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Abstract. We present a range of new results for testing properties of Boolean
functions that are defined in terms of the Fourier spectrum. Broadly speaking,
our results show that the property of a Boolean function having a concise Fourier
representation is locally testable.
We first give an efficient algorithm for testing whether the Fourier spectrum of a
Boolean function is supported in a low-dimensional subspace of Fn

2 (equivalently,
for testing whether f is a junta over a small number of parities). We next give an
efficient algorithm for testing whether a Boolean function has a sparse Fourier
spectrum (small number of nonzero coefficients). In both cases we also prove
lower bounds showing that any testing algorithm — even an adaptive one —
must have query complexity within a polynomial factor of our algorithms, which
are nonadaptive. Finally, we give an “implicit learning” algorithm that lets us test
any sub-property of Fourier concision.
Our technical contributions include new structural results about sparse Boolean
functions and new analysis of the pairwise independent hashing of Fourier coef-
ficients from [12].

1 Introduction

Recent years have witnessed broad research interest in the local testability of mathemat-
ical objects such as graphs, error-correcting codes, and Boolean functions. One of the
goals of this study is to understand the minimal conditions required to make a property
locally testable. For graphs and codes, works such as [1, 5, 3, 4] and [16, 17] have given
fairly general characterizations of when a property is testable. For Boolean functions,
however, testability is less well understood. On one hand, there are a fair number of
testing algorithms for specific classes of functions such as F2-linear functions [10, 6],
dictators [7, 21], low-degree F2-polynomials [2, 22], juntas [14, 9], and halfspaces [20].
But there is not much by way of general characterizations of what makes a property of
Boolean functions testable. Perhaps the only example is the work of [11], showing that
any class of functions sufficiently well-approximated by juntas is locally testable.

It is natural to think that general characterizations of testability for Boolean func-
tions might come from analyzing the Fourier spectrum (see e.g. [13, Section 9.1]). For
one thing, many of the known tests — for linearity, dictators, juntas, and halfspaces —
involve a careful analysis of the Fourier spectrum. Further intuition comes from learn-
ing theory, where the class of functions that are learnable using many of the well-known
algorithms [19, 18, 15] can be characterized in terms of the Fourier spectrum.

In this paper we make some progress toward this goal, by giving efficient algorithms
for testing Boolean functions that have low-dimensional or sparse Fourier representa-
tions. These are two natural ways to formalize what it means for a Boolean function to
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have a “concise” Fourier representation; thus, roughly speaking our results show that
the property of having a concise Fourier representation is efficiently testable. Further,
as we explain below, Boolean functions with low-dimensional or sparse Fourier repre-
sentations are closely related to linear functions, juntas, and low-degree polynomials
whose testability has been intensively studied, and thus the testability of these classes
is a natural question in its own right. Building on our testing algorithms, we are able
to give an “implicit learner” (in the sense of [11]), which determines the “truth table”
of a sparse Fourier spectrum without actually knowing the identities of the underlying
Fourier characters. This lets us test any sub-property of having a concise Fourier repre-
sentation. We view this as a step toward the goal of a more unified understanding of the
testability of Boolean functions.

Our algorithms rely on new structural results on Boolean functions with sparse and
close-to-sparse Fourier spectrums, which may find applications elsewhere. As one such
application, we show that the well-known Kushilevitz-Mansour algorithm is in fact an
exact proper learning algorithm for Boolean functions with sparse Fourier representa-
tions. As another application, we give polynomial-time unique-decoding algorithms for
sparse functions and k-dimensional functions; due to space limitations these results will
only appear in the full version of the paper.

