Thus»±�² is small if thereis a largeset 5 ¥ of conceptswhich are
all verysimilar in thatany queryeliminatesonly afew con-
ceptsfrom 5 ¥ � If this is the casethen many membership
queriesshouldbe requiredto learn 5 E formally, we have
thefollowing lemmawhich is a variantof Fact2 from [12]
(theproof is givenin AppendixA):

Lemma 4 Any (classical)exact learning algorithm for 5
musthavesamplecomplexity Ç¦� 3ÈÉ�Ê ���

We now develop sometools which will enableus to
provea quantumversionof Lemma4. Let 5 ¥ §�5 � � 5 ¥ � OQ be suchthat ±�²T³��Ë»±�² andlet $ 3 �&�
�&�
�<$ ½ ² ³ ½ be a listing
of theconceptsin 5 ¥ � Let the typical conceptfor 5 ¥ bethe
function »$ + � �%�&��� 
oI � �%�&��� definedasfollows: for all¨ (A� �%�&��� 
 �Ì»$��!¨�� is the bit � suchthat � 5 ¥©¯ª � ¬m­ � O � 5 ¥ � R�Q
(ties are broken arbitrarily; note that a tie occursonly if»±�²M����R�Q ). The typical concept »$ neednot belongto 5 ¥
or even to 5 � The differencematrix � is the � 5 ¥ �?Í Q 

zero/onematrixwhererowsareindexedby conceptsin 5 ¥ �
columnsare indexed by stringsin

� �	�
��� 
 � and � |!� do�P�
if f $ | � ' �Jj�Î»$�� ' ��� By our choiceof 5¦¥ andthedefinitionof»±�²Ï� eachcolumnof � hasatmost � 5 ¥ �FÐ »±�² ones,sothe Ñ 3
matrixnormof � is � � � 3 n � 5 ¥ ��Ð »±4²Ï�Our quantum lower bound proof uses ideas which
were first introduced by Bennett et al. [6]. Lett be a fixed quantum network architecture and letwÌx �e� 3 �&�
�&�
� w?z�{ 3 �e� z � w?z be thecorrespondingsequence
of transformations.For �¦n�Ò6n)X let � � BÓ = bethestateof the
quantumregisterafterthetransformationsup through

w Ó { 3
have beenperformed(we refer to this stageof thecompu-
tationastime Ò ) if theoraclegateis �"@A�"B&� As in [6], for'C(D� �	�
��� 
 let Ô
d%� � � BÓ =]�F� thequerymagnitudeof string

'
at

time Ò with respectto $ , be thesumof thesquaredmagni-
tudesin � � BÓ = of thebasisstateswhicharequerying �"@A� B
onstring

'
at time Ò�E soif � � BÓ =c� ~ � f�� x
� 3<� � � � � � =y� then

Ô&d	� � � BÓ =<��� ÕÖ f�� x
� 3<� �Ì× ¿ �F� d Ö � 9 �
The quantity Ô d � � � BÓ =e� canbe viewed as the amountof

amplitudewhich thenetwork t investsin thequerystring'
to �"@A�"B at time Ò�� Intuitively, thefinal outcomeof t ’s

computationcannotdependvery muchon the oracle’s re-
sponsesto querieswhich have little amplitudeinvestedin
them.Bennettet al. formalizedthis intuition in thefollow-
ing theorem([6], Theorem3.3):

Theorem5 Let � � BÓ = be defined as above. Let Ø §� �%�&�&�
���]XGs)��� Í � �	�
��� 
 bea setof time-stringpairssuch
that ~*Ù Ó � d
Úmf�Û Ô d � � � BÓ =]�¹nÝÜ¡Þz � Now supposethe answerto
each query instance �!Ò�� ' � ( Ø is modifiedto somearbi-
trary fixed bit ¨ Ó � d (theseanswers neednot be consistent



with anyoracle). Let �<ß� BÓ = bethestateof thequantumreg-
isterat time Ò if theoracleresponsesare modifiedasstated
above. Then ��� � Bz =Ìs � ß� Bz = � nG`��

The following lemma,which is an extensionof Corol-
lary 3.4from[6], showsthatnoquantumlearningalgorithm
which makesfew QMQ queriescaneffectively distinguish
many conceptsin 5 ¥ from thetypical concept»$��
Lemma 6 Fix anyquantumnetworkarchitecture t which
hasquerycomplexity Xà� For all `âáG� there is a set ã §ä5 ¥
of cardinality at most Xà9 � 5 ¥ � »±4²�R>`y9 such that for all $ (5¦¥�å ãÌ� wehave ��� � ÈBz =Ìs � � Bz = � n�`��
Proof: Since ��� � ÈBÓ = � �æ� for all Ò��°�%�&���
�&�
���]XAsA��� we
have ~ z�{ 3Ó�ç x ~ d�f�� x
� 3e� ¿ Ô d � � � ÈBÓ =]�¤�èXà� Let Ô�� � � ÈBÓ =]� (ké 9 ¿
be the Q 
 -dimensionalvector which has entries indexed
by strings