1.1 The Fourier spectrum, dimensionality, and sparsity
We are concerned with testing various properties defined in terms of the Fourier rep-
resentation of Boolean functions f : Fn

2 → {−1, 1}. Input bits will be treated as
0, 1 ∈ F2, the field with two elements; output bits will be treated as −1, 1 ∈ R. Every
Boolean function f : Fn

2 → R has a unique representation as

f(x) =
∑

α∈Fn
2

f̂(α)χα(x) where χα(x) def= (−1)〈α,x〉 = (−1)
Pn

i=1 αixi . (1)

The coefficients f̂(α) are the Fourier coefficients of f , and the functions χα(·) are
sometimes referred to as linear functions or characters. In addition to treating input
strings x as lying in Fn

2 , we also index the characters by vectors α ∈ Fn
2 . This is to

emphasize the fact that we are concerned with the linear-algebraic structure. We write
Spec(f) for the Fourier spectrum of f , i.e. the set {α ∈ Fn

2 : f̂(α) 6= 0}.
Dimensionality and sparsity (and degree). A function f : Fn

2 → {−1, 1} is said
to be k-dimensional if Spec(f) lies in a k-dimensional subspace of Fn

2 . An equivalent
definition is that f is k-dimensional if it is a function of k characters χα1 , . . . , χαk

, i.e.
f is a junta over k parity functions (this is easily seen by picking {αi} to be a basis for
Spec(f)). We write dim(f) to denote the smallest k for which f is k-dimensional. A
function f is said to be s-sparse if |Spec(f)| ≤ s. We write sp(f) to denote |Spec(f)|,
i.e. the smallest s for which f is s-sparse.

We recall the notion of the F2-degree of a Boolean function, deg2(f), which is the
degree of the unique multilinear F2-polynomial representation for f when viewed as a
function Fn

2 → F2. (This should not be confused with the real-degree/Fourier-degree.
For example, deg2(χα) = 1 for all α 6= 0.) Let us note some relations between dim(f)
and sp(f). For any Boolean function f , we have

deg2(f) ≤ log sp(f) ≤ dim(f), (2)
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except that the first inequality fails when deg2(f) = 1. (Throughout this paper, log
always means log2.) The first inequality above is not difficult (see e.g. [8, Lemma 3])
and the second one is essentially immediate. Either of the above inequalities can be quite
loose; for the first inequality, the inner product function on n variables has deg2(f) =
2 but log sp(f) = n. For the second inequality, the addressing function with 1

2 log s

addressing variables and s1/2 addressee variables can be shown to be s-sparse but has
dim(f) ≥ s1/2. (It is trivially true that dim(f) ≤ s for any s-sparse function.)

We may rephrase these bounds as containments between classes of functions:

{k-dimensional} ⊆ {2k-sparse} ⊆ {F2 − degree-k}} (3)

where the right containment is proper for k > 1 and the left is proper for k larger than
some small constant such as 6. Alon et al. [2] gave essentially matching upper and lower
bounds for testing the class of F2-degree-k functions, showing that 2Θ(k) nonadaptive
queries are necessary and sufficient. We show that 2Θ(k) queries are also necessary and
sufficient for testing each of the first two classes as well; in fact, by our implicit learning
result, we can test any sub-class of k-dimensional functions using 2O(k) queries.1

1.2 Our results and techniques
Testing Low-Dimensionality. We give nearly matching upper and lower bounds for
testing whether a function is k-dimensional:

Theorem 1. [Testing k-dimensionality – informal] There is a nonadaptive O(k22k/ε)-
query algorithm for ε-testing whether f is k-dimensional. Moreover, any algorithm
(adaptive, even) for 0.49-testing this property must make Ω(2k/2) queries.

We outline the basic idea behind our dimensionality test. Given h ∈ Fn
2 , we say that

f : Fn
2 → R is h-invariant if it satisfies f(x + h) = f(x) for all x ∈ Fn

2 . We define
the subspace Inv(f) = {h : f is h-invariant}. If f is truly k-dimensional, then Inv(f)
has codimension k; we use this as the characterization of k-dimensional functions. We
estimate the size of Inv(f) by randomly sampling vectors h and testing if they belong
to Inv(f). We reject if the fraction of such h is much smaller than 2−k. The crux of our
soundness analysis is to show that if a function passes the test with good probability,
most of its Fourier spectrum is concentrated on a k-dimensional subspace. From this
we conclude that it must in fact be close to a k-dimensional function. Because of space
constraints, this algorithm is omitted from this version of the paper.