'�(�� �	�&��� 
 and which has Ô
d%� � � ÈBÓ =<� as its
'
-

th entry. Note that the Ñ 3 norm � Ô�� � � ÈBÓ =e� � 3 is � for allÒC�ê�	�
�&�&�
�]XësL��� For any $ | ( 5 ¥ let Ô Bmì � � � ÈBÓ =]� be de-
finedas ~ d>í B ì Ù d
Ú<îç ÈB Ù d
Ú Ô&d®� � � ÈBÓ =]��� Thequantity Ô Bmì � � � ÈBÓ =<� can
beviewedasthetotal querymagnitudewith respectto »$ at
time Ò of thosestringswhichdistinguish$ | from »$�� Notethat�rÔ�� � � ÈBÓ =e� (ïé ½ ²T³ ½ is an � 5 ¥ � -dimensionalvectorwhose ð -
th elementis precisely~ d>í Bmì Ù d
Úeîç ÈB Ù d
Ú Ô d � � � ÈBÓ =]�Ï�*Ô
B ì � � � ÈBÓ =]�F�
Since � � � 3 n � 5 ¥ �	Ð »±4² and � Ô�� � � ÈBÓ =e� � 3 �P�7� by the ba-
sic propertyof matrix normswe have that � �rÔ�� � � ÈBÓ =]� � 3 n� 5 ¥ �>Ð »±4²â� i.e. ~ B ì f ² ³ Ô Bmì � � � ÈBÓ =]�Ïn � 5 ¥ ��Ð »±�²Ï� Hencez:{ 3Õ Ó�ç x ÕB ì f ² ³ Ô Bmì � � �

ÈBÓ =<�6n)X � 5 ¥ ��Ð »± ² �
If we let ã�� � $ | ( 5 ¥ +¤~ z�{ 3Ó�ç x Ô Bmì � � � ÈBÓ =<�)O Ü¡Þz �7� by
Markov’s inequalitywe have � ã � nïXà9 � 5 ¥ � »±4²8R�`e9�� Finally,
if $rR( ã then ~ z�{ 3Ó�ç x Ô�B�� � � ÈBÓ =<�Ïn Ü¡Þz � Theorem5 thenimplies
that �À� � ÈBz =Ìs � � Bz = � n�`��

Now wecanproveourquantumversionof Lemma4.

Theorem7 Any quantumexact learning algorithm for 5
musthavesamplecomplexity Ç/ñ6ò 3ÈÉ>Ê8ó 3]� 9
ô �
Proof: Supposethat t is a quantumexact learningalgo-

rithm for � which makesat most XA� 3õ<ö Ð ò 3ÈÉ Ê�ó 3<� 9 quan-

tummembershipqueries.If we take `6� 3�<9 � thenLemma6

impliesthatthereis aset ã�÷ 5 ¥ of cardinalityatmost
½ ²�³ ½ö

suchthatfor all $ ( 5 ¥ å ã wehave �À� � Bz =	s � � ÈBz = � n 3�<9 � Let$ 3 �e$ 9 beany two conceptsin 5 ¥ å ã?� By Fact3, theprob-
ability that t outputsa circuit equivalentto $ 3 candiffer
by at most 3ø if t ’s oraclegatesare �"@A� ÈB asopposedto�"@A�"B\ù
� andlikewise for �"@A� ÈB versus�"@A�"B Þ � It fol-
lows thattheprobabilitythat t outputsacircuit equivalent

to $ 3 candiffer by atmost 3ö if t ’soraclegatesare �"@A�-B\ù
asopposedto �-@A�"B Þ � but this contradictstheassumption
that t is a quantumexactlearningalgorithmfor 5 �

Known upperboundsonthequerycomplexity of search-
ing a quantumdatabase[9, 23] caneasilybeusedto show
thatTheorem7 is tight up to constantfactors.

A Lower Bound Basedon ConceptClassSize.A second
reasonwhy a conceptclasscanrequiremany membership
queriesis its size.Angluin [2] hasgiventhefollowing sim-
ple bound,incomparableto theboundof Lemma4, on the
numberof classicalmembershipqueriesrequiredfor exact
learning(theproof is givenin AppendixA):

Lemma 8 Any classical exact learning algorithm for 5
musthavesamplecomplexity Ç¦��ú�û�ü � 5 � ���

In this sectionwe prove a variantof this lemmafor the
quantummodel.Ourproofusesideasfrom [5] sowe intro-
ducesomeof theirnotation.Let ýV� Q 
 � For eachconcept$ ( 5 � let

Z B �Î� Z Bx �
�&�&�&� Z Bþ { 3 � (�� �%�&��� þ bea vector
which represents$ asan ý -tuple, i.e.