Testing Sparsity. We next give an algorithm for testing whether a function is s-sparse.
Its query complexity is poly(s), which is optimal up to the degree of the polynomial:

Theorem 2. [Testing s-sparsity – informal] There is a nonadaptive poly(s, 1/ε)-
query algorithm for ε-testing whether f is s-sparse. Moreover, any algorithm (adaptive,
even) for 0.49-testing this property must make Ω(

√
s) queries.

The high-level idea behind our tester is that of “hashing” the Fourier coefficients,
following [12]. We choose a random subspace H of Fn

2 with codimension O(s2). This

1 We remind the reader that efficient testability does not translate downward: if C1 is a class of
functions that is efficiently testable and C2 ( C1, the class C2 need not be efficiently testable.
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partitions all the Fourier coefficients into the cosets (affine subspaces) defined by H .
If f is s-sparse, then each vector in Spec(f) is likely to land in a distinct coset. We
define the “projection” of f to a coset r + H to be the real-valued function given by
zeroing out all Fourier coefficients not in r + H . Given query access to f , one can
obtain approximate query access to a projection of f by a certain averaging. Now if
each vector in Spec(f) is hashed to a different coset, then each projection function will
have sparsity either 1 or 0, so we can try to test that at most s of the projection functions
have sparsity 1, and the rest have sparsity 0.

A similar argument to the one used for k-dimensionality shows that if f passes this
test, most of its Fourier mass lies on a few coefficients. However, unlike in the low-
dimensionality test, this is not a priori enough to conclude that f is close to a sparse
Boolean function. The obvious way to get a Boolean function close to f would be to
truncate the Fourier spectrum to its s largest coefficients and then take the sign, but
taking the sign could destroy the sparsity and give a function which is not at all sparse.

We circumvent this obstacle by using some new structural theorems about sparse
Boolean functions. We show that if most of the Fourier mass of a function f lies on its
largest s coefficients, then these coefficients are close to being “dlog se–granular,” i.e.
close to integer multiples of 1/2dlog se. We then prove that truncating the Fourier expan-
sion to these coefficients and rounding them to nearby granular values gives a sparse
Boolean-valued function (Theorem 6). Thus our sparsity test and its analysis depart
significantly from the tests for juntas [14] and from our test for low-dimensionality.

Testing subclasses of k-dimensional functions. Finally, we show that a broad range
of subclasses of k-dimensional functions are also testable with 2O(k) queries. Recall
that k-dimensional functions are all functions f(x) = g(χα1(x), . . . , χαk

(x)) where
g is any k-variable Boolean function. We say that a class C is an induced subclass of
k-dimensional functions if there is some collection C′ of k-variable Boolean functions
such that C is the class of all functions f = g(χα1 , . . . , χαk

) where g is any function in
C′ and χα1 , . . . , χαk

are any linear functions from Fn
2 to F2 as before. For example, let

C be the class of all k-sparse polynomial threshold functions over {−1, 1}n; i.e., each
function in C is the sign of a real polynomial with at most k nonzero terms. This is an
induced subclass of k-dimensional functions, corresponding to the collection C′ = { all
linear threshold functions over k Boolean variables}.

We show that any induced subclass of k-dimensional functions can be tested:

Theorem 3. [Testing induced subclasses of k-dimensional functions – informal]
Let C be any induced subclass of k-dimensional functions. There is a nonadaptive
poly(2k, 1/ε)-query algorithm for ε-testing C.

We note that the upper bound of Theorem 3 is essentially best possible in general,
by the 2Ω(k) lower bound for testing the whole class of k-dimensional functions.

Our algorithm for Theorem 3 extends the approach of Theorem 2 with ideas from
the “testing by implicit learning” work of [11]. Briefly, by hashing the Fourier coeffi-
cients we are able to construct a matrix of size 2k × 2k whose entries are the values
taken by the characters χα in the spectrum of f . This matrix, together with a vector of
the corresponding values of f , serves as a data set for “implicit learning” (we say the
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learning is “implicit” since we do not actually know the names of the relevant charac-
ters). Our test inspects sub-matrices of this matrix and tries to find one which, together
with the vector of f -values, matches the truth table of some k-variable function g ∈ C′.