Z B| ��$�� ' | � where' | (A� �	�&��� 
 is the binary representationof ðy� ¿Fromthis
perspective we may identify 5 with a subsetof

� �%�&��� þ �
andwe mayview a �"@A�"B gateasa black-boxoracleforZ B whichmapsbasisstate � ' | �y���]�	= to � ' | �y�&� Z B| �<�	=��

Using ideasfrom [20, 21], Bealset al. have provedthe
followingusefullemma,whichrelatesthequerycomplexity
of a quantumnetwork to thedegreeof acertainpolynomial
([5], Lemma4.2):

Lemma 9 Let t be a quantumnetwork that makes X
queriesto a black-box

Z � and let ÿ § � �%�&����v be a set
of basisstates.Thenthere existsa real-valuedmultilinear
polynomial ���i� Z � of degreeat most Q�X which equalsthe
probabilitythatobservingthefinal stateof thenetworkwith
black-box

Z
yieldsa statefrom ÿr�

We useLemma9 to prove thefollowing quantumlower
boundbasedon conceptclasssize. (Ronaldde Wolf has
observed that this lower boundcanalsobe obtainedfrom
theresultsof [19].)

Theorem10 Anyexactquantumlearningalgorithmfor 5
musthavesamplecomplexity Ç ò � ��� ½ ² ½
 ó �
Proof: Let t be a quantumnetwork which learns 5 and
hasquerycomplexity X}� For all $ ( 5 we have the fol-
lowing: if t ’s oraclegatesare �"@A�"B gates,then with
probabilityat least Q7R>S theoutputof t is a representation
of a Booleancircuit H which computes$>� Let $ 3 �
�&�
�F�<$ ½ ² ½
be all of the conceptsin 5 � and let

Z 3 �&�
�&�F� Z ½ ² ½ be the
correspondingvectorsin

� �	�&��� þ � For all ðC� ���
�&�
�F� � 5 �
let ÿ | § � �%�&����v be the collection of thosebasisstates



which aresuchthat if the final observation performedbyt yieldsa statefrom ÿ | � thentheoutputof t is a repre-
sentationof a Booleancircuit which computes$ | � Clearly
for ð*j��� the sets ÿ | and ÿ
	 are disjoint. By Lemma
9, for each ð��P���
�&�
�F� � 5 � thereis a real-valuedmultilin-
earpolynomial � | of degreeat most Q>X suchthat for all
� �����
�&�&�&� � 5 � � thevalueof � | � Z 	 � is preciselytheprob-
ability that thefinal observationon t yieldsa representa-
tion of acircuit whichcomputes$ | � providedthattheoracle
gatesare �"@A�"B�� gates.Thepolynomials� | thushave the
following properties:

1. � | � Z | �6OäQ7R>S for all ðÌ�ë���
�&�&�&� � 5 � ;
2. For any �J�ë���
�&�&�&� � 5 � � wehave ~ | îç 	 � | � Z 	 �Ïn��>R>S

(sincethetotalprobabilityacrossall possibleobserva-
tionsis 1).

Let ý x �ë~ 9 z| ç x�
 þ |�� � For any
Z �M� Z�x �
�&�
�F� Z þ { 3 � (� �	�
��� þ let ßZ (ê� �%�&��� þ�� be the column vector which

hasa coordinatefor eachmonicmultilinearmonomialoverZJx �&�
�&�F� Z þ { 3 of degreeat most Q>X}� Thus,for example,ifýÎ� � and Q�Xä�kQ wehave
Z �L� Z x � Z 3 � Z 9 � Z � � andßZ Ó � �\�7� Z x � Z 3 � Z 9 � Z � � Z x Z 3 � Z x Z 9 �Z x Z � � Z 3 Z 9 � Z 3 Z � � Z 9 Z � ���

If � is a columnvectorin
é þ � � then � Ó ßZ correspondsto

thedegree-Q>X polynomialwhosecoefficientsaregivenby
the entriesof ��� For ð��Ë���
�&�&�&� � 5 � let � | (ëé þ�� be the
columnvectorwhich correspondsto thecoefficientsof the
polynomial � | � Let @ be the � 5 �ÁÍ ý x matrix whoseð -th
row is � Ó| E note that multiplication by @ definesa linear
transformationfrom

é þ �
to
é ½ ² ½ . Since � Ó| ßZ 	 is precisely

� | � Z 	 �F� theproduct@ ßZ 	 is acolumnvectorin
é ½ ² ½ which

has� | � Z 	 � asits ð -th coordinate.
Now let Ñ bethe � 5 �2ÍD� 5 � matrixwhose� -th columnis

thevector @ ßZ 	 � A squarematrix N is saidto bediagonally
dominantif � ¨ |À| � áL~ 	�îç | � ¨ | 	 � for all ðe� Properties(1) and
(2) above imply thatthetransposeof Ñ is diagonallydomi-
nant.It is well known thatany diagonallydominantmatrix
mustbeof full rank(aproof is givenin AppendixC). SinceÑ is full rankandeachcolumnof Ñ is in theimageof @*� it
follows that the imageunder @ of

é þ��
is all of

é ½ ² ½ � and
henceý x O � 5 � � Finally, since ý x � ~ 9 z| ç x�
 þ | � nëý 9 z �
we have X O � ��� ½ ² ½9 � ���	þ � � ��� ½ ² ½9 
 � which provesthe theorem.

The lower boundof Theorem10 is nearlytight aswit-
nessedby thefollowing example:let 5 bethecollectionof
all Q 
 parityfunctionsover

� �	�
��� 
 � soeachfunctionin 5 is
definedby astring ¨ (�� �%�&��� 
 and $ ª � ' �6�ä¨ Ð ' � Thequan-
tum algorithmwhich solvesthewell-known Deutsch-Jozsa
problem[17] canbeusedtoexactlyidentify ¨ andthuslearn
thetargetconceptwith probability1 from a singlequery. It

follows thatthefactorof � in thedenominatorof Theorem
10cannotbereplacedby any function �4�����c���������F�
3.3. Quantum and Classical Exact Learning are

Equivalent

We haveseentwo differentreasonswhy exactlearninga
conceptclasscanrequirea largenumberof classicalmem-
bershipqueries: the classmay containmany similar con-
cepts(i.e. »±4² is small),or theclassmaycontainverymany
concepts(i.e. úÀû7ü � 5 � is large).Thefollowing lemma,which
is a variantof Theorem3.1 from [24], shows that theseare
theonly reasonswhy many membershipqueriesmaybere-
quired(theproof is givenin AppendixA).

Lemma 11 There is an exact learning algorithm for 5
which hassamplecomplexity ���<��ú�û�ü � 5 � �<R�»±�²c�F�

CombiningTheorem7, Theorem10 andLemma11 we
obtainthefollowing relationshipbetweenthequantumand
classicalsamplecomplexity of exactlearning:

Theorem1 Let � beanyconceptclassover
� �	�&��� 
 andlet� and � be such that � is exact learnablefrom � clas-

sical membershipqueriesor from � quantummembership
queries.Then���k�������������
Wenotethata �-@A�"B oraclecanclearlybeusedtosimulate
an @A� B oracle,so �LnG� aswell.

3.4. Discussion

Theorem1 provides an interestingcontrastto several
known resultsfor black-boxquantumcomputation.Let Ø
denotethe setof all Q�9 ¿ functionsfrom

� �%�&��� 
 to
� �	�
���7�

Bealset al. [5] have shown that if � + Ø I � �%�&��� is any
total function (i.e. �Ì�!$&� is definedfor every possiblecon-
cept $ over

� �%�&��� 
 ), thenthequerycomplexity of any quan-
tum network which computes� is polynomially relatedto
thenumberof classicalblack-boxqueriesrequiredto com-
pute �Á� Their resultis interestingbecauseit is well known
[7, 11, 17, 32] that for certainconceptclasses5 ÷ëØ and
partial functions � + 5 I � �	�&���7� the quantumblack-box
query complexity of � can be exponentiallysmaller than
theclassicalblack-boxquerycomplexity.

Our Theorem1 provides a sort of dual to the results
of Beals et al.: their bound on query complexity holds
only for the fixed conceptclass Ø but for any function
� + Ø I � �%�&���7� while our bound holds for any con-
ceptclass 5 § Ø but only for the fixed problemof exact
learning. In general,the problemof computinga function
� + 5 I � �	�
��� from black-boxqueriescanbeviewedasan
easierversionof thecorrespondingexactlearningproblem:
insteadof having to figureout only onebit of information



abouttheunknownconcept$ (thevalueof � ), for thelearn-
ing problemthealgorithmmustidentify $ exactly. Theorem
1 shows that for this moredemandingproblem,unlike the
resultsin [7, 11, 17, 32] thereis no way of restrictingthe
conceptclass5 sothatlearningbecomessubstantiallyeas-
ier in thequantumsettingthanin theclassicalsetting.