Organization of the paper. We give standard preliminaries and an explanation of our
techniques for hashing the Fourier spectrum in Section 2. Section 3 gives our new struc-
tural theorems about sparse Boolean functions, and Section 4 uses these theorems to
give our test for s-sparse functions. Because of space constraints, our results for test-
ing k-dimensional functions, for unique-decoding, for testing induced subclasses of
k-dimensional functions, and our lower bounds are given in the full version.

2 Preliminaries
Throughout the paper we view Boolean functions as mappings from Fn

2 to {−1, 1}. We
will also consider functions which map from Fn

2 to R. Such functions have a unique
Fourier expansion as in Equation (1). For A a collection of vectors α ∈ Fn

2 , we write
wt(A) to denote the “Fourier weight” wt(A) =

∑
α∈A f̂(α)2 on the elements of

A. This notation suppresses the dependence on f , but it will always be clear from
context. We frequently use Parseval’s identity: wt(Fn

2 ) =
∑

α∈Fn
2

f̂(α)2 = ‖f‖2
2

def=
Ex∈Fn

2
[f(x)2]. Here and elsewhere, an expectation or probability over “x ∈ X” refers

to the uniform distribution on X .
As defined in the previous section, the sparsity of f is sp(f) = |Spec(f)|. We may

concisely restate the definition of dimension as dim(f) = dim(span(Spec(f))).
Given two Boolean functions f and g, we say that f and g are ε-close if Prx∈Fn

2
[f(x) 6=

g(x)] ≤ ε and say they are ε-far if Prx∈Fn
2
[f(x) 6= g(x)] ≥ ε. We use the standard

definition of property testing:

Definition 1. Let C be a class of functions mapping Fn
2 to {−1, 1}. A property tester

for C is an oracle algorithm A which is given a distance parameter ε > 0 and oracle
access to a function f : Fn

2 → {−1, 1} and satisfies the following conditions:
1. if f ∈ C then A outputs “accept” with probability at least 2/3;
2. if f is ε-far from every g ∈ C then A outputs “accept” with probability at most 1/3.

We also say that A ε-tests C. The main interest is in the number of queries the testing
algorithm makes.

All of our testing upper and lower bounds allow “two-sided error” as described
above. Our lower bounds are for adaptive query algorithms and our upper bounds are
via nonadaptive query algorithms.

2.1 Projections of the Fourier spectrum
The idea of “isolating” or “hashing” Fourier coefficients by projection, as done in [12]
in a learning-theoretic context, plays an important role in our tests.

Definition 2. Given a subspace H ≤ Fn
2 and a coset r + H , define the projection

operator Pr+H on functions f : Fn
2 → R as follows:

P̂r+Hf(α)
def
=

{
f̂(α) if α ∈ r + H ,
0 otherwise.
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In other words, we have Pr+Hf = Ar+H ∗ f, where Ar+H
def
=

∑
α∈r+H χα and ∗ is

the convolution operator: f ∗ g(x) = Ey[f(x + y) · g(y)].

Clearly Ar+H = χr ·
∑

h∈H χh, and it is a simple and well-known fact that∑
h∈H χh = |H| · 1H⊥ . Thus we conclude the following (see also Lemma 1 of [12]):

Fact 4 Pr+Hf(x) = Ey∈H⊥ [χr(y)f(x + y)].

We now show that for any coset r + H , we can approximately determine both
Pr+Hf(x) and ‖Pr+Hf‖2

2.

Proposition 1. For any x ∈ Fn
2 , the value Pr+Hf(x) can be estimated to within ±τ

with confidence 1− δ using O(log(1/δ)/τ2) queries to f .

Proof. Empirically estimate the right-hand side in Fact 4. Since the quantity inside the
expectation is bounded in [−1, 1], the result follows from a Chernoff bound. ut

Recall that wt(r + H) =
∑

α∈r+H f̂(α)2 = ‖Pr+Hf‖2
2. We have:

Fact 5 wt(r + H) = Ex∈Fn
2 ,z∈H⊥ [χr(z)f(x)f(x + z)].