4. PAC Learning fr om a Quantum Example
Oracle

4.1. The Quantum ExampleOracle

Bshouty and Jackson[13] have introduceda natural
quantumgeneralizationof the standardPAC-model ex-
ample oracle. While a standardPAC example oracleY�Z �!$��\[J� generateseachexample ; ' �<$�� ' �<= with probabil-
ity [�� ' ��� where [ is a distribution over

� �	�
��� 
 � a quan-
tum PAC exampleoracle � Y�Z �!$>�][J� generatesa super-
position of all labeledexamples,whereeachlabeledex-
ample ; ' �<$�� ' �<= appearsin the superpositionwith ampli-
tude proportionalto the squareroot of [�� ' ��� More for-
mally, a � Y�Z �!$��\[J� gatemapstheinitial basisstate� � 
 �e�7=
to thestate ~ d�f�� x&� 3e� ¿ � [�� ' � � ' �<$�� ' �<=&� (We leave the ac-
tion of a � Y�Z �!$>�][J� gateundefinedon otherbasisstates,
andstipulatethat any quantumnetwork which includesX� Y�Z �¡$>�\[J� gatesmusthave all X gatesat the “bottom of
the circuit,” i.e. no gatemay occuron any wire between
theinputsandany � Y�Z �¡$>�\[J� gate.)A quantumnetwork
with X�� Y"Z �!$>�][J� gatesis saidto beaQEX network with
querycomplexity X}�

A quantumPAC learning algorithm for � is a family� t Ù 
 � Ü � � Ú + �kO ����� pë`
�eq/p ��� of QEX networkswith
the following property: for all �^O � and �Gpè`��<qop��7�
for all $ ( 5 
 � for all distributions [ over

� �	�
��� 
 � if
the network t Ù 
 � Ü � � Ú has all its oracle gatesinstantiated
as � Y"Z �!$>�][J� gates,thenwith probability at least �"säq
thenetwork t Ù 
 � Ü � � Ú outputsa representationof a circuit H
whichis an ` -approximatorto $ under[�� Thequantumsam-
plecomplexity X-���?�e`
�eq�� of aquantumPAC algorithmis the
querycomplexity of t Ù 
 � Ü � � Ú �
4.2. Lower Boundson Classicaland Quantum PAC

Learning

Throughoutthis sectionfor easeof notationweomit the
subscript � and write 5 for 56
 � We view eachconcept$ ( 5 asa subsetof

� �	�
��� 
 � For ã § � �	�
��� 
 � we write� ² �´ãc� to denote
� $��Cã + $ ( 5 �7� so � � ² �¡ãc� � is thenum-

berof different“dichotomies”which theconceptsin 5 in-
duceon the points in ã?� A subsetã § � �	�
��� 
 is said to
be shattered by 5 if � � ² �¡ã�� � � Q ½ �Á½ � i.e. if 5 induces
every possibledichotomyon the points in ãÌ� The Vapnik-

Chervonenkisdimensionof 5 , VC-DIM � 5 ��� is the sizeof
thelargestsubsetã § � �	�&��� 
 which is shatteredby 5 �

Well-known results in computationallearning theory
show that the Vapnik-Chervonenkisdimensionof a con-
ceptclass5 characterizesthenumberof callsto

Y"Z �!$>�][J�
whichareinformation-theoreticallynecessaryandsufficient
to PAC learn 5 � For thelowerbound,thefollowing theorem
is aslightsimplificationof aresultdueto Blumeretal. ([8],
Theorem2.1.ii.b);aproofsketchis givenin AppendixA.

Theorem12 Let 5 be any conceptclass and  �� VC-
DIM � 5 ��� Thenany(classical)PAC learningalgorithmfor� musthavesamplecomplexity Ç¦�! 2���

We now statea quantumanalogueof theclassicallower
bound given by Theorem12; the proof usesideasfrom
error-correctingcodesandis givenin AppendixB.

Theorem13 Let � be any conceptclass and  Î� VC-
DIM � 5 ��� ThenanyquantumPAC learningalgorithmfor �
musthavequantumsamplecomplexity Ç¦�#"
 ���

Sincetheclassof parity functionsover
� �	�&��� 
 hasVC-

dimension�?� as in Theorem10 the � in the denominator
of Theorem13 cannotbereplacedby any function ���!���â�
�������F�
4.3. Quantum and Classical PAC Learning are

Equivalent

A well-known theoremdueto Blumer et al. (Theorem
3.2.1.ii.aof [8]) showsthatVC-DIM � 5 � alsoupperbounds
thenumberof

Y�Z �!$��\[J� callsrequiredfor (classical)PAC
learning:

Theorem14 Let 5 be any conceptclass and  �� VC-
DIM � 5 ��� There is a classicalPAC learning algorithm for5 which hassamplecomplexity ��� 3 Ü úÀû7ü 3��$ " Ü ú�û�ü 3 Ü �F�

Theproofof Theorem14 is quitecomplex sowedo not
attemptto sketch it. As in Section3.3, this upperbound
along with our lower bound from Theorem13 together
yield:

Theorem 2 Let � be any conceptclassover
� �%�&����
 and

let � and � be such that � is PAC learnable from �
classical examplesor from � quantumexamples. Then���k���!���"���
We notethata � Y�Z �!$��\[J� oraclecanbeusedto simulate
the corresponding

Y"Z �!$>�][J� oracleby immediatelyper-
forming anobservationon the � Y�Z gate’s outputs3 (such
anobservationyieldseachexample ; ' �e$�� ' �]= with probabil-
ity [U� ' � ), andthus �Ln)�C�

3As notedin Section2.3, intermediateobservationsduring a compu-
tation canalwaysbe simulatedby a singleobservation at the endof the
computation.