Proof. Using Parseval and Fact 4, we have

wt(r+H) = E
w∈Fn

2

[(Pr+Hf(w))2] = E
w∈Fn

2 ,y1,y2∈H⊥
[χr(y1)f(w+y1)χr(y2)f(w+y2)],

which reduces to the desired equality upon writing x = w + y1, z = y1 + y2. ut

Proposition 2. The value wt(r + H) can be estimated to within ±τ with confidence
1− δ using O(log(1/δ)/τ2) queries to f .

Proof. Empirically estimate the right-hand side in Fact 5. Since the quantity inside the
expectation is bounded in [−1, 1], the result follows from a Chernoff bound. ut

2.2 Hashing to a random coset structure
In this section we present our technique for pairwise independently hashing the Fourier
characters.

Definition 3. For t ∈ N, we define a random t-dimensional coset structure (H, C) as
follows: We choose vectors β1, . . . , βt ∈ Fn

2 independently and uniformly at random
and set H = span{β1, . . . , βt}⊥. For each b ∈ Ft

2 we define the “bucket”

C(b)
def
= {α ∈ Fn

2 : 〈α, βi〉 = bi for all i}.

We take C to be the set of C(b)’s, which has cardinality 2t.

Remark 1. Given such a random coset structure, if the βi’s are linearly independent
then the buckets C(b) are precisely the cosets in Fn

2/H , and the coset-projection func-
tion PC(b)f is defined according to Definition 2. In the (usually unlikely) case that the
βi’s are linearly dependent, some of the C(b)’s will be cosets in Fn

2/H and some of
them will be empty. For the empty buckets C(b) we define PC(b)f to be identically 0.
It is algorithmically easy to distinguish empty buckets from genuine coset buckets.
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We now derive some simple but important facts about this random hashing process:

Proposition 3. Let (H, C) be a random t-dimensional coset structure. Define the indi-
cator random variable Iα→b for the event that α ∈ C(b).

1. For each α ∈ Fn
2 \ {0} and each b we have Pr[α ∈ C(b)] = E[Iα→b] = 2−t.

2. Let α, α′ ∈ Fn
2 be distinct. Then Pr[α, α′ belong to the same bucket] = 2−t.

3. Fix any set S ⊆ Fn
2 with |S| ≤ s + 1. If t ≥ 2 log s + log(1/δ) then except with

probability at most δ, all vectors in S fall into different buckets.
4. For each b, the collection of random variables (Iα→b)α∈Fn

2
is pairwise independent.

Proof. Part 1 is because for any α 6= 0, each 〈α, βi〉 is an independent uniformly ran-
dom bit. Part 2 is because each 〈α − α′, βi〉 is an independent uniformly random bit,
and hence the probability that 〈α, βi〉 = 〈α′, βi〉 for all i is 2−t. Part 3 follows from
Part 2 and taking a union bound over the at most

(
s+1
2

)
≤ s2 distinct pairs in S. For

Part 4, assume first that α 6= α′ are both nonzero. Then from the fact that α and α′ are
linearly independent, it follows that Pr[α, α′ ∈ C(b)] = 2−2t as required. On the other
hand, if one of α 6= α′ is zero, then Pr[α, α′ ∈ C(b)] = Pr[α ∈ C(b)]Pr[α′ ∈ C(b)]
follows immediately by checking the two cases b = 0, b 6= 0. ut

With Proposition 3 in mind, we give the following simple deviation bound for the
sum of pairwise independent random variables:

Proposition 4. Let X =
∑n

i=1 Xi, where the Xi’s are pairwise independent random
variables satisfying 0 ≤ Xi ≤ τ . Assume µ = E[X] > 0. Then for any ε > 0, we have
Pr[X ≤ (1− ε)µ] ≤ τ

ε2µ .

Proof. By pairwise independence, we have Var[X] =
∑

Var[Xi] ≤
∑

E[X2
i ] ≤∑

τE[Xi] = τµ. The result now follows from Chebyshev’s inequality. ut

Finally, it is slightly annoying that Part 1 of Proposition 3 fails for α = 0 (because
0 is always hashed to C(0)). However we can easily handle this issue by renaming the
buckets with a simple random permutation.

Definition 4. In a random permuted t-dimensional coset structure, we additionally
choose a random z ∈ Ft

2 and rename C(b) by C(b + z).

Proposition 5. For a random permuted t-dimensional coset structure, Proposition 3
continues to hold, with Part 1 even holding for α = 0.

Proof. Use Proposition 3 and the fact that adding a random z permutes the buckets. ut

3 Structural theorems about s-sparse functions
In this section we prove structural theorems about close-to-sparse Boolean functions.
These theorems are crucial to the analysis of our test for s-sparsity; we also present a
learning application in the full version.



8

Definition 5. Let B = {α1, · · · , αs} denote the (subsets of [n] with the) s largest
Fourier coefficients of f , and let S = B̄ be its complement. We say that f is µ-close to
s-sparse in `2 if

∑
α∈S f̂(α)2 ≤ µ2.

Definition 6. We say a rational number has granularity k ∈ N, or is k-granular, if it
is of the form (integer)/2k. We say a function f : Fn

2 → R is k-granular if f̂(α) is k-
granular for every α. We say that a number v is µ-close to k-granular if |v− j/2k| ≤ µ
for some integer j.

The following structural result is the key theorem for the completeness of our spar-
sity test; it says that in any function that is close to being sparse in `2, all the large
Fourier coefficients are close to being granular.

Theorem 1 [Completeness Theorem.] If f is µ-close to s-sparse in `2, then each f̂(α)
for α ∈ B is µ√

s
-close to dlog se-granular.

Proof. Pick a set of k = dlog se + 1 equations Aα = b at random (i.e. pick a k × n
random matrix A and a random vector b ∈ Fk

2). Let A⊥ ⊂ Fn
2 be the set of solutions to

Aα = 0. Define H to be the coset of A⊥ of solutions to Aα = b. We have

PHf(x) =
∑
α∈H

f̂(α)χα(x).

Fix αi ∈ B. We will show that with non-zero probability the following two events
happen together: the vector αi is the unique coefficient in B∩H , and the `2 Fourier mass
of the set S ∩ H is bounded by µ2

s . Clearly, PrA,b[Aαi = b] = 2−k. Let us condition
on this event. By pairwise independence, for any j 6= i, PrA,b[Aαj = b|Aαi = b] =
2−k ≤ 1

2s . Thus EA,b

[
|{j 6= i such that Aαj = b}|

∣∣Aαi = b
]

= (s−1)
2k < 1

2 . Hence
by Markov’s inequality

PrA,b[∃j 6= i such that Aαj = b
∣∣Aαi = b] <

1
2
. (4)

Now consider the coefficients from S. We have

EA,b

 ∑
β∈S∩H

f̂(β)2
∣∣Aαi = b

 =
∑
β∈S

Pr[β ∈ H|Aαi = b]f̂(β)2 ≤ 2−kµ2 ≤ µ2

2s
.

Hence by Markov’s inequality,

PrA,b

 ∑
β∈S∩H

f̂(β)2 ≥ µ2

s

∣∣Aαi = b

 ≤ 1
2
. (5)

Thus by applying the union bound to Equations 4 and 5, we have both the desired
events (αi being the unique solution from B, and small `2 mass from S) happening
with non-zero probability over the choice of A, b. Fixing this choice, we have

PHf(x) = f̂(αi)χαi(x) +
∑

β∈S∩H

f̂(β)χβ(x) where
∑

β∈S∩H

f̂(β)2 ≤ µ2

s
.
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But by Fact 4 we also have PHf(x) = Ey∈A[χb(y)f(x + y)] (here we abuse
notations and think of A as both the matrix A and the space spanned by the rows of
A. In particular, A = (A⊥)⊥). Thus the function PHf(x) is the average of a Boolean
function over 2k points, hence it is (k − 1)-granular.

We now consider the function g(x) =
∑

β∈S∩H f̂(β)χβ(x). Since Ex[g(x)2] ≤
µ2

s , for some x0 ∈ Fn
2 we have g(x0)2 ≤ µ2

s , hence |g(x0)| ≤ µ√
s
. Fixing this x0, we

have PHf(x0) = f̂(αi)χαi
(x0) + g(x0), and hence |f̂(αi)| = |PHf(x0) − g(x0)|.