5 Quantum versusClassicalEfficient Learn-
ability

We have shown that from an information-theoreticper-
spective, up to polynomial factorsquantumlearningis no
morepowerful thanclassicallearning. However, we now
observe that the apparantcomputationaladvantagesof the
quantummodelyield efficientquantumlearningalgorithms
whichseemto havenoefficientclassicalcounterparts.

A Blum integer is an integer ý �&%®Ô where%ïj��Ô are'
-bit primeseachcongruentto 3 modulo4. It is widely be-

lieved that thereis no polynomial-timeclassicalalgorithm
whichcansuccessfullyfactorarandomlyselectedBlum in-
tegerwith nonnegligible successprobability.

KearnsandValiant[26] haveconstructedaconceptclass� whosePAC learnabilityis closelyrelatedto theproblem
of factoringBlum integers.In their constructioneachcon-
cept $ ( � is uniquelydefinedby someBlum integer ý �
Furthermore,$ hasthe propertythat if $�� ' ���Ý� thenthe
prefix of

'
is the binary representationof ýC� Kearnsand

Valiantprovethatif thereis apolynomialtimePAC learning
algorithmfor �Ì� thenthereis a polynomialtime algorithm
which factorsBlum integers.Thus,assumingthatfactoring
Blum integersis acomputationallyhardproblemfor classi-
cal computation,theKearns-Valiantconceptclass� is not
efficiently PAC learnable.

On the otherhand,in a celebratedresultShor[31] has
exhibitedapoly �!��� sizequantumnetwork whichcanfactor
any � -bit integerwith high successprobability. Sinceeach
positive exampleof a concept$ ( � revealstheBlum inte-
ger ý which defines$�� usingShor’s algorithmit is easyto
obtainanefficientquantumPAC learningalgorithmfor the
Kearns-Valiantconceptclass.We thushave

Observation 15 If thereis nopolynomial-timeclassicalal-
gorithmfor factoringBlumintegers, thenthere is a concept
class� which is efficientlyquantumPAC learnablebut not
efficientlyclassicallyPAC learnable.

The hardnessresultsof Kearnsand Valiant were later
extendedby Angluin andKharitonov [3]. Using a public-
key encryption systemwhich is secureagainstchosen-
cyphertext attack(basedon the assumptionthat factoring
Blum integersis computationallyhardfor polynomial-time
algorithms),they constructeda conceptclass� which can-
not be learnedby any polynomial-timelearningalgorithm
which makes membershipqueries. As with the Kearns-
Valiantconceptclass,though,usingShor’squantumfactor-
ing algorithmit is possibleto constructanefficientquantum
exactlearningalgorithmfor thisconceptclass.Thus,for the
exactlearningmodelaswell, wehave:

Observation 16 If thereis nopolynomial-timeclassicalal-
gorithm for factoring Blum integers, then there is a con-
cept class � which is efficiently quantumexact learnable

from membership queriesbut not efficientlyclassicallyex-
act learnablefrommembershipqueries.

Servedio [30] hasrecentlyestablisheda strongersepa-
ration betweenthe quantumandclassicalmodelsof exact
learningfrom membershipqueriesthanis implied by Ob-
servation 16. Using a new constructionof pseudorandom
functionsin conjunctionwith Simon’s quantumoracleal-
gorithm[32], it is shown in [30] that if any one-way func-
tion exists then there is a conceptclass 5 which is effi-
ciently quantumexact learnablefrom membershipqueries
but notefficiently classicallyexactlearnablefrom member-
shipqueries.

6 Conclusionand Future Dir ections

While we have shown thatquantumandclassicallearn-
ing are(up to polynomialfactors)information-theoretically
equivalent,many interestingquestionsremainaboutthere-
lationship betweenefficient quantumand classicallearn-
ability. It wouldbeinterestingto developefficientquantum
learningalgorithmsfor naturalconceptclasses,suchasthe
polynomial-timequantumalgorithmof BshoutyandJack-
son[13] for learningDNF formulaefrom uniformquantum
examples.
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A Boundson ClassicalSampleComplexity

Proof of Lemma 4: Let 5 ¥ §�5 � � 5 ¥ � O.Q be suchthat±�²T³8� »±�²Ï� Considerthe following adversarialstrategy for
answeringqueries:giventhequerystring ¨Á� answerthebit �
whichmaximizes±�²T³©¯ª � ¬m­ � Thisstrategy ensuresthateachre-

sponseeliminatesatmosta ±�²T³ª no±4²�³:�K»±4² fractionof the
conceptsin 5 ¥ � After 39 ÈÉ�Ê s � membershipqueries,fewer
thanhalf of theconceptsin 5 ¥ have beeneliminated,soat
leasttwo conceptshave not yet beeneliminated. Conse-
quently, it is impossiblefor N to outputa hypothesiswhich
is equivalentto thecorrectconceptwith probabilitygreater
than �>R�Q�� (Lemma4)

Proof of Lemma 8: Considerthe following adversarial
strategy for answeringqueries: if 5 ¥ § 5 is the set of
conceptswhich have not yet beeneliminatedby previous
responsesto queries,thengiventhequerystring ¨Á� answer
the bit � suchthat ± ²�³©�ª � ¬m­ O 39 � Under this strategy, afterúÀû7ü � 5 � s�� membershipqueriesat leasttwo possibletarget
conceptswill remain. (Lemma8)

Proof of Lemma 11: Considerthefollowing learningalgo-
rithm N : at eachstagein its execution,if 5 ¥ is the setof
conceptsin 5 whichhavenotyetbeeneliminatedby previ-
ousresponsesto queries,algorithm N ’s next querystringis
thestring ¨ ( � �%�&����
 which maximizes± ²�³ª � By following
this strategy, eachqueryresponsereceivedfrom theoracle
musteliminatesat leasta ±�²T³ fractionof theset 5 ¥ � sowith
eachquerythesizeof thesetof possibletargetconceptsis
multipliedby a factorwhich is at most �}sD±�²T³cnA�}sï»±4²Ï�
Consequently, after ���]�!úÀû7ü � 5 � �eR�»±4²�� queries,only a single
conceptwill nothavebeeneliminated;thisconceptmustbe
thetargetconcept,so N canoutputa hypothesisH which is
equivalentto $>� (Lemma11)

Proof Sketch for Theorem 12: The ideabehindTheorem
12 is to considerthe distribution [ which is uniform over
someshatteredset ã of size  andassignszeroweight to
pointsoutsideof ã?� Any learningalgorithmwhich makes
only  �R�Q callsto

Y�Z �!$��\[J� will haveno informationabout
thevalueof $ on at least  2R�Q pointsin ãÏE moreover, since
theset ã is shatteredby 5 � any labelingis possiblefor these
unseenpoints.Sincetheerrorof any hypothesisH under[
is thefractionof pointsin ã whereH andthetargetconcept
disagree,asimpleanalysisshowsthatnolearningalgorithm
which performonly  2R�Q calls to

Y�Z �!$��\[J� canhave high
probability (e.g. �-säqW�°Q7R�S ) of generatinga low-error
hypothesis(e.g. `Ï�A�>R2�
� ). (Theorem12)

B Proof of Theorem 13

Let ã�� ��' 3 �
�&�
�&� ' " � bea setwhich is shatteredby 5
and let [ be the distribution which is uniform on ã and
assignszeroweight to pointsoutside ãÌ� If H + � �	�
��� 
,I� �%�&��� is aBooleanfunctionon

� �	�
��� 
 � wesaythattherel-
ative distanceof H and $ on ã is the fraction of points inã on which H and $ disagree.We will prove the following
resultwhichis strongerthanTheorem13: Let t beaquan-
tum network with �"@A� gatessuchthat for all $ ( 5 � ift ’s oraclegatesare �-@A� B gates,thenwith probabilityat
leastQ7R�S theoutputof t is ahypothesisH suchthattherel-
ativedistanceof H and $ on ã is atmost ��R��
�	� Wewill show
thatsucha network t musthave querycomplexity at least
"3 9 
 � Sinceany QEX network with querycomplexity X can

besimulatedby a QMQ network with querycomplexity X}�
taking `Ï�A�>R2��� and q¦�ë��R�S will proveTheorem13.

Theargumentis a modificationof theproof of Theorem
10 using ideasfrom error correctingcodes. Let t be a
quantumnetwork with querycomplexity X which satisfies
the following condition: for all $ ( 5 � if t ’s oraclegates
are �"@A�"B gates,thenwith probabilityat leastQ7R�S theout-
put of t is a representationof a Booleancircuit H such
that the relative distanceof H and $ on ã is at most ��R2���	�
By thewell-known Gilbert-Varshamov boundfrom coding
theory(see,e.g.,Theorem5.1.7of [34]), thereexistsa set) 3 �&�
�&�
� )+* of  -bit stringssuchthatfor all ðâj�,� thestrings) | and ) 	 differ in at least 2R>� bit positions,where

NAO Q "~ " � ö { 3| ç x 
 " | � O Q "~ " � ö| ç x�
 " | � OGQ " Ù 3 {.- Ù 3<� ö Ú�Ú áäQ " � õ �
(Here /W�0%Á�}� s1%}úÀû7ü2%_s �]�às3%��2úÀû7ü®�]�às3%Á� is thebinary
entropy function.) For each ðr�æ�7�&�
�&�F�eN let $ | ( 5 be
a conceptsuchthat the  -bit string $ | � ' 3 � Ð&Ð
Ð $ | � ' " � is )

|
(sucha concept$ | mustexist sincetheset ã is shatteredby5 ).