Since PHf(x0) is (k − 1)-granular and |g(x0)| ≤ µ√
s
, the claim follows. ut

Thus, if f has its Fourier mass concentrated on s coefficients, then it is close in `2
to an s-sparse, dlog se granular real-valued function. We next show that this real-valued
function must in fact be Boolean.

Theorem 6. [Soundness Theorem.] Let f : Fn
2 → {−1, 1} be µ ≤ 1

20s2 close to s-
sparse in `2. Then there is an s-sparse Boolean function F : Fn

2 → {−1, 1} within
Hamming distance µ2

2 from f .

Proof. Let B = {α1, · · · , αs} be the s largest Fourier coefficients of f and let k =
dlog se. By Theorem 1, each f̂(αi) is µ√

s
close to k-granular. So we can write

f̂(αi) = F̂ (αi) + Ĝ(αi)

where F̂ (αi) is k-granular and |Ĝ(αi)| ≤ µ√
s
. Set F̂ (β) = 0 and Ĝ(β) = f̂(β) for

β ∈ S = B̄. Thus we have f(x) = F (x) + G(x), further F is s-sparse and k-granular,
while

E[G(x)2] ≤ s
µ2

s
+ µ2 ≤ 2µ2.

It suffices to show that F ’s range is {−1, 1}. In this case, G’s range must be
{−2, 0, 2}, the value G(x)2 is exactly 4 whenever f and F differ, and therefore f and
F satisfy

Prx[f(x) 6= F (x)] = Pr[|G(x)| = 2] =
1
4
Ex[G(x)2] ≤ µ2

2
.

As f is a Boolean function on Fn
2 we have

1 = f2 = F 2 + 2FG + G2 = F 2 + G(2f −G). (6)

Writing H = G(2f −G), from Fact 7 below we have that for all α,

|Ĥ(α)| ≤ ‖G‖2‖2f −G‖2 ≤ ‖G‖2(‖2f‖2 + ‖G‖2) ≤ 2
√

2µ + 2µ2 < 4µ ≤ 1
5s2

.

On the other hand, since F has granularity k it is easy to see that F 2 has granularity
2k; in particular, |F̂ 2(α)| is either an integer or at least 2−2k ≥ 1

4s2 -far from being an
integer. But for (6) to hold as a functional identity, we must have F̂ 2(0) + Ĥ(0) = 1
and F̂ 2(α)+ Ĥ(α) = 0 for all α 6= 0. It follows then that we must have F̂ 2(0) = 1 and
F̂ 2(α) = 0 for all α 6= 0; i.e., F 2 = 1 and hence F has range {−1, 1}, as claimed. ut
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Fact 7 Let f, g : Fn
2 → R. Then |f̂g(α)| ≤ ‖f‖2‖g‖2 for every α.

Proof. Using Cauchy-Schwarz and Parseval,

|f̂g(α)| = |
∑
β

f̂(β)ĝ(α + β)| ≤
√∑

β

f̂(β)2
√∑

β

ĝ(α + β)2 = ‖f‖2‖g‖2. ut

4 Testing s-sparsity

The following is our algorithm for testing whether f : Fn
2 → {−1, 1} is s-sparse:

Algorithm 1 Testing s-sparsity
Inputs: s, ε

Parameters: µ = min(
√

2ε, 1
20s2 ), t = d2 log s + log 100e, τ = µ2

100·2t.

1. Choose a random permuted t-dimensional coset structure
(H, C).

2. For each bucket C ∈ C, estimate wt(C) =
∑

α∈C f̂(α)2

to accuracy ±τ with confidence 1 − (1/100)2−t, using
Proposition 2.

3. Let L be the set of buckets where the estimate is at
least 2τ. If |L| ≥ s + 1, reject.

Roughly speaking, Step 1 pairwise independently hashes the Fourier coefficients
of f into Θ(s2) buckets. If f is s-sparse then at most s buckets have nonzero weight
and the test accepts. On the other hand, if f passes the test with high probability then
we show that almost all the Fourier mass of f is concentrated on at most s nonzero
coefficients (one for each bucket in L). Theorem 6 now shows that f is close to a sparse
function. Our theorem about the test is the following:

Theorem 8. Algorithm 1 ε-tests whether f : Fn
2 → {−1, 1} is s-sparse (with confi-

dence 3/4), making O
(

s6 log s
ε2 + s14 log s

)
nonadaptive queries.

The query complexity of Theorem 8 follows immediately from Proposition 2 and
the fact that there are 2t = O(s2) buckets. In the remainder of this section we present
the completeness (Lemma 1) and the soundness (Lemma 4) of the test. We begin with
the completeness, which is straightforward.

Lemma 1. If f is s-sparse then the test accepts with probability at least 0.9.

Proof. Write f =
∑s′

i=1 f̂(αi)χαi , where each f̂(αi) 6= 0 and s′ ≤ s. Since there are
2t buckets, all of the estimates in Step 2 are indeed τ -accurate, except with probability
at most 1/100. If the estimates are indeed accurate, the only buckets with weight at least
τ are those that contain a nonzero Fourier coefficient, which are at most s in number.
So f passes the test with probability at least 0.9. ut
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We now analyze the soundness. We partition the Fourier coefficients of f into two
sets: B of big coefficients and S of small coefficients. Formally, let

B
def= {α : f̂(α)2 ≥ 3τ}, S

def= {α : f̂(α)2 < 3τ}.

We observe that if there are too many big coefficients the test will probably reject:

Lemma 2. If |B| ≥ s + 1 then the test rejects with probability at least 3/4.

Proof. Proposition 5(3) implies that after Step 1, except with probability at most 1/100
there are at least s + 1 buckets C containing an element of B. In Step 2, except with
probability at most 1/100, we get an estimate of at least 3τ − τ ≥ 2τ for each such
bucket. Then |L| will be at least s + 1 in Step 3. Hence the overall rejection probability
is at least 1− 2/100. ut

Next we show that if the weight on small coefficients, wt(S) =
∑

α∈S f̂(α)2, is
too large then the test will probably reject:

Lemma 3. If wt(S) ≥ µ2 then the test rejects with probability at least 3/4.

Proof. Suppose that indeed wt(S) ≥ µ2. Fix a bucket index b and define the random
variable Mb := wt(C(b) ∩ S) =

∑
α∈C(b)∩S f̂(α)2 =

∑
α∈S f̂(α)2 · Iα→b. Here

the randomness is from the choice of (H, C), and we have used the pairwise indepen-
dent indicator random variables defined in Proposition 5(3). Let us say that the bucket
C(b) is good if Mb ≥ 1

2E[Mb]. We have E[Mb] = 2−t wt(S) ≥ 100τ > 0, and by
Proposition 4 we deduce Pr[Mb ≤ 1

2E[Mb]] ≤ 3τ
(1/2)2E[Mb]

≤ 3/25. Thus the ex-
pected fraction of bad buckets is at most 3/25, so by Markov’s inequality there are
at most (3/5)2t bad buckets except with probability at most 1/5. But if there are at
least (2/5)2t good buckets, we have at least (2/5)(100s2) ≥ s + 1 buckets b with
wt(C(b) ∩ S) ≥ 1

2E[Mb] ≥ 50τ . Assuming all estimates in Step 2 of the test are ac-
curate to within ±τ (which fails with probability at most 1/100), Step 3 of the test will
reject. Thus we reject except with probability at most 1/5 + 1/100 < 1/4. ut

Now we put together the pieces to establish soundness of the test:

Lemma 4. Suppose the test accepts f with probability exceeding 1/4. Then f is ε-close
to an s-sparse Boolean function.

Proof. Assuming the test accepts f with probability exceeding 1/4, by Lemma 2 we
have |B| ≤ s, by Lemma 3 we have wt(S) ≤ µ2. Thus f is µ ≤ 1

20s2 close in `2 to
being s-sparse. We now apply the soundness theorem, Theorem 6 to conclude that f

must be µ2

2 ≤ ε-close in Hamming distance to an s-sparse Boolean function. ut
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