For ðà�è�7�&�&�
�F�<N let ÿ | § � �	�
����v bethecollectionof
thosebasisstateswhicharesuchthatif thefinal observation
performedby t yieldsastatefrom ÿ | � thentheoutputof t
is a hypothesisH suchthat H and $ | have relative distance
at most ��R2��� on ãÌ� Sinceeachpair of concepts$ | �<$ 	 has
relative distanceat least �>R�� on ã?� the sets ÿ | and ÿ 	 are
disjoint for all ð}j�4�7�

As in Section 3.2 let ý � Q 
 and let
Z 	 �� Z 	x �
�&�&�
� Z 	þ { 3 � (k� �%�&��� 
 where

Z 	 is the ý -tuple rep-
resentationof the concept$ 	 � By Lemma9, for each ð�����
�&�&�&�<N thereis areal-valuedmultilinearpolynomial � | of
degreeat most Q�X suchthatfor all �r�^�7�&�
�&�&�eN"� thevalue
of � | � Z 	 � is preciselythe probability that the final obser-
vationon t yieldsa statefrom ÿ | providedthattheoracle
gatesare �"@A� B � gates.Since,by assumption,if $ | is the
targetconceptthenwith probabilityat least Q7R�Sàt gener-
atesa hypothesiswhich hasrelative distanceat most �>R2���



from $ | on ã?� thepolynomials� | have thefollowing prop-
erties:

1. � | � Z | �6OäQ7R>S for all ðÌ�ë���
�&�&�&�<N"E
2. For any �W���7�&�&�
�F�<N we have that ~ | îç 	 � | � Z 	 �rn��R�S (sincethe ÿ | ’saredisjointandthetotalprobability

acrossall observationsis 1).

Let ý x and ßZ be definedas in the proof of Theorem
10. For ð"� ���
�&�&�&�<N let � | ( é þ � be the columnvector
whichcorrespondsto thecoefficientsof thepolynomial � | �
so � Ó| ßZ �5� | � Z ��� Let @ bethe N Í ý x matrix whoseð -
th row is thevector � Ó| � somultiplicationby @ is a linear
transformationfrom

é þ��
to
é * � The product @ ßZ 	 is a

columnvectorin
é * whichhas� | � Z � asits ð -thcoordinate.

Now let Ñ bethe N Í N matrixwhose� -th columnis the
vector @ ßZ 	 � As in Theorem10wehave thatthetranspose
of Ñ is diagonallydominant,so Ñ is of full rankandhenceý x O�N-� SinceNïOäQ " � õ wethushavethat X*O " � õ9 � ��� Þ þ �"3 9 
 � andthetheoremis proved. (Theorem13)

C A diagonally dominant matrix has full
rank

This fact follows from the following theorem(see,e.g.,
Theorem6.1.17of [29]).

Theorem17(Gershgorin’sCir cleTheorem) Let N be a
real or complex-valued � Í � matrix. Let ã | be the disk
in thecomplex planewhosecenteris ¨ |�| andwhoseradius
is 6 | ��~ 	�îç | � ¨ | 	 � � Theneveryeigenvalueof N lies in the
unionof thedisks ã 3 �&�
�&�
�eã 
 �
Theproof is well known: if 7 is aneigenvalueof N which
hascorrespondingeigenvector

' �ë� ' 3 �&�
�&�F� ' 
 �F� thensinceN ' �87 ' wehave��7rs ¨ |À| � ' | ��Õ
	�îç | ¨ | 	 ' 	 for ðÌ�ë���
�&�&�&�]�?�

Without lossof generalitywe mayassumethat � ' �:9 �M�7�so � '.; � �ï� for some# and � ' 	 � n*� for �/j��#�� Thus� 7¹s ¨ ;<; � � � �=7_sD¨ ;<; � ' ; � nGÕ
	�îç ; � ¨ ; 	 �À� ' 	 � nGÕ	�îç ; � ¨ ; 	 �

andhence7 is in thedisk ã ; �
For a diagonallydominantmatrix the radius 6 | of each

disk ã | is lessthan its distancefrom the origin, which is� ¨ |�| � � Hence� cannotbeaneigenvalueof adiagonallydom-
inantmatrix,sothematrixmusthave full rank.


